
Computation of Iterative operator-splitting

methods

Jürgen Geiser

geiser@mathematik.hu-berlin.de

Abstract. In this paper we describe a computation of iterative operator-
splitting method, which are known as competitive splitting methods, see
[8] and [9]. We derived a closed form, based on commutators for the
iterative method. The schemes apply extrapolation schemes and Pade
approximations to the exp-functions. The error analysis describe the ap-
proximation errors. Numerical examples of ordinary and partial differ-
ential equations support the fast computation ideas.

Keyword Iterative operator-splitting method, pade approximations, extrap-
olation methods, error analysis, differential equations.

AMS subject classifications. 65M15, 65L05, 65M71.

1 Introduction

In this paper we concentrate on approximation to the solution of the linear
evolution equation

∂t c = Lc = (A + B)c, c(0) = c0, (1)

where L, A and B are unbounded operators.
As numerical method we will apply a 2-stage iterative splitting scheme :

ci(t) = exp(At)c0 +

∫ t

0

exp(As)Bci−1 ds, (2)

ci+1(t) = exp(Bt)c0 +

∫ t

0

exp(Bs)Aci ds, (3)

where i = 1, 3, 5, . . . and c0(t) = 0. Further we have the conditions, that cn is the
known split approximation at the time-level t = tn. The split approximation at
the time-level t = tn+1 is defined as cn+1 = c2m+1(t

n+1). (Clearly, the function
ci+1(t) depends on the interval [tn, tn+1], too, but, for the sake of simplicity, in
our notation we omit the dependence on n.)

Based on our motivation to design effective algorithms for large equation
systems. The problem arose in the field of optimizing the computation of the
iteration steps of very large systems of differential equations fixed on time-scale

2

and on one discretization method. Historically, effective computational methods
can derived by considering the local character of each equation part. So in the
last years the ideas of splitting into simpler equations are established, see [13],
[5] and [11]. We concentrate on choosing extrapolation and exponential splitting
schemes to obtain higher order schemes without loosing efficiency in computing
the operators.

The outline of the paper is as follows. The operator-splitting-method is in-
troduced and the error-analysis of the operator-splitting method is presented in
Section 2. A closed form is discussed in Section 3, where we discuss an efficient
computation of the iterative splitting method with based on exponential split-
ting and extrapolation methods. In Section 4 we present the numerical results
for the methods. Finally we discuss future works in the area of iterative methods.

2 Error analysis

The following algorithm is based on the iteration with fixed-splitting discretiza-
tion step-size τ , namely, on the time-interval [tn, tn+1] we solve the following
sub-problems consecutively for i = 0, 2, . . . 2m. (cf. [13]):

∂ci(t)

∂t
= Aci(t) + Bci−1(t), with ci(t

n) = cn (4)

and c0(t
n) = cn , c−1 = 0.0,

∂ci+1(t)

∂t
= Aci(t) + Bci+1(t), (5)

with ci+1(t
n) = cn ,

where cn is the known split approximation at the time-level t = tn. The split
approximation at the time-level t = tn+1 is defined as cn+1 = c2m+1(t

n+1).
(Clearly, the function ci+1(t) depends on the interval [tn, tn+1], too, but, for the
sake of simplicity, in our notation we omit the dependence on n.)

2.1 Two unbounded Operators

Theorem 1. Let us consider the abstract Cauchy problem in a Banach space X

∂tc(x, t) = Ac(x, t) + Bc(x, t), 0 < t ≤ T and x ∈ Ω,

c(x, 0) = c0(x), x ∈ Ω,

c(x, t) = c1(x, t), x ∈ ∂Ω × [0, T],

(6)

where A, B : D(X) → X are given linear operators which are generators of the
C0-semigroup and c0 ∈ X is a given element. We assume A and B have the
same domains dom(A) = dom(B).

3

Further, we assume the following bounds:

||Bα exp(Bτn)|| ≤ κτ−α
n . (7)

||Bα exp((A + B)τn)|| ≤ κτ−α
n , (8)

|| exp(Aτn)B1−α|| ≤ κ̃τp(1−α)
n , (9)

||Aβ exp(Aτn)|| ≤ κτ−β
n . (10)

||Aβ exp((A + B)τn)|| ≤ κτ−β
n , (11)

|| exp(Bτn)A1−β || ≤ κ̃τq(1−β)
n , (12)

where α, β, p, q ∈ (0, 1) and τn = (tn+1 − tn).
The error of the first time-step is of accuracy O(τm

n), where τn = tn+1 − tn

and we have equidistant time-steps, with n = 1, . . . , N . Then the iteration process
(4)–(5) for i = 1, 3, . . . , 2m + 1 is consistent with the order of the consistency
O(τm+αm

n), where 0 ≤ α < 1.

Proof. Let us consider the iteration (4)–(5) on the sub-interval [tn, tn+1].
For the first iterations we have:

∂tc1(t) = Ac1(t), t ∈ (tn, tn+1], (13)

and for the second iteration we have:

∂tc2(t) = Ac1(t) + Bc2(t), t ∈ (tn, tn+1], (14)

In general we have:
for the odd iterations: i = 2m + 1 for m = 0, 1, 2, . . .

∂tci(t) = Aci(t) + Bci−1(t), t ∈ (tn, tn+1], (15)

where for c0(t) ≡ 0.
for the even iterations: i = 2m for m = 1, 2, . . .

∂tci(t) = Aci−1(t) + Bci(t), t ∈ (tn, tn+1], (16)

We have the following solutions for the iterative scheme:
the solutions for the first two equations are given by the variation of con-

stants:
c1(t) = exp(A(t − tn))c(tn), t ∈ (tn, tn+1], (17)

c2(t) = exp(B(t − tn))c(tn) (18)

+

∫ tn+1

tn

exp(B(tn+1 − s))Ac1(s)ds, t ∈ (tn, tn+1].

For the recursive even and odd iterations we have the solutions: For the odd
iterations: i = 2m + 1 for m = 0, 1, 2, . . .

ci(t) = exp(A(t − tn))c(tn) +
∫ t

tn exp((t − s)A)Bci−1(s) ds, t ∈ (tn, tn+1],
(19)

4

For the even iterations: i = 2m for m = 1, 2, . . .

ci(t) = exp(B(t − tn))c(tn) +
∫ t

tn exp((t − s)B)Aci−1(s) ds, t ∈ (tn, tn+1],
(20)

The consistency is given as:

For e1 we have:

c1(t
n+1) = exp(Aτn)c(tn), (21)

c(tn+1) = exp((A + B)τn)c(tn) = exp(Aτn)c(tn) (22)

+

∫ tn+1

tn

exp(A(tn+1 − s))B exp((s − tn)(A + B))c(tn) ds.

We obtain:

||e1|| = ||c − c1|| ≤ || exp((A + B)τn)c(tn) − exp(Aτn)c(tn)|| (23)

≤ ||
∫ tn+1

tn

exp(A(tn+1 − s))B exp((s − tn)(A + B))c(tn) ds||

≤ ||
∫ tn+1

tn

exp(A(tn+1 − s))B1−αBα exp((s − tn)(A + B))c(tn) ds||

≤
∫ tn+1

tn

|| exp(A(tn+1 − s))B1−α|| ||Bα exp((s − tn)(A + B))|| ds ||c(tn)||

≤
∫ tn+1

tn

1

(tn+1 − s)p(1−α)

κ

(s − tn)α
ds ||c(tn)||

≤
∫ tn+1/2

tn

(
κ

(s − tn)α
+

C

τp(1−α)
)ds

+

∫ tn+1

tn+1/2

(
C

τα
+

C

(tn+1 − s)p(1−α)
)ds

≤ C(τ1−α + τpα + τα + τpα)

≤ Cτmin((1−α),pα) ||c(tn)|| (24)

where α, p ∈ (0, 1) and τ = (tn+1 − tn).

See assumption to the interval see Figure 1:

For e2 we have:

c2(t
n+1) = exp(Bτn)c(tn)

+

∫ tn+1

tn

exp(B(tn+1 − s))A exp((s − tn)A)c(tn) ds, (25)

5

tn tn+1

(1−)α
(s − t)n p

(t − s)αn+1
f(s)

s

Fig. 1. Function of the estimations.

c(tn+1) = exp(Bτn)c(tn)

+

∫ tn+1

tn

exp(B(tn+1 − s))A exp((s − tn)A)c(tn) ds

+

∫ tn+1

tn

exp(B(tn+1 − s))A (26)

∫ s

tn

exp(A(s − ρ))B exp((ρ − tn)(A + B))c(tn) dρ ds.

We obtain:

||e2|| ≤ || exp((A + B)τn)c(tn) − c2|| (27)

= ||
∫ tn+1

tn

exp(B(tn+1 − s))A (28)

∫ s

tn

exp(A(s − ρ))B exp((ρ − tn)(A + B))c(tn) dρ ds||

=

∫ tn+1

tn

|| exp(B(tn+1 − s))A1−α|| (29)

∫ s

tn

||Aα exp(A(s − ρ))B exp((ρ − tn)(A + B))c(tn) dρ||ds

=

∫ tn+1/2

tn

(

κ1

(tn+1 − s)p1(1−α1)
+

κ2

(tn+1 − s)p2(1−α2)
+

C1

τ1−α2

)

ds (30)

+

∫ tn+1

tn+1/2

(

C2

τ1−α1
+

C1

τ (1−α2)
+

κ2

(s − tn)α2

)

ds (31)

≤ Cτmin((1−α1),p1α1,(1−α2),p2α2) ||c(tn)||
For odd and even iterations, the recursive proof is given in the following. In

the next steps, we shift tn → 0 and tn+1 → τn for simpler calculations, see [12].
The initial conditions are given with c(0) = c(tn).

6

For the odd iterations: i = 2m + 1, with m = 0, 1, 2, . . ., we obtain for ci and
c:

ci(τn) = exp(Aτn)c(0) (32)

+

∫ τn

0

exp(As)B exp((τn − s)B)c(0) ds

+

∫ τn

0

exp(As1)B

∫ τn−s1

0

exp(s2B)A exp((τn − s1 − s2)A)c(0) ds2 ds1

+ . . . +

+

∫ τn

0

exp(As1)B

∫ τn−s1

0

exp(s2A)B

∫ τn−s1−s2

0

exp(s3A)B . . .

∫ τn−
Pi−1

j=1
sj

0

exp(Asi)B exp((τn −
i−1
∑

j=1

sj)A)c(0) dsi . . . ds1,

c(τn) = exp(Aτn)c(0) (33)

+

∫ τn

0

exp(As)B exp((τn − s)B)c(0) ds

+

∫ τn

0

exp(As1)B

∫ τn−s1

0

exp(s2B)A exp((τn − s1 − s2)A)c(0) ds2 ds1

+ . . . +

+

∫ τn

0

exp(As1)B

∫ τn−s1

0

exp(s2A)B

∫ τn−s1−s2

0

exp(s3A)B . . .

∫ τn−
Pi−1

j=1
sj

0

exp(Asi)B exp((τn −
i−1
∑

j=1

sj)A)c(0) dsi . . . ds1

+

∫ τn

0

exp(As1)B

∫ τn−s1

0

exp(s2A)B

∫ τn−s1−s2

0

exp(s3A)B . . .

∫ τn−
Pi

j=1
sj

0

exp(Asi+1)B exp((τn −
i

∑

j=1

sj)(A + B))c(0) dsi+1 . . . ds1.

By shifting 0 → tn and τn → tn+1, we obtain our result:

||ei|| ≤ || exp((A + B)τn)c(tn) − ci|| (34)

≤ C̃τ
mini

j=1(1−αi,piαi)
n ||c(tn)||,

where α = mini
j=1{αi} and 0 ≤ αi < 1, 0 < pi < 1.

The same proof idea can be applied to the even iterative scheme.

Remark 1. An application is given to A = ∇D1∇ , B = ∇D2∇, where D1, D2

are diffusion coefficients

7

and the convergence order is given as

||e1|| = C̃τmin(1−α1,p1α1)
n ||c(tn)|| + O(τ1+α1

n) (35)

and hence

||e2|| = ˜̃C||e0||τmin(1−α1,p1α1)+min(1−β1,q1β1)
n

+O(τ1+min(1−α1,p1α1)+min(1−β1,q1β1)
n), (36)

where 0 ≤ α1, α2 < 1.

Remark 2. If we assume the consistency of O(τm
n) for the initial value e1(t

n) and
e2(t

n), we can redo the proof and obtain at least a global error of the splitting
methods of O(τm−1

n).

In the next section we describe the computation of the integral formulation
with exp-functions.

3 Computation of the iterative splitting schemes: Closed

formulation

In the last years, the computational effort to compute integral with exp-function
has increased, we present a closed form, and resubstitute the integral with closed
functions. Such benefits accelerate the computation and made the ideas to par-
allelize, see [2] and [6].

Recursion We study the stability of the linear system (4) and (5), based on
different closed formulations.

We consider the suitable vector norm || · || on IRM , together with its induced
operator norm. The matrix exponential of Z ∈ IRM×M is denoted by exp(Z).
We assume that:

|| exp(τn A)cn|| ≤ KA||cn|| and || exp(τ B)cn|| ≤ KB||cn|| for all τn > 0,

where KA, KB ∈ IR+ are given as the growth estimation of the exponential
functions, see [4].

It can be shown that the system (1) implies || exp(τn (A + B))cn|| ≤ K̃||cn||
and is itself stable.

For more transparency of the splitting scheme (4) and (5), we consider a
well-conditioned system of eigenvectors whereby we can consider the eigenvalues
λ1 of A and λ2 of B instead of the operators A, B themselves.

We assume that all initial values ci(t
n) = capprox(tn) with i = 0, 1, 2, . . . , are

as ||capprox(tn) − cn|| ≤ O(τm) where m is the order, see [4].

Further we assume λ1 6= λ2, otherwise we do not consider the iterative split-
ting method, while the time-scales are equal, see [5].

8

A(α)-stability We define zk = τλk, k = 1, 2. We start with c0(t) = un and we
obtain:

c2m(tn+1) = Sm(z1, z2) cn , (37)

where Sm is the stability function of the scheme with m-iterations.
Let us consider the A(α)-stability given by the following eigenvalues in a

wedge:

W = {ζ ∈ C : | arg(ζ) ≤ α}.

For the A-stability we have |Sm(z1, z2)| ≤ 1 whenever z1, z2 ∈ Wπ/2.
The stability of the splitting schemes are given in the following theorems with
respect to A and A(α)-stability.

3.1 Exponential Splitting schemes

Here we present a closed form for the iterative splitting method based on expo-
nential splitting schemes.

For i = 1, we have

c1(t
n+1) = exp(Aτ) exp(Bτ)c(tn), (38)

where τ = tn+1−tn and we have a first order method, also known as AB splitting
methods, see [4].

For i = 2, we have
1.) Parallel splitting method:

c2(t
n+1) =

1

2
(exp(Aτ) exp(Bτ) + exp(Bτ) exp(Aτ))c(tn), (39)

where τ = tn+1 − tn and we have a second order method, also known as parallel
AB splitting method, see [4].

2.) Strang Splitting method:

c2(t
n+1) = (exp(A

τ

2
) exp(Bτ) exp(A

τ

2
))c(tn) (40)

where τ = tn+1 − tn and we have a second order method, also known as Strang
splitting method, see [16]

3.) Third order method: For i = 3, we have (new method):

c3(t
n+1) = (

4

6
exp(

1

2
Aτ) exp(Bτ) exp(

1

2
Aτ)

+
4

6
exp(

1

2
Bτ) exp(Aτ) exp(

1

2
Bτ)

− 1

6
exp(Aτ) exp(Bτ) − 1

6
exp(Bτ) exp(Aτ))c(tn) (41)

9

where τ = tn+1 − tn and we can reduce the operators with assumptions to the
commutators, e.g. [A, [A, B]] = [B, [A, A]].

Higher orders are at least the derivation of the remaining form of all the
commutations.

The stability of the methods are given in the following theorem 2

Theorem 2. We have the following stability for the exponential splitting schemes:

For the stability function Si of the exponential splitting schemes i = 1, 2, 3
we have the following A-stability

max
z1≤0,z2∈Wα

|Si(z1, z2)| ≤ 1 , ∀ α ∈ [0, π/2], and i = 1, 2, 3, (42)

with ω ∈ [0, 1], the initialization is given as c−1 = 0 and the initial conditions
are ci(t

n) = cn.

Proof. We consider the two possibilities, z1 → −∞ and z2 → −∞, for the
schemes.

We obtain for i = 1 :

S1(z1,−∞) = lim
z2→−∞

exp(z1) exp(z2) = 0 , S1(−∞, z2) = 0 , (43)

and additionally for both variables:

S1(−∞,−∞) = 0 , (44)

Further, we obtain for i = 2 :
1.) Parallel splitting

S2(z1,−∞) = 0 , S2(−∞, z2) = 0 , (45)

and additionally for both variables:

S2(−∞,−∞) = 0 , (46)

and also for 2.) Strang-Splitting we also obtain the stability in both variables.
The same argumentation can be done for i = 3 :

S3(z1,−∞) = lim
z2→−∞

(
4

6
exp(

1

2
z1) exp(z2) exp(

1

2
z1)

+
4

6
exp(

1

2
z2) exp(z1) exp(

1

2
z2)

− 1

6
exp(z1) exp(z2) −

1

6
exp(z2) exp(z1)) (47)

and additionally for both variables:

S3(−∞,−∞) = 0 , (48)

All methods are full A-stable.

10

3.2 Computation of higher order iterative splitting methods with
extrapolation methods

We apply standard second order and fourth order methods of exponential split-
ting schemes and extrapolate the methods. The methods are improvement of the
initialization process of iterative splitting schemes.

Second Order
For a kernel of second order splitting methods, e.g.

T2(τ) =
1

2
(exp(Aτ) exp(Bτ) + exp(Bτ) exp(Aτ)) , (49)

We have the multi-product expansion as:

T4(τ) = −1

3
T2(τ) +

4

3
T 2

2

(τ

2

)

(50)

T6(τ) =
1

24
T2(τ) − 16

15
T 2

2

(τ

2

)

+
81

40
T 3

2

(τ

3

)

(51)

T8(τ) = − 1

360
T2(τ) +

16

45
T 2

2

(τ

2

)

− 729

280
T 3

2

(τ

3

)

+
1024

315
T 4

2

(τ

4

)

(52)

T10(τ) =
1

8640
T2(τ) − 64

945
T 2

2

(τ

2

)

+
6561

4480
T 3

2

(τ

3

)

−16384

2835
T 4

2

(τ

4

)

+
390625

72576
T 5

2

(τ

5

)

.. (53)

Fourth Order
For a kernel of fourth order splitting methods, e.g. Chin see [1]

T4(τ) = exp(
τ

2
(1 − 1√

3
)A) exp(

τ

2
B) exp(

τ√
3
Ã) exp(

τ

2
B) exp(

τ

2
(1 − 1√

3
)A),

Ã = A +
τ2

24
(2
√

3 − 3)[B, [B, A]], (54)

Here we can construct extrapolations with the kernels: T4, T6, T8 etc., i.e.
m = 0, 1, 2,

The closed form of the coefficients for the extrapolation is given as with
closed form solutions

ci =
k2m

i
∑n+1

j=1 k2
j

n+1
∏

j=1(6=i)

k2
i

k2
i − k2

j

(55)

with {k1, k2, k3, . . . kn} = {1, 2, 3, . . . , n} and error coefficient,

e2m+2n+1 = (−1)n−1 k2m
i

∑n+1
j=1 k2

j

n
∏

i=1

1

k2
i

. (56)

Generalization to the Extrapolation schemes of different Orders

11

The closed form of the coefficients for the extrapolation is given as with
closed form solutions

ci =
kam

i
∑n+1

j=1 ka
j

n+1
∏

j=1(6=i)

ka
i

ka
i − ka

j

, (57)

with {k1, k2, k3, . . . kn} = {1, 2, 3, . . . , n} and a = 2, 3, 5, . . . (prime numbers) and
error coefficient,

eam+an+1 = (−1)n−1 kam
i

∑n+1
j=1 ka

j

n
∏

i=1

1

ka
i

, (58)

The derivation of the scheme is given in [6].
Examples
We have the multi-product expansion for m = 2 as:

T4+2n(τ) =

n+1
∑

i=1

ciT ki
4 (

τ

ki
) (59)

Here the first terms :

T6(τ) = − 1

15
T4(τ) +

16

15
T 2

4

(τ

2

)

(60)

T8(τ) =
1

336
T4(τ) − 64

210
T 2

4

(τ

2

)

+
729

560
T 3

4

(τ

3

)

(61)

We have the multi-product expansion for m = 3 as:

T3+3n(τ) =

n+1
∑

i=1

ciT ki
3 (

τ

ki
) (62)

Here the first terms :

T6(τ) = −1

7
T3(τ) +

8

7
T 2

3

(τ

2

)

(63)

T9(τ) =
1

182
T3(τ) − 64

133
T 2

3

(τ

2

)

+
729

494
T 3

3

(τ

3

)

(64)

The stability of the methods are given in the following theorem 3

Theorem 3. We have the following stability for the extrapolation splitting schemes:

For the stability function ST2
of the extrapolation splitting schemes is given

as

max
z1≤0,z2∈Wα

|ST2
(z1, z2)| ≤ 1 , ∀ α ∈ [0, π/2], (65)

with ω ∈ [0, 1] and the initial conditions are c(tn) = cn.
Further all related extrapolation schemes with the stability function ST2

are
stable.

12

Proof. We proof the stability of T2.

Based on the stability of S2 = ST2
of Theorem 2 we have a stable scheme.

For the extrapolation schemes we have the stability function:

ST2n+2
(z1, z2) =

n+1
∑

i=1

ciST2
(z1/ki, z2/ki)

ki . (66)

Based on the stability of ST2
and also Ski

T2
.

We have a stable extrapolation scheme.

3.3 Computation of the iterative splitting methods: Closed
formulation with integral computations

A further computation of the iterative schemes are given by the variation of
constants, see for exponential splitting schemes [12].

To obtain analytical solutions of the differential equations:

∂tc2,iter = Ac2,iter + Bc1,iter (67)

∂tc3,iter = Ac2,iter + Bc3,iter (68)

...

∂tci+1 = Aci+1 + Bci (69)

where c(tn) is the initial condition and A, B are bounded operators, the initial-
ization is with c1,iter(t) = exp(Bt) exp(At)c(tn) is a first order splitting scheme.

The application of the variation of constants is given as:

c2,iter(t) = exp(At)c(tn) +

∫ t

tn

exp(A(t − s))Bc1,iter(s) ds, (70)

c3,iter(t) = exp(Bt)c(tn) +

∫ t

tn

exp(B(t − s))Ac2,iter(s) ds, (71)

(72)

We apply the numerical integration of the integral with Trapezoidal rule for
the first integral and Simpson’s rule for the second integral and obtain:

13

c1,iter(s) = exp(B(s − tn))exp(A(s − tn))c(tn) (73)

c2,iter(s) = exp(A(s − tn))c(tn)

+
(s − tn)

2
(exp(A(s − tn))Bc1,iter(t

n) + Bc1,iter(s)) , (74)

c3,iter(s) = exp(B(s − tn))c(tn)

+
(s − tn)

6
(exp(B(s − tn))Ac2,iter(t

n) + 4 exp(B(s − tn)/2)Ac2,iter(t
n + (s − tn)/2)

+Ac2,iter(s)), (75)

c4,iter(s) = exp(A(s − tn))c(tn)

+
(s − tn)

8
(exp(A(s − tn))Bc3,iter(t

n) + 3 exp(A2/3(s − tn))Bc3,iter(t
n + 2/3(s− tn))

+3exp(A1/3(s− tn))Bc3,iter(t
n + 1/3(s− tn)) + Bc3,iter(s)). (76)

where we compute c1,iter(t
n+1), c2,iter(t

n+1), . . . , and s ∈ [tn, tn+1], τ = tn+1 −
tn.

The forth order method can also be computed with Bode’s or Romberg’s
rules:

c4,iter(s) = exp(A(s − tn))c(tn)

+
(s − tn)

90
(7exp(A(s − tn))Bc3,iter(t

n) + 32 exp(A3/4(s − tn))Bc3,iter(t
n + 1/4(s− tn))

+12 exp(A1/2(s − tn))Bc3,iter(t
n + 1/2(s− tn))

+32exp(A1/4(s− tn))Bc3,iter(t
n + 3/4(s− tn)) + 7Bc3,iter(s)). (77)

Example:

c3,iter(t
n+1) = exp(Bτ)c(tn)

+
τ

6
(exp(Bτ)Ac2,iter(t

n) + 4 exp(Bτ/2)Ac2,iter(t
n + τ/2)

+Ac2,iter(t
n+1)), (78)

where we have to compute the subinterval results:

c2,iter(t
n + τ/2) = exp(Aτ/2)c(tn)

+
τ

4
(exp(Aτ/2)Bc1,iter(t

n) + Bc1,iter(t
n + τ/2)) , (79)

c1,iter(t
n + τ/2) = exp(Bτ/2)exp(Aτ/2)c(tn). (80)

We we have to compute t ∈ [0, T], with t0, t1, . . . , tN and N number of time
steps, where the time steps are equidistant of τ = tj − tj−1, j = 1, . . . , N .

We have to compute successively c(t1), c(t2), . . . , c(tN), where the highest
iterative solutions, are the initialization to the next interval, i.e. ci,iter(t

1) ≈
c(t1), . . . , ci,iter(t

N−1) ≈ c(tN−1).

14

The generalization is given with Romberg’s extrapolation scheme is given in
the following algorithm.

Algorithm 31 We apply the iterative scheme by Romberg’s extrapolation method.
We divide into time intervals [t0, t1], [t1, t2], . . . , [tN−1, tN], and each subinterval
tn, tn+1 is solved with the iterative splitting scheme with Romberg’s extrapolation
method.

1.) We start with n = 0 and the initial condition c(0).
and starting solution c1,iter(t) = exp(A9t − tn)) exp(B(t − tn))

2.) We compute the time interval tn, tn+1 and the solution c(tn+1) is obtained
by :

a.) We start with i = 2

ci,iter(t) = exp(A(t − tn))c(tn) +

∫ t

tn

fA,i−1(s)ds, (81)

ci+1,iter(t) = exp(B(t − tn))c(tn) +

∫ t

tn

fB,i(s)ds, (82)

where fA,i−1(s) = exp(A(t−s))Bci−1,iter(s) and fB,i(s) = exp(B(t−s))Aci,iter(s)
We compute the integrals of the functions fA,i−1, fB,i by:

R(0, 0) =
1

2
(tn+1 − tn)(f(tn) + f(tn+1)) (83)

R(j, 0) =
1

2
R(j − 1, 0) + hj

2j−1

∑

k=1

f(t1 + (2k − 1)hj) (84)

R(j, j) = R(j, j − 1) +
1

4j − 1
(R(j, j − 1) − R(j − 1, j − 1)) (85)

R(j, j) =
1

4j − 1
(4jR(j, j − 1) − R(j − 1, j − 1)) (86)

where j ≥ 1, hj = tn+1−tn

2j and f = fA,i−1 or f = fB,i .
b.) we increase i = i + 1, till i = I and we go to 3.)
3.) The result is given as c(tn+1) = cI(tn+1), we increase n = n+1 and goto

2.), if n = N we are finished.

Remark 3. The same recurrent argument can be applied to the next iterative
scheme. A higher numerical integration method is necessary. Here we have only
to apply matrix multiplications and can skip the time-consuming integral com-
putations. Only two evaluations for the exponential function for A and B are
necessary. The main disadvantage of computing the iterative scheme exactly
are the time-consuming inverse matrices. These can be skipped with numerical
methods.

We have the following assumptions for the stability formulations:

lim
z1→−∞

τ−1z1 exp(z1) = 0 (87)

15

The stability of the methods are given in the following theorem 4

Theorem 4. We have the following stability for the integral formulated iterative
schemes:

For the stability function Si,iter of iterative splitting schemes we have

max
z1≤0,z2∈Wα

|Si,iter(z1, z2)| ≤ 1 , ∀ α ∈ [0, π/2], (88)

with ω ∈ [0, 1] and the initial conditions are c(tn) = cn and i is the iteration
index.

Proof. We proof the stability of S1,iter .
For the extrapolation schemes we have the stability function:

S1,iter(z1, z2) = exp(z2) exp(z1). (89)

For both possibilities z1 → −∞ and z2 → −∞ we have S1,iter → 0.
For the higher iteration steps we taken into account the assumptions (7)-(12).
Based on this assumptions, we write for i = 2

S2,iter(z1, z2) = exp(z1) +
1

2
(exp(z1)z2 + z2 exp(z2) exp(z1)), (90)

For both possibilities z1, z2 → −∞ we have S2,iter → 0.
Same proof idea is used for the higher iterative steps.

4 Numerical experiments

In the following we present numerical experiments with the closed computable
splitting methods and their benefits.

4.1 First Experiment

We deal in the first with an ODE and separate the complex operator in two
simpler operators.

We deal with the following equation :

∂tu1 = −λ1u1 + λ2u2 , (91)

∂tu2 = λ1u1 − λ2u2 , (92)

u1(0) = u10 , u2(0) = u20 (initial conditions) , (93)

where λ1, λ2 ∈ IR+ are the decay factors and u10, u20 ∈ IR+. We have the time-
interval t ∈ [0, T].

We rewrite the equation (91) in operator notation, we concentrate us to the
following equations :

∂tu = A(t)u + B(t)u , (94)

(95)

16

where u1(0) = u10 = 1.0 , u2(0) = u20 = 1.0 are the initial conditions, where the
operators are

A =

(

−λ1 λ2

0 0

)

, B =

(

0 0
λ1 −λ2

)

. (96)

The concrete parameters for the experiments are given as:
λ1 = 0.05, λ2 = 0.01, T = 1.0, u0 = (1, 1)t.
The L1-error is computed as:

errnum,L1
=

N
∑

k=1

|uexact(tk) − unum(tk)| (97)

where tk = k∆t, where t0, t1, . . . and ∆t = 0.1.
The Lmax-error is computed as:

errnum,max =
N

max
k=1

|uexact(tk) − unum(tk)| (98)

where tk = k∆t, where t0, t1, . . . and ∆t = 0.1.
In the first steps we apply the AB, Stang and 3rd order method and compared

with the unsplitted solutions. The numerical results for the exponential splitting
methods are given in Figure 2.

10
−3

10
−2

10
−1

10
0

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

∆t

er
r L1

c
1

c
2

c
3

Fig. 2. Numerical errors of the methods 1.)-4.), x-axis: time, y-axis: max-error.

In a next series we apply the extrapolation schemes to our exponential split-
ting kernels of second and fourth order.

The numerical results of a second order kernel are given in Figure 3.
The numerical results of a fourth order kernel are given in Figure 4.

17

10
0

10
1

10
2

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

∆t

er
r L1

τ
2

τ
4

τ
6

τ
8

τ
10

Fig. 3. Numerical errors of the methods of a second order kernel, x-axis: time, y-axis:
max-error.

Remark 4. The numerical results with extrapolation methods show higher order
results. Here we can apply low order kernels, e.g. 2nd or 3rd order and improve
their results by choosing an cheap extrapolation schemes, based on Multi-product
expansion.

4.2 Second Experiment

We deal in the first with an ODE and separate the complex operator in two
simpler operators.

We deal with the 10 × 10 ODE system:

∂tu1 = −λ1,1u1 + λ2,1u2 + · · · + λ10,1u10, (99)

∂tu2 = λ1,2u1 − λ2,2(t)u2 + · · · + λ10,2u10 , (100)

... (101)

∂tu10 = λ1,10u1 + λ2,10(t)u2 + · · · − λ10,10u10 , (102)

u1(0) = u1,0, . . . , u10(0) = u10,0 (initial conditions) , (103)

where λ1(t) ∈ IR+ and λ2(t) ∈ IR+ are the decay factors and u1,0, . . . , u10,0 ∈
IR+. We have the time-interval t ∈ [0, T].

We rewrite the equation (99) in operator notation, we concentrate us to the
following equations :

∂tu = A(t)u + B(t)u , (104)

18

10
−3

10
−2

10
−1

10
0

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

∆t

er
r L1

τ
4

τ
6

τ
8

Fig. 4. Numerical errors of a fourth order kernel, x-axis: time, y-axis: max-error.

where u1(0) = u10 = 1.0 , u2(0) = u20 = 1.0 are the initial conditions, where the
operators are

A =





−λ1,1(t) . . . λ10,1(t)
λ1,5(t) . . . λ10,5(t)

0 . . . 0



 , B =





0 0
λ1,6(t) . . . λ10,6(t)
λ1,10(t) . . . −λ10,10(t)



 . (105)

λ1,1 = 0.09, λ2,1 = 0.01, . . . , λ10,1 = 0.01
...
λ1,10 = 0.01, . . . λ9,10 = 0.01, . . . , λ10,10 = 0.09

Further Ã = At and B̃ = Bt are at least combination of operators A and B
that influence the schemes.

The benefits of the splitting schemes are presented in Figure 5.

If we neglect the benefit of the ordered operators, the splitting schemes loose
their accuracy see Figure 6.

The computational benefit of higher order schemes are given in the following
Figure 7.

Remark 5. For larger systems of differential equations, we obtain the same higher
order results as for lower systems. For more accuracy also the computational time
for at least a 10th order extrapolation scheme is less expensive. At least a balance
between the order and the computational time is important, while lower order
schemes save computational time with moderate accuracy, e.g. 10−12, higher
order schemes have their computational benefits above an accuracy of 10−15.

19

4.3 Third Experiment

We deal with a second order partial differential equation given as:

∂tu = D∂xxu

u(x, 0) = sin(πx)

u = 0 on ∂Ω

with exact solution

uexact(x, t) = sin(πx) exp(−Dπ2t) .

We choose D = 0.0025 , t ∈ [0, 1] and x ∈ [0, 1].
For the spatial discretization we use an upwind finite difference discretization:

∂−∂+ui =
ui+1 − 2ui + ui−1

∆x2
.

and we set the space step size to ∆x = 1
100 .

Our operator is then given as

A =
D

∆x2
·















0
1 −2 1

. . .
. . .

. . .

1 −2 1
0















(106)

We split the space-interval into two intervals by splitting the Matrix A into two
Matrixes:

(

A1

A2

)

:= A .

We now solve the problem

∂tu = A1u + A2u.

We use the Iterative Operator Splitting with Pade approximant and different
discretization steps of ∆x.

Based on the CFL condition of discretized scheme with the iterative splitting
scheme we have:

2D

∆x2
τ i ≤ err ≤ 1 (107)

2D N2 τ i ≤ err ≤ 1 (108)

where ∆x = 1
N is the spatial step and N are the number of spatial points, τ is

the time step and i the order of the iterative scheme. Further D is the diffusion
parameter.

20

We obtain for the restriction of the time-step :

2D

∆x2
τ i ≤ err ≤ 1 (109)

τ ≤
(err

2D N2
)

1
i

)

. (110)

The numerical results of the higher order schemes are given in Figure 8.

Remark 6. For partial differential equations, additional balancing problems be-
tween time and spatial scales are involved. We obtain the same higher order
results as for ODE systems, when we consider the CFL conditions and control
the spatial scale with the time scale. For more accuracy we have taken into ac-
count at least a 4th order scheme, which benefits for small time steps. Therefore
also fine spatial grids are necessary. Here parallel computations of the Pade ap-
proximants are necessary to achieve a computational benefit with higher order
schemes.

4.4 Forth Experiment

We deal with the 2-dimensional advection-diffusion equation and periodic bound-
ary conditions

∂tu = −v∇u + D∆u,

= −vx
∂u

∂x
− vy

∂u

∂y
+ D

∂2u

∂x2
+ D

∂2u

∂y2
,

u(x, t0) = u0(x),

with the parameters

vx = vy = 1

D = 0.01

t0 = 0.25.

The given advection-diffusion problem has an analytical solution

ua(x, t) =
1

t
exp

(−(x − vt)2

4Dt

)

which we will use as a convenient initial function:

u(x, t0) = ua(x, t0)

We apply dimensional splitting to our problem

∂u

∂t
= Axu + Ayu

21

where

Ax = −vx
∂u

∂x
+ D

∂2u

∂x2
.

We use a 1st order upwind scheme for ∂
∂x and a 2nd order central difference

scheme for ∂2

∂x2 . By introducing the artificial diffusion constant Dx = D − vx∆x
2

we achieve a 2nd order finite difference scheme

Lxu(x) = −vx
u(x) − u(x − ∆x)

∆x

+ Dx
u(x + ∆x) + u(x) + u(x − ∆x)

∆x2
.

because the new diffusion constant eliminates the first order error (i.e. the nu-
merical viscosity) of the Taylor expansion of the upwind scheme. Lyu is derived
in the same way.
We apply a BDF5 method to gain 5th order accuracy in time:1

Ltu(t) =
1

∆t

(

137

60
u(t + ∆t) − 5u(t) + 5u(t− ∆t)

−10

3
u(t − 2∆t) +

5

4
u(t − 3∆t) − 1

5
u(t − 4∆t)

)

. (111)

Our aim is to compare the iterative splitting method with AB-splitting. Since
[Ax, Ay] = 0 there is no splitting-error for the AB-splitting and therefore we
cannot expect to achieve better results with the iterative splitting in terms of
general numerical accuracy. Instead we will show that the iterative splitting out
competes AB-splitting regarding the computational effort and round-off-errors.
But first there are some remarks which have to be made concerning the special
behavior of both methods when combined with high-order Runge-Kutta and
BDF methods.

Splitting and schemes of high order in time Concerning AB-Splitting:
The principle of AB-splitting is well known and simple. The equation du

dt =
Au + Bu is broken up into

dun+1/2

dt
= Aun+1/2

dun+1

dt
= Bun+1

1 Please note that the dependencies of u(x, t) are suppressed for the sake of simplicity.

22

which are connected via un+1(t) = un+1/2(t + ∆t). This is pointed out in figure
(9). AB-splitting works very well for any given one-step method like the Crank-
Nicholson-Scheme. Not taking into account the splitting-error (which is an error
in time) it is also compatible with high order schemes such as explicit/implicit
Runge-Kutta-schemes.
Things look different if one tries to use a multi-step method like the implicit
BDF or the explicit Adams method with AB-splitting, these cannot be properly
applied as is shown by the following example:
Choose for instance a BDF2 method which, in case of du/dt = f(u), has the
scheme

3

2
u(t + ∆t) − 2u(t) +

1

2
u(t − ∆t) = ∆tf(u(t + ∆t)).

So the first step of the AB-splitting looks like:

3

2
un+1/2(t + ∆t) − 2un+1/2(t) +

1

2
un+1/2(t − ∆t) = ∆tAu(t + ∆t)

Clearly un+1/2(t) = un(t) but what is un+1/2(t − ∆t)? This is also shown in
figure (9) and it is obvious that we wont have knowledge about un+1/2(t − ∆t)
unless we compute it separately which means additional computational effort.
This overhead even increases dramatically when we move to a multi-step method
of higher order.
The mentioned problems with the AB-splitting will not occur with a higher order
Runge-Kutta method since only knowledge of un(t) is needed.

Remarks about the iterative splitting: The BDF methods apply very
well to the iterative splitting. Let us recall at this point that this method, al-
though being a real splitting scheme, always remains a combination of the op-
erators A and B so no steps have to be done into one direction only 2.
In particular we do a subdivision of our given time-discretization tj = t0 + j∆t
into I parts. So we have subintervals tj,i = tj + i∆t/I, 0 ≤ i ≤ I on which we
solve the following equations iteratively:

dui/I

dt
= Aui/I + Bu(i−1)/I (112)

du(i+1)/I

dt
= Aui/I + Bu(i+1)/I (113)

(114)

2 As we will see there is an exception to this.

23

u−1/I is either 0 or a reasonable approximation3 while u0 = u(tj) and u1 =
u(tj + ∆t). The crucial point here is that we only know our approximations
at given times which don’t happen to be the times at which a Runge-Kutta
method needs to know them. Therefore, in case of a RK method, the values of the
approximations have to be interpolated with at least the accuracy one wishes to
attain with the splitting and this means a lot of additional computational effort.
We may summarize our results now in table 4.4 that shows which methods are
practicable for each kind of splitting scheme.4

low order s.s.m. high order s.s.m. m.s.m.

AB-splitting X X -

Iterative splitting X - X

Table 1. Practicability of single- and multi-step methods (s.s.m: single-step methods,
m.s.m. multi-step methods).

Numerical results After resolving the technical aspects of this issue we can
now proceed to the actual computations. The question which arises is which of
the splitting methods has the least computational effort since we can expect them
to solve the problem with more or less the same accuracy if we use practicable
methods with equal order because [Ax, Bx] = 0. We tested the dimensional
splitting of the 2d-advection-diffusion equation with the AB-splitting combined
with a 5th order RK method after Dormand and Prince and with the iterative
splitting in conjunction with a BDF5 scheme. We used 40x40- and 80x80-grids
and completed nt time-steps with each of which subdivided into 10 smaller steps
until we reached time tend = 0.6 which is sufficient to see the main effects. The
iterative splitting was done with 2 iterations which was already enough to attain
the desired order. In tables 2 and 3 the errors at time tend and the computation
times are shown.

As we can see, the error of the iterative splitting reaches the AB-splitting
error after a certain number of time-steps and stays below it for all additional
steps we accomplish. Of course the error cannot sink under a certain amount
which is governed by the spatial discretization. It is to be noticed that while the

3 In fact the order of the approximation is not of much importance if we fulfill a
sufficient number of iterations. In case of u−1/I = 0 we have the exception that a
step in A-direction is done while B is left out. The error of this step vanishes after
a few but mostly only one iteration

4 In favor of the iterative splitting scheme take also into the account that AB-splitting
may be used along with the mentioned high order methods but cannot maintain the
order if [A, B] 6= 0 while the iterative splitting re-establishes the maximum order of
the scheme when a sufficient number of iterations is done.

24

Number of steps Error AB Error It.spl. AB computation time It. spl. computation time

5 0.1133 0.1154 0.203 s 0.141 s

10 0.1114 0.1081 0.500 s 0.312 s

30 0.1074 0.1072 1.391 s 0.907 s

50 0.1075 0.1074 2.719 s 1.594 s

Table 2. Errors and computation times of AB-splitting and iterative splitting for a
40x40-grid.

Number of steps Error AB Error It.spl. AB computation time It. spl. computation time

5 0.0288 0.0621 0.812 s 0.500 s

10 0.0276 0.0285 2.031 s 1.266 s

30 0.0268 0.0267 6.109 s 4.000 s

50 0.0265 0.0265 12.703 s 7.688 s

Table 3. Errors and computation times of AB-splitting and iterative splitting for a
80x80-grid.

computation time used for the iterative splitting is always about 20%-40% less
than that of the AB-splitting5 the accuracy is, with a sufficient number of time-
steps, slightly better than that of the AB-splitting. This is due to the roundoff
error which is higher for the Runge-Kutta method because of the greater amount
of basic operations needed to compute the RK steps.
A future task will be to introduce non-commuting operators in order to show
the superiority of the iterative splitting over the AB-splitting when the order in
time is reduced due to the splitting error.

5 Conclusions and Discussions

We have presented an iterative operator-splitting method computed with ex-
ponential splitting and extrapolation schemes. We have analyzed the splitting
error for the operators. Under weak assumptions we could proof the higher or-
der error bounds. Closed formulations allow to compute the delicate exponential
operators efficient. Numerical examples confirm the applications to differential
equations and achieve the theoretical results. In the future we will focus us on
the development of improved operator-splitting methods with respect to their
application in nonlinear differential equations.

6 Appendix

Pade approximation

5 The code for both methods is kept in the simplest possible form.

25

Remark 7. To apply the exponential functions exp(At), we apply the Pade ap-
proximations, that can be computed with a general scheme.

Here the idea of the Gauss continued fractions are considered, see [18]. The
Pade approximants can be formulated in such a framework.

We define a first approximate 1F1(1; b; z) is given as

1F1(1; b; z) =
1

1 +
− z

b +
z

(b + 1) +
− bz

(b + 2) +
2z

(b + 3) +
− (b + 1)z

(b + 4) + ...

, (115)

and the application to exp(z) = 1F11(1; 1; z)

ez =
1

1 +
− z

1 +
z

2 +
− z

3 +
2z

4 +
− 2z

5 + ...

. (116)

Then the Pade approximant is given as

Rm,n =
1F1(−m;−m − n; z)

1F1(−n;−m− n;−z)
, (117)

where the standard notation for this series is given as

pFq(a1, . . . , ap; b1, . . . , bq; z), (118)

although variations are sometimes used see [17].

Using the rising factorial or Pochhammer symbol:

(a)n = a(a + 1)(a + 2)...(a + n − 1), (a)0 = 1, (119)

this can be written

pFq(a1, . . . , ap; b1, . . . , bq; z) =

∞
∑

n=0

(a1)n . . . (ap)n

(b1)n . . . (bq)n

zn

n!
. (120)

26

References

1. S.A. Chin and P. Anisimov. Gradient Symplectic Algorithms for Solving the Radial

Schrödinger Equation, J. Chem. Phys. 124, 054106, 2006.
2. S.A. Chin. Multi-product splitting and Runge-Kutta-Nyström integrators,

ArXiv:0809.0914; submitted to Applied Numerical Mathematics, 2009.
3. B. Davis. Integral Transform and Their Applications. Applied Mathematical Sci-

ences, 25, Springer Verlag, New York, Heidelberg, Berlin, 1978 .
4. I. Farago, J. Geiser. Iterative Operator-Splitting Methods for Linear Problems.

Preprint No. 1043 of the Weierstass Institute for Applied Analysis and Stochas-
tics, (2005) 1-18. International Journal of Computational Science and Engineering,
accepted September 2007.

5. J. Geiser. Higher order splitting methods for differential equations: Theory and

applications of a fourth order method. Numerical Mathematics: Theory, Methods

and Applications. Global Science Press, Hong Kong, China, accepted, April 2008.
6. J. Geiser and S. Chin. Multi-product expansion, Suzuki’s method and the Mag-

nus integrator for solving time-dependent problems. Preprint 2009-4, Humboldt
University of Berlin, Department of Mathematics, Germany, 2009.

7. J. Geiser and L. Noack. Iterative operator-splitting methods for nonlinear differen-

tial equations and applications of deposition processes. Preprint 2008-4, Humboldt
University of Berlin, Department of Mathematics, Germany, 2008.

8. J. Geiser and Chr. Kravvaritis. A Domain Decomposition method based on iterative

Operator Splitting method. Applied Numerical Mathematics, 59, 608-623, 2009.
9. J. Geiser and Chr. Kravvaritis. Overlapping operator splitting methods and appli-

cations in stiff differential equations. Special issue: Novel Difference and Hyprod
Methods for Differential and Integro-Differential Equations and Applications,
Guest editors: Qin Sheng and Johnny Henderson, Neural, Parallel, and Scientific
Computations (NPSC), 16, 189-200, 2008.

10. M. Hochbruck and A. Ostermann. Explicit Exponential Runge-Kutta Methods for

Semilinear Parabolic Problems. SIAM Journal on Numerical Analyis, Vol. 43, Iss.
3, 1069-1090, 2005.

11. E. Hansen and A. Ostermann. Exponential splitting for unbounded operators. Math-
ematics of Computation, accepted, 2008.

12. T. Jahnke and C. Lubich. Error bounds for exponential operator splittings. BIT
Numerical Mathematics, 40:4, 735-745, 2000.

13. J.Kanney, C.Miller and C. Kelley. Convergence of iterative split-operator ap-

proaches for approximating nonlinear reactive transport problems. Advances in
Water Resources, 26:247–261, 2003.

14. C.T. Kelly. Iterative Methods for Linear and Nonlinear Equations. Frontiers in
Applied Mathematics, SIAM, Philadelphia, USA, 1995.

15. G.I Marchuk. Some applicatons of splitting-up methods to the solution of problems

in mathematical physics. Aplikace Matematiky, 1, 103-132, 1968.
16. G. Strang. On the construction and comparision of difference schemes. SIAM J.

Numer. Anal., 5, 506-517, 1968.
17. E.W Weisstein. CRC Concise Encyclopedia of Mathematics. CRC Press, Boca

Raton, Florida, USA, 1998.
18. H.S. Wall. Analytic Theory of Continued Fractions. Chelsea Publishing Company,

335-361, 1973.

27

10
−1

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

c
1
...c

3
 with A,B

∆t

er
r L1

c
1

c
2

c
3

10
2

10
3

10
−13

10
−12

10
−11

10
−10

τ
2
...τ

10
 with A,B

∆t

er
r L1 τ

2

τ
4

τ
6

τ
8

τ
10

10
2

10
3

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

τ
4
...τ

8
 with A,B

∆t

er
r L1 τ

4
τ
6

τ
8

Fig. 5. Numerical errors of the splitting schemes, x-axis: time, y-axis: L1-error (upper
picture: Results of the exponential splitting schemes, middle picture: Results of the
extrapolation schemes with 2nd order kernel, lower picture: Results of the extrapolation
schemes with 4th order kernel).

28

10
2

10
3

10
−13

10
−12

10
−11

τ
2
...τ

10
 with ~A,~B

∆t

er
r L1 τ

2τ
4

τ
6

τ
8

τ
10

10
2

10
3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

τ
4
...τ

8
 with ~A,~B

∆t

er
r L1

τ
4

τ
6

τ
8

Fig. 6. Numerical errors of the splitting schemes with bad ordered operators, x-axis:
time, y-axis: L1-error (upper picture: Results of the extrapolation schemes with 2nd
order kernel, lower picture: Results of the extrapolation schemes with 4th order kernel).

29

10
−3

10
−2

10
−1

10
−13

10
−12

10
−11

10
−10

τ
2
...τ

10
 with A,B

time in sec

er
r L1

τ
2

τ
4 τ

6

τ
8

τ
10

Fig. 7. Numerical errors of the splitting schemes, x-axis: computational time in [sec],
y-axis: L1-error (Results of the extrapolation schemes with 2nd order kernel).

10
−2

10
−1

10
0

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

∆t

er
r L1

c
1
...c

4
 with N=100

c
1

c
2

c
3

c
4

Fig. 8. Numerical result for the exponential splitting schemes of the diffusion equation
with N = 100 spatial points.

30

Fig. 9. Principle of the AB-Splitting.

