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Abstract Space adaptive techniques for dynamic Signorini
problems are discussed. For discretisation, the Newmark
method in time and low order finite elements in space are
used. For the global discretisation error in space, an a pos-
teriori error estimate is derived on the basis of the semi-
discrete problem in mixed form. This approach relies on
an auxiliary problem, which takes the form of a variational
equation. An adaptive method based on the estimate is ap-
plied to improve the finite element approximation. Numeri-
cal results illustrate the performance of the presented
method.

Keywords Dynamic Signorini problem· A posteriori error
estimation· Mesh refinement· Finite element method

1 Introduction

Dynamic Signorini problems arise in many engineering pro-
cesses, e.g., in milling and grinding processes, vehicle de-
sign and ballistics. In these processes, the main effects result
from the contact at the surface of the bodies under consid-
eration. Typical examples for engineering processes, where
contact problems play a dominant role, are grinding pro-
cesses. The workpiece interacts with the grinding wheel
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only in a small contact zone. However, the behaviour of the
grinding machine is strongly affected by the resulting con-
tact forces. A detailed study of this engineering problem is
found in [1]. For the reliable simulation of such a process, a
precise prediction is required of the contact forces, the con-
tact zone and their effects onto the whole body. Furthermore,
the contact zone and the contact forces are strongly depend-
ing on time. Hence, the precise consideration of these de-
pendences is essential in the numerical simulation.

An adequate technique, which gives rise to a flexible and
efficient finite element discretisation, is based on a posteri-
ori error control and resulting adaptive mesh refinement. In
general, a posteriori error estimates for second order hyper-
bolic problems are possible for two different discretisation
approaches. One of them uses space time Galerkin meth-
ods for discretisation and applies similar techniques for error
control as in the static case ([2–5]). The other one is based on
finite differences in time and finite elements in space. Here,
separate error estimators are used for the space and time di-
rection ([6–8]) or error estimates for the whole problem ([9,
10]) are derived.
In this article, finite differences in time and finite elements in
space are used to discretise the dynamic Signorini problems.
Because only the data of the current time step comes into
play, the error estimator can be evaluated efficiently. How-
ever, the separation of the space and time direction compli-
cates the consideration of space time effects. The aim of this
article is to derive an error estimator for the finite element
discretisation in space direction. Therefore, an error control
technique for static contact problems is applied to the semi
discrete spatial problem. This technique goes back to Braess
[11] and Schröder [12]. Other approaches to a posteriori er-
ror control for static contact problems are discussed in [13–
20]. In particular, an adaptive scheme for two-body contact
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is contained in [21]. Convergence results for adaptive algo-
rithms in the context of obstacle problems are proven in [22].

Adaptivity in time direction is not taken into account in
this article for notational simplicity, although it is easyto in-
corporate. One can do this on the basis of error estimators,
which are known from the literature of second order hyper-
bolic problems [6].
The temporal discretisation of dynamic contact problems is
a difficult task. Several approaches based on different prob-
lem formulations have been presented in literature. In [23]
the penalty-method is used to solve the discrete problems.
Special contact elements in combination with Lagrange
multipliers are presented in [24]. Other techniques for
smoothing and stabilizing the computation with special fi-
nite elements, e.g. Mortar finite elements, are presented in
[25–27]. In [28], the Newmark scheme is used with an ad-
ditional L2-projection for stabilization. Algorithms for dy-
namic contact/impact problems based on the energy- and
momentum conservation are derived in [29,30]. An addi-
tive splitting of the acceleration into two parts, representing
the interior forces and the contact forces, is the basis of the
methods introduced in [31,32]. In [33–35] algorithms
based on variational inequalities and optimisation
algorithms are presented. Detailed surveys of this topic can
be found in the monographs [36,37].

The article is organised as follows: In the next two sec-
tions, the strong and weak formulations of the dynamic sim-
plified Signorini problem are introduced and the discretisa-
tion of the problem is discussed. In Section 4, the spatial er-
ror estimator is derived serving as basis of an adaptive algo-
rithm. In Section 6, two examples illustrate the application
of the mentioned techniques. The article concludes with a
discussion of the results.

2 Continuous Formulation

In this section, the strong and the weak formulation of the
dynamic simplified Signorini problem are presented. LetΩ ⊂

R
2 be the basic domain andI := [0,T ] ⊂ R a time interval.

The boundary∂Ω of Ω is divided into three mutually dis-
joint partsΓD, ΓC andΓN with positive measure. Homoge-
neous Dirichlet and Neumann boundary conditions are pre-
scribed on the closed setΓD and onΓN , respectively. Contact
may take place on the sufficiently smooth setΓC, Γ̄C ⊂ ∁ΓD.
See, e.g., [38], Section 5.3 for more details. The time de-
pendent rigid foundation is parameterised by a sufficiently
smooth functiong : ΓC × I → R∪{−∞} . Here, the restric-
tion u ≥ g on ΓC is considered,u ≤ g can be treated analo-
gously.

The initial displacementu0 is in

H1 (Ω ,ΓD) := {v ∈ H1(Ω)|γ|ΓD
(v) = 0}

and the initial velocityv0 is in L2 (Ω). Here,γ denotes the
trace operator of functions inH1(Ω ,ΓD) onto the boundary
∂Ω . See, e.g., [39] for more details. The gradient of the dis-
placementu in space direction is denoted by∇u and∆u is
the usual Laplace operator. The first and second time deriva-
tives are denoted by ˙u andü, respectively. In the following,
all relations have to be understood almost everywhere.

We choose the unconstrained trial space

V := W 2,∞ (

I;L2 (Ω)
)

∩L∞ (

I;H1 (Ω ,ΓD)
)

for notational convenience, although the existense of a so-
lution in V can not be proven, even in the contact free case
[39]. The set of admissible displacements is

K :=
{

ϕ ∈V
∣

∣γ|ΓC
(ϕ) ≥ g onΓC × I

}

.

The L2-scalar product is defined by(u,v) =
∫

Ω uvdx for
u,v ∈ L2 (Ω). The density is set equal to 1 for notational
simplicity. Eventually, the weak formulation of the simpli-
fied dynamic Signorini problem, see e.g. [40], reads

Problem 2.1 Find a functionu ∈ K with u(t = 0) = u0 and
u̇(t = 0) = v0 for which

(ü(t) ,ϕ (t)−u(t))+ (∇u(t) ,∇(ϕ (t)−u(t)))

≥ ( f (t) ,ϕ (t)−u(t))

holds for allϕ ∈ K and allt ∈ I.

Throughout this article, we assumef ∈ L∞ (

I;L2 (Ω)
)

.
If the solution is sufficiently smooth, we obtain the
equivalent strong formulation (see [40])

ü−∆u = f in Ω × I

u = 0 onΓD × I
∂u
∂ν

= 0 onΓN × I

u−g ≥ 0 onΓC × I
∂u
∂ν

≤ 0 onΓC × I

∂u
∂ν

(u−g) = 0 onΓC × I.

3 Discretisation

We use Rothe’s method to discretise the dynamic simpli-
fied Signorini problem. First, the problem is discretised in
temporal direction by the Newmark method (see [41]). The
resulting spatial problems are approximately solved by low
order finite elements.
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3.1 Temporal Discretisation

The time intervalI is split into N equidistant subintervals
In := (tn−1,tn] of length k = tn − tn−1 with 0 =: t0 < t1 <

.. . < tN−1 < tN := T . The value of a functionw at a time
instancetn is approximated bywn. We use the notationv = u̇
anda = ü for the velocity and the acceleration, respectively.

In the Newmark method,v anda are approximated by

an =
1

β k2

(

un −un−1)−
1

β k
vn−1−

(

1
2β

−1

)

an−1, (3.1)

vn = vn−1+ k
[

(1−α)an−1 + αan] . (3.2)

Here,α andβ are free parameters in the interval[0,2]. For
second order convergence,α = 1

2 is required. Furthermore,
the inequality 2β ≥ α ≥ 1

2 has to be valid for unconditional
stability (see [42]). For dynamic contact problems, the choice
α = β = 1

2 is recommended to guarantee conservation of
energy and momentum (see [24,35]). For starting the New-
mark method the initial accelerationa0 is needed. It can be
calculated on the basis of the initial displacement and ve-
locity (see [42]). The semi-discrete problem then reads as
follows:

Problem 3.1 Findu with u0 = u0, v0 = v0 anda0 = a0, such
that in every time stepn∈ {1,2, . . . ,N}, the functionun ∈Kn

is the solution of the variational inequality

(an,ϕ −un)+ (∇un,∇(ϕ −un)) ≥ ( f (tn) ,ϕ −un) , (3.3)

for all ϕ ∈ Kn. Moreoverun, vn andan have to fulfill the
equations (3.1) and (3.2).

The setKn :=
{

ϕ ∈ H1(Ω ,ΓD)
∣

∣γ|ΓC
(ϕ) ≥ gn on Ω

}

is the
time discretized set of the admissible displacements. Substi-
tuting the equation (3.1) withγ = β = 1

2 in the inequality
(3.3) leads to

(un,ϕ −un)+ 1
2k2 (∇un,∇(ϕ −un))

≥
(1

2k2 f (tn)+ un−1+ k vn−1,ϕ −un
)

.

This can be written as

c(un,ϕ −un) ≥ (Fn,ϕ −un) , (3.4)

wherec is defined by

c(ω ,ϕ) := (ω ,ϕ)+
1
2

k2 (∇ω ,∇ϕ)

andFn as

Fn :=
1
2

k2 f (tn)+ un−1+ k vn−1.

The bilinear formc is uniformly elliptic, continuous and
symmetric. Thus, an elliptic variational inequality has tobe
solved in each time step. An efficient way for solving varia-
tional inequalities is given by their mixed formulation. The
Lagrange parameters may be interpreted as contact forces.
The variational inequality (3.4) is equivalent to the follow-
ing mixed problem:

Problem 3.2 Find(u,λ ) with u0 = u0, v0 = v0 anda0 = a0,
such that(un,λ n) ∈V n ×Λ n is the solution of the system

c(un,ϕ)+
〈

λ n,γ|ΓC
(ϕ)

〉

= (Fn,ϕ) (3.5)
〈

µ −λ n,γ|ΓC
(un)−gn〉 ≤ 0, (3.6)

for all ϕ ∈ V n, all µ ∈ Λ n and alln ∈ {1,2, . . . ,N}. Based
on the equations (3.1) and (3.2), the functionsvn andan are
calculated in a postprocessing step.

Here,Λ n is the dual cone of the set

G :=
{

µ ∈ H1/2 (ΓC)
∣

∣

∣
µ ≤ 0

}

.

The dual pairing is expressed by〈·, ·〉. The setV n := H1(Ω ,ΓD)

is the time discretised unconstrained trial space.
The equivalence of the two formulations is a well-known
conclusion from the general theory of minimisation prob-
lems in Hilbert spaces presented, e.g., in [43,44].

3.2 Spatial Discretisation

A finite element approach is applied to discretise the mixed
problem 3.2. We use adaptive algorithms with dynamic
meshes. Therefore, the trial spacesV n

h and Λ n
H may vary

from time step to time step. Bilinear basis functions on the
meshT

n are used for the finite element spaceV n
h . The dis-

crete Lagrange multipliers are piecewise constant and are
contained in the setΛ n

H . The indexH indicates that coarser
meshes may be chosen for the Lagrange multipliers. In our
calculations, we useH = 2h for stability reasons. A detailed
study of the stability properties of this discretisation can be
found in [12].

Because of the varying meshes, FE-functions have to be
transfered to the mesh of the current time step. This process
is denoted byIh and is realized by anL2-projection. One
might also consider standard interpolation as a transfer op-
erator, which needs less effort, but can lead to instabilities.
The space and time discrete problem is

Problem 3.3 Find
(

un
h,λ

n
H

)

∈V n
h ×Λ n

H with u0
h = Ihu0, v0

h =

Ihv0 anda0
h = Iha0, such that the system

c(un
h,ϕh)+

〈

λ n
H ,γ|ΓC

(ϕh)
〉

= (Fn
h ,ϕh) (3.7)

〈

µH −λ n
H,γ|ΓC

(un
h)−gn〉 ≤ 0 (3.8)

is valid for all ϕh ∈V n
h andµH ∈ Λ n

H , n ∈ {1,2, . . . ,N}. Ad-
ditionally, the equations (3.1) and (3.2) determinevn

h andan
h.

Here,Fn
h is given by

Fn
h :=

1
2

k2 f (tn)+ Ihun−1
h + k Ihvn−1

h .
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The system (3.7-3.8) leads to the following saddle point
problem inR

m, wherem depends onn:

Anūn + Bnλ̄ n = F̄n

(

µ̄ − λ̄ n)T
(

(Bn)T ūn − ḡn
)

≤ 0,

which must hold for allµ̄ ∈ R
m̃
≤0. Here,An := Mn + 1

2k2Kn

is the generalised stiffness matrix,Mn ∈ R
m×m is the mass

matrix andKn ∈ R
m×m is the stiffness matrix. The matrix

Bn ∈ R
m×m̃ represents the dual pairing in (3.8). Notice, that

all matrices may change from time step to time step.
The saddle point problem can be rewritten as a quadratic
optimisation problem, which can be solved by substituting
ūn := (An)−1(

F̄n −Bnλ̄ n
)

and applying SQP methods.
More details can be found in [12].

4 Spatial Error Estimation

In this section, an error estimation is derived for the spatial
error in every time step. The estimation is easy to imple-
ment and can be evaluated fast. The temporal error is not
considered. The idea of the error estimation goes back to
Braess [11], who presented it for static obstacle problems.
This idea was extended by Schröder [12] to static Signorini
problems even with friction by introducing a general frame-
work for error control of variational inequalities in Hilbert
spaces. In order to apply this framework here, we consider
the following saddlepoint problem:

Problem 4.1 Find
(

ũn, λ̃ n
)

∈V n ×Λ n, such that

c(ũn,ϕ)+ 〈λ̃ n,γ|ΓC
(ϕ)〉 = (Fn

h ,ϕ)

〈µ − λ̃ n,γ|ΓC
(ũn)−gn〉 ≤ 0

for all ϕ ∈V n and allµ ∈ Λ n.

An essential part of the general framework in [12] is the
formulation of the auxiliary problem:

Problem 4.2 Find un
⋆ ∈ V n, such that the variational equa-

tion

c(un
⋆,ϕ) = (Fn

h ,ϕ)−
〈

λ n
H ,γ|ΓC

(ϕ)
〉

holds for allϕ ∈V n.

Problem 4.2 corresponds to the first line of Problem 4.1,
but with the discrete Lagrangian multiplierλ n

H instead of̃λ n.
Applying Lemma IV.2 in [12] yields

Lemma 4.1 There are constants C′,C′′ ∈ R>0, such that

‖ũn −un
h‖

2 +
∥

∥

∥
λ̃ n −λ n

H

∥

∥

∥

2

≤ C′ ‖un
⋆−un

h‖
2 +C′′〈λ̃ n −λ n

H,γ|ΓC
(un

h)−gn〉.

Here,‖ · ‖ denotes the norm correponding to the related
function spaces. We use theH1(Ω)-norm for V n. Taking
into account, that the discrete solutionun

h is also a discrete
solution of Problem 4.2, we are able to get rid of the term
‖un

⋆ − un
h‖ by using an appropriate error estimator for the

auxiliary problem: Letηn
⋆ > 0 be an error estimator of Prob-

lem 4.2, i.e., there exists a constantC⋆ > 0 independent of
V n

h andΛ n
H , such that

‖un
⋆−un

h‖
2 ≤C⋆(ηn

⋆ )2.

Then, Lemma 4.1 leads to

‖ũn −un
h‖

2 +
∥

∥

∥
λ̃ n −λ n

H

∥

∥

∥

2

≤ C′C⋆(ηn
⋆ )2 +C′′〈λ n −λ n

H ,γ|ΓC
(un

h)−gn〉.

The remaining term〈λ̃ n−λ n
H ,γ|ΓC

(

un
h

)

−gn〉 is estimated by

Lemma 4.2 Let ν0 > 0 be the constant of continuity of c.
Furthermore, let

d ∈ K̃n :=
{

v ∈V n|gn − γ|ΓC
(un

h)− γ|ΓC
(v) ≤ 0

}

and ε > 0. Then, there holds

〈λ̃ n −λ n
H,γ|ΓC

(

un
h

)

−gn〉

≤ ε
2

∥

∥ũn −un
h

∥

∥

2
+

(1+ε)ν2
0

2ε ‖d‖2

+ 1
2

∥

∥un
⋆−un

h

∥

∥

2
+ |(λ n

H ,γ|ΓC
(d))|.

Proof. Inserting 0 and 2λ n
H in (3.8) yields

〈λ n
H ,γ|ΓC

(un
h)−gn〉 = 0.

Furthermore, we get

〈λ̃ n,γ|ΓC
(un

h)−gn〉

= −〈λ̃ n,gn − γ|ΓC
(un

h)− γ|ΓC
(d)〉− 〈λ̃ n,γ|ΓC

(d)〉

≤ c(ũn,d)− (Fn
h ,d)

= c(ũn −un
h,d)+ c(un

h,d)− (Fn
h ,d)

≤ ν0‖ũn −un
h‖‖d‖+ c(un

h,d)− (Fn
h ,d)

≤
ε
2
‖ũn −un

h‖
2 +

ν2
0

2ε
‖d‖2+ c(un

h,d)− (Fn
h ,d).

Here, we have used Young’s inequality. The termc(un
h,d)−

(Fn
h ,d) is estimated as follows:

c(un
h,d)− (Fn

h ,d)

= c(un
h −un

⋆,d)− (λ n
H ,γ|ΓC

(d))

≤ ν0‖un
⋆−un

h‖‖d‖− (λ n
H ,γ|ΓC

(d))

≤
1
2
‖un

⋆−un
h‖

2 +
ν2

0

2
‖d‖2 + |(λ n

H,γ|ΓC
(d))|.

⊓⊔

Eventually, we obtain an a posteriori error estimate by
the following proposition:
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Proposition 4.1 There exists a constant C > 0 independent
of V n

h and Λ n
H , such that

‖ũn −un
h‖

2 +
∥

∥

∥
λ̃ n −λ n

H

∥

∥

∥

2

≤ C

(

(ηn
⋆ )2 +

∥

∥

∥

(

gn − γ|ΓC
(un

h)
)

+

∥

∥

∥

2
)

+C
∣

∣

∣

(

λ n
H ,

(

gn − γ|ΓC
(un

h)
)

+

)∣

∣

∣

holds. Here, f+ denotes the positive part of a function f ,
which means

f+(x) =

{

f (x), f (x) ≥ 0,

0, f (x) < 0.

Proof. Combining Lemma 4.1 and Lemma 4.2 yields

‖ũn −un
h‖

2 +
∥

∥

∥
λ̃ n −λ n

H

∥

∥

∥

2

≤ C′C⋆(ηn
⋆ )2 +C′′〈λ̃ n −λ n

H,γ|ΓC
(un

h)−gn〉

≤

(

C′ +
1
2

C′′

)

C⋆(ηn
⋆ )2 +C′′ ε

2
‖ũn −un

h‖
2

+C′′

(

(1+ ε)ν2
0

2ε
‖d‖2 + |(λ n

H ,γ|ΓC
(d))|

)

.

Choosing 0< ε < 2/C′′, we get
(

1−
C′′ε

2

)

‖ũn −un
h‖

2 +
∥

∥

∥
λ̃ n −λ n

H

∥

∥

∥

2

≤ C̃
(

(η⋆)
2 +‖d‖2 + |(λ n

H ,γ|ΓC
(d))|

)

with

C̃ := max

{(

C′ +
C′′

2

)

C⋆,
C′′(1+ ε)ν2

0

2ε
,C′′

}

.

The functiond in Lemma 4.2 can be chosen as the harmonic
continuationd̂n of

(

gn − γ|ΓC

(

un
h

))

+
, which is characterised

by the minimisation problem
∥

∥d̂n
∥

∥

2
1 = inf

v∈W n
‖v‖2

1

with

W n :=
{

v ∈V n
∣

∣

∣
γ|ΓC

(v) =
(

gn − γ|ΓC
(un

h)
)

+

}

.

For more details and alternatives in the choice ofd see [12].
Since there holds

gn − γ|ΓC
(un

h)− γ|ΓC

(

d̂n) ≤ 0,

d̂n is an element ofK̃n. From the definition of the norm
‖·‖1/2,ΓC

, it follows
∥

∥d̂n
∥

∥

1 =
∥

∥

∥

(

gn − γ|ΓC
(un

h)
)

+

∥

∥

∥

1/2,ΓC

.

⊓⊔

Remark 4.1 All terms in the error estimate of Proposition
4.1 can be interpreted as typical sources of errors in contact
problems. The term‖(gn − γ|ΓC

(

un
h

)

)+‖ measures the error
of the geometrical contact condition and the term|(λ n

H ,(gn−

γ|ΓC

(

un
h

)

)+)| measures the violation of the complementarity
condition.

Remark 4.2 In our numerical tests, the term

‖(gn − γ|ΓC
(un

h))+‖

always turned out to be of higher order inh, see [12]. Since
it is difficult to split this term into its elementwise contribu-
tions, it is neglected in the numerical realisation.

In order to apply the error estimation of Proposition 4.1,
we have to specify an appropriate error estimatorηn

⋆ for
Problem 4.2. In principle, each error estimator known from
literature of variational equations is possible to be used.See
[45] or [46] for an overview. For the sake of completeness, a
residual based error estimator for Problem 4.2 is specified:

(ηn
⋆ )2 := ∑

K∈Tn

η2
K

η2
K := h2

K ‖r‖2
L2(K) + hK ‖R‖2

L2(∂K)

with

r := Fn
h +

1
2

k2 △un
h −un

h

R :=







− 1
2k2

(

q−
∂un

h
∂ν

)

on ∂Ω

− 1
4k2

[

∂un
h

∂ν

]

else.

The quantityR represents the jump discontinuity in the ap-
proximation to the normal flux on the interface. We setq = 0
on ΓN andq = −λ n

H on ΓC. See [46], Section 2.2, for more
details.

Remark 4.3 We have used the discrete valueFn
h instead of

Fn in Problem 4.1, i.e., Proposition 4.1 specifies a tempo-
ral local error estimator for the spatial discretisation error.
This technique is commonly used in the derivation of error
estimators for numerical methods for ordinary differential
equations, see, e.g., [47]. The presented error estimator ex-
presses the spatial error distribution in the single time steps.
But it only provides information about the global error un-
der the assumptionFn

h ≈ Fn, which should hold for smallk
andh. An a priori error analysis of the Newmark method in
the context of dynamic contact problems is needed to make
a precise statement. To the best of the authors’ knowledge,
this analysis does not exist and cannot be derived by stan-
dard techniques due to the low regularity of the continuous
solution.

Remark 4.4 The presented error estimate is not restricted to
the Newmark method. It can easily be used for other similar
time stepping schemes. It was tested by the authors for the
Generalized-α method, the application of which to dynamic
contact problems is presented in [34,35].
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5 Adaptive Algorithm

In general, adaptive algorithms for dynamic problems are
based on refinement strategies, which are known from static
problems, see, e.g., [45,48] for a survey of adaptive algo-
rithms for static problems. Commonly used adaptive algo-
rithms for time dependent problems, see, e.g., [3,49], per-
form an adaptive refinement process using a prescribed tol-
erance in every time step. This refinement process is inde-
pendent of previous and subsequent time steps. Here, the
crucial point is, that the time interval is passed only once.
The tolerance limit cannot be reached, if the solution in the
previous time step has not been calculated exactly enough.
Moreover, the difference of the meshes of two succsesive
time steps may significantly increase the error. Usually,
rapid changes of the problem parameters are the reason for
this behaviour.

In dynamic Signorini problems, the problem parameters
change rapidly and, thus, the above mentioned algorithms
are not appropriate. An alternative is given by algorithms
based on the ideas in [50,51]. The refinement procedure is
split into several cycles. The whole time interval is passed
in every cycle. A cycle constists of two steps: First, the ap-
proximated solution of the whole problem is determined, the
error is estimated and the mesh is refined via a usual re-
finement strategy, e.g. a fixed fraction strategy, see [48,45].
Multiple hanging nodes in space and time may be generated
by this refinement. In a second step, such nodes are removed.
The removal of hanging nodes in time closely connects the
meshes of different time steps. A detailed presentation of
this adaptive algorithm and its extensions will be given in a
seperate article.

6 Numerical Results

The error estimator and the adaptive algorithm are tested for
two examples. The first one is a simplified Signorini prob-
lem and the second one is a full 2D Signorini problem.

6.1 A simplified Signorini example

We setΩ := [0,1]2 and I := [0,1]. The initial values are
u0 (x1,x2) := 0 andv0 (x1,x2) :=−sin

(

1
2πx1

)

. Furthermore,
we setΓD := {x ∈ Ω |x1 = 0}, ΓC := {x ∈ Ω |x1 = 1} and
ΓN := ∂Ω\(ΓC ∩ΓD). The rigid foundation is

g := sin(πx2)−1.05.

The length of the time stepsk is chosen as 0.0025. The ini-
tial mesh sizeh0 is 0.0625. Five refinement cycles are per-
formed, whereas a fixed fraction strategy with constant re-
finement fraction of 50% and no coarsening is used.

Fig. 6.1 Geometry of the simplified Signorini example

The geometry of the presented problem is illustrated in
Figure 6.1. Meshes for different time steps are presented in
Figure 6.2, the corresponding movie is shown in Animation
1. The mesh in Figure 6.2 (a) corresponds to the time step,
immediately before the first contact between the membrane
and the rigid foundation takes places. In Figure 6.2 (b)-(i),
the membrane gets into contact with the obstacle and the
contact zone is adaptively refined. We observe a moving
front, which is resolved by the adaptive meshes. In Figure
6.3 the estimated convergence for adaptive and uniform re-
finement is compared. The estimated error is measured by

η = max
1≤n≤N

ηn,

whereηn is given in Proposition 4.1. The number of degrees
of freedom is the sum of the number of degrees of freedom
of all single time steps. It is obvious, that the adaptive re-
finement is more efficient than the uniform refinement. One
achieves the same accuracy with nearly a factor of 10 less
unknowns.

6.2 A Signorini example

Here, a bar of length 0.2m and height 0.05m is considered.
The domain isΩ := [0,0.2]× [0,0.05] and the time inter-
val is I :=

[

0,2.5 ·10−3
]

. The bar is modelled using a lin-
ear elastic material law in a plain strain situation withE :=
73·109MPa andν := 0.33. The density isρ := 2770kg/m2.
The bar is fixed at the left boundaryΓD = {x ∈ Ω |x1 = 0}.
The possible contact surface is given by the set

ΓC = {x ∈ Ω |x1 ≥ 0.15∧ x2 = 0} .

There are nonhomogeneous Neumann boundary conditions
onΓN = {x ∈ Ω |x1 ≥ 0.1∧ x2 = 0.05} with

q := 3.75·107N/m2.
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(a) Mesh atn = 20 (b) Mesh atn = 50

(c) Mesh atn = 100 (d) Mesh atn = 150

(e) Mesh atn = 200 (f) Mesh atn = 250

(g) Mesh atn = 300 (h) Mesh atn = 350

(i) Mesh atn = 400

Fig. 6.2 Meshes for different time steps of the simplified Signorini
example
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Fig. 6.3 Estimated error for adaptive and uniform refinement in the
simplified Signorini example

The rigid foundation is given by the set
{

x ∈ R
2 |0≤ x1 ≤ 0.2∧ x2 ≤−0.005

}

.

The length of the time steps is 10−5 and the initial mesh
sizeh0 is 6.25·10−3. Again, five refinement cycles are per-
formed, whereas a fixed fraction strategy with constant re-
finement fraction of 50% without coarsening is used.

In Figure 6.4 meshes for different time steps are pre-
sented the corresponding movie is contained in Animation
2. The displacement is scaled by a factor of 5. During the
calculation, contact between the bar and the rigid founda-
tion occurs several times. In the Figures 6.4 (a)-(c) and (d)-
(f) a sequence is depicted, which starts before contact takes
places and ends after contact. The influence of contact to the
mesh is obvious. The last sequence (g)-(i) shows the change
of the mesh during contact. The refined zone and the con-
tact zone grow and shrink simultanously. The performance
of the adaptive refinement is compared with the uniform re-
finement in Figure 6.5, where the same variables are used as
in Figure 6.3. As in the example above, the application of
the adaptive method is more efficient.

7 Conclusions

The presented space adaptive scheme for dynamic Signorini
problems shows a significant improvement. More sophis-
ticated refinement strategies can further enhance the effi-
ciency. However, not every strategy known from non con-
tact problems seems to be suited for adaptive schemes for
contact problems. E.g. the refinement strategy presented in
[51] compares the refinement indicators over all time steps.
The method has been tested by the authors, but the results
are not satisfactory. The contact zone is not resolved, before
the first contact takes place. Thus, the algorithm is not able
to detect the moment of the first contact exactly, so that the
error increases significantly.
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(a) Mesh atn = 20 (b) Mesh atn = 25

(c) Mesh atn = 50 (d) Mesh atn = 80

(e) Mesh atn = 90 (f) Mesh atn = 100

(g) Mesh atn = 211 (h) Mesh atn = 215

(i) Mesh atn = 217

Fig. 6.4 Meshes for different time steps of the 2D Signorini example

Another method to improve the discretisation is given by
time adaptivity; error estimators for the Newmark method
as presented in [6] can be used. This technique will be con-
sidered in future works.

The difficulties discussed in Remark 4.3 and the sepa-
ration of the spatial and temporal discretisation complicate
the derivation of rigorous a posteriori error estimators. A

 1e-04

 0.001

 0.01

 100000  1e+06  1e+07  1e+08

es
tim

at
ed

 e
rr

or

number of degrees of freedom

adaptive
uniform

Fig. 6.5 Estimated error for adaptive and uniform refinement in the
Signorini example

way out could be the application of a space-time Galerkin
method [52] and of DWR techniques [48].
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