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Abstract Space adaptive techniques for dynamic Signorinonly in a small contact zone. However, the behaviour of the
problems are discussed. For discretisation, the Newmark grinding machine is strongly affected by the resulting con-
method in time and low order finite elements in space ar¢act forces. A detailed study of this engineering problem is
used. For the global discretisation error in space, an a po$sund in [1]. For the reliable simulation of such a process, a
teriori error estimate is derived on the basis of the semiprecise prediction is required of the contact forces, the co
discrete problem in mixed form. This approach relies ortact zone and their effects onto the whole body. Furthermore
an auxiliary problem, which takes the form of a variationalthe contact zone and the contact forces are strongly depend-
equation. An adaptive method based on the estimate is aptg on time. Hence, the precise consideration of these de-
plied to improve the finite element approximation. Numeri-pendences is essential in the numerical simulation.

cal results illustrate the performance of the presented
method.

Keywords Dynamic Signorini problem A posteriori error
estimation Mesh refinementFinite element method

1 Introduction

Dynamic Signorini problems arise in many engineering pro
cesses, e.g., in milling and grinding processes, vehicle d
sign and ballistics. In these processes, the main effestdtre

from the contact at the surface of the bodies under consi
eration. Typical examples for engineering processes, avhe
contact problems play a dominant role, are grinding pro

cesses. The workpiece interacts with the grinding wheel
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An adequate technique, which gives rise to a flexible and
efficient finite element discretisation, is based on a poster
ori error control and resulting adaptive mesh refinement. In
general, a posteriori error estimates for second orderrhype
bolic problems are possible for two different discretigati
approaches. One of them uses space time Galerkin meth-
ods for discretisation and applies similar techniquesifiare

control as in the static case ([2-5]). The other one is based o

?inite differences in time and finite elements in space. Here,
Os_eparate error estimators are used for the space and time di-

rection ([6—8]) or error estimates for the whole problem ([9
10]) are derived.

In this article, finite differences in time and finite elemeimt
space are used to discretise the dynamic Signorini problems
Because only the data of the current time step comes into
play, the error estimator can be evaluated efficiently. How-
ever, the separation of the space and time direction compli-
cates the consideration of space time effects. The aim®f thi
article is to derive an error estimator for the finite element
discretisation in space direction. Therefore, an errotrobn
technique for static contact problems is applied to the semi
discrete spatial problem. This technique goes back to Braes
[11] and Schroder [12]. Other approaches to a posteriori er-
ror control for static contact problems are discussed ir-[13
20]. In particular, an adaptive scheme for two-body contact
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is contained in [21]. Convergence results for adaptive-algoand the initial velocityg is in L? (Q). Here,y denotes the
rithms in the context of obstacle problems are proven in.[22]trace operator of functions iH* (Q, I'p) onto the boundary
Adaptivity in time direction is not taken into account in 0Q. See, e.g., [39] for T“O“? de.ta||s. The gradient of the dis-
. . . S o . placement in space direction is denoted hyu andAu is
this article for notational simplicity, although it is eatsyin- . . .
. . . the usual Laplace operator. The first and second time deriva-

corporate. One can do this on the basis of error estimators, e . :

. : tives are denoted by andu; respectively. In the following,
which are known from the literature of second order hyper- .

. all relations have to be understood almost everywhere.
bolic problems [6].
Thg t_emporal discretisation of dynamic contact_problems IS \We choose the unconstrained trial space
a difficult task. Several approaches based on different-prob
lem formulations have been presented in literature. In [23Y :— W2® (|;|_2(Q)) nL® (l;Hl(Q,FD))
the penalty-method is used to solve the discrete problems.
Special contact elements in combination with Lagrange  for notational convenience, although the existense of a so-
multipliers are presented in [24]. Other techniques for lution in V can not be proven, even in the contact free case
smoothing and stabilizing the computation with special fi-[39]. The set of admissible displacements is
nite elements, e.g. Mortar finite elements, are presented in
[25-27]. In [28], the Newmark scheme is used with an adX = {¢ €V |y ($) > gonlc x| }.

ditional L2-projection for stabilization. Algorithms for dy- 2 ) i
namic contact/impact problems based on the energy- anTJhe L -Zscalar product IS d_eflned bfu, v) = Jo uvdx fqr
u,v € L<(Q). The density is set equal to 1 for notational

momentum conservation are derived in [29,30]. An addi-? " ~ " X o
tive splitting of the acceleration into two parts, represen §|mpI|C|ty. Ever_ltually, _the weak formulation of the simpli
the interior forces and the contact forces, is the basisef thﬁed dynamic Signorini problem, see e.g. [40], reads
methods introduced in [31,32]. In [33—35] algorithms

baseq on variational inequalitie§ and optimisatiorj _ Problem 2.1 Find a functionu € K with u(t = 0) = ug and
algorithms are presented. Detailed surveys of this topic ca, (t = 0) = vo for which

be found in the monographs [36,37].

The article is organised as follows: In the next two sec- (U (t), (t) —u(t)) + (Du(t),0(¢ (t) —u(t)))
tions, the strong and weak formulations of the dynamic sim> (f(t),9 (t)—u(t))
plified Signorini problem are introduced and the discretisa
tion of the problem is discussed. In Section 4, the spatial etholds for allp € K and allt € 1.
ror estimator is derived serving as basis of an adaptive algo
rithm. In Section 6, two examples illustrate the applicatio Throughout this article, we assunfies L (I L2 (Q)).
of the mentioned techniques. The article concludes with # the solution is sufficiently smooth, we obtain the
discussion of the results. equivalent strong formulation (see [40])

i—Au=f inQxlI

2 Continuous Formulation U=0 onfpxl
. . . Jdu
In this section, the strong and the weak formulation of the — =0 onlyxl
o . - av
dynamic simplified Signorini problem are presented.Qet U—g>0 onfexl
RR? be the basic domain arid= [0, T] C R a time interval. u

The boundany Q of Q is divided into three mutually dis- — <0 onflcxl

joint parts/ip, lc and Iy with positive measure. Homoge- y v

neous Dirichlet and Neumann boundary conditions are pre—— (u—g) =0 onl¢cx|.

scribed on the closed s&$ and only, respectively. Contact

may take place on the sufficiently smooth Eetlc ¢ Cp.

See, e.g., [38], Section 5.3 for more details. The time de-

pendent rigid foundation is parameterised by a sufficientlyd Discretisation

smooth functiorg : l'c x| — RU{—~}. Here, the restric-

tion u> g onI¢ is consideredy < g can be treated analo- We use Rothe’s method to discretise the dynamic simpli-
gously. fied Signorini problem. First, the problem is discretised in
temporal direction by the Newmark method (see [41]). The
resulting spatial problems are approximately solved by low
HY(Q,p) := {ve HY(Q)|yir, (v) = 0} order finite elements.

The initial displacementp is in
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3.1 Temporal Discretisation Problem 3.2 Find (u,A) with u® = ug, V° = vp andal = ap,
such tha(u",A") € V" x A" is the solution of the system

The time intervall is split into N equidistant subintervals , \ N

In 1= (tn_1.tn] OF lengthk =t —th_y with 0=ty < t; <  C(U"9)+ (A" Ve (9)) = (F".9) (3-5)

... <ty_1 <ty :=T. The value of a functionv at a time (4 —A",y (u")—g") <O, (3.6)

instancep, is approximated by"'. We use the notation=u

n n
anda = U for the velocity and the acceleration, res;pectively.for allg €V? all peA"andalln € {1,2,...,N}. Based

on the equations (3.1) and (3.2), the functishanda" are
In the Newmark method; anda are approximated by calculated in a postprocessing step.

1 1 1
n__ n_ n-1y -1 _ n—-1
T Bl (u ) ) Bkvn <2B 1)a o0 Here,A" is the dual f th t
ere, A" is the dual cone of the se
V= vlik[(1-a)a - ad"]. (3.2)

Here,a andp are free parameters in the interj@J2]. For G'= {U = Hl/z(’_C)’ M= 0}-
second order convergenae = % is required. Furthermore,
the inequality B > a > % has to be valid for unconditional
stability (see [42]). For dynamic contact problems, theicho

The dual pairing is expressed by-). The se¥/" :=H!(Q, )
is the time discretised unconstrained trial space.
1 }I’he equivalence of the two formulations is a well-known

a = 3 = 5 is recommended to guarantee conservation o nclusion from th neral theorv of minimisation brob
energy and momentum (see [24, 35]). For starting the NewSohciusion 1ro € general Ineary o sation pro

mark method the initial accelerati@g is needed. It can be lems in Hilbert spaces presented, €.g., in [43,44].
calculated on the basis of the initial displacement and ve-

locity (see [42]). The semi-discrete problem then reads as , Spatial Discretisation

follows: '

A finite element approach is applied to discretise the mixed
problem 3.2. We use adaptive algorithms with dynamic
meshes. Therefore, the trial spadgs and Aj} may vary
from time step to time step. Bilinear basis functions on the
@, ¢ —u")+(0u",0(¢p—u") > (f(t),¢—u"), (3.3) meshT" are used for the finite element spagg The dis-

for all ¢ € K". Moreoveru™, V' anda" have to fulfill the Crete Lagrange multipliers are piecewise constant and are
equations (3.1) and (3.2). contained in the seA]. The indexH indicates that coarser
meshes may be chosen for the Lagrange multipliers. In our
calculations, we usk = 2h for stability reasons. A detailed

The setk" := {9 eH'(Q,lD) |Wc_(¢) >g'onQ } is the study of the stability properties of this discretisatiom ¢
time discretized set of the admissible displacements.t5ubs,,nd in [12].

tuting the equation (3.1) witly = 8 = 3 in the inequality
(3.3) leads to Because of the varying meshes, FE-functions have to be
noa oM 1k2 (g0 o transfered to the mesh of the current time step. This process
(% ¢ — )+ k™ (O, 0 (@ — ) is denoted byl, and is realized by ah?-projection. One

Problem 3.1 Finduwith u® = ug, V% = vg anda® = ag, such
thatin every time stepe {1,2,...,N}, the functioru” € K"
is the solution of the variational inequality

1,2 —1 —1 . . . .
= (Ek ftn) + U+ kv ¢ — Un) : might also consider standard interpolation as a transfer op
This can be written as erator, which needs less effort, but can lead to instadsliti
c(u", ¢ —u") > (F", ¢ —u"), (3.4) The space and time discrete problem is

wherec is defined by
Problem 3.3 Find (u,A3) € V| x Af} with u = I,up, V2 =

1
c(w,9) = (w,¢)+ Ekz (Ow,0¢) Invo andal = Inag, such that the system
andF”las c(up, #n) + (Al Yire (9n)) = (R dn) (3.7)
FN:= Ekz f(th)+ u" kvt <UH _/\n, Vire (UR) . gn> <0 3.8)

The bilinear formc is uniformly elliptic, continuous and s valid for all ¢y, eVlanduy € Aj, ne {1,2,...,N}. Ad-

symmetric. Thus, an elliptic variational inequality ha®  ditionally, the equations (3.1) and (3.2) determifj@nda)).
solved in each time step. An efficient way for solving varia-

tional inequalities is given by their mixed formulation.&'h

Lagrange parameters may be interpreted as contact forcesere,F! is given by

The variational inequality (3.4) is equivalent to the fallo 1

ing mixed problem: Ry = Ekz f (tn) + Inuf L+ ki,



The system (3.7-3.8) leads to the following saddle point Here,|| - || denotes the norm correponding to the related

problem inR™, wherem depends om: function spaces. We use the!(Q)-norm for V". Taking
A L BAN — into account, that the discrete solutigfis also a discrete
mTon  =n solution of Problem 4.2, we are able to get rid of the term

(H=A") ((B ) u'=g ) < 0’ lul —upl| by using an appropriate error estimator for the

which must hold for aljz € R™,. Here, A" := M" + 1i2K" auxiliary problem: Let?f > 0 be an error egtimator of Prob-
is the generalised stiffness matrM” € R™™M is the mass lem 4.2, i.e., there exists a const&ht> 0 independent of
matrix andK" € R™™ is the stiffness matrix. The matrix Vh @ndAfj, such that

B" € R™M represents the dual pairing in (3.8). Notice, that”u nHZ < C*(flf)2~

all matrices may change from time step to time step.

The saddle point problem can be rewritten as a quadratiEnen, Lemma 4.1 leads to

optimisation problem, which can be solved by substituting 16" — P2+ ’ 30— AN
"= (A"~ (F" —B"A") and applying SQP methods. h H
More details can be found in [12]. < C'C.(nM? +C"(A"— AL, Yire (um) —g".

The remaining terngA" — A1, Yire (up) —g") is estimated by
4 Spatial Error Estimation

Lemma 4.2 Let vg > 0 be the constant of continuity of c.
In this section, an error estimation is derived for the spati Fyrthermore, let
error in every time step. The estimation is easy to imple-
ment and can be evaluated fast. The temporal error is nét€ K" := {v e V"|g" - yr. (U}) — Y. (V) < O}
considered. The idea of the error estimation goes back Ynde > 0. Then, there holds
Braess [11], who presented it for static obstacle problems.
This idea was extended by Schroder [12] to static Signorini A" AR e (uR) — g™
problems even with friction by introducing a general frame-
work for error control of variational inequalities in Hildke —
spaces. In order to apply this framework here, we consider +3 [[u? —u?[|*+| /\,Q,w—c( M-
the following saddlepoint problem:

g Jlan — up) 2+ S22 2

Proof. Inserting 0 and 2] in (3.8) yields

Problem 4.1 Find (G“,;\”) € V" x A", such that (Al Ve (up) —g") =0.
o(T.9) + (A" Ve (9)) = (RY.9) Furthermore, we get
(= A"y (@) —g") <0 (A" Mre (Up) — 9"
forall € VMand ally € A" = —(A"0"~ ¥ire (Up) = Ve (d)) = (A% e ()
< c(d",d) - (F;.,d)
An essential part of the general framework in [12] is the = ¢(d" — up,d) + c(up,d) — (R}, d)

formulation of the auxiliary problem:

| /\

vo [|&" — ugl| || + c(uf, d) — (R, d)
2
Problem 4.2 Find u] € V", such that the variational equa- < EHG“ —ul?+ %Hd”ﬁ—c(uﬂ,d) — (F".d).
tion
Here, we have used Young's inequality. The teafuf),d) —
c(ul,¢) = (R, ¢) — (M- Mre(9)) (RN, d) is estimated as follows:
holds for aII¢ eV, C(Uﬂ d) _ (Ff:] d)

_ n_ N Ay (an
Problem 4.2 corresponds to the first line of Problem 4.1, S — U, d) — (Ad, Vre (d))

but with the discrete Lagrangian multiplidf instead ofn. < Vo [u? — up]l 1]l — (A, ¥ (d))
Applying Lemma V.2 in [12] yields 1 2 VB o
< 5 I = GBI+ =2 P+ | (A e (@)
Lemma 4.1 There are constantsC’,C"” € R, such that O
|G" — uﬂ||2+ ’ }\n_)\ﬂ 2 Eventually, we obtain an a posteriori error estimate by

, P the following proposition:
< C'fJul — up|=+C (A" — A, Mre, () — ")



Proposition 4.1 There exists a constant C > 0 independent  Remark 4.2 In our numerical tests, the term
of V{ and A}, such that . .
109" = Ve (Up))+

always turned out to be of higher ordertipsee [12]. Since
<C (('72)2 i H (0"~ r (WD) H2> it is difficult to split this term into its elementwise cortiti-
N ¢ tions, it is neglected in the numerical realisation.

- 2
& uf ~A

+C| (A ("= vre (), )|

holds. Here, f. denotes the positive part of a function f, In order to apply the error estimation of Proposition 4.1,
which means we have to specify an appropriate error estimajfrfor
£(x), (x) >0 Problem 4.2. In principle, each error estimator known from
fi(x) = { 0 £(x) - 0. literature of variational equations is possible to be uSeg:
- ' . [45] or [46] for an overview. For the sake of completeness, a
Proof. Combining Lemma 4.1 and Lemma 4.2 yields residual based error estimator for Problem 4.2 is specified:
~ 2
L A (=3 ng
~ KET"
< CC(n1)2+C (A" = A, vire (up) — ")
: tre ; 1 = 1% 2+ i IR 2 0
/ el // n
< (C+ 3¢ et ey o - ) it
1+¢)y 1
v (L2l ey |<An,wc<d>>|) . = R K A
Choosing 0< € < 2/C", we get . ~1Kk? (q ‘Z;:j*) onoQ
C" a2 |[in anl? T auh else
o= >+ A= g -

2 n The quantityR represents the jump discontinuity in the ap-
¢ ((’7*) + Hd” (A, Wc(d))l) proximation to the normal flux on the interface. Weget0
with on Ny andq= —A/] on lc. See [46], Section.2, for more
C:= max{ (C’ C//) C,, 7C”(1+ s)vg,c,,} ) details.

2 2¢
The functiond in Lemma 4.2 can be chosen as the harmonlcR
continuatiord” of (g" - yr, (uf)) , , which is characterised
by the minimisation problem

Id”

k4.3 We have used the discrete valgg instead of

F"in Problem 4.1, i.e., Proposition 4.1 specifies a tempo-

ral local error estimator for the spatial discretisatioroer

||i = vier\]/\];n [[v]|2 This technique is commonly used in the derivation of error
estimators for numerical methods for ordinary differentia

with equations, see, e.g., [47]. The presented error estimator e
W= {V eVt }V[rc (v) = (9"~ Yire (Uﬂ))+ } ‘ presses the spatial error distribution in the single tirepst
For more details and alternatives in the choiced see [12].  But it only provides information about the global error un-
Since there holds der the assumptioR' ~ F", which should hold for smak
n andh. An a priori error analysis of the Newmark method in
gA Nre (up) — Yire ( ) <0, the context of dynamic contact problems is needed to make
d" is an element oK". From the definition of the norm a precise statement. To the best of the authors’ knowledge,
||-||1/21,-C, it follows this analysis does not exist and cannot be derived by stan-
M n n dard techniques due to the low regularity of the continuous
d ”1 = H(g —Mre (uh))+H1/21,—c' solution.

O

Remark 4.1 All terms in the error estimate of Proposition _ _ _

4.1 can be interpreted as typical sources of errors in contafemark 4.4 The presented error estimate is not restricted to
problems. The terrij(g" — yir. (Uf)) || measures the error the Newmark method. It can easily be used for other similar
of the geometrical contact condition and the té¢Af], (g" — time stepping schemes. It was tested by the authors for the

Yire (up))+)| measures the violation of the complementarityGeneralizeda method, the application of which to dynamic
condition. contact problems is presented in [34,35].



5 Adaptive Algorithm

In general, adaptive algorithms for dynamic problems are
based on refinement strategies, which are known from static
problems, see, e.g., [45,48] for a survey of adaptive algo-
rithms for static problems. Commonly used adaptive algo-
rithms for time dependent problems, see, e.g., [3,49], per-
form an adaptive refinement process using a prescribed tol-
erance in every time step. This refinement process is inde-
pendent of previous and subsequent time steps. Here, the
crucial point is, that the time interval is passed only once.
The tolerance limit cannot be reached, if the solution in the
previous time step has not been calculated exactly enough
Moreover, the difference of the meshes of two succsesive
time steps may significantly increase the error. Usually,
rapid changes of the problem parameters are the reason feiyy. 6.1 Geometry of the simplified Signorini example
this behaviour.

In dynamic Signorini problems, the problem parameters The geometry of the presented problem is illustrated in
change rapidly and, thus, the above mentioned algorithmBigure 6.1. Meshes for different time steps are presented in
are not appropriate. An alternative is given by algorithmsFigure 6.2, the corresponding movie is shown in Animation
based on the ideas in [50,51]. The refinement procedure is. The mesh in Figure 6.2 (a) corresponds to the time step,
split into several cycles. The whole time interval is passedmmediately before the first contact between the membrane
in every cycle. A cycle constists of two steps: First, the ap-and the rigid foundation takes places. In Figure 6.2 (h)-(i)
proximated solution of the whole problem is determined, thehe membrane gets into contact with the obstacle and the
error is estimated and the mesh is refined via a usual recontact zone is adaptively refined. We observe a moving
finement strategy, e.g. a fixed fraction strategy, see [48,45front, which is resolved by the adaptive meshes. In Figure
Multiple hanging nodes in space and time may be generatesl3 the estimated convergence for adaptive and uniform re-
by this refinement. In a second step, such nodes are removdithement is compared. The estimated error is measured by
The removal of hanging nodes in time closely connects the n
meshes of different time steps. A detailed presentation of = 1rgnna§),(\,’7 ’

this adaptlvg algorithm and its extensions will be given in awheren” is given in Proposition 4.1. The number of degrees
seperate article.

of freedom is the sum of the number of degrees of freedom
of all single time steps. It is obvious, that the adaptive re-
finement is more efficient than the uniform refinement. One
achieves the same accuracy with nearly a factor of 10 less

The error estimator and the adaptive algorithm are tested fo' nknowns.

two examples. The first one is a simplified Signorini prob-
lem and the second one is a full 2D Signorini problem.

6 Numerical Results

6.2 A Signorini example

Here, a bar of length.@m and height ®5m is considered.

6.1 A simplified Signorini example The domain isQ := [0,0.2] x [0,0.05 and the time inter-
. . . 3 . . AL
We setQ := [0, 1]2 and| := [0,1]. The initial values are valis | . [0,25 .10 ]._The bgr 'S m_ode_lled using ﬁ_“n
= 0 andvo (x4, Xp) ‘= —sin(lnx ) Furthermore ear elastic material law in a plain strain situation with=
Uo (x4, %) : 0\, 72) - 2" ' 73-10°MPaandv := 0.33. The density ip := 2770kg/m?.

we setlp :={xe Q|xy =0}, lc := {xe Q|xy =1} and

My = 00\ (Fe N 1). The rigid foundation is The bar is fixed at the left boundafy = {x€ Q |x; =0}.

The possible contact surface is given by the set

g:=sin(mx) — 1.05. lc={xe€ Q| >0.15Ax,=0}.

:hle Ien%th .Ol;ih? tgnoe62t5ep§|s chof;en as.(t)025|. The ini- There are nonhomogeneous Neumann boundary conditions
ial mesh sizeno is 0.C . Five refinement cycles are per- M = {x€ Qxa > 0.1A% — 0.05} with

formed, whereas a fixed fraction strategy with constant re-
finement fraction of 50% and no coarsening is used. q:=3.75-10'N/m?.



(@) Mesh an=20 (b) Mesh ain =50

(c) Mesh ain= 100 (d) Mesh ain =150

(e) Mesh an= 200 (f) Mesh atn =250

(g) Mesh ain =300 (h) Mesh ain =350

(i) Mesh atn = 400

Fig. 6.2 Meshes for different time steps of the simplified Signorini
example

0.001

‘ adaptive ——
uniform ——x-—

le-04

estimated error

1le-05

le-06 - -
100000 le+06 le+07 le+08

number of degrees of freedom

Fig. 6.3 Estimated error for adaptive and uniform refinement in the
simplified Signorini example

The rigid foundation is given by the set
{xeR?|0<x; <0.2AX%, < —0.005} .

The length of the time steps is 1®and the initial mesh
sizehg is 6.25-10~3. Again, five refinement cycles are per-
formed, whereas a fixed fraction strategy with constant re-
finement fraction of 50% without coarsening is used.

In Figure 6.4 meshes for different time steps are pre-
sented the corresponding movie is contained in Animation
2. The displacement is scaled by a factor of 5. During the
calculation, contact between the bar and the rigid founda-
tion occurs several times. In the Figures 6.4 (a)-(c) and (d)
(f) a sequence is depicted, which starts before contacs take
places and ends after contact. The influence of contact to the
mesh is obvious. The last sequence (g)-(i) shows the change
of the mesh during contact. The refined zone and the con-
tact zone grow and shrink simultanously. The performance
of the adaptive refinement is compared with the uniform re-
finementin Figure 6.5, where the same variables are used as
in Figure 6.3. As in the example above, the application of
the adaptive method is more efficient.

7 Conclusions

The presented space adaptive scheme for dynamic Signorini
problems shows a significant improvement. More sophis-
ticated refinement strategies can further enhance the effi-
ciency. However, not every strategy known from non con-
tact problems seems to be suited for adaptive schemes for
contact problems. E.g. the refinement strategy presented in
[51] compares the refinement indicators over all time steps.
The method has been tested by the authors, but the results
are not satisfactory. The contact zone is not resolvedybefo
the first contact takes place. Thus, the algorithm is not able
to detect the moment of the first contact exactly, so that the
error increases significantly.
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Fig. 6.5 Estimated error for adaptive and uniform refinement in the
Signorini example

(c) Mesh ain =50 (d) Mesh ain=80

way out could be the application of a space-time Galerkin
method [52] and of DWR techniques [48].
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