
ITERATIVE OPERATOR SPLITTING METHODS FOR
DIFFERENTIAL EQUATIONS: PROOFTECHNIQUES AND

APPLICATIONS

JÜRGEN GEISER∗

Abstract. In this paper we describe an iterative operator-splitting method for bounded oper-
ators. Our contribution is a novel iterative method that can be applied as a splitting method to
ordinary and partial differential equations. A simple relation between the number of iterative steps
and order of the splitting scheme makes this an alternative method to a time decomposition method.
The iterative splitting scheme can be applied to a physical problem, but the original problem is not
divided as in standard splitting schemes. We present error bounds for iterative splitting methods
in the presence of bounded operators. We discuss efficient algorithms for computing the integral
formulation of the splitting scheme. In experiments, we consider the benefits of the novel splitting
method in terms of the number of iterations and time steps. Ordinary differential equations and
convection-diffusion-reaction equations are presented in the numerical results.

Key words. Iterative operator-splitting method, Error analysis, convection-diffusion equation,
heat equation.

AMS subject classifications. 65M15, 65L05, 65M71

1. Introduction. Iterative operator-splitting methods have been considered in
the last few years, see [7], [9] and [16], as efficient solvers for differential equations.
Historically, they can be seen as alternating Waveform relaxation methods, while
exchanging their operators in the Waveform relaxation scheme. Such schemes are
well-known and are considered to be efficient solvers in many fields of application
since the 1980s, see [20] and [22]. Here, the iterative scheme is a novel method that
generalizes such schemes.

Thus, for iterative splitting methods, we state the following features.
• For non-commuting operators, we may reduce the local splitting error by

using more iteration steps to obtain higher-order accuracy.
• We must solve the original problem within a full split step, while keeping all

operators in the equations.
• Splitting the original problem into different sub-problems including all oper-

ators of the problem is physically the best. We obtain consistent approxi-
mations after each inner step, because of the exact or approximate starting
conditions for the previous iterative solution.

In our paper, we have taken into account the iterative operator-splitting schemes
of a PDE solver and deal with bounded operators. Here, the balance between the
operator in an integral formulation is important to bound the scheme. Such a balance,
which is not necessary in the bounded case, reduces the order of the scheme. Such
deficits can be reduced by using additional iteration steps to balance the spatial and
time steps in the discretized form, see [7] and [8].

To discuss the analysis and application to differential equations, we concentrate
in this paper on an approximate solution of the linear evolution equation:

∂t u = Lu = (A + B)u, u(0) = u0,(1.1)

where L, A and B are bounded operators.

∗Department of Mathematics, Humboldt University of Berlin, D-10099 Berlin, Germany
(geiser@mathematik.hu-berlin.de).

1

2

As the numerical method, we will apply a two-stage iterative splitting scheme:

ui(t) = exp(At)u0 +

∫ t

0

exp(A(t − s))Bui−1 ds,(1.2)

ui+1(t) = exp(Bt)u0 +

∫ t

0

exp(B(t − s))Aui ds,(1.3)

where i = 1, 3, 5, . . . and u0(t) = 0.
The outline of the paper is as follows. Operator-splitting methods are introduced

in Section 2 and an error analysis of operator-splitting methods is presented. In
Section 3, we discuss an error analysis of iterative methods. In Section 4, we discuss
an efficient computation of the iterative splitting method with φ-functions. In Section
5 we introduce the application of our methods to existing software tools. Finally, we
discuss future work in the area of iterative splitting methods.

2. Iterative operator splitting. In this section consistency of the iterative
splitting method is proved for unbounded generators of strongly continuous semigroup.

Consider the abstract homogenous Cauchy problem in a Banach space X

u′(t) = Au(t), t ∈ [0, T](2.1)

u(0) = u0(2.2)

Let || · || be the norm in X, and let || · ||L(X) denote the corresponding induced

operator norm. Let A be a densely defined closed linear operator in X for which
there exist real constants M ≥ 1 and ω such that the resolvent set ρ(A) satisfies
ρ(A) ⊃ (ω,∞), and we have the resolvent condition

‖ (λI − A)−n ‖L(X)≤
M

(λ − ω)n
, for λ > ω, n = 1, 2, . . .(2.3)

These are necessary and sufficient conditions for A to be the infinitesimal generator
of a C0 semigroup of bounded linear operators, which we denote by S(t), t ≥ 0,
satisfying

‖ S(t) ‖L(X)≤ Meωt(2.4)

see [?]. Then if u0 ∈ D(A), our cauchy problem has a unique solution on [0, T] given
by

u(t) = S(t)u0 .(2.5)

Consider the abstract nonhomogeneous Cauchy problem in a Banach space X

u′(t) = Au(t) + f, t ∈ [0, T](2.6)

u(0) = u0(2.7)

and suppose that A generates a C0-semigroup S(t), t ≥ 0. Then if u0 ∈ D(A) and
f ∈ C′([0, T]; X), our Cauchy problem has a unique solution on [0, T] given by

u(t) = S(t)u0 +

∫ t

0

S(t − s)f(s)ds(2.8)

3

see [15]. If we define F by

F (t, τ) =

∫ t

τ

S(t − s)f(s)ds, t ≥ τ0,(2.9)

we can define (2.8) as

u(t) = S(t)u0 + F (t, 0).(2.10)

Sometimes it can be useful to apply the iterative operator splitting approach
[9, 5, 4], when looking for approximate solutions to (2.1), (2.2). Let A1 and A2 be
infinitesimal generators of C0 semigroups S1(t), S2(t), satisfying

A1 + A2 = A, D(A1) = D(A2) = D(A),(2.11)

then we can write (2.5) as

u(t) = S2(t)u0 + F1(0, t) .(2.12)

where F1(τ, t) =
∫ t

τ S2(t − s)A1S(s)u0ds.
CASE I: Initial guess u0(t) ≡ 0
Let 0 < h ≤ T and tn = nh, n = 0, 1, 2, . . . , [T/h], then we have the following

iterative splitting algorithm for i = 1, 3, . . . , 2m + 1

u′i(t) = A1ui(t) + A2ui−1(t), tn < t < tn+1,(2.13)

ui(t
n) = un,(2.14)

u′i+1(t) = A1ui(t) + A2ui+1(t), tn < t < tn+1,(2.15)

ui+1(t
n) = un,(2.16)

where u1, u2 ∈ C′([0, T]; X), un is the known split approximation at time level t = tn

and u0 ≡ 0 is our initial guess. The split approximation at the time-level t = tn+1 is
defined as un+1 = u2m+2(t

n), and we choose to approximate u(tn) by u2m+2(t
n), see

[9, 5, 4].
When i = 1, we have

u′1(t) = A1u1(t), u1(0) = u0(2.17)

u′2(t) = A1u1(t) + A2u2(t), u2(0) = u0(2.18)

for [0, t] interval and we choose to approximate u(t) by u2(t). The Eqn. (2.17) has a
unique solution on [0, t] interval given by

u1(t) = S1(t)u0(2.19)

(2.20)

and Eqn.(2.18) has the exact solution from separation of variables such that

u2(t) = S2(t)u0 +

∫ t

0

S2(t − s)A1S1(s)u0ds(2.21)

where u2(t) is the approximate solution of our Cauchy problem. If we define

F2(t, τ) =

∫ t

τ

S2(t − s)A1S1(s)u0ds, t ≥ τ ≥ 0(2.22)

4

and if we denote u2(t) by Un, a single step of iterative splitting method can be
expressed in the form

Un+1 = S2(h)Un + F2(t
n+1, tn)(2.23)

and we can formulate the expression in terms of U0 as

Un+1 = (S2(h))n+1U0 +

n
∑

j=0

(S2(h))jF2(t
n−j+1, tn−j).(2.24)

CASE II: Initial guess u0(t) ≡ u0

Let 0 < h ≤ T and tn = nh, n = 0, 1, 2, . . . , [T/h], then we have the following
iterative splitting algorithm for i = 1, 3, . . . , 2m + 1

u′i(t) = A1ui(t) + A2ui−1(t), tn < t < tn+1,(2.25)

ui(t
n) = un,(2.26)

u′i+1(t) = A1ui(t) + A2ui+1(t), tn < t < tn+1,(2.27)

ui+1(t
n) = un,(2.28)

where u1, u2 ∈ C′([0, T]; X), un is the known split approximation at time level t = tn

and u0 ≡ 0 is our initial guess. The split approximation at the time-level t = tn+1 is
defined as un+1 = u2m+2(t

n), and we choose to approximate u(tn) by u2m+2(t
n), see

[9, 5, 4].
When i = 1, we have

u′1(t) = A1u1(t) + A2u0(t), u1(0) = u0(2.29)

u′2(t) = A1u1(t) + A2u2(t), u2(0) = u0(2.30)

for [0, t] interval and we choose to approximate u(t) by u2(t). The Eqn. (2.29) has a
unique solution on [0, t] interval given by

u1(t) = S1(t)u0 +

∫ t

0

S1(t − s)A2u0ds(2.31)

(2.32)

and Eqn.(2.30) has the exact solution from separation of variables such that

u2(t) = S2(t)u0 +

∫ t

0

S2(t − s)A1S1(s)u0ds(2.33)

+

∫ t

0

S2(t − s)A1(

∫ s

0

S1(s − σ)A2u0dσ)ds

where u2(t) is the approximate solution of our Cauchy problem. If we define

F2(t, τ) =

∫ t

τ

S2(t − s)A1S1(s)u0ds, t ≥ τ ≥ 0(2.34)

F3(t, τ) =

∫ t

τ

S2(t − s)A1(

∫ s

0

S1(s − σ)A2u0dσ)ds, t ≥ τ ≥ 0(2.35)

5

and if we denote u2(t) by Un, a single step of iterative splitting method can be
expressed in the form

Un+1 = S2(h)Un + F2(t
n+1, tn) + F3(t

n+1, tn)(2.36)

and we can formulate the expression in terms of U0 as

Un+1 = (S2(h))n+1U0

+

n
∑

j=0

(S2(h))j(F2(t
n−j+1, tn−j) + F3(t

n−j+1, tn−j)).(2.37)

3. Consistency of iterative operator splitting method. Let’s recall the
following definitions for consistency of iterative splitting methods from [1]

When CASE I
Definition 3.1. Define Th : X× [0, T − h] → X by

Th(u0, t) = S(h)u(t) − [S2(h)u(t) + F2(t + h, t)],(3.1)

where u(t) is given in (2.5), and for each u0, t, Th(u0, t) is called the local truncation

error of the iterative splitting method.
Definition 3.2. The iterative splitting method is said to be consistent on [0, T]

if

lim
h→0

sup
0≤tn≤T−h

‖Th(u0, tn)‖

h
= 0(3.2)

whenever u0 ∈ B, B being some dense subspace of X.
Definition 3.3. If in the consistency relation (3.2) we have

sup0≤tn≤T−hh−1||Th(u0, tn)|| = O(hp), p > 0,(3.3)

the method is said to be (consistent) of order p. All we have to do is to show that
the local truncation error

S(t)u(t) − S2(h)u(t) − F2(t + h, t)(3.4)

which appears inside the norm in (3.3) is O(h2) uniformly in t.
Theorem 3.4. For any C0-semigroups {S(t)}t≥0 of bounded linear operators

with corresponding infinitesimal generator A, we have the Taylor series expansion

S(t)x =

n−1
∑

j=0

tj

j!
Ajx +

1

(n − 1)!

t
∫

0

(t − s)n−1S(s)Anxds, for all x ∈ D(An)(3.5)

see[12], Section 11.8. Particularly, for n = 3, 2 and 1 we get the relations,

S(h)x = x + hAx +
h2

2
A2x +

1

2

h
∫

0

(h − s)2S(s)A3xds,(3.6)

S(h)x = x + hAx +

h
∫

0

(h − s)S(s)A2xds,(3.7)

6

S(h)x = x +

h
∫

0

S(s)Axds.(3.8)

In the following lemma, we denote the bounded operator definition with respect
to their underlying operator norms.

Lemma 3.5. Let A (resp. B) be a closed linear operator from D(A) ⊂ X (resp.
D(B) ⊂ X) into X. If D(A) ⊂ D(B), then there exists a constant C such that

‖ Bx ‖≤ C(‖ Ax ‖ + ‖ x ‖) for allx ∈ D(A).(3.9)

Proof is given in [23], Chapter II.6, Theorem 2.
For iterative spliting method we have the truncation error (3.4) as

S2(h)u(t) + F1(t + h, t) − S2(h)u(t) − F2(t + h, t)(3.10)

or

F1(t + h, t) − F2(t + h, t).(3.11)

It can be written as

F1(t + h, t) − F2(t + h, t)

=

h
∫

0

S2(h − s)A1S(s)u0ds −

h
∫

0

S2(h − s)A1S1(s)u0ds

=

h
∫

0

S2(h − s)A1(S(s) − S1(s))u0ds.(3.12)

We start with the first iterative step and obtain the following proposition.
Proposition 3.6. Let A (resp. A1, A2) be an infinitesimal generator of a C0

semigroup S(s) (resp. S1(s), S2(s)), s ≥ 0. Let (2.11) be satisfied, and let T > 0.
Then we have the approximation properties

||S(s)x − S1(s)x|| ≤ sC(T)(||Ax|| + ||x||), 0 ≤ s ≤ T,(3.13)

whenever x ∈ D(A), where C(T) is constant independent of s.
Proof. For x ∈ D(A), since A1 + A2 = A, D(A1) = D(A2) = D(A), we have

S(s)x − S1(s)x = x +

∫ s

0

S(τ)Axdτ − x −

∫ s

0

S1(τ)A1xdτ(3.14)

=

∫ s

0

S(τ)Axdτ −

∫ s

0

S1(τ)A1xdτ .(3.15)

Since S(s) and S1(s) are infinitesimal generators of C0 semigroups of bounded
linear operators for A and A1, closed linear operators, satisfying

‖ S(s) ‖L(X)≤ Meωs and ‖ S1(s) ‖L(X)≤ M1e
ω1s,(3.16)

7

and also from Lemma 3.5, we have

‖ S(s)x − S1(s)x ‖≤ sC(T)(‖ Ax ‖ + ‖ x ‖),(3.17)

where C(T) is independent of s.
For additional iterative steps we define the Proposition 3.7.
Proposition 3.7. Let A, A1 (resp. A2) be infinitesimal generators of C0 semi-

groups S(s), S1(s) (resp. S2(s)), s ≥ 0. Let (2.11) be satisfied, and let T > 0. Then
we have the approximation properties

||A1(S(s)x − S1(s)x)|| ≤ sC′(T)(||A2x|| + ||Ax||), 0 ≤ s ≤ T,(3.18)

whenever x ∈ D(A), where C′(T) is constant independent of s.
Proof. For x ∈ D(A), since A1 + A2 = A, D(A1) = D(A2) = D(A), we have

A1(S(s)x − S1(s)x) = A1x +

∫ s

0

S(τ)A1Axdτ − A1x −

∫ s

0

S1(τ)A2
1xdτ(3.19)

=

∫ s

0

S(τ)A1Axdτ −

∫ s

0

S1(τ)A2
1xdτ .(3.20)

Since S(s) and S1(s) are infinitesimal generators of C0 semigroups of bounded linear
operators for A and A1, closed linear operators, satisfying

‖ S(s) ‖L(X)≤ Meωs and ‖ S1(t) ‖L(X)≤ M1e
ω1s,(3.21)

we have

‖ A1(S(s)x − S1(s)x) ‖≤ sC′(T)(‖ A1Ax ‖ + ‖ A1x ‖),(3.22)

where C′(T) is independent of s. From Lemma 3.5, we know that we can bound
‖ A1Ax ‖ in terms of ‖ A2x ‖ + ‖ Ax ‖, similarly ‖ A2

1x ‖ in terms of ‖ A2x ‖ +
‖ Ax ‖.It follows that we have the estimate (3.18), possibly with a modified constant
C′(T).

We analyse Eq. (3.12).

‖

h
∫

0

S2(h − s)A1(S(s) − S1(s))u0ds ‖(3.23)

≤

h
∫

0

‖ S2(h − s)A1(S(s) − S1(s))u0ds ‖

≤

h
∫

0

‖ S2(h − s) ‖ ‖ A1(S(s) − S1(s)) ‖ u0ds

≤ M2e
ω2h

h
∫

0

‖ A1(S(s) − S1(s)) ‖ u0ds

≤ M2e
ω2hu0

h
∫

0

s(‖ A2x ‖ + ‖ Ax ‖)ds

≤ h2C′′(T)(‖ A2x ‖ + ‖ Ax ‖)ds.

8

When CASE II
All we have to do is to show that the local truncation error

S(t)u(t) − S2(h)u(t) − F2(t + h, t) − F3(t + h, t),(3.24)

which appears inside the norm in (3.3) is O(h3) uniformly in t.
For iterative spliting method we have the truncation error (2.36) as

S2(h)u(t) + F1(t + h, t) − S2(h)u(t) − F2(t + h, t) − F3(t + h, t),(3.25)

or

F1(t + h, t) − F2(t + h, t) − F3(t + h, t).(3.26)

It can be written as

F1(t + h, t) − F2(t + h, t) − F3(t + h, t)(3.27)

=

h
∫

0

S2(h − s)A1S(s)u0ds −

h
∫

0

S2(h − s)A1S1(s)u0ds

−

∫ h

0

S2(h − s)A1(

∫ s

0

S1(s − σ)A2u0dσ)ds

=

h
∫

0

S2(h − s)A1

(

S(s) − S1(s) −

∫ s

0

S1(s − σ)A2dσ

)

u0ds(3.28)

In the next proposition, we derive the estimation of the second iterative step.
Proposition 3.8. Let A (resp. A1, A2) be an infinitesimal generator of a C0

semigroup S(s) (resp. S1(s), S2(s)), s ≥ 0. Let (2.11) be satisfied, and let T > 0.
Then we have the approximation properties

||S(s)x − S1(s)x −

∫ s

0

S1(s − σ)A2xdσ||

≤ s2C(T)(||A2x|| + ||Ax|| + ||x||), 0 ≤ s ≤ T,(3.29)

whenever x ∈ D(A), where C(T) is constant independent of s.
Proof. For x ∈ D(A), since A1 + A2 = A, D(A1) = D(A2) = D(A), we have

S(s)x − S1(s)x −

∫ s

0

S1(s − σ)A2xdσ(3.30)

= x + sAx +

∫ s

0

(s − σ)S(σ)A2xdσ

−(x + sA1x +

∫ s

0

(s − σ)S1(σ)A2
1xdσ)

−(

∫ s

0

(A2x +

∫ σ

0

S1(σ)A1A2xdσ))ds

=

∫ s

0

(s − σ)S(σ)A2xdσ

−

∫ s

0

(s − σ)S1(σ)A2
1xdσ −

∫ s

0

∫ σ

0

S1(σ)A1A2xdσds.

9

Since S(s) and S1(s) are infinitesimal generators of C0 semigroups of bounded
linear operators for A and A1, closed linear operators, satisfying

‖ S(s) ‖L(X)≤ Meωs and ‖ S1(t) ‖L(X)≤ M1e
ω1s,(3.31)

we have

‖ S(s)x − S1(s)x −

∫ s

0

S1(s − σ)A2xdσ ‖

≤ s2C′′(T)(‖ A2x ‖ + ‖ A2
1x ‖ + ‖ A1A2x ‖),(3.32)

where C′′(T) is independent of s. From Lemma 3.5, we know that we can bound
‖ A2x ‖ in terms of ‖ Ax ‖ + ‖ x ‖, similarly ‖ A2

1x ‖ in terms of ‖ A2x ‖ + ‖ Ax ‖
and ‖ A1A2x ‖ in terms of ‖ Ax ‖ + ‖ x ‖ .It follows that we have the estimate (3.29),
possibly with a modified constant C′′(T).

Remark 3.1. The generalisation to i-th iterative steps is given as:

‖ S(s)x − Si(s)xdσ ‖≤ siC̃(T)(

i
∑

j=0

‖ Ajx ‖)(3.33)

where C̃ is a constant independet of the method and Si the ith iterative operator.

The proof can be done recurrive with the help of Propositions 3.7 and 3.8.

4. Computation of iterative splitting method. Based on the integral for-
mulation of iterative splitting schemes, it is important to formulate efficient algorithms
to solve these schemes. One efficient method is to compute integral formulations of
exp-functions with so called φ-functions, which reduces the integration to a product
of exp-functions, see [11]. Such algorithms can be expressed in a discrete formulation
by exponential Runge-Kutta methods, see [?].

With regard to computations of the matrix exponential, an overview is given in
[18].

For linear operators A, B : D(X) ⊂ X → X generating a C0 semigroup and a
scalar t ∈ IR+, we define the operators a = tA and b = tB and the bounded operators
φ0,A = exp(a), φ0,B = exp(b) and:

φk,A =

∫ 1

0

exp((1 − s)τA)
sk−1

(k − 1)!
ds,(4.1)

φk,B =

∫ 1

0

exp((1 − s)τB)
sk−1

(k − 1)!
ds,(4.2)

for k ≥ 1.

¿From this definition it is straightforward to prove the recurrence relation:

φk,A =
1

k!
I + τAφk+1,(4.3)

φk,B =
1

k!
I + τBφk+1.(4.4)

10

We apply equations (4.3) and (4.4) to our iterative schemes (2.13)-(2.15) and
obtain:

c1(τ) = exp(Aτ)c(tn) = φ0,Ac(tn),(4.5)

c2(τ) = φ0,Ac(tn) +
∞
∑

k=1

BkAφk,A,(4.6)

where we assume that B is bounded and expB =
∑∞

k=0
1
kBk.

For a bounded operator B we can apply the convolution of integrals exactly using
the Laplace transformation or using numerical integration rules.

4.1. Exact Computation of the Integrals. The algorithm of the iterative
splitting method (2.13)-(2.15) can be written in the form:

∂tc1 = Ac1(4.7)

∂tc2 = Ac1 + Bc2(4.8)

...

∂tci+1 = Aci+1 + Bci+1,(4.9)

where c(tn) is the initial condition and A, B are bounded operators.
We use the Laplace transform to solve the ordinary differential equations (4.7)-

(4.9), see also [2].
The transformations for this case are given in [2]. We need to define the trans-

formed function û = û(s, t):

ûi(s, t) :=

∞
∫

0

ui(x, t) e−sx dx .(4.10)

We obtain the following analytical solution of the first iterative steps with the
re-transformation:

c1 = exp(At)c(tn),(4.11)

c2 = A(B − A)−1 exp(At)c(tn) + A(A − B)−1 exp(Bt)c(tn).(4.12)

The solutions of the next steps can be done recursively.
The Laplace transform is given as:

c̃1 = (Is + A)−1c01(4.13)

c̃2 = (Is + B)−1c02 + (Is + B)−1Ac̃1(4.14)

c̃3 = (Is + A)−1c03 + (Is + A)−1Ac̃2(4.15)

. . . .

Here, we assume that we fulfill the following commutator:

(A − B)−1A = A(A − B)−1,(4.16)

and that we can apply the decomposition of partial fractions:

(Is + A)−1A(Is + B)−1 = (Is + A)−1(B − A)−1A

+A(B − A)−1(Is + B)−1.(4.17)

11

Here, we can derive our solutions:

c2 = exp(Bt)c(tn)(4.18)

+A(B − A)−1 exp(At)c(tn) + A(A − B)−1 exp(Bt)c(tn).

We have the following recurrent argument for the Laplace transform:
for odd iterations: i = 2m + 1,
for m = 0, 1, 2, . . .

c̃i = (Is − A)−1 cn + (Is − A)−1B c̃i−1,(4.19)

for even iterations: i = 2m, for m = 1, 2, . . .

c̃i(t) = (Is − B)−1A c̃i−1 + (Is − B)−1 cn,(4.20)

We develop the next iterative solution c3 as follows:

c3 = exp(At)c(tn)(4.21)

+BA(B − A)−1t exp(At)c(tn)

+BA(A − B)−1(B − A)−1 exp(At)c(tn)

+BA(A − B)−1(A − B)−1 exp(Bt)c(tn).

We apply the iterative steps recursively and obtain for the odd iterative scheme
the following recurrent argument:

ci = exp(At)c(tn)(4.22)

+BA(B − A)−1t exp(At)c(tn)

+ . . .

+BA . . .BA(B − A)−1 . . . (B − A)−1ti−2 exp(At)c(tn)

+BA . . .BA(B − A)−1 . . . (B − A)−1(A − B)−1(B − A)−1 exp(At)c(tn)

+ . . . + BA . . . BA(B − A)−1 . . . (B − A)−1(A − B)−1 exp(Bt)c(tn).

Remark 4.1. The same recurrent argument can be applied to the even iterative
scheme. Here, we only have to apply matrix multiplications and can skip the time-
consuming integral computations. Only two evaluations of the exponential function
for A and B are necessary. The main disadvantage of computing the iterative scheme
exactly are the time-consuming inverse matrices. These can be skipped with numerical
methods.

4.2. Numerical Computation of the Integrals. Here, our main contribu-
tions are to skip the integral formulation of the exponential functions and to apply
only matrix multiplications of the given exponential functions. Such operators can be
computed at the beginning of the evaluation.

Evaluation by Trapezoidal rule (two iterative steps).
We have to evaluate:

c2(t) = exp(Bt)c(tn) +
∫ tn+1

tn
exp(B(tn+1 − s))Ac1(s)ds, t ∈ (tn, tn+1],(4.23)

where c1(t) = exp(At) exp(Bt)c(tn).
We apply the Trapezoidal rule and obtain:

c2(t) = exp(Bt)c(tn) + 1
2∆t (B exp(At) exp(Bt) + exp(At)B) ,(4.24)

12

where c1(t) = exp(At) exp(Bt)c(tn) and ∆t = t − tn.

Evaluation by Simpson rule (three iterative steps).

We have to evaluate:

c3(t) = exp(At)c(tn) +
∫ tn+1

tn
exp(A(tn+1 − s))Bc2(s)ds, t ∈ (tn, tn+1],(4.25)

where c1(t) = exp(A t
2) exp(Bt) exp(A t

2)c(tn).

We apply the Simpson rule and obtain:

c3(t) = exp(At)c(tn) +
1

6
∆t

(

B exp(A
t

2
) exp(Bt) exp(A

t

2
)(4.26)

+ 4 exp(A
t

2
)Bexp(A

t

4
) exp(B

t

2
) exp(A

t

4
) + exp(At)B

)

,

where c1(t) = exp(At) exp(Bt)c(tn) and ∆t = t − tn.

Remark 4.2. The same result can also be derived by applying BDF3 (Backward
Differentiation Formula of Third Order).

Evaluation by Bode rule (four iterative steps).

We have to evaluate:

c4(t) = exp(Bt)c(tn) +
∫ tn+1

tn
exp(B(tn+1 − s))Ac3(s)ds, t ∈ (tn, tn+1],(4.27)

where c3(t) has to be evaluated with a third-order method.

We apply the Bode rule and obtain:

c4(t) = exp(At)c(tn) +
1

90
∆t

(

7Ac3(0) + 32 exp(B
t

4
)Ac3(

t

4
)(4.28)

+ 12 exp(B
t

2
)Ac3(

t

2
) + 32 exp(B

3t

4
)Ac3(

3t

4
) + 7 exp(Bt)Ac3(t)

)

,

where c3(t) is evaluated by the Simpson rule or another third order method. We have
∆t = t − tn.

Remark 4.3. The same result can also be derived by applying the fourth order
Gauss-Runge-Kutta method.

In the next section, we describe the numerical results of our methods.

5. Numerical Examples. In the examples, we compare the iterative splitting
method to standard splitting methods.

In the first and second examples, we apply Benchmark problems with differential
equations to test the benefits of our iterative schemes with respect to computational
time.

In the third example, we compare the standard ADI (Alternating Direction Im-
plicit) method with the iterative operator-splitting method with embedded SBDF
(Stiff Backward Differential Formula) methods as time-discretisation.

In the fourth example, we compare the standard A-B splitting method with the
iterative operator-splitting method.

We also compare CPU times for each method to reveal the benefit of the iterative
schemes.

13

5.1. First example: Systems of ODEs. In the first example, we deal with
a large system of ODEs to verify the benefit to differential equations. Here, the
computational cost increases and the balance between iterative steps and time-step
size is considered.

We deal with a system of 10 × 10 ODEs:

∂tu1 = −λ1,1u1 + λ2,1u2 + . . . + λ10,1u10,(5.1)

∂tu2 = λ1,2u1 − λ2,2(t)u2 + . . . + λ10,2u10 ,(5.2)

...(5.3)

∂tu10 = λ1,10u1 + λ2,10(t)u2 + . . . − λ10,10u10 ,(5.4)

u1(0) = u1,0, . . . , u10(0) = u10,0 (initial conditions) ,(5.5)

where λ1(t) ∈ IR+ and λ2(t) ∈ IR+ are the decay factors and u1,0, . . . , u10,0 ∈ IR+.
The time interval t ∈ [0, T].

We rewrite the equation (5.1) in operator notation and we concentrate on the
following equations :

∂tu = A(t)u + B(t)u ,(5.6)

where u1(0) = u10 = 1.0 , u2(0) = u20 = 1.0 are the initial conditions and the
operators are

A =





−λ1,1(t) . . . λ10,1(t)
λ1,5(t) . . . λ10,5(t)

0 . . . 0



 , B =





0 0
λ1,6(t) . . . λ10,6(t)
λ1,10(t) . . . −λ10,10(t)



 .(5.7)

λ1,1 = 0.09, λ2,1 = 0.01, . . . , λ10,1 = 0.01(5.8)

...

λ1,10 = 0.01, . . . λ9,10 = 0.01, . . . , λ10,10 = 0.09.(5.9)

Further, we also consider Ã = At and B̃ = Bt as a combination of operators A and
B. Such combinations have no influence on the splitting scheme, see also [8], and we
consider the balance between time and number of iterations.

We compare with standard schemes, such as A-B splitting or Strang splitting, see
table 5.1. The algorithms are implemented in Maple 7.0 and tested on a Linux PC
with a 2.0 GHz Athlon processor.

In various tests, we consider the optimal balance between time and number of
iterations, which is presented in Figure 5.1.

Remark 5.1. For larger systems of differential equations, we obtain the same
higher order results as for lower systems. For more accuracy also the computational
time for at least a 3rd order iterative scheme is less expensive. At least a balance
between the order and computational time is important, while lower order schemes
save computational time with moderate accuracy, e.g. 10−12, higher order schemes
have computational benefits above an accuracy of 10−15.

5.2. Second example: Diffusion Equation. In the second example, we deal
with a partial differential equation and again verify the theoretical results. The equa-
tion is given by:

∂u

∂t
= D

∂2u

∂x2
, in Ω × [0, T],(5.10)

14

Method n Number of iterations CPU Time in s
iter. 1 0.1024
iter. 2 0.2055
iter. 3 2.8898
iter. 4 15.7266

AB - 0.1024
Strang - 0.1228

Table 5.1

Numerical results for second example compared with standard AB and Strang Splitting methods.

10
−1

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

c
1
...c

3
 with A,B

∆t

er
r L1

c
1

c
2

c
3

Fig. 5.1. Numerical errors of splitting schemes, x-axis: time, y-axis: L1-error, results of
iterative splitting schemes with (1-3 iterative steps).

u(x, 0) = sin(πx), on Ω,(5.11)

u = 0, on ∂Ω × [0, T],(5.12)

with exact solution

uexact(x, t) = sin(πx) exp(−Dπ2t) .

We choose D = 0.0025 , t ∈ [0, T] = [0, 1] and x ∈ Ω = [0, 1].
For spatial discretization, we use an upwind finite difference discretization:

∂−∂+ui =
ui+1 − 2ui + ui−1

∆x2
.(5.13)

and we set the space step size to ∆x = 1
100 .

Our operator is then given by

A =
D

∆x2
·















0
1 −2 1

. . .
. . .

. . .

1 −2 1
0















(5.14)

15

We split the space interval into two intervals by splitting Matrix A into two Matrices:

(

A1

A2

)

:= A .(5.15)

We now solve the problem

∂tu = A1u + A2u.

We use Iterative Operator-Splitting with a Pade approximation and different
discretization steps ∆x.

Based on the CFL condition of a discretized scheme with the iterative splitting
scheme we have:

2D

∆x2
τ i ≤ err ≤ 1,(5.16)

2D N2 τ i ≤ err ≤ 1,(5.17)

where ∆x = 1
N is the spatial step and N are the number of spatial points, τ is the time

step and i the order of the iterative scheme. Further, D is the diffusion parameter.
We obtain for the restriction of the time step:

2D

∆x2
τ i ≤ err ≤ 1(5.18)

τ ≤
(err

2D N2
)

1
i

)

.(5.19)

We must consider a balance between the spatial step size, time step size and
number of iterative steps.

Here, we could not obtain more accurate results, while using additional iterative
steps gave improved results. The CFL condition is important, while balancing time
and space. Additionally we see an improvement with more iterative steps, if we
consider sufficiently small time steps.

We compare with standard schemes, such as A-B splitting or Strang splitting, see
table 5.2:

Method n Number of iterations CPU Time in s
iter. 2 0.0815
iter. 3 0.1408
iter. 4 0.2065
iter. 5 0.2970
iter. 6 0.4020

AB - 0.1399
Strang - 0.1875

Table 5.2

Numerical results for the second example compared with standard AB and Strang Splitting
methods.

The numerical results of the iterative schemes are given in Figure 5.2.

16

10
−2

10
−1

10
0

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

∆t

er
r L1

c
1
...c

4
 with N=100

c
1

c
2

c
3

c
4

Fig. 5.2. Numerical results for exponential splitting schemes of diffusion equation with N = 100
spatial points.

Remark 5.2. For partial differential equations, additional balancing problems
between time and spatial scales are involved and we must deal with the CFL condi-
tion. We obtain the same higher order results as for ODE systems, by considering
optimal CFL conditions and controlling the spatial scale with the time scale. For more
accuracy, we have taken into account at least four iterative steps, which benefits small
time steps and we obtain higher accuracy. Therefore, fine spatial grids are necessary
to see the benefits of iterative splitting schemes.

5.3. Third example: Heat Equation. In this section, we apply the proposed
methods to the following two-dimensional problems. We consider the following heat
conduction equation as a test problem with initial and boundary conditions:

∂u

dt
= Dx

∂2u

∂x2
+ Dy

∂2u

∂y2
,(5.20)

u(x, y, 0) = uanaly(x, y, 0), on Ω,(5.21)

∂u(x, y, t)

∂n
= 0, on Ω × (0, T),(5.22)

where u(x, y) is a scalar function, ω = [0, 1] × [0, 1]. The analytical solution of the
problem is given by

uanaly(x, y, t) = exp(−(Dx + Dy)π
2t) cos(πx) cos(πy).(5.23)

For approximation error, we choose L∞ and L1 which are given by

errL∞
:= max(max(|u(xi, yj, t

n) − uanaly(xi, yj, t
n)|))

errL1
:=

m
∑

i,j=1

△x△y|u(xi, yj, t
n) − uanaly(xi, yj , t

n)|

17

Table 5.3

Comparison of errors at T=0.5 with various ∆x and ∆y when Dx = Dy = 1 and dt = 0.0005.

∆x=∆y errL∞
errL1

CPU times

ADI 1/2 2.8374e-004 2.8374e-004 0.787350
1/4 3.3299e-005 2.4260e-005 2.074755

1/16 1.6631e-006 8.0813e-007 22.227760

SBDF2 1/2 2.811e-004 2.811e-004 0.167132
1/4 3.2519e-005 2.3692e-005 0.339014

1/16 1.1500e-006 5.5882e-007 2.907924

SBDF3 1/2 2.7841e-004 2.7841e-004 0.312774
1/4 3.1721e-005 2.3111e-005 0.460088

1/16 6.2388e-007 3.0315e-007 4.217704

SBDF4 1/2 2.7578e-004 2.7578e-004 0.400968
1/4 3.0943e-005 2.2544e-005 0.718028

1/16 1.1155e-007 5.4203e-008 5.550207

errL1
:= |u(tn) − uanaly(tn)|

Our numerical results obtained by a standard ADI method and by an iterative
operator-splitting method with k = 1, 2, 3, where the underlying time-discretization
method is a SBDFk, k=1,2,3, where k stands for the order of the SBDF (Stiff Back-
ward Differential Formula) method, are presented in Tables (5.3), (5.4) and (5.5) for
various diffusion coefficients.

First, we fix the diffusion coefficients at Dx = Dy = 1 with time step dt = 0.0005.
Comparison of L∞, L1 at T=0.5 and CPU time are presented in Table (5.3) for various
spatial step sizes.

In the second experiment, the diffusion coefficients are fixed at Dx = Dy = 0.001
for the same time step. Comparison of errors L∞, L1 at T=0.5 and CPU time are
presented in Table 2 for various spatial steps, ∆x and ∆y.

In the third experiment, the diffusion coefficients are fixed at Dx = Dy = 0.00001
for the same time step. Comparison of errors L∞, L1 at T=0.5 and CPU time are
presented in Table (5.5) for various spatial steps, ∆x and ∆y.

As a second example, we deal with the following time-dependent partial differen-
tial equation:

∂tu(x, y, t) = ǫ2uxx + uyy − (1 + ǫ2 + 4ǫ2y2 + 2ǫ)e−tex+ǫy2

(5.24)

u(x, y, 0) = ex+ǫy2

in Ω = [−1, 1]× [−1, 1](5.25)

u(x, y, t) = e−tex+ǫy2

on ∂Ω(5.26)

with exact solution

u(x, y, t) = e−tex+ǫy2

(5.27)

The operators are split with respect to the ǫ scale as follows:

Au =
{

ǫ2uxx − (1 + ǫ2 + 4ǫ2y2 + 2ǫ)e−tex+ǫy2

for (x, y) ∈ Ω

18

Table 5.4

Comparison of errors at T=0.5 with various ∆x and ∆y for Dx = Dy = 0.001 and dt = 0.0005.

∆x=∆y errL∞
errL1

CPU times

ADI 1/2 0.0019 0.0019 0.786549
1/4 4.9226e-004 3.5864e-004 2.090480

1/16 3.1357e-005 1.5237e-005 22.219374

SBDF2 1/2 0.0018 0.0018 0.167021
1/4 4.8298e-004 3.5187e-004 0.341781

1/16 2.1616e-005 1.0503e-005 2.868618

SBDF3 1/2 0.0018 0.0018 0.215563
1/4 4.7369e-004 3.4511e-004 0.461214

1/16 1.1874e-005 5.7699e-006 4.236695

SBDF4 1/2 0.0018 0.0018 0.274806
1/4 4.6441e-004 3.3835e-004 0.717014

1/16 2.1330e-006 1.0365e-006 5.517444

Table 5.5

Comparison of errors at T=0.5 with various ∆x and ∆y for Dx = Dy = 0.00001 and dt = 0.0005.

∆x=∆y errL∞
errL1

CPU times

ADI 1/2 1.8694e-005 1.8694e-005 0.783630
1/4 4.9697e-006 3.6207e-006 2.096761

1/16 3.1665e-007 1.5386e-007 22.184733

SBDF2 1/2 1.8614e-005 1.8614e-005 0.167349
1/4 4.8760e-006 3.5524e-006 0.342751

1/16 2.1828e-007 1.0606e-007 2.864787

SBDF3 1/2 1.8534e-005 1.8534e-005 0.216137
1/4 4.7823e-006 3.4842e-006 0.465666

1/16 1.1991e-007 5.8265e-008 4.256818

SBDF4 1/2 1.8454e-005 1.8454e-005 0.399424
1/4 4.688e-006 3.4159e-006 0.714709

1/16 2.1539e-008 1.0466e-008 5.501323

and
Bu =

{

uyy for (x, y) ∈ Ω
Comparison of errors for ∆x = 2/5 with respect to various ∆t and ǫ values with

SBDF3 are given in table (5.3):
In table (5.8), we compare the numerical solution of our second model problem

implemented with the Iterative Operator-Splitting method solved by the trapezodial
rule, SBDF2 and SBDF3.

The exact solution, approximate solution obtained by iterative splitting and
SBDF3 and error are shown in Figure (5.6).

Remark 5.3. In the numerical example, we apply standard splitting methods and
the iterative splitting methods. The benefit of the iterative splitting methods are more
accurate solutions in shorter CPU time. The application of SBDF methods as standard

19

Table 5.6

Comparison of errors at T=0.5 with various ∆x and ∆y when Dx = 1,Dy = 0.001 and dt =
0.0005.

∆x=∆y errL∞
errL1

CPU times

ADI 1/2 0.0111 0.0111 0.787006
1/4 0.0020 0.0015 2.029179

1/16 1.1426e-004 5.5520e-005 21.959890

SBDF2 1/2 0.0109 0.0109 0.210848
1/4 0.0019 0.0014 0.385742

1/16 2.5995e-005 1.2631e-005 2.913781

SBDF3 1/2 0.0108 0.0108 0.316777
1/4 0.0018 0.0013 0.454392

1/16 4.4834e-005 2.1785e-005 4.227773

SBDF4 1/2 0.0106 0.0106 0.395751
1/4 0.0017 0.0013 0.709488

1/16 1.1445e-004 5.5613e-005 5.562917

0
0.5

1

0

0.5

1
−1

0

1

x

Numerical solt. of 2D−Heat Eqn. by SBDF at T=0.5

y

un
3

0
0.5

1

0

0.5

1
−1

0

1

x

Exact solt. of 2D−Heat Eqn. at T=0.5

y

ue

0
0.5

1

0

0.5

1
0

2

4

6

x 10
−7

x

Error at T=0.5

y

ue
rr

Fig. 5.3. Comparison of errors at T=0.5 with various ∆x and ∆y for Dx = Dy = 0.01 and dt = 0.0005.

20

0
0.5

1

0

0.5

1
−1

0

1

x

Numerical solt. of 2D−Heat Eqn. by ADI at T=0.5

y

u1

0
0.5

1

0

0.5

1
−1

0

1

x

Exact solt. of 2D−Heat Eqn. at T=0.5

y

ue

0
0.5

1

0

0.5

1
0

0.5

1

x 10
−6

x

Error at T=0.5

y

ue
rr

Fig. 5.4. Comparison of errors at T=0.5 with various ∆x and ∆y for Dx = Dy = 0.01 and dt = 0.0005.

Table 5.7

Numerical results for the second problem with the Iterative Operator-Splitting method and
SBDF3 with ∆x = 2

5
.

ǫ ∆t errL∞
errL1

CPU times

0.1 2/5 0.0542 0.0675 0.422000
2/25 0.0039 0.0051 0.547000

2/125 5.6742e-005 5.9181e-005 0.657000

0.001 2/5 7.6601e-004 8.6339e-004 0.610000
2/25 4.3602e-005 5.4434e-005 0.625000

2/125 8.0380e-006 1.0071e-005 0.703000

time discretization schemes accelerates the solving process with more or less than 2 or
3 iterative steps. Such stiff problems can be solved by an efficient combination of the
iterative operator-splitting scheme and SBDF methods with more accuracy than the
SBDF method without splitting.

5.4. Fourth Experiment: Advection-diffusion equation. We tackle the 2-
dimensional advection-diffusion equation with periodic boundary conditions

∂tu = −v∇u + D∆u,(5.28)

21

−1
0

1

−1

0

1
0

0.5

1

1.5

xy

ua
pp

ro
x

−1
0

1

−1

0

1
0

0.5

1

1.5

xy

ue
xa

ct

−1
0

1

−1

0

1
0

0.5

1

x 10
−5

xy

ue
rr

or

Fig. 5.5. Exact solution, numerical solution and error at T=0.5 with various ∆x and ∆y for ∆x = 2

5

and ∆t = 2

125

Table 5.8

Numerical results for the second problem with the Iterative Operator-Splitting method by the
Trapezodial rule, SBDF2 and SBDF3 with ∆x = 2

5

ǫ ∆t errL∞
errL1

CPU times

Trapezodial 1 2/25 0.9202 1.6876 0.141600
2/125 0.8874 1.6156 0.298121

SBDF2 1 2/25 0.0473 0.0917 0.131938
2/125 0.0504 0.0971 0.204764

SBDF3 1 2/25 0.0447 0.0878 0.149792
2/125 0.0501 0.0964 0.537987

= −vx
∂u

∂x
− vy

∂u

∂y
+ D

∂2u

∂x2
+ D

∂2u

∂y2
,(5.29)

u(x, t0) = u0(x),(5.30)

with parameters

vx = vy = 1,(5.31)

D = 0.01,(5.32)

t0 = 0.25.(5.33)

22

−1
0

1

−1

0

1
0

0.5

1

1.5

xy

ua
pp

ro
x

−1
0

1

−1

0

1
0

0.5

1

1.5

xy

ue
xa

ct

−1
0

1

−1

0

1
0

0.5

1

x 10
−5

xy

ue
rr

or

Fig. 5.6. Exact solution, numerical solution and error at T=0.5 with various ∆x and ∆y for ∆x = 2

5

and ∆t = 2

125

The advection-diffusion problem has an analytical solution

ua(x, t) =
1

t
exp

(

−(x − vt)2

4Dt

)

,(5.34)

which we will use as a convenient initial function:

u(x, t0) = ua(x, t0).(5.35)

We apply dimensional splitting to our problem:

∂u

∂t
= Axu + Ayu,(5.36)

where:

Ax = −vx
∂u

∂x
+ D

∂2u

∂x2
(5.37)

Ay = −vy
∂u

∂y
+ D

∂2u

∂y2
.(5.38)

We use a 1st order upwind scheme for ∂
∂x and a 2nd order central difference scheme

for ∂2

∂x2 . By introducing the artificial diffusion constant Dx = D − vx∆x
2 we achieve a

23

Fig. 5.7. Principle of AB-Splitting.

2nd order finite difference scheme

Lxu(x) = −vx
u(x) − u(x − ∆x)

∆x
(5.39)

+ Dx
u(x + ∆x) + u(x) + u(x − ∆x)

∆x2
,

because the new diffusion constant eliminates the first order error (i.e. numerical
viscosity) of the Taylor expansion of the upwind scheme. Lyu is derived in the same
way.
We apply a BDF5 method to gain 5th order accuracy in time:1

Ltu(t)=
1

∆t

(

137

60
u(t + ∆t) − 5u(t) + 5u(t − ∆t)

−
10

3
u(t − 2∆t) +

5

4
u(t − 3∆t) −

1

5
u(t − 4∆t)

)

.(5.40)

Our aim is to compare the iterative splitting method with AB splitting (Lie-
Trotter splitting, see [6]). Since [Ax, Ay] = 0, there is no splitting error for AB
splitting and therefore we cannot expect to achieve better results with the iterative
splitting in terms of general numerical accuracy. Instead, we will show that iterative
splitting out-competes AB splitting in terms of computational effort and round-off
errors. But first some remarks need to be made about the special behaviour of both
methods when combined with high order Runge-Kutta and BDF methods.

5.4.1. Splitting and Schemes of High Order in Time. Concerning AB-
Splitting: The principle of AB-splitting is well-known and simple. The equation

1Please note that the dependencies of u(x, t) are suppressed for the sake of simplicity.

24

du
dt = Au + Bu is broken down to:

dun+1/2

dt
= Aun+1/2

dun+1

dt
= Bun+1

which are connected via un+1(t) = un+1/2(t + ∆t). This is pointed out in figure
(5.7). AB splitting works very well for any given one-step method like the Crank-
Nicholson-Scheme. When the splitting error (which is an error in time) is not taken
into account, it is also compatible with high order schemes such as explicit/implicit
Runge-Kutta-schemes.
A different perspective is found if one tries to use a multi-step method like the implicit
BDF or the explicit Adams method with AB splitting, as these cannot be properly
applied as shown by the following example:
Choose for instance a BDF2 method which, in the case of du/dt = f(u), has the
scheme

3

2
u(t + ∆t) − 2u(t) +

1

2
u(t − ∆t) = ∆tf(u(t + ∆t)).

So, the first step of AB splitting looks like:

3

2
un+1/2(t + ∆t) − 2un+1/2(t) +

1

2
un+1/2(t − ∆t) = ∆tAu(t + ∆t)

Clearly, un+1/2(t) = un(t) but what is un+1/2(t − ∆t)? This is also shown in figure
(5.7) and it is obvious that we won’t have knowledge about un+1/2(t−∆t) unless we
compute it separately, which means additional computational effort. This overhead
increases dramatically when we move to a multi-step method of higher order.
The mentioned problems with AB splitting will not occur with a higher order Runge-
Kutta method since only knowledge of un(t) is needed.

5.4.2. Remarks about iterative splitting:. The BDF methods apply very
well to iterative splitting. Let us recall at this point that this method, although being
a real splitting scheme, always remains a combination of the operators A and B, so
no steps have to be performed in one direction only 2.
In particular, we make a subdivision of our existing time-discretization tj = t0 + j∆t
into I parts. So we have sub-intervals tj,i = tj + i∆t/I, 0 ≤ i ≤ I on which we solve
the following equations iteratively:

dui/I

dt
= Aui/I + Bu(i−1)/I(5.41)

du(i+1)/I

dt
= Aui/I + Bu(i+1)/I(5.42)

u−1/I is either 0 or a reasonable approximation3 while u0 = u(tj) and u1 = u(tj +∆t).
The crucial point here is that we only know our approximations at given times which

2As we will see there is an exception to this.
3In fact the order of the approximation is not of much importance if we complete a sufficient

number of iterations. In the case u−1/I = 0, we have the exception that a step in the A-direction is
done while B is left out. The error of this step certainly vanishes after a few iterations, but mostly
after only one iteration

25

Table 5.9

Practicability of single- and multi-step methods (s.s.m: single-step methods, m.s.m. multi-step
methods).

low order s.s.m. high order s.s.m. m.s.m.
AB-splitting X X -

Iterative splitting X - X

Table 5.10

Errors and computation times of AB splitting and iterative splitting for a 40x40 grid.

Number Error AB Error It.spl. AB computation It. spl. computation
of steps time time

5 0.1133 0.1154 0.203 s 0.141 s
10 0.1114 0.1081 0.500 s 0.312 s
30 0.1074 0.1072 1.391 s 0.907 s
50 0.1075 0.1074 2.719 s 1.594 s

happen not to be the times at which a Runge-Kutta (RK) method needs to know
them. Therefore, in the case of a RK method, the values of the approximations have
to be interpolated with at least the accuracy one wishes to attain with the splitting
and this means a lot of additional computational effort. We can now summarize
our results in table 5.9 which shows which methods are practicable for each kind of
splitting scheme.4

5.4.3. Numerical results. After resolving the technical aspects of this issue,
we can now proceed to the actual computations. A question which arises is which of
the splitting methods requires the least computational effort since we can expect all
of them to solve the problem with more or less the same accuracy if we use practicable
methods with equal order, as [Ax, Bx] = 0. We have tested the dimensional splitting
of the 2-dimensional advection-diffusion equation with AB splitting combined with
a 5th order RK method after Dormand and Prince, and with iterative splitting in
conjunction with a BDF5 scheme. We used 40x40 and 80x80 grids and completed nt

time steps each subdivided into 10 smaller steps until we reached a time tend = 0.6
which is sufficient to see the main effects. Iterative splitting was performed with 2
iterations which was already sufficient to attain the desired order. In tables 5.10 and
5.11, the errors at time tend and the computation times are shown.

Remark 5.4. As we can see, the error in the iterative splitting scheme reaches
the same value as the AB splitting error after a certain number of time steps and
remains below it for all additional steps we accomplish. Of course, the error cannot
drop below a certain value which is governed by the spatial discretization increments.
It can be noted that, while the computation time used for iterative splitting is always
about 20-40% less than that for AB splitting5 the accuracy is, with a sufficient num-
ber of time steps, slightly better than that of AB splitting. This is due to the roundoff

4Something in favour of the iterative splitting scheme is that it also takes into the account the
fact that AB splitting may be used alongside the high order methods alluded to but cannot maintain
the order if [A, B] 6= 0, while the iterative splitting scheme re-establishes the maximum order of the
scheme after a sufficient number of iterations have been completed.

5The code for both methods is kept in the simplest possible form.

26

Table 5.11

Errors and computation times of AB splitting and iterative splitting for a 80x80 grid.

Number Error AB Error It.spl. AB computation It. spl. computation
of steps time time

5 0.0288 0.0621 0.812 s 0.500 s
10 0.0276 0.0285 2.031 s 1.266 s
30 0.0268 0.0267 6.109 s 4.000 s
50 0.0265 0.0265 12.703 s 7.688 s

error which is higher for the Runge-Kutta method because of the greater amount of
basic operations needed to compute RK steps.
A future task will be to introduce non-commuting operators in order to show the su-
periority of iterative splitting over AB splitting when the order in time is reduced due
to the splitting error.

6. Conclusions and Discussions . We have presented an iterative operator-
splitting method as a competitive method to compute splittable differential equations.
On the basis of an integral formulation of the iterative scheme, we have presented an
error analysis and the local error for bounded operators. Numerical examples confirm
the method’s application to ordinary differential and partial differential equations.
Here, an optimal balance of time, space and number of iteration steps is necessary
and a one order reduction is obtained. In the future, we will focus on the develop-
ment of improved operator-splitting methods for application to nonlinear differential
equations.

7. Appendix: Extension to unbounded operators and proof ideas. The
following algorithm is based on the iteration with fixed-splitting discretization step-
size τ , namely, on the time-interval [tn, tn+1] we solve the following sub-problems
consecutively for i = 0, 2, . . .2m. (cf. [10, 14].):

∂ci(t)

∂t
= Aci(t) + Bci−1(t), with ci(t

n) = cn(7.1)

and c0(t
n) = cn , c−1 = 0.0,

∂ci+1(t)

∂t
= Aci(t) + Bci+1(t),(7.2)

with ci+1(t
n) = cn ,

where cn is the known split approximation at the time-level t = tn. The split approx-
imation at the time-level t = tn+1 is defined as cn+1 = c2m+1(t

n+1). (Clearly, the
function ci+1(t) depends on the interval [tn, tn+1], too, but, for the sake of simplicity,
in our notation we omit the dependence on n.)

7.1. Two unbounded Operators. Theorem 7.1. Let us consider the abstract
Cauchy problem in a Banach space X

∂tc(x, t) = Ac(x, t) + Bc(x, t), 0 < t ≤ T and x ∈ Ω,

c(x, 0) = c0(x), x ∈ Ω,

c(x, t) = c1(x, t), x ∈ ∂Ω × [0, T],

(7.3)

27

where A, B : D(X) → X are given linear operators which are generators of the C0-
semigroup and c0 ∈ X is a given element. We assume A and B have the same
domains dom(A) = dom(B).

Further, we assume the following bounds:

||Bα exp(Bτn)|| ≤ κτ−α
n .(7.4)

||Bα exp((A + B)τn)|| ≤ κτ−α
n ,(7.5)

|| exp(Aτn)B1−α|| ≤ κ̃τp(1−α)
n ,(7.6)

||Aβ exp(Aτn)|| ≤ κτ−β
n .(7.7)

||Aβ exp((A + B)τn)|| ≤ κτ−β
n ,(7.8)

|| exp(Bτn)A1−β || ≤ κ̃τq(1−β)
n ,(7.9)

where α, β, p, q ∈ (0, 1) and τn = (tn+1 − tn).
The error of the first time-step is of accuracy O(τm

n), where τn = tn+1−tn and we
have equidistant time-steps, with n = 1, . . . , N . Then the iteration process (7.1)–(7.2)
for i = 1, 3, . . . , 2m + 1 is consistent with the order of the consistency O(τm+αm

n),
where 0 ≤ α < 1.

Proof. Let us consider the iteration (7.1)–(7.2) on the sub-interval [tn, tn+1].
For the first iterations we have:

∂tc1(t) = Ac1(t), t ∈ (tn, tn+1],(7.10)

and for the second iteration we have:

∂tc2(t) = Ac1(t) + Bc2(t), t ∈ (tn, tn+1],(7.11)

In general we have:
for the odd iterations: i = 2m + 1 for m = 0, 1, 2, . . .

∂tci(t) = Aci(t) + Bci−1(t), t ∈ (tn, tn+1],(7.12)

where for c0(t) ≡ 0.
for the even iterations: i = 2m for m = 1, 2, . . .

∂tci(t) = Aci−1(t) + Bci(t), t ∈ (tn, tn+1],(7.13)

We have the following solutions for the iterative scheme:
the solutions for the first two equations are given by the variation of constants:

c1(t) = exp(A(t − tn))c(tn), t ∈ (tn, tn+1],(7.14)

c2(t)= exp(B(t − tn))c(tn)(7.15)

+

∫ tn+1

tn

exp(B(tn+1 − s))Ac1(s)ds, t ∈ (tn, tn+1].

For the recursive even and odd iterations we have the solutions: For the odd
iterations: i = 2m + 1 for m = 0, 1, 2, . . .

ci(t) = exp(A(t − tn))c(tn) +
∫ t

tn exp((t − s)A)Bci−1(s) ds, t ∈ (tn, tn+1],(7.16)

28

For the even iterations: i = 2m for m = 1, 2, . . .

ci(t) = exp(B(t − tn))c(tn) +
∫ t

tn exp((t − s)B)Aci−1(s) ds, t ∈ (tn, tn+1],(7.17)

The consistency is given as:
For e1 we have:

c1(t
n+1) = exp(Aτn)c(tn),(7.18)

c(tn+1) = exp((A + B)τn)c(tn) = exp(Aτn)c(tn)(7.19)

+

∫ tn+1

tn

exp(A(tn+1 − s))B exp((s − tn)(A + B))c(tn) ds.

We obtain:

||e1|| = ||c − c1|| ≤ || exp((A + B)τn)c(tn) − exp(Aτn)c(tn)||(7.20)

≤ ||

∫ tn+1

tn

exp(A(tn+1 − s))B exp((s − tn)(A + B))c(tn) ds||

≤ ||

∫ tn+1

tn

exp(A(tn+1 − s))B1−αBα exp((s − tn)(A + B))c(tn) ds||

≤

∫ tn+1

tn

|| exp(A(tn+1 − s))B1−α|| ||Bα exp((s − tn)(A + B))|| ds ||c(tn)||

≤

∫ tn+1

tn

1

(tn+1 − s)p(1−α)

κ

(s − tn)α
ds ||c(tn)||

≤

∫ tn+1/2

tn

(
κ

(s − tn)α
+

C

τp(1−α)
)ds

+

∫ tn+1

tn+1/2

(
C

τα
+

C

(tn+1 − s)p(1−α)
)ds

≤ C(τ1−α + τpα + τα + τpα)

≤ Cτmin((1−α),pα) ||c(tn)||(7.21)

where α, p ∈ (0, 1) and τ = (tn+1 − tn).
See assumption to the interval see Figure 7.1:
For e2 we have:

c2(t
n+1) = exp(Bτn)c(tn)

+

∫ tn+1

tn

exp(B(tn+1 − s))A exp((s − tn)A)c(tn) ds,(7.22)

c(tn+1) = exp(Bτn)c(tn)

+

∫ tn+1

tn

exp(B(tn+1 − s))A exp((s − tn)A)c(tn) ds

+

∫ tn+1

tn

exp(B(tn+1 − s))A(7.23)

∫ s

tn

exp(A(s − ρ))B exp((ρ − tn)(A + B))c(tn) dρ ds.

29

tn tn+1

(1−)α
(s − t)n p

(t − s)αn+1
f(s)

s

Fig. 7.1. Function of the estimations.

We obtain:

||e2|| ≤ || exp((A + B)τn)c(tn) − c2||(7.24)

= ||

∫ tn+1

tn

exp(B(tn+1 − s))A(7.25)

∫ s

tn

exp(A(s − ρ))B exp((ρ − tn)(A + B))c(tn) dρ ds||

=

∫ tn+1

tn

|| exp(B(tn+1 − s))A1−α||(7.26)

∫ s

tn

||Aα exp(A(s − ρ))B exp((ρ − tn)(A + B))c(tn) dρ||ds

=

∫ tn+1/2

tn

(

κ1

(tn+1 − s)p1(1−α1)
+

κ2

(tn+1 − s)p2(1−α2)
+

C1

τ1−α2

)

ds(7.27)

+

∫ tn+1

tn+1/2

(

C2

τ1−α1
+

C1

τ (1−α2)
+

κ2

(s − tn)α2

)

ds(7.28)

≤ Cτmin((1−α1),p1α1,(1−α2),p2α2) ||c(tn)||.

For odd and even iterations, the recursive proof is given in the following. In the
next steps, we shift tn → 0 and tn+1 → τn for simpler calculations, see [13]. The
initial conditions are given with c(0) = c(tn).

For the odd iterations: i = 2m + 1, with m = 0, 1, 2, . . ., we obtain for ci and c:

ci(τn) = exp(Aτn)c(0)(7.29)

+

∫ τn

0

exp(As)B exp((τn − s)B)c(0) ds

+

∫ τn

0

exp(As1)B

∫ τn−s1

0

exp(s2B)A exp((τn − s1 − s2)A)c(0) ds2 ds1

+ . . . +

+

∫ τn

0

exp(As1)B

∫ τn−s1

0

exp(s2A)B

∫ τn−s1−s2

0

exp(s3A)B . . .

∫ τn−
∑

i−1

j=1
sj

0

exp(Asi)B exp((τn −

i−1
∑

j=1

sj)A)c(0) dsi . . . ds1,

30

c(τn) = exp(Aτn)c(0)(7.30)

+

∫ τn

0

exp(As)B exp((τn − s)B)c(0) ds

+

∫ τn

0

exp(As1)B

∫ τn−s1

0

exp(s2B)A exp((τn − s1 − s2)A)c(0) ds2 ds1

+ . . . +

+

∫ τn

0

exp(As1)B

∫ τn−s1

0

exp(s2A)B

∫ τn−s1−s2

0

exp(s3A)B . . .

∫ τn−
∑i−1

j=1
sj

0

exp(Asi)B exp((τn −

i−1
∑

j=1

sj)A)c(0) dsi . . . ds1

+

∫ τn

0

exp(As1)B

∫ τn−s1

0

exp(s2A)B

∫ τn−s1−s2

0

exp(s3A)B . . .

∫ τn−
∑

i

j=1
sj

0

exp(Asi+1)B exp((τn −

i
∑

j=1

sj)(A + B))c(0) dsi+1 . . . ds1.

By shifting 0 → tn and τn → tn+1, we obtain our result:

||ei|| ≤ || exp((A + B)τn)c(tn) − ci||(7.31)

≤ C̃τ
mini

j=1(1−αi,piαi)
n ||c(tn)||,

where α = mini
j=1{αi} and 0 ≤ αi < 1, 0 < pi < 1.

The same proof idea can be applied to the even iterative scheme.

Remark 7.1. An application is given to A = ∇D1∇ , B = ∇D2∇, where D1, D2

are diffusion coefficients
and the convergence order is given as

||e1|| = C̃τmin(1−α1,p1α1)
n ||c(tn)|| + O(τ1+α1

n)(7.32)

and hence

||e2|| = ˜̃C||e0||τ
min(1−α1,p1α1)+min(1−β1,q1β1)
n

+O(τ1+min(1−α1,p1α1)+min(1−β1,q1β1)
n),(7.33)

where 0 ≤ α1, α2 < 1.
Remark 7.2. If we assume the consistency of O(τm

n) for the initial value e1(t
n)

and e2(t
n), we can redo the proof and obtain at least a global error of the splitting

methods of O(τm−1
n).

7.2. Exponential Runge-Kutta Method. The computations of the methods
can be done as:

c1(t
n+1) = exp(Aτ)c(tn)(7.34)

c2(t
n+1) = (φ0(Bτ) + φ1(Bτ)Aαφ0(Aτ))c(tn),(7.35)

where we assume ||Aαφ0(Aτ)|| ≤ τ−αC and φ0(z) = exp(z), φ1(z) = φ0(z)−1
z .

31

7.3. Unbounded / Bounded Scheme. We propose the following algorithm
is based on the iteration with fixed-splitting discretization step-size τ , namely, on
the time-interval [tn, tn+1] we solve the following sub-problems consecutively for i =
0, 1, . . .m. (cf. [10, 14].):

∂ci+1(t)

∂t
= Aci+1(t) + Bci(t), with ci(t

n) = cn(7.36)

where cn is the known split approximation at the time-level t = tn and c0(t) = 0.
We have the following assupmtions:
Assumption 7.1.

Let: A : D(A) → X be sectorial, i.e. A is densly defined and closed linear operator
on X satisfying the resolvent condition:

||(λI − A)−1||X←X ≤
M

|λ − a|
(7.37)

on the sector {λ ∈ IC : θ ≤ |arg(λ − a)| ≤ π, λ 6= a} for M ≥ 1, a ∈ IR, and
0 < θ ≤ π/2.

Therefore A is the infinitesimal generator of an analytical semigroup {exp(tA)}t≥0.

For ω > −a, the fractional power of Ã = A + ωI are well defined.
Further, we assume the following bounds for operator A:

||τα
n Aα exp(Aτn)|| ≤ κ,(7.38)

||hA

n−1
∑

j=1

exp(jhA)|| ≤ κ,(7.39)

where α ≥ 0 and τn = (tn+1 − tn).
The stability estimates allow to define the bounded operators:

φj(tA) =
1

tj

∫ t

0

exp((t − τ)A)
τ j−1

(j − 1)!
dτ, j ≥ 1.(7.40)

Further φ0(z) = exp(z) and

φk+1(z) =
φk(z) − 1/k!

z
, φk(0) =

1

k!
, k ≥ 0.(7.41)

Theorem 7.2. Let us consider the abstract Cauchy problem in a Banach space
X

∂tc(t) = Ac(t) + Bc(t), 0 < t ≤ T ,

c(0) = c0,
(7.42)

where A : D(X) → X are given linear operators which are generators of the C0-
semigroup and c0 ∈ X is a given element. B is a linear bounded operator in L2.

The error of the first time-step is of accuracy O(τm
n), where τn = tn+1 − tn

and we have equidistant time-steps, with n = 1, . . . , N . Then the iteration process
(7.36) for i = 1, 2, . . . , m is consistent with the order of the consistency O(τm

n), where
0 ≤ α < 1.

Proof. While B is bounded the proof can be done as:

32

For e1 we have:

c1(t
n+1) = exp(Aτn)c(tn),(7.43)

c(tn+1) = exp((A + B)τn)c(tn) = exp(Aτn)c(tn)(7.44)

+

∫ tn+1

tn

exp(A(tn+1 − s))B exp((s − tn)(A + B))c(tn) ds.

We obtain:

||e1|| = ||c − c1|| ≤ || exp((A + B)τn)c(tn) − exp(Aτn)c(tn)||(7.45)

≤ ||

∫ tn+1

tn

exp(A(tn+1 − s))B exp((s − tn)(A + B))c(tn) ds||

≤

∫ tn+1

tn

|| exp(A(tn+1 − s))|| ||B|| || exp((s − tn)(A + B))|| ds ||c(tn)||

≤ τ ||B|| ||c(tn)||.(7.46)

Same idea can be done for the next iterations.

7.4. Application to a numerical scheme. The exponential Euler method is
given as:

ci+1(t
n+1) = exp(Aτ)c(tn) + τφ1(Aτn)Bci(t

n),(7.47)

ci+1(t
n+1) = exp(Aτ)c(tn) + τ

exp(Aτn) − I

A
Bci(t

n).(7.48)

Convergence of the exponential Euler method:
Theorem 7.3. Let us consider the iterative scheme in a Banach space X

∂tci+1(t) = Aci+1(t) + Bci(t), 0 < t ≤ T ,

c(0) = c0,
(7.49)

where A : D(X) → X are given linear operators which are generators of the C0-
semigroup. B is a linear bounded operator in L2 and c0(t) = 0.

The application to exponential Euler method obtain the error O(τ) for the first
iterative step.

Proof.
By the variation of constants formula we obtain:

ci+1(t
n + θh) = exp(Ahθ)c(tn) +

∫ θh

0

exp((θh − τ)A)Bci(tn + τ) dτ.(7.50)

We expand in Taylor series but respect the bound of the operator A:

ci(t
n + τ) = ci(t

n) +

∫ τ

0

c′i(tn + τ) dτ ,(7.51)

We have the assumption 7.1 the ci(t
n + τ) is bounded and we have:

ci+1(t
n + θh) = exp(Ahθ)c(tn) + θhφ1(θhA)Bci(tn)(7.52)

+r(ci(t
n + θh)),

33

and

r(ci(t
n + θh)) =

∫ θh

0

exp((θh − τ)A)

∫ τ

0

c′i(tn + σ)dσdτ.

So the error is given as:

||r(ci(t
n + θh))||(7.53)

≤ ||

∫ θh

0

exp((θh − τ)A)

∫ τ

0

A exp(A(tn + σ))ci(t
n) dσdτ ||,

≤

∫ θh

0

|| exp((θh − τ)A)||

∫ τ

0

||A exp(A(tn + σ))|| dσdτ ||ci(t
n)||,

≤ τκ.

REFERENCES

[1] M. Bjorhus. Operator splitting for abstract Cauchy problems. IMA Journal of Numerical
Analysis, 18, 419-443, 1998.

[2] B. Davis. Integral Transform and Their Applications. Applied Mathematical Sciences, 25,
Springer Verlag, New York, Heidelberg, Berlin, 1978 .

[3] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Springer-
Verlag, Heidelberg, New York, 2000.

[4] I. Farago. Splitting methods for abstract Cauchy problems. Lect. Notes Comp.Sci. 3401, Springer
Verlag, Berlin, 35-45, 2005.

[5] I. Farago. A modified Iterated operator-splitting method. Applied Mathematical Modelling,
Volume 32, Issue 8, 1542-1551, 2008.

[6] I. Farago and J. Geiser. Iterative Operator-Splitting Methods for Linear Problems. Preprint
No. 1043 of the Weierstrass Institute for Applied Analysis and Stochastics, (2005) 1-18.
International Journal of Computational Science and Engineering, accepted September 2007.

[7] J. Geiser. Iterative Operator-Splitting Methods with higher order Time-Integration Methods
and Applications for Parabolic Partial Differential Equations. Journal of Computational
and Applied Mathematics, Elsevier, Amsterdam, The Netherlands, 217, 227-242, 2008.

[8] J. Geiser. Higher order splitting methods for differential equations: Theory and applications
of a fourth order method. Numerical Mathematics: Theory, Methods and Applications.
Global Science Press, Hong Kong, China, accepted, April 2008.

[9] J. Geiser. Decomposition Methods for Differential Equations: Theory and Applications. Chap-
man & Hall/CRC, Series: Numerical Analysis and Scientific Computing Series, edited by
Magoules and Lai, 2009.

[10] R. Glowinski. Numerical methods for fluids. Handbook of Numerical Analysis, Gen. eds.
P.G. Ciarlet, J. Lions, Vol. IX, North-Holland Elsevier, Amsterdam, The Netherlands,
2003.

[11] E. Hansen and A. Ostermann. Exponential splitting for unbounded operators. Mathematics of
Computation, 78, 1485-1496, 2009.

[12] E. Hille and R.G. Phillips Functional Analysis and Semi-groups. American Mathematical
Society Colloquium Publications, Vol.XXXXI, revised edn. Providence, American Mathe-
matical Society, 1957.

[13] T. Jahnke and C. Lubich. Error bounds for exponential operator splittings. BIT Numerical
Mathematics, 40:4, 735-745, 2000.

[14] J.Kanney, C. Miller and C. Kelley. Convergence of iterative split-operator approaches for ap-
proximating nonlinear reactive transport problems. Advances in Water Resources, 26:247–
261, 2003.

[15] T. Kato. Perturbation Theory for Linear Operators. Springer, Berlin, Heidelberg, New-York,
second edition, 1980.

[16] C.T. Kelly. Iterative Methods for Linear and Nonlinear Equations. Frontiers in Applied Math-
ematics, SIAM, Philadelphia, USA, 1995.

[17] G.I Marchuk. Some applications of splitting-up methods to the solution of problems in math-
ematical physics. Aplikace Matematiky, 1, 103-132, 1968.

34

[18] I. Najfeld and T.F. Havel. Derivatives of the matrix exponential and their computation. Adv.
Appl. Math, ftp://ftp.das.harvard.edu/pub/cheatham/tr-33-94.ps.gz, 1995.

[19] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations.
Applied Mathematical Sciences 44, Springer, Berlin, 1983.

[20] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential Equa-
tions Series: Numerical Mathematics and Scientific Computation, Clarendon Press, Ox-
ford, 1999.

[21] G. Strang. On the construction and comparison of difference schemes. SIAM J. Numer. Anal.,
5, 506-517, 1968.

[22] S. Vandewalle. Parallel Multigrid Waveform Relaxation for Parabolic Problems. Teubner
Skripten zur Numerik, B.G. Teubner Stuttgart, 1993.

[23] K. Yosida. Functional Analysis. Classics in Mathematics, Springer-Verlag, Berlin-Heidelberg-
New York, 1980.

