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Abstract. This paper establishes a unified a posteriori error estimator for a
large class of conforming finite element methods for the Reissner-Mindlin plate
problem. The analysis is based on some assumption (H) on the consistency of the
reduction integration to avoid shear locking. The reliable and efficient a posteriori
error estimator is robust in the sense that the reliability and efficiency constants
are independent of the plate thickness t. The presented analysis applies to all
conforming MITC elements and all conforming finite element methods without
reduced integration from the literature.

1. Introduction

This paper is devoted to the finite element approximation for the Reissner-Mindlin
plate problem: Given g ∈ L2(Ω) find (ω,φ) ∈W ×Θ := H1

0 (Ω) ×H1
0 (Ω)2 with

(1.1) a(φ,ψ) + (γ,∇v −ψ)L2(Ω) = (g, v)L2(Ω) for all (v,ψ) ∈W × Θ ,

and the shear force

(1.2) γ = λt−2(∇ω − φ).

The bilinear form a(·, ·) models the linear elastic energy while (·, ·)L2(Ω) denotes
the L2 scalar product. Here and throughout this paper, Θh ⊂ Θ and Wh ⊂ W
denote some finite element spaces over some regular partition Th while Rh denotes
the reduction integration operator in the context of shear locking with values in the
discrete shear force space Γh. Some lower order examples of finite element spaces
Wh ,Θh, and the operator Rh : Θh → Γh are depicted in Table 1. We refer to
Section 5 for further descriptions and for other discrete schemes.

The discrete problem reads: Find (ωh,φh) ∈Wh × Θh with

a(φh,ψ) + (γh,∇v −Rhψ) = (g, v) for all (v,ψ) ∈Wh ×Θh(1.3)

and the discrete shear force

(1.4) γh = λt−2(∇ωh −Rhφh).
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Table 1. Lower Order Examples of Finite Element Spaces Wh ,Θh

and the Reduction Integration Operator Rh : Θh → Γh in (1.3)-(1.4)
with (H), namely RhΘh ⊂ H0(rot,Ω).
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This paper aims at a unified reliable and efficient residual-based a posteriori error
analysis for a class of conforming elements for the Reissner-Mindlin problem under
the hypothesis (H): For any ψh ∈ Θh, there holds

(H) Rhψh ∈ H0(rot,Ω) ,

with the Sobolev space H0(rot,Ω) defined in Section 2.1. In fact, (H) is satisfied for
all the examples in Table 1 with detailed proofs given in Section 5 below.

With the notation specified below, the main result of this paper implies that the
error

‖φ− φh‖
2
H1(Ω) + ‖ω − ωh‖

2
H1(Ω) + t2‖γ − γh‖

2
L2(Ω)

+ t4‖ rot(γ − γh)‖
2
L2(Ω) + ‖γ − γh‖

2
H−1(Ω)

can be controlled by the error estimator

η2
h =:

∑

E∈E(Ω)

hE

(
‖[Cε(φh)] · νE‖

2
L2(E) + (t2 + h2

E)‖[γh] · νE‖
2
L2(E)

)

+
∑

K∈Th

h2
K

(
‖ div Cε(φh) + γh‖

2
L2(K) + (t2 + h2

K)‖g + div γh‖
2
L2(K)

)

+ ‖φh −Rhφh‖
2
H(rot,Ω) + µh(γh)

2

up to the data oscillation osc(g). Here and throughout this paper,

µh(γh) := sup
ψh∈(S1

0
(Th))2\{0}

(γh, (I −Rh)ψh)L2(Ω)

‖ψh‖H1(Ω)

.

The operator C is defined in Subsection 2.1, and the lowest order conforming finite
element space S1

0(Th) is defined in Subsection 2.2.
The estimator ηh is robust in the sense that the reliabilty and efficiency constants

are independent of the plate thickness t.

Remark 1.1. A different a posteriori error estimate was proposed for the DL el-
ement of [26] in [36]. Instead of the norm with the term ‖γ − γh‖H−1(Ω) here, the
term ‖γ − γh‖H−1(div,Ω) was analyzed in [36]. It is unsatisfactary that no a priori
convergence is known for ‖γ − γh‖H−1(div,Ω) for conforming MITC methods. This
drawback motivated this paper with focuses on ‖γ − γh‖H−1(Ω). The convergence in
this norm is shown, for instance, in [18, Corollary 3.1] and [29, 30] for all examples
(except MITC3) of this paper.

Remark 1.2. Compared to the analysis in [36], the analysis in this paper is based on
three key arguments: an error representation formula, some mesh dependent norm,
and some refined approximation of the Clément-type interpolation operator.

Remark 1.3. The last two terms of ηh concern the consistency error from the
reduction integration; they vanish for Rh = I. Hence Theorem 2.1 and 2.2 below
apply to any conforming finite element methods without reduction integration.

Remark 1.4. As we shall see in examples of Section 5, µh(γh) = 0 for high-order
(triangle or quadrilateral) schemes. For the lower-order schemes, this term can be
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bounded by

µh(γh)
2 .

∑

E∈E(Ω)

hE(t2 + h2
E)‖[γh] · νE‖

2
L2(E)

+
∑

K∈Th

h2
K(t2 + h2

K)‖g + divγh‖
2
L2(K) + h.o.t.(1.5)

up to computable high-order terms h.o.t.

Here and throughout, an inequality a . b replaces a ≤ C b with some multiplica-
tive mesh-size independent constant C > 0 that depends only on the domain Ω and
the shape (e.g., through the aspect ratio) of elements (C > 0 is also independent
of crucial parameters as the plate thickness t below). Finally, a ≈ b abbreviates
a . b . a.

Remark 1.5. For the MITC methods under consideration, one has the following
decomposition [18, 29, 30]: There exist unique r ∈ H1

0(Ω), α ∈H0(rot,Ω), rh ∈Wh,
and αh ∈ Γh with

γ = ∇r +α, and (∇r,α)L2(Ω) = 0,

γh = ∇rh +αh, and (∇rh,αh)L2(Ω) = 0.

Therefore, the a priori convergence of t2‖ rot(γ−γh)‖L2(Ω) is assured by the conver-
gence of t2‖ rot(α − αh)‖L2(Ω) proved, e.g, in [18, Theorem 3.2] for the MITC7,
MITC9 and MITC12 element; cf. [29, 30] for the remaining elements (except
MITC3).

Remark 1.6. Although the MITC3 element in Table 1 is unstable in the sense that
there is no uniform a priori convergence with respect to the plate thickness t, the
estimator ηh is still reliable and efficient. At first glance this might surprise, but is a
consequence that an a posteriori error analysis depends on the continuous operators
and not on the stability of some discrete scheme.

Other a posteriori error estimators for the finite element methods of the Reissner-
Mindlin plate problem can be found in [21, 22, 37]. The paper [21] concerns the
nonconforming Arnold-Falk element [4], and the paper [22] works on the stabilized
method initialed in [3, 23]. Due to the lacking of the convergence of ‖γ−γh‖H−1(div),
both frameworks of [22] and [21] are inapplicable herein for the MITC methods. In
[37], the authors discuss the a posteriori error estimator for the schemes based on the
linked interpolation technique. The result is derived therein under some unproven
saturation assumption which our work abandons . In addition, the norm analyzed
in that paper contains the term

∑
K∈Th

(hK + t)−2‖∇(ω − ωh) − (φ− φh)‖2
L2(K). The

convergence of which is open for the MITC methods without stabilization.
The remaining part of the paper is organized as follows. We first introduce some

notations and present main results in Section 2 in detailed forms. The reliability
of ηh will be proved in Section 3, with the efficiency in Section 4. In Section 5, we
present some examples covered by our analysis, and provide a reliable and efficient
computable upper bounds of µh(γh) for them.
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2. Notation and Main Results

This section introduces necessary notations and states the main results of this
paper.

2.1. Sobolev Spaces and Differential Operators. We use the standard differ-
ential operators:

∇r = (∂r/∂x , ∂r/∂y) , Curl p = (∂p/∂y ,−∂p/∂x) .

The linear Green strain ε(φ) = 1/2[∇φ + ∇φT ] is the symmetric part of gradient
field ∇φ. Given any 2D vector function ψ = (ψ1, ψ2), its divergence reads divψ =
∂ψ1/∂x + ∂ψ2/∂y. With the differential operator rotψ = ∂ψ2/∂x − ∂ψ1/∂y for a
vector function ψ = (ψ1, ψ2), the space H0(rot,Ω) is defined as

H0(rot,Ω) := {v ∈ L2(Ω)2| rot v ∈ L2(Ω) and v · τ = 0 on ∂Ω}

endowed with the norm

‖v‖H(rot,Ω) :=
(
‖v‖2

L2(Ω) + ‖ rot v‖2
L2(Ω)

)1/2
.

The dual space for H0(rot,Ω) reads

H−1(div,Ω) := {v ∈ H−1(Ω)2| div v ∈ H−1(Ω)} ,

with the norm

‖v‖H−1(div,Ω) :=
(
‖v‖2

H−1(Ω) + ‖ div v‖2
H−1(Ω)

)1/2
.

We define the following mesh dependent norm, for any (ψ, v) ∈ H1
0 (Ω)2 ×H1

0 (Ω),

(2.1) |||(ψ, v)|||21,h = ‖∇ψ‖2
L2(Ω) +

∑

K∈Th

1

t2 + h2
K

‖∇v −ψ‖2
L2(K) .

For any functional F over H1
0 (Ω)2 ×H1

0 (Ω), we define its dual norm with respect to
the norm (2.1) by

(2.2) |||F |||−1,h = sup
(ψ,v)∈H1

0
(Ω)3\{0}

F (ψ, v)

|||(ψ, v)|||1,h
.

The linear operator C is defined by

Cτ :=
E

12(1 − ν2)
[(1 − ν)τ + ν tr(τ)I]

for all 2 × 2 symmetric matrices. Here and throughout this paper, t denotes the
plate thickness with the shear modulus λ = Eκ/2(1 + ν), the Young’s modulus E,
the Poisson ratio ν, and the shear correction factor κ. The bilinear form a(φ,ψ) is
defined as

a(φ,ψ) = (Cε(φ), ε(ψ))L2(Ω) for any φ ,ψ ∈ Θ := H1
0 (Ω)2(2.3)

which gives rise to the energy norm

(2.4) ‖ψ‖2
C := a(ψ,ψ) for any ψ ∈ Θ .
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2.2. Triangulations and Discrete Spaces. Suppose that the closure Ω is covered
exactly by a regular triangulation Th of Ω into (closed) triangles or quadrilaterals in
2D or other unions of simplices, that is

(2.5) Ω = ∪Th and |K1 ∩K2| = 0 for K1, K2 ∈ Th with K1 6= K2 ,

where | · | denotes the volume (as well as the length of an edge and the modulus of a
vector etc. when there is no real risk of confusion). Let E denote the set of all edges
in Th with E(Ω) the set of interior edges, and N (Ω) the set of interior nodes. The
set of edges of the element K is denoted by E(K). By hK we denote the diameter
of the element K ∈ Th. Also, we denote by ωK the union of elements K ′ ∈ Th that
share an edge with K, and by ωE the union of elements having in common the edge
E. Given any edge E ∈ E(Ω) with length hE = |E| we assign one fixed unit normal
νE := (ν1, ν2) and tangential vector τE := (−ν2, ν1). For E on the boundary we
choose the unit outward normal νE = ν to Ω. Once νE and τE have been fixed on E,
in relation to νE , one defines the elements K− ∈ Th and K+ ∈ Th, with E = K+∩K−

and ωE = K+ ∪K−. Given E ∈ E(Ω) and some R
d-valued function v defined in Ω,

with d = 1, 2, we denote by [v] := (v|K+
)|E − (v|K−

)|E the jump of v across E.

Let K̂ be a reference element. In the case of triangles K̂ := {(ξ, η) ∈ R
2 : 0 ≤

ξ ≤ 1 , 0 ≤ η ≤ 1 − ξ}, and quadrilaterals K̂ := [−1, 1]2. The invertable linear

(resp. bilinear) transformation K̂ → K is denoted by FK for any triangle (resp.
quadrilateral) K ∈ Th with the Jacobian matrix DFK and its determinant JK .

Let S1
0(Th) denote the lowest order conforming finite element space over Th which

reads

S1
0(Th) := {v ∈ H1

0 (Ω) : ∀K ∈ Th , v|K ◦ FK ∈ Q1(K̂)} .

Given any non negative integer k, the space Qk(ω) consists of polynomials of total
degree at most k defined over ω in the case ω = K is a triangle whereas it denotes
polynomials of degree at most k in each variable in the case K is a quadrilateral.

With the first order conforming finite element space S1
0(Th), we consider the

Clément-type interpolation operator or any other regularized conforming finite ele-
ment approximation operator J : H1

0 (Ω) 7→ S1
0(Th) with the properties

‖∇Jϕ‖L2(K) + ‖h−1
K (ϕ− Jϕ)‖L2(K) . ‖∇ϕ‖L2(ωK) and(2.6)

‖h−1/2
E (ϕ− Jϕ)‖L2(E) . ‖∇ϕ‖L2(ωE)(2.7)

for all K ∈ Th, E ∈ E , and ϕ ∈ H1
0 (Ω). The existence of such operators is guaran-

teed, for instance, in [25, 41, 20, 19].
Given g ∈ L2(Ω), let gh ∈ Qk(Th) denote its projection on the (possibly discontin-

uous) piecewise polynomial space of degree k with respect to Th. We refer to osc(g)
as oscillation of g

(2.8) osc2(g) :=
∑

K∈Th

(h2
K + t2)h2

K min
gk∈Qk(K)

‖g − gk‖
2
L2(K) .

2.3. Main Results. The main results concern the reliability and efficiency of ηh.
It is stressed that ηh is the first a posteriori error estimator which estimates an error
norm in which a priori convergence is guaranted.
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Theorem 2.1. (reliability) Suppose that Θh, Wh, Γh along with the reduction inte-
gration operator Rh satisfy (H) and (S1

0(Th))
2Θh. Then, the estimator ηh is reliable

in the sense that

‖φ− φh‖
2
H1(Ω) + ‖ω − ωh‖

2
H1(Ω) + t2‖γ − γh‖

2
L2(Ω)

+ t4‖ rot(γ − γh)‖
2
L2(Ω) + ‖γ − γh‖

2
H−1(Ω) . η2

h .

Theorem 2.2. (efficiency) Suppose that Θh, Wh, Γh along with the reduction in-
tegration operator Rh satisfy (H) and (S1

0(Th))
2 ⊂ Θh. Then, the estimator ηh is

efficient such that

η2
h .‖φ− φh‖

2
H1(Ω) + ‖ω − ωh‖

2
H1(Ω) + t2‖γ − γh‖

2
L2(Ω)

+ t4‖ rot(γ − γh)‖
2
L2(Ω) + ‖γ − γh‖

2
H−1(Ω) + osc(g)2 .

3. Proof of Reliability

This section is devoted to the proof of Theorem 2.1 which is divided into six steps.

3.1. Splitting of (I − Rh)φh. Assume with (H) that (Rh − I)φh ∈ H0(rot,Ω).
Then there exist w ∈ H1

0 (Ω) and β ∈ H1
0 (Ω)2 with

(Rh − I)φh = ∇w − β and(3.1)

‖w‖H1(Ω) + ‖β‖H1(Ω) . ‖(Rh − I)φh‖H(rot,Ω).(3.2)

The proof of (3.1)-(3.2) can be found in Lemma 3.2 of Page 298 of [17].

3.2. Error Representation Formula. The residuals Res1(·) and Res2(·) are de-
fined by

Res1(v) = (g, v)L2(Ω) − (γh,∇v)L2(Ω) for any v ∈ H1
0 (Ω);

Res2(ψ) = −a(φh,ψ) + (γh,ψ)L2(Ω) for any ψ ∈ H1
0 (Ω)2 .

Notice that (1.1)-(1.3) imply

(γ − γh, (Rh − I)φh)L2(Ω) = (γ − γh,∇w − β)L2(Ω)

= (g, w)L2(Ω) − a(φ,β) − (γh,∇w − β)L2(Ω)

= −a(φ− φh,β) + (g, w)L2(Ω) − a(φh,β) − (γh,∇w − β)L2(Ω) .

Therefore,

‖φ− φh‖
2
C + λ−1t2‖γ − γh‖

2
L2(Ω)

= a(φ− φh,φ− φh) + (γ − γh, (∇ω −∇ωh) − (φ− φh))L2(Ω)

+ (γ − γh, (Rh − I)φh)L2(Ω)

= Res1(ω − ωh + w) + Res2(φ− φh + β) − a(φ− φh,β) .

It follows from the definitions of γ and γh and (3.1) that

γ − γh = λt−2(∇ω −∇ωh − φ+Rhφh)

= λt−2(∇ω −∇ωh − φ+ φh +Rhφh − φh)

= λt−2(∇ω −∇ωh − φ+ φh + ∇w − β).
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Recalling that ‖φ− φh + β‖2
C = a(φ− φh + β,φ− φh + β), we deduce

1

2
‖φ− φh + β‖2

C +
1

2
‖φ− φh‖

2
C +

1

2
λ−1t2‖γ − γh‖

2
L2(Ω)

+
1

2

∑

K∈Th

λ

t2 + h2
K

‖∇(ω − ωh + w) − (φ− φh + β)‖2
L2(K)

≤ ‖φ− φh‖
2
C + λ−1t2‖γ − γh‖

2
L2(Ω) +

1

2
‖β‖2

C + a(φ− φh,β)

≤ Res1(ω − ωh + w) + Res2(φ− φh + β) − a(φ− φh,β)

+
1

2
‖β‖2

C + a(φ− φh,β)

= Res1(ω − ωh + w) + Res2(φ− φh + β) +
1

2
‖β‖2

C .

(3.3)

3.3. Estimate for λ−1t2|| rot(γ − γh)||. Since

λ−1t2 rot(γ − γh) = − rot(φ− φh) − rot(φh −Rhφh),

there holds

λ−1t2‖ rot(γ − γh)‖L2(Ω) . ‖φ− φh‖H1(Ω) + ‖ rot(φh −Rhφh)‖L2(Ω) .

3.4. Estimate for ‖γ − γh‖. For any ψ ∈ Θ, there holds

(γ − γh,ψ)L2(Ω) = a(φ− φh,ψ)L2(Ω) + a(φh,ψ) − (γh,ψ) .

This proves

(3.4) ‖γ − γh‖H−1(Ω) . ‖Res2 ‖H−1(Ω) + ‖φ− φh‖H1(Ω) .

3.5. Abstract a Posteriori Error Estimate. Suppose that Θh, Wh, Γh along
with the reduction integration operator Rh satisfy (H). Then,

‖φ− φh‖
2
H1(Ω) + ‖ω − ωh‖

2
H1(Ω) + t2‖γ − γh‖

2
L2(Ω)

+ t4‖ rot(γ − γh)‖
2
L2(Ω) + ‖γ − γh‖

2
H−1(Ω)

. |||Res1 |||
2
−1,h + ‖Res2 ‖

2
H−1(Ω) + ‖φh −Rhφh‖

2
H(rot,Ω) .(3.5)

In fact, given any 0 < ε < 1/2, and 0 < α < 1 < t−1, there holds

λ−1t2‖γ − γh‖
2
L2(Ω)

= λ(t−2 − α2)‖∇(ω − ωh) − (φ−Rhφh)‖
2
L2(Ω)

+ λα2
(
‖∇(ω − ωh)‖

2
L2(Ω) + ‖φ− φh‖

2
L2(Ω)

)

+ λα2‖φh −Rhφh‖
2
L2(Ω) + 2λα2(φ− φh,φh −Rhφh)L2(Ω)

− 2λα2(∇(ω − ωh),φ− φh)L2(Ω) − 2λα2(∇(ω − ωh),φh −Rhφh)L2(Ω) .
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Some Young inequalities prove

λ(t−2 − α2)‖∇(ω − ωh) − (φ−Rhφh)‖
2
L2(Ω) + λα2(1 − 2ε)‖∇(ω − ωh)‖

2
L2(Ω)

≤ λ−1t2‖γ − γh‖
2
L2(Ω) − λα2(1 −

2

ε
)‖φh −Rhφh‖

2
L2(Ω)

− λα2(1 −
1

ε
− ε)‖φ− φh‖

2
L2(Ω) .

An appropriate choice of α and ε and the Korn and Young inequalities, the preceed-
ing inequality, (3.3), and (3.2) yield

‖φ− φh‖H1(Ω) + ‖ω − ωh‖H1(Ω) + t‖γ − γh‖L2(Ω)

. |||Res1 |||−1,h + ‖Res2 ‖H−1(Ω) + ‖φh −Rhφh‖H(rot,Ω) .

Together with Subsection 3.3 and 3.4 this proves the assertion (3.5). �

3.6. Refined Approximation of the Clément Interpolation. Following the
idea of [22], we have the refined approximation property for the Clément interpola-
tion. Given any v ∈ H1

0 (Ω), set vh = J v, such that there holds, for any K ∈ Th and
ψ ∈ H1

0 (Ω)2, that

(3.6) h−1
K ‖v − vh‖L2(K) + h

−1/2
E ‖v − vh‖L2(E) . ‖∇v −ψ‖L2(ωK) + hK‖∇ψ‖L2(ωK)

in the sense of Remark 3.1, for any E ⊂ ∂K. To prove (3.6), suppose in the first
case that one vertex of K belongs to the boundary. We assume that the intersection
of ∂ωK with ∂Ω contains at least one edge. So a Friedrichs inequality shows

‖ψ‖L2(ωK) . hK‖∇ψ‖L2(ωK) .

Together with a triangle inequality this yields (3.6).

Remark 3.1. In case ∂ωK does not contain one edge, one can enlarge ωK to ω′
K

so that ∂ω′
K contains one edge. Then (3.6) holds for ω′

K. The analysis herein is
equally valid for this small modification.

In the second case, the vertices of K are interior nodes and so (v− vh)|K remains
the same if we change v to v − z for an affine function z on ωK when we change vh

accordingly; the Clément approximation operator locally preserves affine functions.
We choose the constant vector A := ∇z as the integral mean of ψ on ωK . As a
consequence, (2.6)-(2.7) can be recast as

h−1
K ‖v − vh‖L2(K) + h

−1/2
E ‖v − vh‖L2(E) . ‖∇v −A‖L2(ωK) .

Hence a Poincare inequality shows

‖ψ − A‖L2(ωK) . hK‖∇ψ‖L2(ωK) .

This concludes the proof of (3.6). �
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3.7. Proof of Reliability. The proof is based on (3.5)-(3.6) of Subsections 3.5-3.6.
For any v ∈ H1

0 (Ω), let vh = J v in (1.3), and ψ ∈ H1
0 (Ω)2 as in Subsection 3.6. An

integration by parts shows

Res1(v) = Res1(v − vh) .
( ∑

K∈Th

h2
K(t2 + h2

K)‖g + divγh‖
2
L2(K)

+
∑

E∈E(Ω)

hE(t2 + h2
E)‖[γh] · νE‖

2
L2(E)

)1/2
|||(ψ, v)|||1,h .

Let ψh = Jψ with (1.3), then

Res2(ψ) = −a(φh,ψ −ψh) + (γh,ψ −ψh) + (γh,ψh −Rhψh) .

An integration by parts and (2.6)-(2.7) imply

Res2(ψ) .
( ∑

K∈Th

h2
K‖ div Cε(φh) + γh‖

2
L2(K)

+
∑

E∈E(Ω)

hE‖[Cε(φh)] · νE‖
2
L2(E)

)1/2
‖ψ‖H1(Ω)

+ sup
ψh∈(S1

0
(Th))2\{0}

(γh, (I −Rh)ψh)L2(Ω)

‖ψh‖H1(Ω)

‖ψ‖H1(Ω) . �

Remark 3.2. In this paper, we use the norm |||Res1 |||−1,h instead of |||Res1 |||H−1(Ω)

to get a factor t2 + h2
E (Resp. t2 + h2

K), which is essential for the efficiency of the
estimator in the next section.

4. Efficiency of η

This section is devoted to the proof of the efficiency of ηh from Theorem 2.2. The
contributions are analyzed seperately and even locally.

4.1. Efficiency of ‖g + divγh‖. We choose

wK = B2
K(gh + div γh).

Here and throughout this section, gh = Πhg, and BK denotes the standard element
bubble function with the following properties [47]:

suppBK ⊂ K, 0 ≤ BK ≤ 1, max
x∈K

BK = 1,
∫

K

BK dx ≈ h2
K , and ‖∇BK‖L2(K) . h−1

K ‖BK‖L2(K) .

An integration by parts shows

‖gh + div γh‖
2
L2(K) .

∫

K

(gh + div γh)wK dx dy

= (gh, wK)L2(K) − (γh,∇wK)L2(K)

= (γ − γh,∇wK)L2(K) + (gh − g, wK)L2(K).
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The sum over all elements leads to
∑

K∈Th

h2
K(h2

K + t2)‖gh + div γh‖
2
L2(K)

.
∑

K∈Th

t‖γ − γh‖L2(K)th
2
K‖∇wK‖L2(K)

+ ‖γ − γh‖H−1(Ω)‖
∑

K∈Th

h4
K∇wK‖H1(Ω)

+
∑

K∈Th

(h2
k + t2)1/2hK‖gh − g‖L2(K)‖hK(h2

k + t2)1/2wK‖L2(K) .

An elementwise inverse estimate yields

‖∇wK‖L2(K) + hK‖∇wK‖H1(K) . h−1
K ‖gh + div γh‖L2(K) .

This implies
∑

K∈Th

h2
K(h2

K + t2)‖gh + divγh‖
2
L2(K)

. t2‖γ − γh‖
2
L2(Ω) + ‖γ − γh‖

2
H−1(Ω) +

∑

K∈Th

(h2
k + t2)h2

K‖gh − g‖2
L2(K) .(4.1)

4.2. Efficiency of ‖ div Cε(φh) + γh‖. Recall BK from the previous section, and
set

βK := BK(div Cε(φh) + γh).

An integration by parts leads to

‖ div Cε(φh) + γh‖
2
L2(K) . (div Cε(φh) + γh,βK)L2(K)

= −(Cε(φh), ε(βK))L2(K) + (γh,βK)L2(K)

= −(Cε(φh − φ), ε(βK)) + (γh − γ,βK)L2(K).

The arguments of Subsection 4.1 allow the proof of

(4.2)
∑

K∈Th

h2
K‖ div Cε(φh) + γh‖

2
L2(K) . ‖φh − φ‖

2
H1(Ω) + ‖γ − γh‖

2
H−1(Ω) .

4.3. Efficiency of ‖[νE · γh]‖. Given any interior edge E = ∂K+ ∩ ∂K−, let bE ∈
H2

0 (ωE) denote the edge bubble function from [47], and set

wE = bE [νE · γh].

One can prove bE satisfies the following properties

supp bE = ωE , 0 ≤ bE ≤ 1 = max
x∈E

bE ,
∫

ωE

bE dx ≈ h2
E and

∫

E

bE ds ≈ hE ,(4.3)

‖∇bE‖L2(K±) . h−1
E ‖bE‖L2(K±) , |∇bE|H1(ωE) . h−2

E ‖bE‖L2(ωE) .(4.4)
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For any E ∈ E(Ω), there holds

‖[νE · γh]‖
2
L2(E) . ([νE · γh], wE)L2(E)

= (div γh, wE)L2(ωE) + (γh,∇wE)L2(ωE)

= (div γh + g, wE)L2(ωE) + (γh − γ,∇wE)L2(ωE).

The sum over interior edges, the Cauchy inequality plus the shape regularity show
∑

E∈E(Ω)

hE(h2
E + t2)‖[νE · γh]‖

2
L2(E)

.
∑

E∈E(Ω)

(divγh + g, hE(h2
E + t2)wE)L2(ωE) + (γh − γ,∇hE(h2

E + t2)wE)L2(ωE)

. (
∑

K∈Th

h2
K(h2

K + t2)‖ divγh + g‖2
L2(K))

1/2(
∑

E∈E(Ω)

(h2
E + t2)‖wE‖

2
L2(ωE))

1/2

+ ‖γh − γ‖H−1(Ω)‖
∑

E∈E(Ω)

h3
E∇wE‖H1(Ω) + t‖γh − γ‖L2(Ω)‖

∑

E∈E(Ω)

thE∇wE‖L2(Ω) .

The elementwise inverse estimate implies

‖∇wE‖L2(ωE) + hE|∇wE|H1(ωE) . h
−1/2
E ‖[νE · γh]‖L2(E) .

Since
∑

E∈E(Ω)

h3
E∇wE ∈ H1

0 (Ω)2, we use the finite overlapping of the supports of ∇wE

with E ∈ E(Ω) and the above estimate to derive as

‖
∑

E∈E(Ω)

h3
E∇wE‖

2
H1(Ω) .

∑

E∈E(Ω)

‖h3
E∇wE‖

2
H1(ωE) .

∑

E∈E(Ω)

h3
E‖[νE · γh]‖

2
L2(E)

≤
∑

E∈E(Ω)

hE(t2 + h2
E)‖[νE · γh]‖

2
L2(E).

A similar argument leads to

‖
∑

E∈E(Ω)

thE∇wE‖
2
L2(Ω) .

∑

E∈E(Ω)

hE(t2 + h2
E)‖[νE · γh]‖

2
L2(E).

A patchwise Poincare’s inequality gives
∑

E∈E(Ω)

(h2
E + t2)‖wE‖

2
L2(ωE) .

∑

E∈E(Ω)

(h2
E + t2)h2

E‖∇wE‖
2
L2(ωE)

.
∑

E∈E(Ω)

hE(t2 + h2
E)‖[νE · γh]‖

2
L2(E).

A summary of these estimates yields
∑

E∈E(Ω)

hE(h2
E + t2)‖[νE · γh]‖

2
L2(E)

. t2‖γ − γh‖
2
L2(Ω) + ‖γ − γh‖

2
H−1(Ω) +

∑

K∈Th

(h2
k + t2)h2

K‖gh − g‖2
L2(K) .

Remark 4.1. Note that compared to the usual linear elliptic problem, the edge bubble
bE ∈ H2(ωE) is of high regularity for the proof of the efficiency of ‖[νE · γh]‖L2(E).
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4.4. Efficiency of ‖[νE · Cε(φh)]‖. For any E ∈ E(Ω), BE ∈ H1
0 (ωE) denote the

usual edge bubble function [47] with

suppBE ⊂ ωE, 0 ≤ BE ≤ 1, max
x∈E

BE = 1,
∫

K±

BE dx ≈

∫

ωE

BE dx ≈ h2
E,

∫

E

BE ds ≈ hE , and ‖∇BE‖L2(ωE) . h−1
E ‖BE‖L2(ωE) .

Set

βE = BE [νE · Cε(φh)].

Standard arguments verify

‖[νE · Cε(φh)]‖
2
L2(E) . ([νE · Cε(φh)],βE)E

= (div Cε(φh) + γh,βE)L2(ωE) + (Cε(φh − φ), ε(βE))L2(ωE)

+ (γ − γh,βE)L2(ωE) .

This, (4.2), and an elementwise inverse estimate yield
∑

E∈E(Ω)

hE‖[νE · Cε(φh)]‖
2
L2(E) . ‖γh − γ‖

2
H−1(Ω) + ‖φ− φh‖

2
H1(Ω) .

4.5. Efficieny of ‖φh −Rhφh‖ and µh(γh). By the definitions of γ, and γh,

φh −Rhφh = −λ−1t2(γ − γh) − (φ− φh) + ∇(ω − ωh) .

Therefore,

‖φh −Rhφh‖H(rot,Ω) . ‖∇(ω − ωh)‖L2(Ω) + ‖φ− φh‖H1(Ω) + t2‖ rot(γ − γh)‖L2(Ω).

We remain to estimate the last term. For any ψh ∈ (S1
0(Th))

2, there holds

(γh, (I −Rh)ψh) = (γh,ψh) − (γh,Rhψh)

= (γh − γ,ψh) + a(φh − φ,ψh)

. (‖γ − γh‖H−1(Ω) + ‖φ− φh‖H1(Ω))‖ψh‖H1(Ω) .

Consequently,

sup
ψh∈(S1

0
(Th))2\{0}

(γh, (I −Rh)ψh)L2(Ω)

‖ψh‖H1(Ω)

. ‖γ − γh‖H−1(Ω) + ‖φ− φh‖H1(Ω) . �

5. Examples

This section presents a list of examples from Table 1 which allows the computable
upper bound for µh(γh), namely

µh(γh)
2 .

∑

E∈E(Ω)

hE(h2
E + t2)‖[γh] · νE‖

2
L2(E)

+
∑

K∈Th

h2
K(h2

K + t2)‖ div γh + g‖2
L2(K) + h.o.t.(5.1)
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up to some computable high order terms h.o.t. The previous section shows its effi-
ciency.

Remark 5.1. The list of Table 1 is not comprehensive. In fact, we conjecture that
all known conforming MITC elements could be analyzed in the present framework.
(Only the triangular DL element has been considered with a different a posteriori
error estimator in [36], cf. Remark 5.2). The present theory leads to a new reliable
and efficient error control for all elements. Because the MITC procedure is used the
condition (H) is satisfied in all of those examples.

Remark 5.2. Compared to the a posterior error estimator of [36] for the DL ele-
ment, the estimator ηh here is different in two points. First the shear force norm is
different; second the estimator for the shear force is different.

5.1. Conforming elements without reduction integration. The first example
is the conforming (triangle or quadrilateral) element without reduction. Since Rh =
I, µh(γh) = 0.

5.2. Triangle MITC elements. This subsection discusses triangle MITC elements
from literature.

5.2.1. The MITC3 element. For a triangulation into trianglar elements, let

Wh := {v ∈ H1
0 (Ω) : v|K ∈ Q1(K), K ∈ Th} ,

Θh := {β ∈ H1
0 (Ω)2 : β|K ∈ (Q1(K))2, K ∈ Th} ,

Γh := {σ ∈ H0(rot,Ω) : σ|K ∈ (Q0(K))2 ⊕Q0(K)(y,−x)T , K ∈ Th}

and define the reduction opertator Rh by
∫

E

(Rhσ − σ) · τEds = 0 for every edge E of K .

This FEM is unstable and is not encouraged in practise. However, there holds (H),
and ηh is a reliable and efficient a posteriori error estimator. With this choice, there
exists ψ ∈ H1

0 (Ω) with ψ|K ∈ Q2(K) and

∇ψ = β −Rhβ for any β ∈ Θh.

It is proved in [26, 38] that ψ vanishes at all nodes. Consequently,

(5.2) ‖ψ‖L2(∂K) . h
1/2
K ‖∇ψ‖L2(K) .

Since div γh = 0, an integration by parts with (5.2) gives

(γh,β −Rhβ)L2(Ω) .
∑

E∈E(Ω)

h
1/2
E ‖[γh · νE]‖2

L2(E)‖β −Rhβ‖L2(K)

. (
∑

E∈E(Ω)

h3
E‖[γh · νE ]‖2

L2(E)

)1/2
‖β‖H1(Ω)

. (
∑

E∈E(Ω)

hE(h2
E + t2)‖[γh · νE ]‖2

L2(E)

)1/2
‖β‖H1(Ω) for any β ∈ (S1

0(Th))
2 .
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This proves (5.1). In the second inequality we use the following approximation for
the operator Rh,

‖(I −Rh)β‖L2(K) . hK‖β‖H1(K) for any β ∈ H1(K)2 .

5.2.2. The Durán and Liberman element. This modification of the MITC3 FEM
adopts all notations Wh ,Γh ,Rh from the previous subsection, therefore there holds
(5.1). The rotation space reads

Θh := (S1
0(Th))

2 ⊕Bh .

Therein, the edge bubble function space Bh is defined as following. Given an element
K ∈ Th, its barycentric coordinates and unit tangential vectors are denoted by
{λi}3

i=1 and {τi}3
i=1, respectively. Define

ψ1 := λ2λ3τ1 ,ψ2 := λ3λ1τ2 ,ψ3 := λ1λ2τ3 .

Bh := {β ∈ H1
0 (Ω)2 : β|K ∈ span{ψ1,ψ2,ψ3}, K ∈ Th} .

The Durán and Liberman FEM is a locking free element for the Reisner-Mindlin
plate problem with robust a priori error estimate established in [26].

Since the proof of Subsection 5.2.1 also covers this case, there holds (5.1) for this
DL element.

5.2.3. High order triangle MITC elements. This subsection presents three families
of high order triangle MITC elements. These elements are proposed and analyzed
in [18]. The lowest element among them is the usual MITC7 element appeared in
[11].
Family I. We define for k ≥ 2

Wh := {v ∈ H1
0 (Ω) : v|K ∈ Qk(K), K ∈ Th} .

Θh := {β ∈ H1
0 (Ω)2 : β|K ∈ Θk(K), K ∈ Th} ,

where

Θk(K) :=

{
(Qk(K))2 for k ≥ 4 ,
(Sk(K))2 for k = 2, 3 ,

and
Sk(K) := {w ∈ Qk+1(K) : w|E ∈ Qk(E) for evey edge E of K} .

For the shear force space Γh we take the rotated Raviart-Thomas space

Γh := {σ ∈ H0(rot,Ω) : σ ∈ (Qk−1(K))2 ⊕Qk−1(K)(y,−x)T , K ∈ Th} ,

with the reduction operator Rh defined through
∫

E

(Rhσ − σ) · τEv ds = 0, v ∈ Qk−1(E) for every edge E of everyK ∈ Th,

∫

K

(Rhσ − σ) · β dxdy = 0 for every β ∈ (Qk−2(K))2 .

Family II. Let Sk be as in Family I, and define

Wh := {v ∈ H1
0 (Ω) : v|K ∈ Sk(K), K ∈ Th} .

We choose the BDFM space

Γh := {σ ∈ H0(rot,Ω) : σ|K ∈ (Qk(K))2,σ·τE ∈ Qk−1(E) for every edge E of K ∈ Th}
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as the shear force space Γh with the reduction operator defined as
∫

E

(Rhσ − σ) · τEv ds = 0, v ∈ Qk−1(E) for every edge E of K,

∫

K

(Rhσ − σ) · β dx = 0 for every β ∈ (Qk−2(K))2 ,

∫

K

(Rhσ − σ) · ∇ψj dx = 0 for every j = 0, · · · , k − 2 ,

where ψ0, · · · , ψk−2 are arbitrary polynomials in Qk(K), chosen once and for all,
with ∇ψj = xjyk−j−2, j = 0, · · · , k− 2. The rotation space is the same as in Family
I.
Family III. In this case let

Wh := {v ∈ H1
0 (Ω) : v|K ∈ Qk+1(K), K ∈ Th}

and use the BDM space

Γh := {σ ∈ H0(rot,Ω) : σ|K ∈ (Qk(K))2, K ∈ Th} .

The reduction operator Rh is defined through
∫

E

(Rhσ − σ) · τEv ds = 0, v ∈ Qk(E) for every edge E of K,

∫

K

(Rhσ − σ) · β dxdy = 0 for every β ∈ (Qk−2(K))2 ,

∫

K

(Rhσ − σ) · ∇ψj dxdy = 0 for every j = 0, · · · , k − 2 ,

with ψj and the rotation space Θh from Family II. Since (S1
0(Th))

2 ⊂ Γh when k ≥ 2,
it holds for all of those element that

µh(γh) = 0 .

5.3. Quadrilateral MITC elements. This subsection discusses quadrilateral MITC
elements.

5.3.1. The rectangular MITC4 element. In this case, we restrict ourselves to the
rectangular mesh, and define

Wh := {v ∈ H1
0 (Ω) : v|K ∈ Q1(K), K ∈ Th} ,

Θh := {β ∈ H1
0 (Ω)2 : β|K ∈ (Q1(K))2, K ∈ Th} ,

Γh := {σ ∈ H0(rot,Ω) : σ|K ∈ (Q0(K))2 ⊕Q0(K)(y, 0)T ⊕Q0(K)(0, x)T , K ∈ Th} ,

with the reduction operator Rh defined as, for any K ∈ Th,∫

E

(Rhσ − σ) · τE ds = 0 for every edge E of K.

This element is locking free under the condition that the mesh Th is obtained from
a coarser mesh T2h through bisectioning [27, 29]. It is well-known that

(σh,Rhψh −ψh)L2(Ω) = 0 for any σh ∈ Γh and ψh ∈ (S1
0(Th))

2 .
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Therefore

(5.3) µh(γh) = 0 .

5.3.2. The rectangular DHHLR element. This is a modification of the MITC4 ele-
ment with

Θh := (S1
0(Th))

2 ⊕Bh .

The edge bubble function space Bh is defined as following. For each edge Êi of K̂,
i = 1, 2, 3, 4, let ψ̂i denote the cubic functions vanishing on Êj when j 6= i. Then

we define ψi = ψ̂i ◦ F
−1
K τEi

and set

Bh := {β ∈ H1
0 (Ω)2 : β|K ∈ span{ψ1,ψ2,ψ3,ψ4}, K ∈ Th} .

With the displacement spaceWh, the shear force space Γh and the reduction operator
Rh from the MITC4 element, this is a locking free element for the Reisner-Mindlin
plate problem. Robust a priori error estimate was obtained in [27]. Also, It holds
(5.3).

Remark 5.3. Another variant for the MITC4 element is the Hu element [29]. In-
stead of the rotated Raviart-Thomas element, the quadrilateral ABF element from
[6] is employed to approximate the shear force in this element and four interior bub-
ble functions yield stability. Compared to other lowest quadrialteral elements, the
convergence of this method is independent of the mesh disstortion parameter α; c.f.
[29] for further details. For this element, one can also prove µh(γh) = 0.

5.3.3. High order quadrilateral MITC elements. We first introduce some notations.
The distance between the midpoints of two diagonals of K is denoted by dK and Th

is supposed to satisfy the (1+α)-Section Condition [39], i.e., dK is of order O(h1+α
K )

uniformly for all elements K as h tends to zero for 0 ≤ α ≤ 1; the 2-Section
Condition is also called Bi-Section Condition [42].

Given any quadrilateral K ∈ Th with four nodes pj(xj, yj), j = 1, · · · , 4 numbered

counterclockwise, let p̂j(ξj, ηj), j = 1, · · · , 4 be the nodes of K̂. Then the bilinear
transformation FK takes the form

x =
4∑

j=1

xjNj(ξ, η), y =
4∑

j=1

yjNj(ξ, η), (ξ, η) ∈ K̂,

with the bilinear basis functions Nj(ξ, η) defined by

N1(ξ, η) =
1

4
(1 − ξ)(1 − η), N2(ξ, η) =

1

4
(1 + ξ)(1 − η),

N3(ξ, η) =
1

4
(1 + ξ)(1 + η), N4(ξ, η) =

1

4
(1 − ξ)(1 + η).

Define some coefficients c0 , c1 , c2 , c12, d0 , d1 , d2 , d12 through




c0 d0

c1 d1

c2 d2

c12 d12



 =
1

4





1 1 1 1
−1 1 1 −1
−1 −1 1 1
1 −1 1 −1









x1 y1

x2 y2

x3 y3

x4 y4



 .(5.4)
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Then the Jacobian matrix of FK reads

DFK =

(
∂x/∂ξ ∂x/∂η
∂y/∂ξ ∂y/∂η

)
=

(
c1 + c12η c2 + c12ξ
d1 + d12η d2 + d12ξ

)

with the determinant JK(ξ, η) = J0 + J1ξ + J2η and its inverse

DF−1
K =

(
∂ξ/∂x ∂ξ/∂y
∂η/∂x ∂η/∂y

)
=

1

JK(ξ, η)

(
d2 + d12ξ − c2 − c12ξ
−d1 − d12η c1 + c12η

)
.

Here and throughout this paper J0 = c1d2 − c2d1, J1 = c1d12 − c12d1, and J2 =
c12d2 − c2d12. In terms of the aforementioned mesh parameters, dK = O(h1+α

K )
implies

|∇̂JK | + h−1
K |J1| + h−1

K |J2| + |c12| + |d12| . h1+α
K .(5.5)

For S ⊂ R2, we let Pk(S) denote the set of polynomials of total degree ≤ k, and
Q

′

k(S) denote the ”trunk” or ”serendipity” space of polynomials. The spaces Wh

and Θh are defined as

Wh := {v ∈ H1
0 (Ω) : v |K= v̂ ◦ F−1

K , v̂ ∈Wk(K̂), K ∈ Th},

Θh := {β ∈ (H1
0 (Ω))2 : β |K= β̂ ◦ F−1

K , β̂ ∈ Θk(K̂), K ∈ Th},

where Wk(K̂) and Θk(K̂), which will be specified in the sequel, are polynomial

spaces on the reference element K̂. The space Γh is defined differently by

Γh := {σ ∈ H0(rot,Ω) : σ |K∈ Γk(K), K ∈ Th}

for the space Γk(K) defined from the space Γk(K̂) on the reference square through
the following Piola transformation for the operator rot,

Γk(K) := {σ : σ = DF−T
K σ̄ ◦ F−1

K , σ̄ ∈ Γk(K̂)}.

The reduction operatorRh is also defined locally on each element from the reduction

operator R̂K̂ defined on the reference element with the same transformation:

Rhσ |K= DF−T
K R̂K̂σ̄ ◦ F−1

K , with σ̄ = DF T
Kσ̂ = DF T

Kσ ◦ FK .

We consider four families of quadrilateral MITC elements for the Reissner-Mindlin
plate problem. The rectangular version of these elements are proposed and analyzed
in [43]. We refer to [29, 30] for the a priori error analysis of the general case.
Family I. In this family, the displacement and the rotation spaces read, respectively,

Wk(K̂) := QK̂ ∩ Pk+1(K̂) .

Θk(K̂) := [Qk(K̂) ∩ Pk+2(K̂)]2 .

For Γh, we choose Γk(K̂) as the following BDFM space [17]

Γk(K̂) := {σ̄ | σ̄ ∈ [Pk(K̂)\{x̂k} × Pk(K̂)\{ŷk]}}.

The reduction operator R̂K̂ is defined by
∫

Ê

[(R̂K̂σ̄ − σ̄) · τ̂ ]ŵdŝ = 0 for all ŵ ∈ Pk−1(Ê) and for every edge Ê of K̂,
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∫

K̂

(R̂K̂σ̄ − σ̄) · v̂ dx̂dŷ = 0, ∀v̂ ∈ [Pk−2(K̂)]2 .

Theorem 5.4. With α = 1, there holds

µh(γh)
2 .

∑

K∈Th

h2
K(h2

K + t2)‖ divγh + g‖2
L2(K) +

∑

K∈Th

h
2(k+1)
K ‖g‖2

L2(K) ,(5.6)

Remark 5.5. Since the a priori convergence rate is of order k in the energy norm,
the second term on the right-hand side of (5.6) is always a high order term provided
that g ∈ L2(Ω).

Proof. For k ≥ 3, we have

DF T
Kβ̂ ∈ Γk(K̂) for every β̂ ∈ (Q1(K̂))2 ,

which implies
µh(γh) = 0 .

It remains to prove (5.6) for the case k = 2. By the definitions of γh, and Rh,

Rhβ − β|K = M−1(R̂K̂Mβ̂ −Mβ̂)|K ,

withM = DF T
K and β̂ = (a0, b0)

T +(a1, b1)x̂+(a2, b2)
T ŷ+(a3, b3)

T x̂ŷ. The definitions

of Γk(K̂) with k = 2 and DF T
K lead to

R̂K̂Mβ̂ −Mβ̂ = (a3c12 + b3d12)(x̂− x̂ŷ2, ŷ − x̂2ŷ)T

with c12 and d12 from (5.4). Define

ψ̂ =
a3c12 + b3d12

2
(−1 + x̂2 + ŷ2 − x̂2ŷ2) .

Then there holds

∇̂ψ̂ = R̂K̂Mβ̂ −Mβ̂ .

It follows from the mesh parameter estimate (5.5) that

‖∇̂ψ̂‖L2(K̂) . h1+α
K ‖∇̂β̂‖L2(K̂) .(5.7)

Let ψK be defined through the following relation

ψK := ψ̂ ◦ F−1
K .

Note that ψK ∈ H1
0 (K) and ∇ψ = M−1∇̂ψ̂. With ψ =

∑
K∈Th

ψK ∈ H1
0 (Ω), The

Poincare inequality and (5.7) elementwise, one proves

(γh,Rhβ − β)L2(Ω) =
∑

K∈Th

(γh,M
−1(R̂K̂Mβ̂ −Mβ̂))L2(K)

= (γh,∇ψ)L2(Ω) =
∑

K∈Th

(div γh + g, ψK)L2(K) −
∑

K∈Th

(g, ψK)L2(K)

.
∑

K∈Th

hK‖ divγh + g‖L2(K)‖∇ψK‖L2(K) + hK‖g‖L2(K)‖∇ψK‖L2(K)

.
∑

K∈Th

h2+α
K ‖ divγh + g‖L2(K)‖β‖H1(K) + h2+α

K ‖g‖L2(K)‖β‖H1(K) .
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This implies

µh(γh) .
( ∑

K∈Th

h2
K(h2

K + t2)‖ divγh + g‖2
L2(K)

)1/2

+
( ∑

K∈Th

h6
K‖g‖2

L2(K)

)1/2
. �

Family II. In this method, Wh, and Γh are the same as in Family I. with the
different choice of the rotation space, which reads as

Θk(K̂) = [Qk(K̂)]2.

For these elements, the estimate (5.6) holds equally.
Family III. The spaces for the rotation are chosen as in Family I. However, we take
the following BDM space [17]

Γk(K̂) = {σ̄ | σ̄ ∈ [Pk(K̂)]2 ⊕ ∇̂(x̂ŷk+1) ⊕ ∇̂(x̂k+1ŷ)},

as the shear force space with the reduction operator defined by
∫

Ê

[(R̂K̂σ̄ − σ̄) · τ̂ ]ŵdŝ = 0, ∀ŵ ∈ Pk(Ê) for every edge Ê of K̂,

∫

K̂

(R̂K̂σ̄ − σ̄) · v̂dx̂dŷ = 0, ∀v̂ ∈ [Pk−2(K̂)]2.

Therefore, the deflection space has to be selected as

Wk(K̂) = Q′
k+1(K̂).

Theorem 5.6. With α = 1, there holds that

µh(γh)
2 .

∑

K∈Th

h2
K(h2

K + t2)‖ divγh + g‖2
L2(K) +

∑

K∈Th

h
2(k+1)
K ‖g‖2

L2(K) .(5.8)

Proof. Arguing in the same way as for (5.6) shows the asserted result; the details
are omitted. �

Family IV. The rotation space reads

Θk(K̂) = {ψ ∈ [Qk+1(K̂)]2 | ψ |Ê∈ [Pk(K̂)]2 for every edgeÊ of K̂}.

The corresponding space for the shear is the following rotated Raviart-Thomas space
over quadrilaterals,

Γk(K̂) = {σ̄ | σ̄ ∈ Qk−1,k(K̂) ×Qk,k−1(K̂)},

with the reduction operator defined by
∫

Ê

[(R̂K̂σ̄ − σ̄) · τ̂ ]ŵdŝ = 0, ∀ŵ ∈ Pk−1(Ê) for every edge Ê of K̂,

∫

K̂

(R̂K̂σ̄ − σ̄) · v̂dx̂dŷ = 0, ∀v̂ ∈ Qk−1,k−2(K̂) ×Qk−2,k−1(K̂).

The space for the deflection is selected as

Wk(K̂) = Qk(K̂).
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Since

DF T
Kβ̂ ∈ Γk(K̂) for every β̂ ∈ (Q1(K̂))2

for k ≥ 2, there holds µh(γh) = 0. �
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[43] R. Stenberg and M. Süri , An hp error analysis of MITC plate elements, SIAM. J. Numer.
Anal., 34(1997), pp. 544-568.



A POSTERIORI ERROR ANALYSIS FOR REISSNER-MINDLIN PLATE 23
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