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Abstract. In this work, we present a new SOR-procedure with pro-
jection for solving quadratic optimization problems resulting from
Signorini Problems in linear elasticity. The procedure is based on a
variable transformation and exploits the sparsity structure of prob-
lems which are obtained by finite element discretizations. An acceler-
ated variant of the procedure is presented which is based on a CG-like
method. The convergence of the procedures is proven and numerical
results are discussed in the context of contact problems.

1. Introduction

Quadratic optimization problems have the structure: Find x ∈ K,
such that

E(x) = min
y∈K

E(y) (1)

with

E(y) :=
1
2
y>Ay − y>L,

K := {v ∈ Rn | Bv ≤ g},
A ∈ Rn×n, L ∈ Rn, B ∈ Rm×n, g ∈ Rm.

In the following, we assume the matrix A to be symmetric and pos-
itive definite. The relation x ≤ y with x, y ∈ Rm is defined compo-
nentwise, i.e.

x ≤ y ⇔ ∀i ∈ Zm : xi ≤ yi.
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Here and in what follows, we use Zm := {0, . . . ,m−1} for notational
convenience. It is well-known that a unique solution x ∈ K of (1)
exists. Many algorithms for solving such general quadratic optimiza-
tion problems are described in literature. We refer to [2], [4], [8] and
[10] for an overview.

In many cases, the matrix B has a special structure which can be
exploit for efficient algorithms. In this work, we consider quadratic
optimization problems in which the matrix B has the following struc-
ture: There exist numbers α0, . . . , αm−1, β0, . . . , βm−1 ∈ N, such that

∀j ∈ Zm : αj < βj ≤ n, (2)
∀j, j′ ∈ Zm, j 6= j′ : βj ≤ αj′ ∨ βj′ ≤ αj , (3)

∀j ∈ Zm : ∀i ∈ Zn\{αj , . . . , βj − 1} : Bji = 0. (4)

It is clear that each matrix with at the most one non-zero component
in each column can be transformed into a matrix with such a structure
by permuting the columns.

An important class of quadratic optimization problems with linear
constraints described by the conditions (2)-(4) are Signorini problems
in linear elasticity (cf., e.g.,[7], [9]) : Each row of the matrixB contains
a vector which is the outer normal vector of a certain boundary point.
Each column has at the most one non-zero component (see Section
5).

A simple procedure which is frequently proposed for quadratic op-
timization problems with box constraints is the SOR-procedure with
projection which we call PSOR-procedures in the following (Projec-
tive Successive OverRelaxation). Especially, model contact problems
as obstacle problems or simplified Signorini problems can efficiently
be solved by applying such methods. We refer to [5] (p.67), [6] (p.40),
and [7] (p.20) for obstacle problems and to [7] (p.20) and [9] (p.128)
for simplified Signorini problems. In [1], an accelerated variant has
been developed which is included in a cascadic multigrid scheme.

In this work, we present a new PSOR-procedure which includes the
matrix conditions (2)-(4). By applying the finite element method for
discretization, the matrix A has a sparsity structure. The presented
approach provides for minimal cost due to matrix-vector multipli-
cations of sparse matrices. The main results concerning this proce-
dure and its convergence are described in Section 4. Furthermore, we
present an accelerated variant which is based on a CG-like method.
The presented approach is based on a variable transformation which
has originally been proposed by Hlavacek et al. in [7] and which is
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extended to the conditions (2)-(4) in Section 3. The main idea is to
transform the quadratic optimization problem with conditions (2)-(4)
to a quadratic optimization problem with box constraints so that the
standard PSOR-procedure can be applied.

In Section 2, we briefly sum up the main results dealing with the
PSOR-procedure for box constraints. In the last section, numerical
results are presented in the context of contact problems.

2. The PSOR-Procedure for Box Constraints

The PSOR-procedure is based on a successive-overrelaxation proce-
dure with an additional projection onto the set K in each iteration
step.

The set K is given by box constraints, if

K = K0 ×K1 × · · · ×Kn−1 (5)

with Ki := [vi, wi] for v, w ∈ (R ∪ {∞})n, v ≤ w. In the cases vi =
−∞ or/and wi = ∞ the interval Ki is unbounded. It is clear that
box constraints can be described by setting

B :=
(
Ĩ0
−Ĩ1

)
, g :=

(
w̃
−ṽ

)
where the submatrices Ĩ0 and Ĩ1 result from cancelling the i-th row
of the identity I ∈ Rn×n with vi = −∞ or wi = ∞, respectively. In
the same manner, the vectors ṽ and w̃ are defined. Obviously, the
conditions (2)-(4) only generalize unilateral box constraints.

The PSOR-procedure is usually introduced by defining a sequence
{x`}`∈N with x0 ∈ Rn and

x`+1
i := Pi

(
(1− ω)x`

i + ω(
1
Aii

(Li − (
i−1∑
j=0

Aijx
`+1
j +

n−1∑
j=i+1

Aijx
`
j)

)
,

i = 0, . . . , n− 1

with the relaxation parameter 0 < ω < 2 and the projection Pi : R→
R given as

Pi(a) :=


vi, a < vi

wi, a > wi

a, else.
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In many cases, the matrix A is implicitly given, so that only the
matrix vector product is available. Here it is useful to rewrite the
PSOR scheme in the following way: For i ∈ {0, . . . , n− 1}, we define
a mapping Si : Rn → Rn by

(Si(x))j :=

{
Pi(xi + δi(Li −Ai,·x)), i = j

xj , else

Here, Ai,· denotes the i-th row vector of A and δ ∈ Rn is defined by
δi := ωA−1

ii . By introducing the mapping S : Rn → Rn through

S := Sn−1 ◦ Sn−2 ◦ . . . ◦ S1 ◦ S0,

the PSOR-sequence {x`}`∈N fulfills x`+1 = S(x`). Therefore, we ob-
tain:

Theorem 1. Let the assumption (5) be fulfilled and {x`}`∈N ⊂ Rn be
given by x`+1 := S(x`). For the solution x ∈ K of (1), there holds

lim
`→∞

x` = x.

Proof. Ch.2, Th.1.3 in [5]. 2

An efficient computer routine can be implemented as follows: For
an integer i and a real valued array x, we define the routine

PSOR[i, x] :
xi ← xi + δi(Li − Ai,·x);
if xi > wi : xi ← wi

else if xi < vi : xi ← vi.

The notation a← b means that the variable a is assigned to the value
of the variable b, and ROUTINE[x, y, . . .] can be understood as a func-
tion header with variables x, y, . . . (in the sense of ’call by reference’).
The use of such a notation is adapted to a direct implementation and,
especially, to the reuse of auxiliary variables by overwriting their data
contents.
The routine PSOR[i, x] corresponds to the mapping Si in such a way
that x contains the vector Si(x) after calling this routine. Letting
i pass from 0 to n − 1 calling PSOR[i, x], we get a routine PSOR[x],
which corresponds to the mapping S. Of course, the complete PSOR-
procedure is the iteration of PSOR[x] until a prescribed stopping cri-
terion is reached.
Similarly, we obtain a further procedure by the routine PSSOR[x]
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(Projective Symmetric SOR), where we pass i from 0 to n − 1 and,
thereafter, from n− 2 to 0 calling PSOR[i, x].

The possible rate of convergence of the PSOR- and PSSOR-proce-
dure is limited by the order of convergence of the unconstrained SOR-
procedures. However, we obtain an significantly accelerated variant of
the PSSOR-procedure by searching a minimizer in the affine subspace
x`+1 + span{r, s} spanned by r := x` − x`−1 and s := x`+1 − x`. The
minimizer can simply be determined by solving the two dimensional
unconstrained quadratic problem

min
(α,β)∈R2

1
2
(x`+1 +αr+ βs)>A(x`+1 +αr+ βs)− (x`+1 +αr+ βs)>L,

which reduces to a linear system of equations in two variables. For
these purposes, we introduce the following routine:

MIN[A, x, r, s] :

d0 ← r>(L− Ax);

d1 ← r>As;

d2 ← r>Ar;

β ← ((s>(L− Ax))d2 − d0d1)/((s>As)d2 − d21);
α← (d0 − βd1)/d2;
x← x + αr + βs.

Let M : Rn×n × Rn × Rn × Rn → Rn be defined in such a way, that
M(A, x, r, s) is equal to x after calling the routine MIN[A,x,r,s].
Then, obviously

E(M(A, x, r, s)) = min
y∈x+span{r,s}

E(y). (6)

The accelerated procedure APSSOR (Accelerated PSSOR) is given
by

APSSOR[x, y] :
r← x− y;
y← x;
PSSOR[x];
s← x− y;
MIN[A, x, r, s];
i = 0, . . . , n− 1 :

if xi > wi : xi ← wi

else if xi < vi : xi ← vi.
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The complete APSSOR-procedure is obtained by iterating the routine
APSSOR[x,y] until a prescribed stopping criterion is reached. We refer
to [1] and references therein for more details.

3. Transformation to Box Constraints

In this section, we state a variable transformation so that problem (1)
with the conditions (2)-(4) is transformed to a quadratic minimization
problem with unilateral box constraints.

For this purpose, we define the column index ρ(j) ∈ {αj , . . . , βj −
1} for a row index j ∈ Zm of B, so that

|Bj,ρ(j)| = max{|Bji| | i ∈ {αj , . . . , βj − 1}}.

We additionally assume that Bj,ρ(j) 6= 0. This is no restriction, since
rows with only zero components can be neglected. The index ρ(j)
can be interpreted as the pivot index of the row with index j. For a
column index i ∈ Zn, we define the number

γi :=

{
j, ∃j ∈ Zm : αj ≤ i < βj

−1, else,

which indicates the row index with a non-zero component (if it exists).
Obviously, there holds γρ(j) = j. Furthermore, we define the vectors
κ, σ ∈ Rn by

σi :=


(1−Bγi,i)/Bγi,i, γi ≥ 0, i = ρ(γi)
−Bγi,i/Bγi,ρ(γi), γi ≥ 0, i 6= ρ(γi)
0, else,

κi :=


Bγi,i − 1, γi ≥ 0, i = ρ(γi)
Bγi,i, γi ≥ 0, i 6= ρ(γi)
0, else

with i ∈ Zn. For a vector ξ ∈ Rn, we define the matrix M ξ ∈ Rn×n

by

M ξ
ki :=

{
ξi, γi ≥ 0, k = ρ(γi)
0, else

with i, k ∈ Zn.
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Lemma 1. The matrices I +Mσ and I +Mκ are non singular, and

(I +Mκ)−1 = I +Mσ.

Proof. First, we note ((I + Mκ)(I + Mσ))ki = δki + Mκ
ki + Mσ

ki +
(MκMσ)ki with

(MκMσ)ki =
n∑

r=1

Mκ
krM

σ
ri =

{
κrσi, γi ≥ 0, k = ρ(γr), r = ρ(γi)
0, else.

For i, k, r ∈ Zn with γi ≥ 0, k = ρ(γr) and r = ρ(γi), we obtain
k = ρ(γρ(γi)) = ρ(γi). Furthermore, there holds κρ(γi) = Bγρ(γi)

,ρ(γi)−
1 = Bγi,ρ(γi) − 1. Hence,

(MκMσ)ki =

{
(Bγi,ρ(γi) − 1)σi, γi ≥ 0, k = ρ(γi)
0, else.

and

((I +Mκ)(I +Mσ))ki = δki +

{
κi +Bγi,ρ(γi)σi, γi ≥ 0, k = ρ(γi)
0, else.

For k, i ∈ Zn with γi = −1 we immediately obtain that ((I+Mκ)(I+
Mσ))ki = δki.
Let i ∈ Zn with γi ≥ 0 and i 6= ρ(γi), then ((I+Mκ)(I+Mσ))ii = 1.
For k ∈ Zn\{i} with k 6= ρ(γi), we obtain ((I +Mκ)(I +Mσ))ki = 0.
For k = ρ(γi), we get

((I +Mκ)(I +Mσ))ki = κi +Bγi,ρ(γi)σi

= Bγi,i −Bγi,ρ(γi)Bγi,i/Bγi,ρ(γi) = 0.

Let i ∈ Zn with γi ≥ 0 and i = ρ(γi), then

((I +Mκ)(I +Mσ))ii = 1 + κi +Bγi,ρ(γi)σi = 1 + κi +Bγi,iσi

= 1 + (Bγi,i − 1) +Bγi,i(1−Bγi,i)/Bγi,i = 1.

If k ∈ Zn\{i}, then k 6= ρ(γi), and therefore ((I+Mκ)(I+Mσ))ki = 0.
Summing up all these cases, we obtain ((I +Mκ)(I +Mσ))ki = δki

and the proof is complete. 2

For i ∈ Zn, we set

K̂i :=

{
(−∞, gγi ], γi ≥ 0, i = ρ(γi)
(−∞,∞), else

(7)
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and K̂ := K̂0 × K̂1 × · · · × K̂n−1. Furthermore, let

Ê(ŷ) :=
1
2
ŷ>Âŷ − ŷ>L̂

Â := (I +Mσ)>A(I +Mσ)

L̂ := (I +Mσ)>L.

Theorem 2. There exists a unique x̂ ∈ K̂, so that

Ê(x̂) = min
ŷ∈K̂

Ê(ŷ).

Furthermore, x = (I +Mσ)x̂.
Proof. The matrix Â is positive definite and the existence of a unique
x̂ ∈ K̂ is guaranteed.
For y ∈ K and i ∈ Zn with γi ≥ 0 and i = ρ(γi), we have

((I +Mκ)y)i = yi +
βγi−1∑
r=αγi

κryr

= yi + (Bγi,i − 1)yi +
βγi−1∑

r=αγi ,r 6=i

Bγi,ryr

=
βγi−1∑
r=αγi

Bγi,ryr ≤ gγi .

Therefore, we obtain K ′ := {(I +Mκ)y | y ∈ K} ⊂ K̂.
Let ŷ ∈ K̂ and y := (I + Mσ)ŷ. Furthermore, let ỹ := Mσŷ. Then,
we obtain

ỹi =

{∑βγi−1
r=αγi

σrŷr, i = ρ(γi)

0, else
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and

(By)j = (B(I +Mσ)ŷ)j = (Bŷ)j + (Bỹ)j

= (Bŷ)j +Bj,ρ(j)

βj−1∑
r=αj

σrŷr

= (Bŷ)j +Bj,ρ(j)σρ(j)ŷρ(j) +Bj,ρ(j)

βj−1∑
r=αj , r 6=ρ(j)

σrŷr

= (Bŷ)j +Bj,ρ(j)(1−Bγρ(j),ρ(j))/Bγρ(j),ρ(j)ŷρ(j)

−
βj−1∑

r=αj , r 6=ρ(j)

Bj,rŷr

= (Bŷ)j + (1−Bj,ρ(j))ŷρ(j) −
βj−1∑

r=αj , r 6=ρ(j)

Bj,rŷr = ŷρ(j) ≤ gj .

Thus, we have y ∈ K. Lemma 1 yields ŷ = (I + Mκ)y ∈ K ′, and
hence

K̂ = K ′. (8)

Because of (8), there exists x̃ ∈ K, so that x̂ = (I + Mκ)x̃. This
yields

E(x̃) = E((I +Mσ)x̂)

=
1
2
((I +Mσ)x̂)>A(I +Mσ)x̂− ((I +Mσ)x̂)>L

= Ê(x̂) = min
ŷ∈K̂

Ê(ŷ) = min
y∈K

Ê((I +Mκ)y)

=
1
2
((I +Mκ)y)>(I +Mσ)>A(I +Mσ)(I +Mκ)y

− ((I +Mσ)y)>(I +Mσ)>L
= min

y∈K
E(y).

Since x is unique, it follows x̃ = x and, therefore, x = (I +Mσ)x̂. 2

4. The PSOR-Procedure for Sparse Matrices

With regard to Theorem 2, the solution of (1) with the conditions
(2)-(4) is simply obtained by using the projective SOR-procedures
as introduced in Section 2 with Â, L̂ and K̂ instead of A, L and
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K. However, keeping in mind that A and Mσ typically have sparsity
structures, it is not suggestive to expand the matrix product Â =
(I +Mσ)>A(I +Mσ). Therefore, the direct use of these procedures
would be inappropriate.

In the following, we present a procedure which only needs the
matrix-vector product of the matrix A at the most twice. We call
this procedure SPSOR (Sparse PSOR). The computational effort is
not significantly higher as in the case of box constraints. Only, an
additional auxiliary vector z ∈ Rm is needed.

For an integer i and real valued arrays x and z, the basic routine
reads

SPSOR[i, x, z] :
if γi = −1 : xi ← xi + εi(Li − Ai;·x)
else :

if i 6= ρ(γi) :
a← εi(Li − Ai,·x + σi(Lρ(γi) − Aρ(γi),·x));

xi ← xi + a;
xρ(γi) ← xρ(γi) + σia;

zγi ← zγi + σia

else :
b← xi − zγi ;
c← b + εi(Li − Ai,·x);
if c > gi : c← gi;
zγi ← zγi + σi(c− b);
xi ← c + zγi .

Here, ε ∈ Rn is defined as

εi :=


ωA−1

ii , γi = −1
ω(Aii + 2σiAρ(γi),i + (σi)2Aρ(γi),ρ(γi))

−1, γi ≥ 0, i 6= ρ(γi)
ω((1 + σi)Aii)−1, γi ≥ 0, i = ρ(γi)

with the relaxation parameter 0 < ω < 2.
The compact form of routine SPSOR[i,x,z] is adapted for the im-
plementation. In the routine, three cases are considered: The case
γi = −1 means that, xi is not constrained. The case i 6= ρ(γi) implies
that xi is constrained and the index i is not the pivot index of the
row γi. The case i = ρ(γi) denotes that xi is constrained and the
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index i is the pivot index. For more details, see the proof of Theorem
2.

The routine SPSOR[i, x, z] can be interpreted as mappings S∗i :
Rn×Rm → Rn and T ∗i : Rn×Rm → Rm where S∗i (x, z) is equal to x
and T ∗i (x, z) is equal to z after calling this routine. Passing i from 0
to n−1 calling SPSOR[i, x, z], we obtain the routine SPSOR[x, z] which
is executed until a stopping criterion is reached.

The routine SPSOR[x, z] corresponds to the composition of the
mappings S∗i and T ∗i

(S∗, T ∗) := (S∗n−1, T
∗
n−1) ◦ (S∗n−2, T

∗
n−2) ◦ . . . ◦ (S∗1 , T

∗
1 ) ◦ (S∗0 , T

∗
0 ).

Let the sequence {x`, z`}`∈N be defined by

(x`+1, z`+1) := (S∗, T ∗)(x`, z`) (9)

with x0 ∈ Rn and z0 := −Mκ(x0). The main result of this section is
to show that the sequence {x`}`∈N converges to the solution x ∈ K.

For these purposes, let Mξ : Rn → Rm be defined by

(Mξ(x))j :=
βj−1∑
i=αj

ξixi

for ξ ∈ Rn and the mappings Ŝi and Ŝ be given as the mappings S
and Si of Section 2, but with Â, L̂ and K̂ instead of A, L and K.

Lemma 2. Let x ∈ Rn. Then,

−Mκx = Mσ(I +Mκ)x, −Mκ(x) =Mσ((I +Mκ)x).

Proof. Mσ(I +Mκ)x = (I +Mσ)(I +Mκ)x− (I +Mκ)x = x− (I +
Mκ)x = −Mκx. The second assertion follows by the first assertion
and the definition ofMξ. 2

Lemma 3. Let i ∈ Zn, and δ̂ ∈ Rn with

δ̂i =

{
εi(1 + σi)−1 , γi ≥ 0, i = ρ(γi)
εi, else,

then ωÂ−1
ii = δ̂i.

Proof. If γi = −1, then Âii = Aii. If γi ≥ 0 and i 6= ρ(γi), we
have Âii = Aii +2((Mσ)>A)ii +((Mσ)>AMσ)ii = Aii +2σiAρ(γi),i +
(σi)2Aρ(γi),ρ(γi). Finally, if γi ≥ 0 and i = ρ(γi), we obtain Âii = Aii+
2(MσA)ii + ((Mσ)>AMσ)ii = Aii + 2σiAii + (σi)2Aii = (1 + σi)2Aii.
Therefore, in all three cases we obtain ωÂ−1

ii = δ̂i. 2
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Lemma 4. Let i ∈ Zn, x ∈ Rn, then

(S∗i , T
∗
i )(x,−Mκ(x))

= ((I +Mσ)Ŝi((I +Mκ)x),Mσ(Ŝi((I +Mκ)x))).

Proof. Let x̂ := (I + Mκ)x and z := −Mκ(x) = Mσ(x̂). From
Lemma 3 we have (Ŝi(x̂))i = P̂i(x̂i + δ̂i(L̂i − Âi,·x̂)) with

P̂i(s) :=

{
gi, γi ≥ 0, i = ρ(γi), s > gi

s, else.

If γi = −1, then, for k 6= i, it holds

x̂k = (Ŝi(x̂))k, (Mσx̂)k = (MσŜi(x̂))k. (10)

Thus, we have

(S∗i (x,−Mκ(x)))k = xk = ((I +Mσ)x̂)k

= ((I +Mσ)Ŝi(x̂))k = ((I +Mσ)Ŝi((I +Mκ)x))k. (11)

Furthermore, there is x̂i = xi and L̂i = Li. Since i 6= ρ(γr) for all
r ∈ Zn with γr ≥ 0, we obtain ((I +Mσ)>)ir = δir and

Âi,·x̂ = ((I +Mσ)>A(I +Mσ)(I +Mκ)x)i

= ((I +Mσ)>Ax)i = Ai,·x.

Thus, we have

(S∗i (x,−Mκ(x)))i = xi + εi(Li −Ai,·x) = x̂i + εi(L̂i − Âi,·x̂)

= (Ŝi(x̂))i = ((I +Mσ)Ŝi((I +Mκ)x))i.

Since Mσ(Ŝi(x̂)) =Mσ(x̂), we have

T ∗i (x,−Mκ(x)) = T ∗i (x, z) = z =Mσ(x̂) =Mσ(Ŝi((I +Mκ)x)).

If γi ≥ 0 and i 6= ρ(γi), then, for k 6∈ {i, ρ(γi)}, we also have
(10) and, therefore, (11). Furthermore, there holds x̂i = xi, L̂i =
((I +Mσ)>L)i = Li + σiLρ(γi) and

Âi,·x̂ = ((I +Mσ)>A(I +Mσ))i,·(I +Mκ)x

= (A+ (Mσ)>A)i,·x = Ai,·x+ σiAρ(γi),·x.
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With a := εi(Li − Ai,·x + σi(Lρ(γi) − Aρ(γi),·x)) = εi(L̂i − Âi,·x̂), we
get

(S∗i (x,−Mκ(x)))i = xi + a = x̂i + εi(L̂i − Âi,·x̂) = (Ŝi(x̂))i

= ((I +Mσ)Ŝi((I +Mκ)x))i.

Since

Mσ(x̂)γi + σia = σi(x̂i + a) +
βγi−1∑

k=αγi ,k 6=i

σkx̂k

= σi(Ŝi(x̂))i +
βγi−1∑

k=αγi ,k 6=i

σkx̂k =Mσ(Ŝi(x̂))γi , (12)

we obtain

(S∗i (x,−Mκ(x)))ρ(γi) = xρ(γi) + σia = x̂ρ(γi) + (Mσ(x̂))γi + σia

= x̂ρ(γi) + (Mσ(Ŝi(x̂)))γi = ((I +Mσ)Ŝi(x̂))ρ(γi)

= ((I +Mσ)Ŝi((I +Mκ)x))ρ(γi).

Furthermore, we obtain

(T ∗i (x,−Mκ(x)))j = (T ∗i (x, z))j = zj = (Mσ(x̂))j

= (Mσ((I +Mκ)x))j (13)

for j 6= γi and, by using (12),

(T ∗i (x,−Mκ(x)))γi = (T ∗i (x, z))γi = zγi + σia =

(Mσ(x̂))γi + σia = (Mσ(Ŝi(x̂))γi = (Mσ(Ŝi((I +Mκ)x))γi .

If γi ≥ 0 and i = ρ(γi), then, for k 6= i, we also obtain (10)
and, therefore, (11) holds. Furthermore, there is x̂i = xi + (Mκx)i =
xi+(Mκ(x))γi = xi−zγi , L̂i = ((I+Mσ)>L)i = Li+σiLi = (1+σi)Li

and

Âi,·x̂ = ((I +Mσ)>A(I +Mσ))i,·(I +Mκ)x

= (A+ (Mσ)>A)i,·x = Ai,·x+ σiAρ(γi),·x = (1 + σi)Ai,·x.

For j 6= γi, we have (13). Furthermore, there holds

(Mσ(x̂))γi + σi((Ŝi(x̂)i − x̂i)

= σiŜi(x̂)i +
βγi−1∑

k=αγi ,k 6=i

σix̂i = (Mσ(Ŝi(x̂)))γi .
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With b := xi − zγi = x̂i and c := P̂i(b+ εi(Li −Ai,·x)) = (Ŝi(x̂))i, we
get

(T ∗i (x,−Mκ(x)))γi = (T ∗i (x, z))γi

= zγi + σi(c− b) = (Mσ(x̂))γi + σi((Ŝi(x̂)i − x̂i)

= (Mσ(Ŝi(x̂)))γi = (Mσ(Ŝi((I +Mκ)x)))γi

and

(S∗i (x),−Mκ(x))i = c+ (T ∗i (x,−Mκ(x)))γi

= (Ŝi(x̂))i + (Mσ(Ŝi(x̂)))γi = ((I +Mσ)Ŝi(x̂))i

= ((I +Mσ)Ŝi((I +Mκ)x))i.

2

Lemma 5. Let x ∈ Rn, then

(S∗, T ∗)(x,−Mκ(x))

= ((I +Mσ)Ŝ((I +Mκ)x),Mσ(Ŝ((I +Mκ)x))).

Proof. Let (S∗,k, T ∗,k) := (S∗k , T
∗
k ) ◦ . . . ◦ (S∗0 , T

∗
0 ) and Ŝk := Ŝk ◦

. . . ◦ Ŝ0 for k ∈ Zn. Lemma 4 yields (S∗,0, T ∗,0)(x,−Mκ(x)) = ((I +
Mσ)Ŝ0((I + Mκ)x),Mσ(Ŝ0((I + Mκ)x)). By induction, it follows
from Lemma 2 and Lemma 4 for k > 0, that

(S∗,k, T ∗,k)(x,−Mκ(x))

= ((S∗k , T
∗
k ) ◦ (S∗,k−1, T ∗,k−1))(x,−Mκ(x))

= (S∗k , T
∗
k )((I +Mσ)Ŝk−1((I +Mκ)x),Mσ(Ŝk−1((I +Mκ)x))

= (S∗k , T
∗
k )((I +Mσ)Ŝk−1((I +Mκ)x),

−Mκ((I +Mσ)Ŝk−1((I +Mκ)x)))

= ((I +Mσ)Ŝk((I +Mκ)(I +Mσ)Ŝk−1((I +Mκ)x)),

Mσ(Ŝk((I +Mκ)(I +Mσ)Ŝk−1((I +Mκ)x)))

= ((I +Mσ)Ŝk(Ŝk−1((I +Mκ)x)),Mσ(Ŝk(Ŝk−1((I +Mκ)x)))

= ((I +Mσ)Ŝk((I +Mκ)x)),Mσ(Ŝk((I +Mκ)x))).

Since (S∗, T ∗) = (S∗,n−1, T ∗,n−1) and Ŝ = Ŝn−1, the proof is com-
plete. 2
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Lemma 6. Let {x`, z`}`∈N be given as in (9).
Then, z`+1 = −Mκ(x`+1).
Proof. By induction, it follows from Lemma 2 and Lemma 5, that

z`+1 = T ∗(x`, z`) = T ∗(x`,−Mκ(x`))

=Mσ(Ŝ((I +Mκ)x`)) =Mσ((I +Mκ)(I +Mσ)Ŝ((I +Mκ)x`))

=Mσ((I +Mκ)S∗(x`,−Mκ(x`)) =Mσ((I +Mκ)S∗(x`, z`))

=Mσ((I +Mκ)x`+1) = −Mκ(x`+1).

2

Theorem 3. Let {x`, z`}`∈N be given as in (9). For any sequence
{x̂`}`∈N ⊂ Rn, we have

x̂` = (I +Mκ)x` ⇔ x̂`+1 = Ŝ(x̂`), x̂0 = (I +Mκ)x0.

Proof. Let x̂` = (I+Mκ)x` be fulfilled, then we obtain from Lemma
5 and Lemma 6, that

x̂`+1 = (I +Mκ)x`+1 = (I +Mκ)S∗(x`, z`)

= (I +Mκ)S∗(x`,−Mκ(x`)) = (I +Mκ)(I +Mσ)Ŝ((I +Mκ)x`)

= Ŝ(x̂`).

Let x̂`+1 = Ŝ(x̂`) be fulfilled, then it holds by induction

x̂`+1 = Ŝ(x̂`) = (I +Mκ)(I +Mσ)Ŝ((I +Mκ)x`)

= (I +Mκ)S∗(x`,−Mκ(x`)) = (I +Mκ)S∗(x`, z`)

= (I +Mκ)x`+1.

2

Corollary 1. Let {x`, z`}`∈N be given as in (9). For the solution x ∈
K of (1), there holds

lim
`→∞

x` = x.

Proof. Let x̂` := (I + Mκ)x`. From Theorem 3 we obtain x̂`+1 =
Ŝ(x̂`). With Ê(x̂) = minŷ∈K̂ Ê(ŷ), Theorem 1 yields lim`→∞ x̂` =

x̂ ∈ K̂. From Theorem 2, it follows, that

x = (I+Mσ)x̂ = (I+Mσ) lim
`→∞

x̂` = lim
`→∞

(I+Mσ)x̂` = lim
`→∞

x`. (14)

2



16 A. Schröder, H. Blum

In the same way as in Section 2, by passing i from 0 to n− 1 and
then from n−2 to 0 calling SPSOR[i, x, z], we obtain a further routine
SPSSOR[x, z] (Sparse PSSOR) and an accelerated variant which we
call ASPSSOR (Accelerated SPSSOR):

ASPSSOR[x, y, z] :
r← x− y;
y← x;
SPSSOR[x, z];
s← x− y;
MIN[A, x, r, s];
j = 0, . . . , m :

zj = −
∑βj−1

r=αj
κrxr;

if xρ(j) − zj > gj :

zj ← zj + σρ(j)(gj − xρ(j) + zj);

xρ(j) ← gj + zj.

It remains to show, that the ASPSSOR-procedure corresponds to
the APSSOR-procedure with Â, L̂ and K̂ instead of A, L and K. For
these purposes, we introduce the mappings Q∗ : Rn×Rn×Rn → Rn,
R∗ : Rn × Rn × Rn → Rm and Q̂ : Rn × Rn → Rn × Rn where
Q∗(x, y, z) is equal to x and R∗(x, y, z) is equal to z after calling
ASPSSOR[x,y,z], and Q̂(x, y) is equal to x after calling APSSOR[x,y]
(with Â, L̂ and K̂ instead of A, L and K). Furthermore, we set

(S∗,T∗) := (S∗0 , T
∗
0 ) . . . ◦ (S∗n−2, T

∗
n−2) ◦ (S∗n−1, T

∗
n−1) ◦ . . . ◦ (S∗0 , T

∗
0 )

and
Ŝ := Ŝ0 ◦ . . . ◦ Ŝn−2 ◦ Ŝn−1 ◦ . . . ◦ ◦Ŝ0.

Obviously, the mappings (S∗,T∗) and Ŝ correspond to the routines
SPSSOR[x,z] and PSSOR[x,z].

Lemma 7. Let x ∈ Rn, then it holds

(S∗,T∗)(x,−Mκ(x))

= ((I +Mσ)Ŝ((I +Mκ)x),Mσ(Ŝ((I +Mκ)x))).

Proof. By applying the same arguments as in Lemma 5, we obtain
the assertion by induction. 2
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Lemma 8. For x, r, s ∈ Rn, there holds

M(A, x, r, s) = (I +Mσ)M(Â, (I +Mκ)x, (I +Mκ)r, (I +Mκ)s).

Proof. Let x̂ := (I + Mκ)x, r̂ := (I + Mκ)r and ŝ := (I + Mκ)s.
Since there holds (see (6))

Ê(M(Â, x̂, r̂, ŝ)) = min
ŷ∈x̂+span{r̂,ŝ}

Ê(ŷ),

we obtain

E(M(A, x, r, s)) = min
y∈x+span{r,s}

E(y) = min
y∈(I+Mσ)x̂

+span{(I+Mσ)r̂,(I+Mσ)ŝ}

E(y)

= min
ŷ∈(I+Mκ)((I+Mσ)x̂

+span{(I+Mσ)r̂,(I+Mσ)ŝ})

E((I +Mσ)ŷ)

= min
ŷ∈x̂+span{r̂,ŝ}

E((I +Mσ)ŷ)

= min
ŷ∈x̂+span{r̂,ŝ}

Ê(ŷ) = Ê(M(Â, x̂, r̂, ŝ))

= E((I +Mσ)M(Â, x̂, r̂, ŝ)).

The assertion follows from the uniqueness. 2

Lemma 9. For x, y ∈ Rn, there holds

Q∗(x, y,−Mκ(x)) = (I +Mσ)Q̂((I +Mκ)x, (I +Mκ)y),

R∗(x, y,−Mκ(x)) =Mσ(Q̂((I +Mκ)x, (I +Mκ)y)).

Proof. Let x̂ := (I + Mκ)x, ŷ := (I + Mκ)y and z := −Mκ(x) =
Mσ(x̂). Then, Lemma 1, Theorem 2 and Lemma 7 yield r := x−y =
(I +Mσ)(x̂− ŷ) =: (I +Mσ)r̂ and

s := S∗(x,−Mκ(x))− x = (I +Mσ)(Ŝ(x̂)− x̂) =: (I +Mσ)ŝ.

Let j ∈ Zm with xρ(j) − zj ≤ gj . Then we obtain from Lemma 2,
Lemma 7 and Lemma 8

(R∗(x, y,−Mκ(x)))j = −
βj−1∑
r=αj

κr(M(A,S∗(x,−Mκ(x)), r, s))r

= (−Mκ(M(A,S∗(x,−Mκ(x)), r, s)))j

= (Mσ((I +Mκ)M(A,S∗(x,−Mκ(x)), r, s)))j

= (Mσ((I +Mκ)(I +Mσ)M(Â, Ŝ(x̂), r̂, ŝ)))j

= (Mσ(M(Â, Ŝ(x̂), r̂, ŝ)))j
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Furthermore, there is x̂ρ(j) = ((I +Mκ)x)ρ(j) = xρ(j) − zj ≤ gj and,
therefore, (Q̂(x̂, ŷ))k = (M(Â, Ŝ(x̂), r̂, ŝ))k for k = αj , . . . , βj − 1.
Hence,

(Mσ(Q̂((I +Mκ)x, (I +Mκ)y)))j = (Mσ(Q̂(x̂, ŷ)))j

= (Mσ(M(Â, Ŝ(x̂), r̂, ŝ)))j (15)

and

(R∗(x, y,−Mκ(x)))j = (Mσ(Q̂((I +Mκ)x, (I +Mκ)y)))j .

Moreover, we obtain from (15) and Lemma 8

(Q∗(x, y,−Mκ(x)))ρ(j) = (M(A,S∗(x,−Mκ(x)), r, s))ρ(j)

= ((I +Mσ)M(Â, Ŝ(x̂), r̂, ŝ))ρ(j)

= (M(Â, Ŝ(x̂), r̂, ŝ))ρ(j) + (Mσ(M(Â, Ŝ(x̂), r̂, ŝ)))j

= (Q̂(x̂, ŷ))ρ(j) + (Mσ(Q̂((x̂, ŷ)))j

= ((I +Mσ)Q̂((I +Mκ)x, (I +Mκ)y))ρ(j).

Let j ∈ Zm and xρ(j) − zj > gj , then (Q̂(x̂, ŷ))ρ(j) = gj and we get

(R∗(x, y,−Mκ(x)))j

= (−Mκ(M(A,S∗(x,−Mκ(x)), r, s)))j

+ σρ(j)(gj − (M(A,S∗(x,−Mκ(x)), r, s))ρ(j)

+ (−Mκ(M(A,S∗(x,−Mκ(x)), r, s)))j)
= (Mσ((I +Mκ)M(A,S∗(x,−Mκ(x)), r, s)))j

+ σρ(j)(gj − ((I +Mκ)M(A,S∗(x,−Mκ(x)), r, s))ρ(j))

= (Mσ(M(Â, Ŝ(x̂), r̂, ŝ)))j + σρ(j)(gj − (M(Â, Ŝ(x̂), r̂, ŝ))ρ(j))

= σρ(j)gj +
βj−1∑

k=αj ,k 6=ρ(j)

σk(M(Â, Ŝ(x̂), r̂, ŝ))k

= σρ(j)(Q̂(x̂, ŷ))ρ(j) +
βj−1∑

k=αj ,k 6=ρ(j)

σk(Q̂(x̂, ŷ))k

= (Mσ(Q̂(x̂, ŷ)))j = (Mσ(Q̂((I +Mκ)x, (I +Mκ)y)))j .
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Furthermore, we have

(Q∗(x, y,−Mκ(x)))ρ(j) = gj + (R∗(x, y,−Mκ(x)))j

= Q̂((I +Mκ)x, (I +Mκ)y)ρ(j)

+ (Mσ(Q̂((I +Mκ)x, (I +Mκ)y)))j

= ((I +Mσ)Q̂((I +Mκ)x, (I +Mκ)y))ρ(j).

Finnally, let i ∈ Zn with i 6∈ {ρ(j) | j ∈ Zm}. Then, it is (I+Mσ)ik =
δik and we obtain

(Q∗(x, y,−Mκ(x)))i = (M(A,S∗(x,−Mκ(x)), r, s))i

= ((I +Mσ)M(Â, Ŝ(x̂), r̂, ŝ))i = (M(Â, Ŝ(x̂), r̂, ŝ))i

= (Q̂(x̂, ŷ))i = ((I +Mσ)Q̂(x̂, ŷ))i

= ((I +Mσ)Q̂((I +Mκ)x, (I +Mκ)y))i.

2

Now, we can state a similar result as given in Theorem 3. We
introduce the sequence {(x`, z`)}`∈N which is defined by

(x`+1, z`+1) := (Q∗, R∗)(x`, x`−1, z`) (16)

with x0, x1 ∈ Rn, x0 6= x1 and z1 := −Mκ(x1).

Lemma 10. Let {x`, z`}`∈N be given as in (16). Then, it holds z`+1 =
−Mκ(x`+1).
Proof. By induction, it follows from Lemma 9

z`+1 = R∗(x`, x`−1, z`) = R∗(x`, x`−1,−Mκ(x`))

=Mσ(Q̂((I +Mκ)x`, (I +Mκ)x`−1))

=Mσ((I +Mκ)(I +Mσ)Q̂((I +Mκ)x`, (I +Mκ)x`−1))

=Mσ((I +Mκ)Q∗(x`, x`−1,−Mκ(x`)))

=Mσ((I +Mκ)Q∗(x`, x`−1, z`))

=Mσ((I +Mκ)x`+1) = −Mκ(x`+1).

2

Theorem 4. Let {x`, z`}`∈N be given as in (16). For any sequence
{x̂`}`∈N ⊂ Rn, we have

x̂` = (I +Mκ)x` ⇔
x̂`+1 = Q̂(x̂`, x̂`−1), x̂0 = (I +Mκ)x0, x̂1 = (I +Mκ)x1.
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Proof. Let x̂` = (I +Mκ)x` be fulfilled. From Lemma 9 and Lemma
10 we obtain

x̂`+1 = (I +Mκ)x`+1 = (I +Mκ)Q∗(x`, x`−1, z`)

= (I +Mκ)Q∗(x`, x`−1,−Mκ(x`+1))

= (I +Mκ)(I +Mσ)Q̂((I +Mκ)x`, (I +Mκ)x`−1)

= Q̂(x̂`, x̂`−1).

Let x̂`+1 = Q̂(x̂`, x̂`−1)) be fulfilled. Then, we obtain by induction

x̂`+1 = Q̂(x̂`, x̂`−1)) = (I +Mκ)(I +Mσ)Q̂(x̂`, x̂`−1))

= (I +Mκ)(I +Mσ)Q̂((I +Mκ)x`, (I +Mκ)x`−1))

= (I +Mκ)Q∗(x`, x`−1,−Mκ(x`)) = (I +Mκ)Q∗(x`, x`−1, z`)

= (I +Mκ)x`+1.

2

Corollary 2. Let {x`, z`}`∈N be given as in (16). Furthermore, as-
sume that the sequence {x̂`}`∈N defined by x̂`+1 := Q̂(x̂`, x̂`−1) with
x̂0 = (I + Mκ)x0 and x̂1 = (I + Mκ)x1 converges to x̂ ∈ K̂ with
Ê(x̂) = minŷ∈K̂ Ê(ŷ). For the solution x ∈ K of (1), there holds

lim
`→∞

x` = x.

Proof. From Theorem 4 we obtain x̂` = (I +Mκ)x`. The assertion
is obtained by the same arguments as in (14). 2

5. Numerical results

In this section, we discuss some numerical results in the context of
contact problems which are given by obstacle problems and by linear
elastic Signorini problems. We refer to [5], [6], [7] and [9] for more
details concerning such contact problems.

Let Ω ⊂ Rk be an open, connected and bounded set with the
boundary Γ := Γ0 ∪ Γ1 := ∂Ω, Γ0 ∩ Γ1 = ∅, and a closed boundary
part Γ0. We consider the energy minimization problem

min
v∈K̃

Ẽ(v)

with a closed and convex set K̃ ⊂ H1(Ω,Γ0)t := {v ∈ H1(Ω)t |
γ(v) = 0 on Γ0}. Here, γ denotes the trace operator related to Γ . For
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a) b) c)

Fig. 1. Contact problems: a) membrane in contact (obstacle problem), b) unde-
formed body, c) body in contact (Signorini problem)

obstacle problems, we have t = 1 and the energy functional Ẽ(v) :=
1
2(∇v,∇v)0 − (f, v)0 − (q, γ(v))0,Γ1 with f ∈ L2(Ω) and q ∈ L2(Γ1).
The set K̃ (admissable displacements in z-direction) is given by K̃ :=
{v ∈ H1(Ω,Γ0) | v ≥ ψ0} with ψ0 : Ω → R describing an obstacle
in the interior of Ω. Figure 1a shows a membrane restricted by an
obstacle defined on Ω. Here, we choose Ω := (−1, 1)2, Γ1 := (−1, 1)×
{−1}∪{−1}× (−1, 1), f := −1 and q(x0, x1) := −1

4x
3
1. Furthermore,

we set ψ0(x0, x1) := −1
2(x2

0 + x2
1).

For (linear elastic) Signorini problems, we have t ∈ {2, 3}, Ẽ(v) :=
1
2(σ(v), ε(v))0 − (f, v)0 − (q, γ(v))0,Γ1 and K̃ := {v ∈ H1(Ω,Γ0)t |
δn(v) ≤ ψ1} with a volume load f ∈ L2(Ω)t, a surface load q ∈
L2(Γ1)t and a gap function ψ1 : Γ1 → R. The operators σ and ε
denote the usual stress and strain tensors in linear elasticity. The
expression δn(v) represents the outer normal contribution of a dis-
placement field v.
Figures 1a and 1b show a contact problem from mechanical engineer-
ing modelled by a linear elastic Signorini problem (cf. [11]).

Choosing finite element methods with bilinear or trilinear trial
functions on a grid with (inner) nodes V0, V1, . . . , Vr−1 ∈ Rk, k ∈
{2, 3}, we obtain A and L as the stiffness matrix and the load vector,
respectively.
One obtains (unilateral) box constraints in the case of obstacle prob-
lems. The PSOR-procedures as introduced in Section 2 can be used
by setting vi := ψ0(Vi) and wi := ∞. In the case of Signorini prob-
lems, we have to deal with the conditions (2)-(4) and we apply the
SPSOR-procedures as presented in Section 4. The matrix B and the
vector g ∈ Rm are defined as follows: Let W0,W1, . . . ,Ws−1 ∈ R3

be the grid nodes on Γ1 and let N0, N1, . . . Ns−1 ∈ R3 be the outer
normal vectors in W0,W1, . . . ,Ws−1. Then, we have n = 3r, m = s,
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Table 1. Iterations of the PSOR-procedure.

n E(x`) |ref − E(x`)| tol iter

4 -0.18316 0.05595 1.0E-2 6
16 -0.26241 0.02329 1.0E-1 5
64 -0.24365 0.00452 1.0E-2 8
256 -0.24044 0.00131 1.0E-2 24
1024 -0.23946 3.35E-4 1.0E-3 128
4096 -0.23920 8.22E-5 1.0E-4 649
16384 -0.23914 1.93E-5 1.0E-5 3163
65536 -0.23912 3.81E-6 1.0E-6 14964

Table 2. Iterations of the APSSOR-procedure.

n E(x`) |ref − E(x`)| tol iter

4 -0.18316 0.05595 1.0E-1 2
16 -0.26253 0.02341 1.0E-1 3
64 -0.24366 0.00453 1.0E-2 6
256 -0.24049 0.00137 1.0E-2 9
1024 -0.23945 3.33E-4 1.0E-2 17
4096 -0.23920 8.23E-5 1.0E-3 53
16384 -0.23914 1.92E-5 1.0E-3 103
65536 -0.23912 3.81E-6 1.0E-4 279

Table 3. Iterations of the SQOPT-procedure.

n E(x`) |ref − E(x`)| MOT fkt

4 -0.18316 0.05595 1.0E-1 9
16 -0.26266 0.02353 1.0E-1 39
64 -0.24366 0.00453 1.0E-2 138
256 -0.24051 0.00138 1.0E-2 559
1024 -0.23946 3.39E-4 1.0E-2 2206
4096 -0.23920 8.24E-5 1.0E-3 8812

and

Bj,3i+κ :=

{
(Nj)κ, Wj = Vi

0, else,
κ = 0, 1, 2. (17)

Furthermore, we obtain gj := ψ1(Wj). The displacement in Vi is given
by (v3i, v3i+1, v3i+2).

In Tables 1 and 2, the number of iterations of the PSOR- and
APSSOR-procudure is shown for an obstacle problem which is config-
urated as introduced above (cf. Figure 1). For each global refinement-
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Fig. 2. Comparison of iteration numbers: a) obstacle problem, b) Signorini prob-
lem.

step, there are iter iterations needed, so that the value of |x`+1 − x`|
reaches the given tolerance tol . The value of tol is chosen as the
lowest power of 10−1, so that the difference between a reference
value for E(x) and E(x`) is stabilized (the first two non-zero dig-
its do not change). In this example, the reference value is set to
ref = −0.23912486 . . . which is calculated by 7 refinement steps (or
with n = 262144 unknowns) and a tolerance of tol = 10−7. This pro-
ceeding guarantees, that the error caused by the procedures is less
than the discretization error of the finite element method, but in the
same range.
We see, that the APSSOR-procedure needs substantially less itera-
tions than the PSOR-procedure. Hereby, we take into account, that
the APSSOR-procedure needs twice the number of iterations of the
PSOR-procedure and at the least 3 additional matrix-vector multi-
plications (Ax, As, Ar in the routine MIN[A,x,r,s]).
For comparison, we consider the standard quadratic optimization pro-
gram SQOPT [3]. SQOPT is developed for convex, quadratic min-
imization problems with linear side conditions. Table 3 shows the
number of function evaluations fkt of SQOPT for the obstacle prob-
lem. The tolerance parameter MOT corresponds to the SQOPT-
parameter MINOR OPTIMALITY TOLERANCE (p.29 in [3]). The amount
of one function evaluation in the SQOPT-algorithm roughly corre-
sponds to one PSOR-step.

In Tables 4 and 5, the number of iterations iter and the number
of function evaluations are tabulated for the linear elastic Signorini
problem. The reference value is ref = .10155913972 . . . determined
by 6 refinement-steps (n = 1609920 unknowns) and a tolerance tol =
10−7.
As we can see, the ASPSSOR-procedure needs the smallest iteration
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Table 4. Iterations of the SPSOR-procedure.

n E(x`) |ref − E(x`)| tol iter

18 0.08950 0.01205 1.0E-1 4
90 0.07403 0.02752 1.0E-2 15
540 0.09211 0.00944 1.0E-3 40
3672 0.09965 0.00190 1.0E-3 105
26928 0.10132 2.30E-4 1.0E-4 549
205920 0.10157 1.22E-5 1.0E-5 3194

Table 5. Iterations of the ASPSSOR-procedure.

n E(x`) |ref − E(x`)| tol iter

18 0.08896 0.01259 1.0E-1 4
90 0.07396 0.02758 1.0E-2 10
540 0.09212 0.00943 1.0E-2 13
3672 0.09965 0.00190 1.0E-3 36
26928 0.10132 2.30E-4 1.0E-3 70
205920 0.10157 1.22E-5 1.0E-3 140

Table 6. Iterations of the SQOPT-procedure.

n E(x`) |ref − E(x`)| MOT fkt

18 0.08881 0.01274 1.0E-2 22
90 0.07396 0.02759 1.0E-3 142
540 0.09211 0.00944 1.0E-4 1038

number of all procedures. In Tables 3 and 6, the performance of
SQOPT is shown only for a small number of unknowns. SQOPT stops
without a result if the number of unknown is too large. In Figure 2a
and 2b, the iteration numbers are depicted for the obstacle problem
and the Signorini problem. In both cases, the slopes are different,
where the APSSOR- and ASPSSOR-procedure provide the smallest
slopes. Hence, the APSSOR- and ASPSSOR-procedure seem to be
the procedures of the first choice.
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