Constraints Coefficients inhp-FEM

Andreas Schroder

Abstract Continuity requirements on irregular meshes enforce agropnstraint

of the degrees of freedom that correspond to hanging nodgsseor faces. This
is achieved by using so-called constraints coefficientewhre obtained from the
appropriate coupling of shape functions.

In this note, a general framework for determining the caists coefficients of ten-
sor product shape functions is presented and its applicatishape functions using
integrated Legendre or Gauss-Lobatto polynomials. Thetcaimts coefficients in

the one-dimensional case are determined via recurrenatored. The constraints
coefficients in the multi-dimensional case are obtainedradycts of these coeffi-
cients. The coefficients are available for arbitrary patef subdivisions.

1 Introduction

Local refinement processes arising from grid adaption gieajly realized either
by remeshing or by local refinements of grid elements. In el case so-called
hanging nodes, edges or faces are unavoidable which resuait refining a grid
element without the refinement of neighboring elements.lyipg conform finite
element schemes, one has to ensure the finite element sdlotie continuous. If
no further local refinements (with possibly complex refinatngatterns) are per-
formed to eleminate grid irregularities, one has to comstthe degrees of freedom
associated to hanging nodes, edges or faces. This can beelgneéyy using La-
grange multipliers or static condensation or by incorgogathe constraints in the
iterative scheme that is used to determine the approximatiution. In all cases, a
representation of shape functions in terms of transforrhege functions is needed.
Such a representation is given by the so-called constredgetficients.
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In a very general manner, constraints coefficients are detsdollows: LetPy be
a space of polynomials of degrges N onRR¥, k € N, andY : Rk — RK be an affine
linear and bijective mapping. Furthermore, &et= {& }o<i<n C Py be a linear in-
dependent set of polynomials. The numbejsc R with &oY = Z?;é aijéj are
calledconstraints coefficientst & for the mappingy.

In [3] constraints coefficients of the shape functions

X—1, i=2486,....q

X) .= i
&o(X) X—x, 1=357,....q

(1-x%), &((x):= %(1+x), &i(x) = { Q)

NI =

are determined. Since the functiongig(v) := v(—1), ¢1(v) := v(1), ¢;j(v) ==
1/j!div/dxi(0), j = 2,...,q fulfill the duality relationg;j(&) = &; (whereg; is
the Kronecker delta), one simply obtaiag = ¢j(&ioY).

In [2] constraints coefficients of the Lagrange shape fuomsti

a o oX1-x T ox—x
So(x):=1-%, &1(X):=X, E"_Xi(l—m)fzz;#ixa—xe’ i=2,...,q

are specified witlx, € (0,1), £ =2,...n—1. The functionalgy(v) := v(0), ¢1(v) :=
v(1), (V) :==V(Xj), ] =2,...,n—1, fulfill the duality relationg; (&) = &; only for
i=2,...,n—1.We getojo = ({0 Y)(0) andai; = (éio Y)(1) fori=0,...,n—1and
aoj = a1 =0for j=2,...,n—1. Sinced;(&i oY) = aio®;(&o) + air;j (1) + aij,
the remaining coefficients are determinedy= (& o Y)(Xj) — tdio(1—Xj) — 0i1X;.
A widely used family of shape functions are shape functisisgiintegrated Leg-
endre or Gauss-Lobatto polynomials ([7], [8], [9]). Theséypomials belong to the
family of so-called Gegenbauer ponnomi@Gf’}ieNo which are defined by

(i+1)Gf 1) = 2(i +p)xGP(x) — (i +2p — 1)G 1 (X) )

with p € R, G§(x) := 1 andGf (x) := 2px. Theoretical results about equivalent
definitions of Gegenbauer polynomials and their speciapgriies can be found,
e.g., in [10]. Withp := —1/2, we obtain integrated Legendi@ (= 1) and Gauss-
Lobatto @G := /(2i — 1)/2) shape functions

S0 = 3(1-X). 100 = (LX), 60 =BG XX, 1=2...0 (3)
Because of the orthogonality relation of the Gegenbausmuawohials (cf. [10]), the
functionalsgo(v) == v(—1), g1(v) == V(1), §j(v) := pj J1; (1—x2) L& (x)v(x)dx
with p; == j(j —1)(2j — 1)/(2[3j2), j =2,...,n—1 fullfill the duality relation
$j(&)=4gjfori=2,....,n—1andj=0,...,n—1. Similar to the Lagrange shape
functions, we obtaimijo = (§io Y)(—1) andaj; = (§oY)(1) fori =0,...,n—1
and apj = a1 = 0 for j = 2,...,n— 1. Since ¢j(&) = (-1)/(2j — 1)/(2Bj2)
and¢;(&1) = (2] — 1)/(2Bj2), the remaining coefficients are determineddsy =

$;(&ioY)—(2j—1)/(2B7)(atio(~1)’ + aia).
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In this note, we present a general framework for constraiogsficients of tensor
product polynomials. Furthermore, we present an explicitiula of the constraints
coefficients of integrated Legendre and Gauss-Lobattoeshaprtions without the
integral representation given lyy. The formula is derived by the use of the recur-
rence relation (2). At the end of this note, the applicatibaamstraints coefficients
to irregular grids is briefly discussed. Other areas of &pfibbns arenp-multigrid
schemes (cf. [4], [5]) or grid transfer operations in timgeledent problems.

2 Tensor Product Shape Functions

The space of polynomials in one variable of degréeedefined a§?:= {v.R - R |
V(X) = Y0<i<qCiX, G € R}, the corresponding tensor product space is denoted by

k-1
$ = ®ik;(}5q = {v: RK -5 R [v(Xo,... , Xk_1) = _|'Lvi(xi), Vo,...,Vk_1 € Sq}.

Letf = {gi}0§i<m be a subset 0! andL be ann timesk matrix with entries in
{0,...,m—1}. Then, we definé1 (€,L) := {ﬂ'r"é&ir (xr)}o cs.

<i<n
For Y(x) := diagla)x+bwith a,b € RX, it is easy to determine the constraints co-

efficients ofﬂ(E L): Let &ij(ar,br) € R be the constraints coefficients &ffor
Yr (%) := a:X + by. Furthermore, letZ := {(Lio,...,Lix-1) | 0<i < n}.

Theorem 1.Assume thaﬂ(é, L) is linear independent and there holds

l€{0,....m-1}"¥=v0<i<n:30<r<k: a, =0. (4)
Then, the constraints coefﬁments@(.{ L) for Yareaj; = r]r Ooq_,r L (ar,by).
Proof: Letx € R. Because of (4), we obtain

k—1m-1

A k-1, A
M, Li(Yx) = [LELir (arx +br) = [L Zj a1 (@, br)é (%)

53 (M) (e)

-5 (o) (o) 5 oo

Sinceﬂ(f, L) is assumed to be linear independent, the proof is completed.[J

Finite element shape functions are basis polynomials tieadefined on a reference
element (unit square, cube or simplex). They constitutegtbbal basis functions
on the grid elements. In conform approaches shape fundaienssually partitioned
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into nodal modes, edge modes, face modes and inner modeal Modes have
the value 1 in exactly one vertex and vanish on the remainéntices. Edge modes
are different from zero on exactly one edge and vanish on éh®ining edges
and on all non-adjacent faces and all nodes. Face modesffarenli from zero on
exactly one face and vanish on the remaining faces and odgdissand nodes. Inner
modes vanish on all nodes, edges and faces, they are ordyettifffrom zero in the
interior. Using the notatior] (&,L), the separation is established by splitting the
matrix L into submatrices " := (L°L! --- LX) . The submatrix ° generates the
nodal modes:l,1 generates the edges modes and so on.

Let E Eq be shape functions i which are partitioned into the nodal mod&;s
& and inner mode&;, 2 < i < g. With a(i,j) :==i(i+1)/2+ ], a proper definition
of L in the two-dimensional case is, e.g.,

0110\

0 1. 41 . 1 1 .
(L) = <O 01 1) v Lt =Ly 4070 Lo =Llyg i =1
L'lo = Léf]:l»i 1 = L%(q71)+i’0 = L%(qfl>+i,1 = | + 27 | == O, N ,q_ 2, (5)
Laino=1+2 Lagpa=i—i+2 i=0,...,d=4+1,j=0, i

This definition leads to the set of shape functigns I'l(.§7 L):

Eolx0,x1) 1= &o(x0)é0(x1),  &1(x0.x1) = &1(x0)Eo(xe).

£2%0.%) 1= E100)&a0xa). &0, 1) i= olX0) &),

f4+i<xO,xl> Eir2(X0)é0(x),  Earq14i(X0,Xe) i= E1(%0)&is2(Xa),
Eara(q-1)+i(X0,X1) = &y 2(x0) E1(x0), &4 aiq1)1i 0. %0) = &o(x0) &is2(xa),

Eagra(if) (X0, X1) == &j12(X0) &4 2(x1).

Fort =2 the set/'I(E L) is a basis 0f5). Assuming tha‘f is hierarchical (which

means thaEq = Eq for0<i < §andg<q), the set/'I(E L) has some important
properties: Forr = 0, we obtain a reduced set of shape functions (also known as
Serendipity shape functions) with the same order of appmation (cf., e.g., p.175

in [1], [7]). Furthermore, the special definition afimplies that the edge modes
(edge by edge) and the inner modes are hierarchical as vedl.pfoperty can be
exploited, e.g., for the efficient management of differemlypomial degree distri-
butions of neigboring grid elements. One simply omits thgeashodes with polyno-
mial degregy > p1, whereps is the polynomial degree in the neighboring element.
The shapg: functionél (&,L) with integrated Legendre or Gauss-Lobatto shape
functionsé corresponds to the shape functions as proposed in [7] anfd{%ip-
finite element methods. The use of the recurrence relatipadgits a stable and
fast evaluation of the shape functions and their derivatierivatives of arbitrary
order can be easily derived by the relat®fG/’ = 2"(p), G with i,v € Ny and

(P)v = M{=5(P+1)-
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3 Constraints Coefficients of Integrated Legendre and
Gauss-Lobatto Shape Functions

As a result of Theorem 1, it is sufficient to consider the omeethsional case to
determine the constraints coefficients in the multi-dini@mal case.

Theorem 2.Let & be a set of hierarchical shape functions and L be defined as in
(5). Then, the assumptid#) is fulfilled for t € {0, 2}.

Proof. The assumption (4) is obviously fulfilled far= 2. Letq > 2, 7 = 0 and

I €{0,....,q}?\., thenl = (j +2,i — j +2) with i € {max{q— 3,0},q— 2} and

0 < j <i. For the nodal modex(= 0) with index 0< s < 4 or for the edge mode

(k = 1) with index 0< s < 4(q— 1), we obtain def|« ) = 1 for at least one
{0,1}. Since mi{ded &, 2),ded & ji2)} > 2, we haved x| = 0. Forq > 4, the
polynomial degree of the inner mode with index@ < (q—3)(q—2)/2is bounded
byg—2<max{j+2,i—j+2} =max{degéj,2),ded&i_j;2)}. Therefore, there
existsr € {0,1} such thaty; | = 0. O

Theorem 3.Let Y(x) = ax+b with ab € R and i > 2. For integrated Legendre
shape function§3), there holds:

1+a-b 1-a+b 1— (a—h)?
Qoo = 2 , Q0= 2 ) Gzo:fa
2i — |—2
i b—
Qit1,0 = ( a)|+1 ~ %o
1-a—b 1+a+b 1—(a+h)?
do1=——%— du= 5> o da=———s—
2i—1 |—2
Gi+1,1:(a+b)i+—1“i 1 ai-11,
2i—1 i—2
0z = &, Qdit12= i1 (gai,3+bai,2+a(ai,0— ai,l)) - i_f_—laifl,z,
2i—1 j j—1 i—2
Gir1 =557 (87 3%i- 1t+a 21+1GIJ+1+baIJ %L
j:37' 7|_17

2i—1 i .
ai+1,i:i+—1( 2I—3a” 1+ba||> i>2,

Qit1i+1=aaqi, 0ij=0, j>i

Proof. By comparing the coefficients ifi(ax+b) = aioéo(X) + ai1é1(x),i =0,1,2,
we obtainagg, do1, Q10, 011, A20, Q21 andar,. From equation (2) we have:

X (%) = (2] = 1) (1 + D& + (1 —2)&-1(¥), | =2.3,....

Furthermore, we have
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Keo(x) = X~ 2 = —5(1-X) 4 5(1-3) = &) + &%),
xE1(x) = :—le—i- :—le2 = %(1+X) - %(1— x?) = &1(X) — &a(X).

This yields

(i+1)&ir1(ax+b)
= (2i — 1)(ax+b)éi(ax+b) — (i — 2)&_1(ax+b)

i-1
=b(2-1) % aijéj(x)+a2—-1) i16i (%) = (1=2) ) ai1j¢j(x)
[ JZOGHX a(2i XJZOGJJX [ Zoaljjx

. I . L i+l -2,
=b(2i—-1) J;GIJEJ (x)+a(2—1) JZZO’IJ (21—_151“(") + Zj——lfjl(x))

+a(2i — 1) (ai,0(—&o(X) + &2(x)) + ai 1(&1(X) — &2(x)))
i1

—(=2) % ai-1j&(¥)
[ JZOG 1,j&j(x

=a(i +1)ai&iwa(x) + (a(Zi - 1)%%44— b(2i — 1)O!ii) &i(%)
i—1 i i1 1
+a2i-1)Y aij s +a@i-1) a - 1710

i—1

b(2i — Z aij &j(x -2) %ai—l,jfj (x)+a(2i —1) (aio— ai1) E2(X)

J:

+a(2i— )Oﬁ,lfl( ) —a(2i — 1)ai 0éo(X)
=a(i+1)aiidiy1(x) + (a(Zi - 1)ﬁai.i—1 +b(2i - 1)O!ii) &i(%)

j—1 .
+ Zg( a(2i — G.I 1+a(2i— )ZJJ +1Gi’j+1+b(2I —1)aj;

—(i—2)ai1,j>fj(x)

+(a(2i- 1)%ai73+ b(2i — 1)aiz— (i —2)ai_12+a(2i — 1) (aio— Gi,l)) &2(x)
+(b(2i — V)i g — (i — 2)ai_11+a(2i — 1)ai 1) E1(X)
+(b(2i = D)ajo— (i—2)ai-10—a(2i —1)aio) &o(X)

Division byi + 1 completes the proof. O

Itis easy to see, that the constraints coefficients of Ghabsito shape functions
are/(2i—1)/(2j—1)aij, i, j > 2. Furthermore, Theorem 3 can be extended to the
case of Gegenbauer polynomials or general Jacobi polynemia
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4 Application to Hanging Nodes

Let .7 be a subdivision of2 ¢ R¥ consisting of quadrangle& & 2) or hexahe-
drons k= 3) and let¥r : [-1,1] — T € .7 be a bijective and sufficiently smooth
mapping. In conform finite element methods, the space of sshble functions is
defined a$P(.7) := {ve CO(Q) |VT € T : ViroWr € ST} with the degree distri-
butionp= {pr}1e~7, pr < q. By using so-called connectivity matrices ¢ R**",

a basis{ @ }o<r<¢ of SP(.7) is constructed via

nc—1

Q7 = nr,rsﬁbr,s
T

with q?)r’s = H(E,L)So W{l, 0 < s < ng, whereng is the number of shape func-
tions. In particular, the stiffness matrik and the load vectdp are assembled via
K:=Yt1co MKy andb:= S .5 1 br with local stiffness matricelér € RN
and local load vectorisr € R,

In the presence of hanging nodes, the definitiomrofs the crucial point. The en-
tries are+1 (or 0), if the associated shape functions are related tonahaoging
node, edge or face. Otherwise, the entries are given by th&treints coefficients
as introduced in the previous sections. Figure 1a showsiaatygituation in 3D
which is obtained by refining the neighbored grid elementhef left hexahedron
(denoted byt ), for example by dividing it into eight small hexahedronsielof
them (denoted byir) is examplarly depicted on the right hand sideTpf The en-
tries of the connectivity matrix of, related to the nodeg andv,, to the edgesy,
e, & and to the facd are defined as follows. The entries relatedgandey are
given by the constraints coefficierds of the one-dimensional case: Lgtbe a ba-
sis function of{ @ }o<r¢, that belongs t&, V1 or E. Furthermore, le{¢r s}se.o
be the polynomials of gy, s}o<s<n,, that belong td/, Vi andE, and let{ ¢r, s}sc 7
be the polynomials of @r; s} o<s<n,, that belong td/y, vo andey. SinceVy, Vi and
E are non-hanging, it holds

10 5oy = By = Z TH s Prr sle

sE.SR
with § € .. Provided thate is subdivided into two subedges with proportions
of divisionz and 1-z z < (0,1), andey is its first subedge, we define a map-
ping Y by Y(x) := zx+ z— 1 which mapg—1,(2—2z)/Z onto[-1,1]. If g is the
second subedge &, we setY(x) := (1 - z)x+z which maps{(z+1)/(z—-1),1]
onto[—1,1]. Due to the tensor structure 6f(&,L), there exist bijective mappings
AL :{0,....n—1} — A, AR {0,...,n1 — 1} — R, and¥y, : [—1,1] — e, such
thatgn ge, o Wy = EAL—l(é) oY1, aNd@r; ax(j)le, © Foo = &j» 0< | < ny. Therefore,

we obtain
ni—1

&y 150V =Y Tharanéi
a7k J;) RFAR(])
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and, finally, 7, ¢ aq(j) = iO’A[l(é)

Andreas Schroder

ok

By analogy, the entries related ¥, e, e; and f are the constraints coefficients
of the two-dimensional case. We consider the polynomial$@[’s}ogs<n3, that
belong toF and its nodes and edges, restricteé tand those of @r; s} o<s<n,, that
belong tovy, e1, & andf, restricted tof. For more details, see [6].

Vil

T v

ENMY Tr

bz

\| a)

b) - 0

Fig. 1 a Local refinement in 3Db-c: hp-adaptive grids with unsymmetric divisions.
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