
Iterative operator-splitting method: Error

analysis and examples

Jürgen Geiser

geiser@mathematik.hu-berlin.de

Abstract. In this paper we describe an iterative operator-splitting method
for bounded operators. The contribution is a novel iterative method, that
can be applied as a splitting method for ordinary and partial differential
equations. A simple relation between the number of iterative steps and
the order of the splitting scheme, can made it as an alternative method
to consider it as a time decomposition method. The iterative splitting
scheme is interested on physical problem, while the original problem is
not divided as in standard splitting schemes. We present error bounds for
the iterative splitting methods in the presence of bounded operators. We
discuss efficient algorithms to compute the integral formulation of the
splitting scheme. In experiments, we consider the benefits of the novel
splitting method with respect to their number of iterations and time
steps. Ordinary differential equations and convection-diffusion-reaction
equations are presented in the numerical results.

Keywords Iterative operator-splitting method, Error analysis, convection-
diffusion equation.

AMS subject classifications. 65M15, 65L05, 65M71.

1 Introduction

Iterative operator splitting methods have been considered since the last years,
see [4], [7] and [13], as efficient solver for differential equations. Historically they
can be seen as alternating Waveform relaxation methods, while exchanging their
operators in the Waveform relaxation scheme. Such schemes are wel-known and
are considered as efficient solver in many application fields since the 80ties of
the last century, see [18] and [20]. Here the iterative scheme is a novel method
that generalize such schemes.

Thus, for the iterative splitting methods we state the following theses.

– For non-commuting operators, we may reduce the local splitting error, by
using more iteration steps to obtain a higher-order accuracy.

– We must solve the original problem within a full splitting step, while keeping
all operators in the equations.

2

– Splitting the original problem into the different subproblems including all
operators of the problem, is physically the best. We obtain consistent ap-
proximations after each inner step, because of the exact or approximative
starting conditions for the previous iterative solution.

In our paper, we taken into account the iterative operator splitting schemes
for a PDE solver and deal with bounded operators. Here the balance between
the operator in an integral formulation is important to bound the scheme. Such
a balance, which is not necessary in the bounded case, reduce the order of the
scheme. Such deficits can be reduced by using additional iteration steps and
balance the spatial and time step in the discretised form, see [4] and [5].

To dicuss the analysis and the application to the differential equations, we
concentrate in this paper on an approximate solution of the linear evolution
equation

∂t c = Lc = (A + B)c, c(0) = c0, (1)

where L, A and B are bounded operators.
As numerical method we will apply a two-stage iterative splitting scheme:

ci(t) = exp(At)c0 +

∫ t

0

exp(A(t − s))Bci−1(s) ds, (2)

ci+1(t) = exp(Bt)c0 +

∫ t

0

exp(B(t − s))Aci(s) ds, (3)

where i = 1, 3, 5, . . . and the initialization c0(t) = 0.
The outline of the paper is as follows. The operator-splitting methods are

introduced in Section 2 and the error analysis of the operator-splitting methods
is presented. In Section 3, we discuss the error analysis of the iterative methods.
In Section 4, we discuss an efficient computation of the iterative splitting method
with φ-functions. In Section 5 we introduce the application of our methods to
existing software tools. Finally we discuss future works in the area of iterative
splitting methods.

2 Iterative splitting method

The following algorithm is based on an iteration with fixed-splitting discretiza-
tion step-size τ , that is, on the time-interval [tn, tn+1] we solve the following
sub-problems consecutively for i = 0, 2, . . . 2m. (cf. [8, 12]):

∂ci(t)

∂t
= Aci(t) + Bci−1(t), (4)

with ci(tn) = cn

∂ci+1(t)

∂t
= Aci(t) + Bci+1(t), (5)

with ci+1(tn) = cn ,

3

where cn is the known split approximation at the time-level t = tn. The initial-
ization is given as c0(tn) = cn and starting solution is given as c−1 = 0.0 (here
also improvement are discussed, see [3] and [6]). The split approximation at the
time-level t = tn+1 is defined as cn+1 = c2m+1(tn+1). (Clearly, the function
ci+1(t) depends on the interval [tn, tn+1], too, but, for the sake of simplicity, in
our notation we omit the dependence on n.)

In the following we will analyze the convergence and the rate of convergence of
the method (4)–(5) for m tends to infinity for the linear operators A, B :X → X,
where we assume that these operators and their sum are generators of the C0

semigroups. We emphasize that these operators are bounded, so the convergence
is examined in a Banach space setting. The Banach norm is given as || · ||X = || · ||
and also its corresponding matrix norm, see [3].

3 Error analysis

In the following we discuss the error analysis of the iterative splitting method.
We deal with the following assumptions:

Assumption 31 The linear operators A + B, A, B generate C0 semigroups on
X, and the operators A, B satisfy in addition the bounds:

|| exp(Aτ)|| ≤ exp(ω|t|) and || exp(Bτ)|| ≤ exp(ω|t|) (6)

for some ωge0 and all t ∈ IR.

The following theorem is given the convergence of an iterative operator split-
ting schemes for one-sided iterations and a next assumption B = A1−α:

Assumption 32 For the consistency proofs we have to assume the following:
The linear operators A + B, A, B generate analytical semigroups on X, and

the operators A, B satisfy in addition the bounds:

||Bα exp(Bτn)|| ≤ κτ−α
n . (7)

||B exp((A + B)τn)|| ≤ κτ−1+α
n , (8)

|| exp(Aτn)B|| ≤ κ̃τ−1+α)
n , (9)

||Aβ exp(Aτn)|| ≤ κτ−β
n . (10)

||Aβ exp((A + B)τn)|| ≤ κτ−β
n , (11)

where α, β ∈ (0, 1) and τn = (tn+1 − tn).

Theorem 1. For the numerical solution of (4), consider an iterative operator
splitting scheme on operator A with i-th iterative steps.

If the assumptions 31 and 32 are valid, then

||Sn
i − exp((A + B)nτ)|| ≤ Cτ i−1, nτ ≤ T, (12)

where the constant C can be chosen uniformly on bounded time intervals and in
particular, independent of n and τ .

4

Proof. By applying the telescopic identity we obtain

(Sn
i − exp((A + B)nτ)c0

=
n−1
∑

ν=0

Sn−ν−1
i (S − exp((A + B)τ)) exp(ντ(A + B))c0. (13)

If we assume the stability bound:

||Si|| ≤ exp(cωτ), (14)

with a constant c only depends on the estimation of the method.
Furthermore, if we assume the consistency bound:

||Sn
i − exp((A + B)nτ)||

≤ exp(cωT)

n−1
∑

ν=0

||(S − exp(τ(A + B))) exp(ντ(A + B))|| (15)

≤ Cτ i, nτ ≤ T, (16)

The desired consistency and stability bound is given in the next subsections.

3.1 Consistency analysis

We present the results of the consistency of our iterative method. We assume for
the system of operator the generator of an analytical semigroup based on their
underlying norms (see the previous Section 2).

In the following we discuss the consistency of the 2 stage iterative method,
taken into account to iterate over both operators.

Theorem 2. Let us consider the abstract Cauchy problem in a Banach space
X.

∂tc(x, t) = Ac(x, t) + Bc(x, t), 0 < t ≤ T and x ∈ Ω,

c(x, 0) = c0(x), x ∈ Ω,

c(x, t) = c1(x, t), x ∈ ∂Ω × [0, T],

(17)

where A, B : X → X are given linear operators which are generators of the
analytical semigroups and c0 ∈ X is a given element. We assume dom(B) ⊂
dom(A), so we are restricted to balance the operators. Further, we assume the
estimations of an unbounded operator, see [11]:

B = A1−α, (18)

where α ∈ (0, 1) and we assume
B = A1−α is the infinitesimal generator of an analytical semigroup for all

α ∈ (0, 1), see [17].
The error of the first time-step is of accuracy O(τ iAα

n), where τn = tn+1 −
tn and we have equidistant time-steps, with n = 1, . . . , N . Further iA are the
iterative steps with operator A.

Then the iteration process (4)–(5) for i = 1, 3, . . . , 2m + 1 is consistent with
the order of the consistency O(ταiA

n), where 0 ≤ α < 1.

5

Proof. Let us consider the iteration (4)–(5) on the sub-interval [tn, tn+1].
For the first iterations we have:

∂tc1(t) = Ac1(t), t ∈ (tn, tn+1], (19)

and for the second iteration we have:

∂tc2(t) = Ac1(t) + Bc2(t), t ∈ (tn, tn+1], (20)

In general we have:
for the odd iterations: i = 2m + 1 for m = 0, 1, 2, . . .

∂tci(t) = Aci(t) + Bci−1(t), t ∈ (tn, tn+1], (21)

where for c0(t) ≡ 0.
for the even iterations: i = 2m for m = 1, 2, . . .

∂tci(t) = Aci−1(t) + Bci(t), t ∈ (tn, tn+1], (22)

We have the following solutions for the iterative scheme:
the solutions for the first two equations are given by the variation of con-

stants:
c1(t) = exp(A(t − tn))c(tn), t ∈ (tn, tn+1], (23)

c2(t) = exp(B(t − tn))c(tn) (24)

+

∫ tn+1

tn

exp(B(tn+1 − s))Ac1(s)ds, t ∈ (tn, tn+1].

For the recursive even and odd iterations we have the solutions.
We start with the odd iterations: i = 2m + 1 for m = 0, 1, 2, . . .

ci(t) = exp(A(t − tn))c(tn)

+

∫ t

tn

exp((t − s)A)Bci−1(s) ds, t ∈ (tn, tn+1], (25)

For the even iterations: i = 2m for m = 1, 2, . . .

ci(t) = exp(B(t − tn))c(tn)

+

∫ t

tn

exp((t − s)B)Aci−1(s) ds, t ∈ (tn, tn+1], (26)

The consistency is given as:
For e1 we have:

c1(t
n+1) = exp(Aτn)c(tn), (27)

c(tn+1) = exp((A + B)τn)c(tn) = exp(Aτn)c(tn) (28)

+

∫ tn+1

tn

exp(A(tn+1 − s))B exp((s − tn)(A + B))c(tn) ds.

6

We obtain:

||e1|| = ||c − c1|| ≤ || exp((A + B)τn)c(tn) − exp(Aτn)c(tn)|| (29)

≤ ||
∫ tn+1

tn

exp(A(tn+1 − s))B exp((s − tn)(A + B))c(tn) ds||

≤ ||
∫ tn+1

tn

exp(A(tn+1 − s))A1−α exp((s − tn)(A + B))c(tn) ds||

≤
∫ tn+1

tn

|| exp(A(tn+1 − s))A(1−α)/2A(1−α)/2 exp((s − tn)(A + B))|| ds ||c(tn)||

≤
∫ tn+1

tn

1

(tn+1 − s)−(1−α)/2

κ

(s − tn)(1−α)/2
ds ||c(tn)||

+

∫ tn+1

tn

Cs(α − 1)ds

)

||c(tn)||

≤ Cτα ||c(tn)|| (30)

where α ∈ (0, 1) and τ = (tn+1 − tn).

For e2 we have:

c2(t
n+1) = exp(Bτn)c(tn)

+

∫ tn+1

tn

exp(B(tn+1 − s))A exp((s − tn)A)c(tn) ds, (31)

c(tn+1) = exp(Bτn)c(tn)

+

∫ tn+1

tn

exp(B(tn+1 − s))A exp((s − tn)A)c(tn) ds

+

∫ tn+1

tn

exp(B(tn+1 − s))A (32)

∫ s

tn

exp(A(s − ρ))B exp((ρ − tn)(A + B))c(tn) dρ ds.

7

We obtain:

||e2|| ≤ || exp((A + B)τn)c(tn) − c2|| (33)

= ||
∫ tn+1

tn

exp(B(tn+1 − s))A (34)

∫ s

tn

exp(A(s − ρ))A1−α exp((ρ − tn)(A + B))c(tn) dρ ds||

=

∫ tn+1

tn

|| exp(B(tn+1 − s))|| (35)

∫ s

tn

|| exp(A(s − ρ))A2−α exp((ρ − tn)(A + B))c(tn) dρ||ds

=

∫ tn+1

tn

κ

∫ s

tn

(s − ρ)α−2dρds||c(tn)|| (36)

≤ Cτα ||c(tn)||

For odd and even iterations, the recursive proof is given in the following. In
the next steps, we shift tn → 0 and tn+1 → τn for simpler calculations, see [11].
The initial conditions are given with c(0) = c(tn).

For the odd iterations means the iteration over operator A: i = 2m + 1, with
m = 0, 1, 2, . . ., we obtain for ci and c:

ci(τn) = exp(Aτn)c(0) (37)

+

∫ τn

0

exp(As)B exp((τn − s)B)c(0) ds

+

∫ τn

0

exp(As1)B

∫ τn−s1

0

exp(s2B)A exp((τn − s1 − s2)A)c(0) ds2 ds1

+ . . . +

+

∫ τn

0

exp(As1)B

∫ τn−s1

0

exp(s2A)B

∫ τn−s1−s2

0

exp(s3A)B . . .

∫ τn−

Pi−1

j=1
sj

0

exp(Asi)B exp((τn −
i−1
∑

j=1

sj)A)c(0) dsi . . . ds1,

8

c(τn) = exp(Aτn)c(0) (38)

+

∫ τn

0

exp(As)B exp((τn − s)B)c(0) ds

+

∫ τn

0

exp(As1)B

∫ τn−s1

0

exp(s2B)A exp((τn − s1 − s2)A)c(0) ds2 ds1

+ . . . +

+

∫ τn

0

exp(As1)B

∫ τn−s1

0

exp(s2A)B

∫ τn−s1−s2

0

exp(s3A)B . . .

∫ τn−

Pi−1

j=1
sj

0

exp(Asi)B exp((τn −
i−1
∑

j=1

sj)A)c(0) dsi . . . ds1

+

∫ τn

0

exp(As1)B

∫ τn−s1

0

exp(s2A)B

∫ τn−s1−s2

0

exp(s3A)B . . .

∫ τn−

Pi
j=1

sj

0

exp(Asi+1)B exp((τn −
i

∑

j=1

sj)(A + B))c(0) dsi+1 . . . ds1.

By shifting 0 → tn and τn → tn+1, we obtain our result:

||ei|| ≤ || exp((A + B)τn)c(tn) − ci|| (39)

≤ C̃τ iAα
n ||c(tn)||,

where α = mini
j=1{αi} and 0 ≤ αi < 1 and iA is the number of odd iteration

steps means over the operator A.

The same proof idea can be applied to the even iterative scheme.

Where for the even scheme we could not obtain a higher order, see:

c(τn) = exp(Aτn)c(0) (40)

+

∫ τn

0

exp(Bs)A exp((τn − s)B)c(0) ds

+

∫ τn

0

exp(Bs1)A

∫ τn−s1

0

exp(s2B)A exp((τn − s1 − s2)B)c(0) ds2 ds1

+ . . . +

+

∫ τn

0

exp(Bs1)A

∫ τn−s1

0

exp(s2B)A

∫ τn−s1−s2

0

exp(s3B)A . . .

∫ τn−

Pi−1

j=1
sj

0

exp(Bsi)A exp((τn −
i−1
∑

j=1

sj)B)c(0) dsi . . . ds1

+

∫ τn

0

exp(Bs1)A

∫ τn−s1

0

exp(s2B)A

∫ τn−s1−s2

0

exp(s3B)A . . .

∫ τn−

Pi
j=1

sj

0

exp(Bsi+1)A exp((τn −
i

∑

j=1

sj)(A + B))c(0) dsi+1 . . . ds1.

9

and we have

||eiB
|| ≤ || exp((A + B)τn)c(tn) − ciB

|| (41)

= ||
∫ tn+1

tn

exp(B(tn+1 − s1))A . . . (42)

∫ siB−1

tn

exp(B(siB−1 − siB
))A exp((siB

− tn)(A + B))c(tn) dsiB
ds1||

=

∫ tn+1

tn

κ (43)

∫ s

tn

κ||A2 exp((ρ − tn)(A + B))c(tn) dρ||ds

=

∫ tn+1

tn

κ . . .

∫ siB

tn

(s − ρ)−iBdsiB
. . . ds1||c(tn)|| (44)

≤ Cτ0 ||c(tn)||

So we could not improve the order in the weaker iterations, so we need at
least some strong iterative steps.

Remark 1. The applications are given for A-bounded problems, e.g.

– Convection-Diffusion equation: A = ∂2

∂x2 and B = − ∂
∂x ,

– Diffusion-Reaction equation: A = ∂2

∂x2 and B = −λ

In the next section we describe the stability analysis.

3.2 Stability Analysis

For stability bound we have the following theorem:

Theorem 3. Let us consider the abstract Cauchy problem (4) and (5) in a
Banach space X. Then the stability of the method given in equation (12) is given
as

||Si|| ≤ exp(cωτ) (45)

where c depends only on the coefficients of the method and ω is a bound for the
operators, see (31), and τ is the time-step size.

Proof. We apply the assumption:

B = A1−α

10

Based on the definition of Si we have:

Si = exp(Aτn) (46)

+

∫ τn

0

exp(As)B exp((τn − s)A) ds

+

∫ τn

0

exp(As1)B

∫ τn−s1

0

exp(s2A)B exp((τn − s1 − s2)A) ds2 ds1

+ . . . +

+

∫ τn

0

exp(As1)B

∫ τn−s1

0

exp(s2A)B

∫ τn−s1−s2

0

exp(s3A)B . . .

∫ τn−

Pi−1

j=1
sj

0

exp(Asi)B exp((τn −
i−1
∑

j=1

sj)A) dsi . . . ds1,

After application of B we have:

||Si|| ≤ || exp(Aτn)|| (47)

+||
∫ τn

0

exp(As)B exp((τn − s)A) ds||

+||
∫ τn

0

exp(As1)B

∫ τn−s1

0

exp(s2B)A exp((τn − s1 − s2)A) ds2 ds1||

+ . . . +

+||
∫ τn

0

exp(As1)B

∫ τn−s1

0

exp(s2A)B

∫ τn−s1−s2

0

exp(s3A)B . . .

∫ τn−

Pi−1

j=1
sj

0

exp(Asi)B exp((τn −
i−1
∑

j=1

sj)A) dsi . . . ds1||,

≤ exp(ωτ) +

i
∑

j=1

Cjt
αj ≤ exp(tildeωτ) (48)

where for all ω, Cj ≤ 0 for all j = 1, . . . , i and α ∈ (0, 1), we find ω̃ ≤ 0.

Therefore ||Si|| ≤ exp(ω̃τ) is bounded.

4 Computation of the iterative splitting method

Based on the integral formulation of the iterative splitting schemes, it is impor-
tant to formulate efficient algorithms to solve the schemes. One efficient idea is to
compute integral-formulation of exp-functions with so called φ-functions, which
reduces the integration to a product of exp-functions, see [9]. Such algorithms
can be discrete formulated with exponential Runge-Kutta methods, see [10].

As regards computations of the matrix exponential, an overview is given in
[15].

11

For linear operators A, B : D(X) ⊂ X → X generating a C0 semigroup and
a scalar t ∈ IR+, we define the operator a = tA and b = tB, and the bounded
operators φ0,A = exp(a), φ0,B = exp(b) and:

φk,A =

∫ 1

0

exp((1 − s)τA)
sk−1

(k − 1)!
ds, (49)

φk,B =

∫ 1

0

exp((1 − s)τB)
sk−1

(k − 1)!
ds, (50)

for k ≥ 1.
From this definition it is a straightforward matter to prove the recurrence

relation:

φk,A =
1

k!
I + τAφk+1, (51)

φk,B =
1

k!
I + τBφk+1. (52)

We apply equations (51) and (52) to our iterative schemes (??) and (??) and
obtain:

c1(τ) = exp(Aτ)c(tn) = φ0,Ac(tn), (53)

c2(τ) = φ0,Ac(tn) +

∞
∑

k=1

BkAφk,A, (54)

where we assume that B is bounded and expB =
∑

∞

k=0
1
kBk.

For an bounded operator B we can apply the convolution of integrals, exactly
with the Laplacian transformation or numerically with integration rules.

4.1 Exact Computation of the Integrals

The algorithm of the iterative splitting method (4)-(5) can be written in the
form:

∂tc1 = Ac1 (55)

∂tc2 = Ac1 + Bc2 (56)

...

∂tci+1 = Aci+1 + Bci+1, (57)

where c(tn) is the initial condition and A, B are bounded operators.
We use the Laplace transform to solve the ordinary differential equations

(55)-(57), see also [1].
The transformations for this cases are given in [1]. We need to define the

transformed function û = û(s, t):

ûi(s, t) :=

∞
∫

0

ui(x, t) e−sx dx . (58)

12

We obtain the following analytical solution of the first iterative steps with
the re-transformation:

c1 = exp(At)c(tn), (59)

c2 = A(B − A)−1 exp(At)c(tn) + A(A − B)−1 exp(Bt)c(tn). (60)

The solutions of the next steps can be done recursively.

The Laplacian transform is given as :

c̃1 = (Is + A)−1c01 (61)

c̃2 = (Is + B)−1c02 + (Is + B)−1Ac̃1 (62)

c̃3 = (Is + A)−1c03 + (Is + A)−1Ac̃2 (63)

. . . .

Here we assume that we fulfill the following commutator:

(A − B)−1A = A(A − B)−1, (64)

and we can apply the decomposition of partial fraction:

(Is + A)−1A(Is + B)−1 = (Is + A)−1(B − A)−1A

+A(B − A)−1(Is + B)−1. (65)

Here we can derive our solutions:

c2 = exp(Bt)c(tn) (66)

+A(B − A)−1 exp(At)c(tn) + A(A − B)−1 exp(Bt)c(tn).

We have the following recurrent argument for the Laplace transform:

for the odd iterations: i = 2m + 1

for m = 0, 1, 2, . . .

c̃i = (Is − A)−1 cn + (Is − A)−1B c̃i−1, (67)

for the even iterations: i = 2m for m = 1, 2, . . .

c̃i(t) = (Is − B)−1A c̃i−1 + (Is − B)−1 cn, (68)

We develop the next iterative solution c3 as follows:

c3 = exp(At)c(tn) (69)

+BA(B − A)−1t exp(At)c(tn)

+BA(A − B)−1(B − A)−1 exp(At)c(tn)

+BA(A − B)−1(A − B)−1 exp(Bt)c(tn).

13

We apply the iterative steps recursively and obtain for the odd iterative
scheme the following recurrent argument:

ci = exp(At)c(tn) (70)

+BA(B − A)−1t exp(At)c(tn)

+ . . .

+BA . . . BA(B − A)−1 . . . (B − A)−1ti−2 exp(At)c(tn)

+BA . . . BA(B − A)−1 . . . (B − A)−1(A − B)−1(B − A)−1 exp(At)c(tn)

+ . . . + BA . . . BA(B − A)−1 . . . (B − A)−1(A − B)−1 exp(Bt)c(tn).

Remark 2. The same recurrent argument can be applied to the even iterative
scheme. Here we have only to apply matrix multiplications and can skip the
time-consuming integral computations. Only two evaluations for the exponential
function for A and B are necessary. The main disadvantage of computing the
iterative scheme exactly are the time-consuming inverse matrices. These can be
skipped with numerical methods.

4.2 Numerical Computation of the Integrals

Here our main contributions are to skip the integral formulation of the expo-
nential functions and to apply only matrix multiplication of given exponential
functions. Such operators can be computed at the beginning of the evaluation.

Evaluation with Trapezoidal rule (two iterative steps).
We have to evaluate:

c2(t) = exp(Bt)c(tn) +
∫ tn+1

tn
exp(B(tn+1 − s))Ac1(s)ds, t ∈ (tn, tn+1], (71)

where c1(t) = exp(At) exp(Bt)c(tn).
We apply the Trapezoidal rule and obtain:

c2(t) = exp(Bt)c(tn) + 1
2∆t (B exp(At) exp(Bt) + exp(At)B) , (72)

where c1(t) = exp(At) exp(Bt)c(tn) and ∆t = t − tn.
Evaluation with Simpson rule (three iterative steps).
We have to evaluate:

c3(t) = exp(At)c(tn) +
∫ tn+1

tn
exp(A(tn+1 − s))Bc2(s)ds, t ∈ (tn, tn+1], (73)

where c1(t) = exp(A t
2) exp(Bt) exp(A t

2)c(tn).
We apply the Simpson rule and obtain:

c3(t) = exp(At)c(tn) +
1

6
∆t

(

B exp(A
t

2
) exp(Bt) exp(A

t

2
) (74)

+ 4 exp(A
t

2
)Bexp(A

t

4
) exp(B

t

2
) exp(A

t

4
) + exp(At)B

)

,

where c1(t) = exp(At) exp(Bt)c(tn) and ∆t = t − tn.

14

Remark 3. The same result can also be derived by applying BDF3 (Backward
Differentiation Formula of Third Order).

Evaluation with Bode rule (four iterative steps).
We have to evaluate:

c4(t) = exp(Bt)c(tn) +
∫ tn+1

tn
exp(B(tn+1 − s))Ac3(s)ds, t ∈ (tn, tn+1], (75)

where c3(t) has to be evaluated with a third-order method.
We apply the Bode rule and obtain:

c4(t) = exp(At)c(tn) +
1

90
∆t

(

7Ac3(0) + 32 exp(B
t

4
)Ac3(

t

4
) (76)

+ 12 exp(B
t

2
)Ac3(

t

2
) + 32 exp(B

3t

4
)Ac3(

3t

4
) + 7 exp(Bt)Ac3(t)

)

,

where c3(t) is evaluated with the Simpson rule or a further third order method.
We have ∆t = t − tn.

Remark 4. The same result can also be derived by applying the fourth order
Gauss Runge Kutta method.

In the next section we describe the numerical results of our methods.

5 Numerical Examples

In the first example, we applied our iterative scheme with its underlying numer-
ical approximations to differential equations.

5.1 First Experiment: Linear Ordinary Differential Equation

We deal with the linear ordinary differential equation:

∂u(t)

∂t
=

(

−λ1 λ2

λ1 λ2

)

c, (77)

with initial condition u0 = (1, 1) on the interval [0, T].
The analytical solution is given by:

u(t) =

(

c1 − c2 exp (−(λ1 + λ2)t)
λ1

λ2
c1 + c2 exp (−(λ1 + λ2)t)

)

, (78)

where

c1 =
2

1 + λ1

λ2

, c2 =
1 − λ1

λ2

1 + λ1

λ2

. (79)

15

We split our linear operator into two operators by setting:

∂u(t)

∂t
=

(

−λ1 0
λ1 0

)

u +

(

0 λ2

0 −λ2

)

u. (80)

We choose λ1 = 0.25 and λ2 = 0.5 on the interval [0,1].

We therefore have the operators:

A =

(

−0.25 0
0.25 0

)

, B =

(

0 0.5
0 −0.5

)

. (81)

For the integration method we use a time-step size of h = 10−3.

As initialization of our iterative method we use c−1 ≡ 0

From the examples one can see that the order increases by one per iteration step.
In Tables 1-3 we apply the different integration rules to our iterative scheme.

Iterative Number of err1 err2

Steps splitting-partitions

1 1 4.5321e-002 4.5321e-002
1 10 3.9664e-003 3.9664e-003
1 100 3.9204e-004 3.9204e-004

2 1 7.6766e-003 7.6766e-003
2 10 6.6383e-005 6.6383e-005
2 100 6.5139e-007 6.5139e-007

3 1 4.6126e-004 4.6126e-004
3 10 4.1883e-007 4.1883e-007
3 100 5.9520e-009 5.9521e-009

4 1 4.6828e-005 4.6828e-005
4 10 1.3954e-009 1.3953e-009
4 100 5.5352e-009 5.5351e-009

5 1 1.9096e-006 1.9096e-006
5 10 5.5527e-009 5.5528e-009
5 100 5.5355e-009 5.5356e-009

Table 1. Numerical results for the first example with the iterative splitting method
and the second-order Trapezoidal rule.

Remark 5. Here we see the benefit of higher quadrature rules in combination
with the iterative operator splitting scheme, (see Figure 1). We obtain the best
result with a fourth-order Gauss Runge-Kutta method. Such improved quadra-
ture rules and the expansion of the integral formulation show that our method
has considerable computational benefits.

16

Iterative Number of err1 err2

Steps splitting-partitions

1 1 4.5321e-002 4.5321e-002
1 10 3.9664e-003 3.9664e-003
1 100 3.9204e-004 3.9204e-004

2 1 7.6766e-003 7.6766e-003
2 10 6.6385e-005 6.6385e-005
2 100 6.5312e-007 6.5312e-007

3 1 4.6126e-004 4.6126e-004
3 10 4.1334e-007 4.1334e-007
3 100 1.7864e-009 1.7863e-009

4 1 4.6833e-005 4.6833e-005
4 10 4.0122e-009 4.0122e-009
4 100 1.3737e-009 1.3737e-009

5 1 1.9040e-006 1.9040e-006
5 10 1.4350e-010 1.4336e-010
5 100 1.3742e-009 1.3741e-009

Table 2. Numerical results for the first example with the iterative splitting method
and third-order BDF3.

5.2 Second Experiment: Large ODE systems

In the second experiment, we deal a large ODE system to verify the benefit to
more complicate differential equations. Here the computational cost is increasing
and the balance between iterative steps and time-step size is considered.

We deal with the 10 × 10 ODE system:

∂tu1 = −λ1,1u1 + λ2,1u2 + · · · + λ10,1u10, (82)

∂tu2 = λ1,2u1 − λ2,2(t)u2 + · · · + λ10,2u10 , (83)

... (84)

∂tu10 = λ1,10u1 + λ2,10(t)u2 + · · · − λ10,10u10 , (85)

u1(0) = u1,0, . . . , u10(0) = u10,0 (initial conditions) , (86)

where λ1(t) ∈ IR+ and λ2(t) ∈ IR+ are the decay factors and u1,0, . . . , u10,0 ∈
IR+. We have the time-interval t ∈ [0, T].

We rewrite the equation (82) in operator notation, we concentrate us to the
following equations :

∂tu = A(t)u + B(t)u , (87)

where u1(0) = u10 = 1.0 , u2(0) = u20 = 1.0 are the initial conditions, where the
operators are

A =





−λ1,1(t) . . . λ10,1(t)
λ1,5(t) . . . λ10,5(t)

0 . . . 0



 , B =





0 0
λ1,6(t) . . . λ10,6(t)
λ1,10(t) . . . −λ10,10(t)



 . (88)

17

Iterative Number of err1 err2

Steps splitting-partitions

1 1 4.5321e-002 4.5321e-002
1 10 3.9664e-003 3.9664e-003
1 100 3.9204e-004 3.9204e-004

2 1 7.6766e-003 7.6766e-003
2 10 6.6385e-005 6.6385e-005
2 100 6.5369e-007 6.5369e-007

3 1 4.6126e-004 4.6126e-004
3 10 4.1321e-007 4.1321e-007
3 100 4.0839e-010 4.0839e-010

4 1 4.6833e-005 4.6833e-005
4 10 4.1382e-009 4.1382e-009
4 100 4.0878e-013 4.0856e-013

5 1 1.9040e-006 1.9040e-006
5 10 1.7200e-011 1.7200e-011
5 100 2.4425e-015 1.1102e-016

Table 3. Numerical results for the first example with the iterative splitting method
and fourth-order Gauss RK.

λ1,1 = 0.09, λ2,1 = 0.01, . . . , λ10,1 = 0.01 (89)

...

λ1,10 = 0.01, . . . λ9,10 = 0.01, . . . , λ10,10 = 0.09. (90)

Further we also considered Ã = At and B̃ = Bt as a combination of operators A
and B. Such combinations have not influence the splitting scheme, see also [5],
and we have considered a balance of time and iteration.

In various tests, we considered an optimal balancing time and iteration, which
is presented in Figure 2.

Remark 6. For larger systems of differential equations, we obtain the same higher
order results as for lower systems. For more accuracy also the computational
time for at least a 3rd order iterative scheme is less expensive. At least a balance
between the order and the computational time is important, while lower order
schemes save computational time with moderate accuracy, e.g. 10−12, higher
order schemes have their computational benefits above an accuracy of 10−15.

18

Fig. 1. Convergence rates from two to six iterations.

5.3 Third Experiment: Diffusion Equation

In a next example, we deal with partial differential equation and verify also the
theoretical results. The equation is given as:

∂u

∂t
= D

∂2u

∂x2
, in Ω × [0, T], (91)

u(x, 0) = sin(πx), on Ω, (92)

u = 0, on ∂Ω × [0, T], (93)

with exact solution

uexact(x, t) = sin(πx) exp(−Dπ2t) .

We choose D = 0.0025 , t ∈ [0, T] = [0, 1] and x ∈ Ω = [0, 1].
For the spatial discretization we use an upwind finite difference discretization:

∂−∂+ui =
ui+1 − 2ui + ui−1

∆x2
. (94)

and we set the space step size to ∆x = 1
100 .

Our operator is then given as

A =
D

∆x2
·















0
1 −2 1

. . .
. . .

. . .

1 −2 1
0















(95)

We split the space-interval into two intervals by splitting the Matrix A into two
Matrixes:

(

A1

A2

)

:= A .

19

10
−1

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

c
1
...c

3
 with A,B

∆t

er
r L1

c
1

c
2

c
3

Fig. 2. Numerical errors of the splitting schemes, x-axis: time, y-axis: L1-error, results
of the iterative splitting schemes with (1- 3 iterative steps).

We now solve the problem

∂tu = A1u + A2u.

We use the Iterative Operator Splitting with Pade approximant and different
discretization steps of ∆x.

Based on the CFL condition of discretized scheme with the iterative splitting
scheme we have:

2D

∆x2
τ i ≤ err ≤ 1, (96)

2D N2 τ i ≤ err ≤ 1, (97)

where ∆x = 1
N is the spatial step and N are the number of spatial points, τ is

the time step and i the order of the iterative scheme. Further D is the diffusion
parameter.

We obtain for the restriction of the time-step :

2D

∆x2
τ i ≤ err ≤ 1 (98)

τ ≤
(err

2D N2
)

1
i

)

. (99)

We have to consider a balance between the spatial steps size, time step size
and also iterative steps.

20

Here we could not obtain more accurate results, while using additionally more
iterative steps concluded improved results. The CFL condition is important,
while balancing time and space. Additionally we see the improvement with more
iterative steps, if we consider sufficient small time steps.

The numerical results of the iterative schemes are given in Figure 3.

10
−2

10
−1

10
0

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

∆t

er
r L1

c
1
...c

4
 with N=100

c
1

c
2

c
3

c
4

Fig. 3. Numerical result for the exponential splitting schemes of the diffusion equation
with N = 100 spatial points.

Remark 7. For partial differential equations, additional balancing problems be-
tween time and spatial scales are involved and we have to deal with the CFL
condition. We obtain the same higher order results as for ODE systems, by con-
sidering on optimal CFL conditions and control the spatial scale with the time
scale. For more accuracy we have taken into account at least four iterative steps,
which benefits for small time steps and we obtain the higher accuracy. There-
fore also fine spatial grids are necessary to see the benefits of iterative splitting
schemes.

21

5.4 Fourth Example: Convection-Diffusion-Reaction Equation

In a next example, we consider a convection-diffusion-reaction equation,
which is given as

R∂tu + v∂xu − D∂xxu = −λu , in Ω × [t0, tend), (100)

u(x, t0) = uexact(x, t0) , in Ω, (101)

u(0, t) = uexact(0, t) , u(L, t) = uexact(L, t). (102)

We choose x ∈ [0, L] = Ω with L = 30 and t ∈ [t0, tend] = [104, 2 · 104].
Furthermore, we have λ = 10−5, v = 0.001, D = 0.0001 and R = 1.0. The
analytical solution is given by

uexact(x, t) =
1

2
√

Dπt
exp(− (x − vt)2

4Dt
) exp(−λt). (103)

To begin away from the singular point of the exact solution, we start from the
time point t0 = 104.

Our split operators are

A =
D

R
∂xx, B = − 1

R
(λ + v∂x). (104)

For the spatial discretization we use the finite differences with a spatial grid
width of ∆x = 1

10 and ∆x = 1
100 .

To solve the linear ordinary differential equation we solve the underlying integrals
of the iterative scheme, is with a Simpson rule, which is a third order time
integration method, see Subsection 4.2. Our numerical results are presented in
Table 4. We choose different iteration steps and time partitions, and show the
error between the analytical and numerical solution in the supremum norm.

Iteration Number of err err err
steps i splitting partitions n at x = 18 at x = 20 at x = 22

1 10 9.8993e-002 1.6331e-001 9.9054e-002
2 10 9.5011e-003 1.6800e-002 8.0857e-003
3 10 9.6209e-004 1.9782e-002 2.2922e-004
4 10 8.7208e-004 1.7100e-002 1.5168e-005

Table 4. Numerical results for the third example with iterative operator splitting
method and Simpson rule with ∆x = 10−2 and ∆t = 103.

Figure 4 shows the initial solution at t0 = 104, and the analytical as well
as the numerical solutions at tend = 2 · 104 of the convection-diffusion-reaction
equation.

Here we have also to balance the spatial and time steps. We can reduce the
error between the analytical and the numerical solution by using more iteration

22

Fig. 4. Initial and computed results with iterative splitting method and Simpson rule;
the initial solution is plotted as blue line, the iterative solution is plotted as green line
and the exact solution is plotted as red line.

steps, but taken into account additionally sufficient time-steps. If we restrict
ourselves to an error of 10−4, we obtain an effective computation with 3 iteration
steps and 10 time partitions.

Remark 8. For the convection-diffusion-reaction equation, we have also obtained
the theoretical results. More iterative steps reduce the splitting error and simplify
the computation. We also need to take into account the spatial discretization
and the influence to the time step size. We applied a fine grid step on the spatial
discretization, such that the error of the time discretization method is dominant.
We obtain an optimal efficiency of the iteration steps and the time partitions,
if we use 3 iteration steps and 10 time partitions. Here we see also an order
reduction of the method.

6 Conclusions and Discussions

We have presented an iterative operator-splitting method as competitive method
to compute split-able differential equations. On the basis of integral formulation
of the iterative scheme, we presented the error analysis and its local error for
bounded operators. Numerical examples confirm the method’s application to
ordinary differential and partial differential equations. Here an optimal balance of
time, space and iteration steps are necessary and an order reduction is obtained.
In the future we will focus on the development of improved operator-splitting
methods with respect to their application in nonlinear differential equations.

23

References

1. B. Davis. Integral Transform and Their Applications. Applied Mathematical Sci-
ences, 25, Springer Verlag, New York, Heidelberg, Berlin, 1978 .

2. K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations.
Springer-Verlag, Heidelberg, New York, 2000.

3. I. Farago and J. Geiser. Iterative Operator-Splitting Methods for Linear Problems.

Preprint No. 1043 of the Weierstrass Institute for Applied Analysis and Stochas-
tics, (2005) 1-18. International Journal of Computational Science and Engineering,
accepted September 2007.

4. J. Geiser. Iterative Operator-Splitting Methods with higher order Time-Integration

Methods and Applications for Parabolic Partial Differential Equations. Journal of
Computational and Applied Mathematics, Elsevier, Amsterdam, The Netherlands,
217, 227-242, 2008.

5. J. Geiser. Higher order splitting methods for differential equations: Theory and

applications of a fourth order method. Numerical Mathematics: Theory, Methods

and Applications. Global Science Press, Hong Kong, China, accepted, April 2008.
6. J. Geiser and L. Noack. Iterative operator-splitting methods for nonlinear differen-

tial equations and applications of deposition processes Preprint 2008-4, Humboldt
University of Berlin, Department of Mathematics, Germany, 2008.

7. J. Geiser. Decomposition Methods for Differential Equations: Theory and Applica-

tions. Chapman & Hall/CRC, Series: Numerical Analysis and Scientific Computing
Series, edited by Magoules and Lai, 2009.

8. R. Glowinski. Numerical methods for fluids. Handbook of Numerical Analysis,
Gen. eds. P.G. Ciarlet, J. Lions, Vol. IX, North-Holland Elsevier, Amsterdam, The
Netherlands, 2003.

9. E. Hansen and A. Ostermann. Exponential splitting for unbounded operators. Math-
ematics of Computation, 78, 1485-1496, 2009.

10. M. Hochbruck and A. Ostermann. Explicit Exponential Runge-Kutta Methods for

Semilinear Parabolic Problems. SIAM Journal on Numerical Analysis, 43:3, 1069-
1090, 2005.

11. T. Jahnke and C. Lubich. Error bounds for exponential operator splittings. BIT
Numerical Mathematics, 40:4, 735-745, 2000.

12. J.Kanney, C.Miller and C. Kelley. Convergence of iterative split-operator ap-

proaches for approximating nonlinear reactive transport problems. Advances in
Water Resources, 26:247–261, 2003.

13. C.T. Kelly. Iterative Methods for Linear and Nonlinear Equations. Frontiers in
Applied Mathematics, SIAM, Philadelphia, USA, 1995.

14. G.I Marchuk. Some applications of splitting-up methods to the solution of problems

in mathematical physics. Aplikace Matematiky, 1, 103-132, 1968.
15. I. Najfeld and T.F. Havel. Derivatives of the matrix exponential and their compu-

tation. Adv. Appl. Math, ftp://ftp.das.harvard.edu/pub/cheatham/tr-33-94.ps.gz,
1995.

16. R.S. Palais. Seminar on the Atiyah-Singer Index Theorem. Annals of Mathematics
Studies, no. 57, Princeton University Press, 1965.

17. A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential

Equations. Applied Mathematical Sciences 44, Springer, Berlin, 1983.
18. A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential

Equations Series: Numerical Mathematics and Scientific Computation, Clarendon
Press, Oxford, 1999.

24

19. G. Strang. On the construction and comparison of difference schemes. SIAM J.
Numer. Anal., 5, 506-517, 1968.

20. S. Vandewalle. Parallel Multigrid Waveform Relaxation for Parabolic Problems.
Teubner Skripten zur Numerik, B.G. Teubner Stuttgart, 1993.

