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Abstract

In this paper, a mixed formulation and its discretizatior artroduced for elastoplasticity with linear kinematic
hardening. The mixed formulation relies on the introdutiid a Lagrange multiplier to resolve the nortidrentia-
bility of the plastic work function. The main focus is on theryation of a priori and a posteriori error estimates
based on general discretization spaces. The estimatepg@redato several low-order finite elements. In particular,
a posteriori estimates are expressed in terms of standsidliet estimates. Numerical experiments are presented,
confirming the applicability of the a posteriori estimatdthim an adaptive procedure.
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1. Introduction

Elastoplasticity with hardening is of great importance iany problems of mechanical engineering. A well-
established case of elastoplasticity with linear kinemhtirdening is the holonomic constitutive law which allows
for the modeling of elastoplastic deformation in an incrataksense, cf. [15, 16]. One pseudo time-step of the
holonomic model is given by a variational inequality of seddind which is equivalent to a minimization problem
with a non-diferentiable term arising from the plastic flow law.

This non-diferentiable term can be resolved by the regularization gbldwgtic work function using an appropriate
regularization so that Newton’s method can be applied taiolat suitable discretization scheme. However, the influ-
ence of the regularization to the discretization can causeenical dificulties which must be handled very carefully.
This is possible, for instance, through the adaptation @fgalarization parameter during the Newton iteration and
through an appropriate damping strategy of Newton’s metNdg refer to [8, 9, 12, 17] for more details on solution
schemes in elastoplasticity.

An alternative approach not requiring regularization isegiby the mixed formulation which captures the plastic
work function as a supremum over a convex and closed set ofdeabLagrange multipliers. The corresponding min-
imization problem is then equivalent to a saddle point probbf which the stationary conditions yield a variational
equation in terms of the deformation and plastic variable@sas a variational inequality in terms of the introduced
Lagrange multiplier. The mixed formulation can be dis@®di by finite element approaches and solved, for instance,
by the simple Uzawa’s method with projection, cf. [15].

At the first glance, this mixed method seems to be unfavorabé®mparison to discretization schemes based
on a pure primal formulation, since the Lagrange multipbeain additional variable which also has to be discretized
involving the same order of unknowns as the primal variaptesontrast to mixed methods, e.g., for contact problems
where the Lagrange multiplier is only defined on the boundldfiowever, the discrete Lagrange multiplier can be
used to detect regions of pure elastic deformations whioftén a dificult task.

In the literature, mixed methods that resolve the ndfedintiable part of the plastic work function by a Lagrange
multiplier are rarely studied. We refer to [15, 16] for theridation of such mixed methods. To the best of the
authors’ knowledge there are no a priori results includimg discretization of Lagrange multipliers. In [21], some
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recent results on a posteriori estimates are publishedsdfoe goal-oriented error estimates for a model problem in
elastoplasticity, we refer to [23].

In this paper, we discuss the mixed formulation and its @iszation for elastoplasticity with linear kinematic
hardening. Since we assume the set of discrete Lagrangélieudt to be a subset of the discretization space of
the plastic variable, the stability of the discretizatisrstraightforward. Moreover, under this assumption, theethi
method is equivalent to the discretization of the varialdnequality of second kind given by the pure primal ap-
proach.

The main focus is on the derivation of a priori and a postedoor estimates for the mixed method with general
discretization spaces. We apply the estimates to severadider finite elements on triangle, quadrilateral, tetdron
and hexahedron meshes. Constricting to the primal varifdieusing piecewise linear elements, we find the same
results as for the pure primal approach which is, of courgpe@ed due to the equivalence of the discretization
approaches. Moreover, we obtain the same a posteriori &stinexpressed in terms of standard residuals as already
known in the literature for this case, cf. [3, 7].

The piecewise linear approach on triangles or tetrahedmviges the deviatoric part of the discrete stress tensor
to be contained in the discretization space of the plastiabke which is usually assumed to be piecewise constant.
For piecewise bilinear or trilinear approaches on quatgritds or hexahedrons this property is not given if the plast
variables are approximated by piecewise constant furetaanwell. We find that in this case, an additional term
measuring the error of the?-projection of some deviatoric part is unavoidable in th@steriori estimates.

The paper is organized as follows: In the Section 2, we intcedhe formulation of one quasi-static time step in
the primal problem of elastoplasticity with linear kineiedtardening. In the Sections 3 and 4, we consider the mixed
formulation and introduce a discretization for generatdiization spaces. A priori and a posteriori estimates are
derived in Section 5 and Section 6, respectively. They asedan general discretization spaces as well. Low-order
finite elements are introduced in Section 7 and the apptinaif the estimates to them is contained in the Sections 8
and 9. Finally, numerical results are presented in Sectiprednfirming the applicability of the a posteriori estinmte
within an adaptive procedure. Furthermore, we introducawdvs method with projection and discuss the detection
of regions with pure elastic deformations.

2. Elastoplasticity with linear kinematic hardening

We consider the deformation of a body which is representea tigmainQ c R¥, k € {2, 3}, with a suficiently
smooth boundary := dQ. The body is clamped at a boundary part given by the closddsetI” with positive mea-
sure. Volume and surface forces act on the body. They areideddy functionsf € L?(Q; R¥) andg € L%('y; R¥)
with T'y := I'\I'p, respectively. The resulting deformation is describedispldcement fields € H(Q; R¥) with the
linearized strain tensai(u) := %(Vu +(Vu)"). The elasticity tensof with Cjj; € L¥(Q) satisfies the standard sym-
metry conditionCijq = Cjik = Ciij and is uniformly elliptic, i.e. with a constart> 0 there holdsCr) : 7 > k7 : 7
for all T € L2(Q; RiK) whereRE := {M € R | Mj = Mj}andr : 7 := £ 7jj7j. The stress tensor is
defined asr(u, p) := C(e(u) — p) wherep € LZ(Q;R'Q;,‘;) with trace trf) := Z‘j‘zl pjj = O is the plastic strain. We
setH1(Q) = {v e HY{(Q;RY) | yrp(v) = 0, i = 1,...,k} with the trace operatoy € L(H}(Q), L%(T)) and define
on(u, p) := o(u, p)n with outer normah of I'. The primal problem of elastoplasticity with linear kinetimdardening
is to find a displacement fieldand a plastic straip such that

—dive(up) = finQ,

u=0onIp,

on(u, p) =gonly,
o(u, p) - Hp € 9j(p).

2.1)

Here, j is the non-diferentiable part of the minimum plastic work function witfy) := oy(q : q)*/? and the yield
stressoy > 0 in uniaxial tension. The hardening tendfiris assumed to be symmetric and positive definite, i.e.,
(Hr) : 7> 0forallr e LA(Q; R&K), 7> 0.

Remark2.1 Replacing)j(p) by dj(p) with p = dp/ot in the inclusion condition we observe that the formulatirij
describes one time step of quasi-static elastoplastidity mardening and initial conditiongy = O, cf. [7, 15, 17].
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3. Mixed variational formulation of elastoplasticity with | inear kinematic hardening

To derive a variational formulation, let o, (-, -)or be the usual?-scalar products for vector-valued or matrix-
valued functions o ¢ R¥ andI” c T'\I'p, respectively. Fow € H3(Q), v € LA(I";R¥) andq € L%(Q; R¥¥), we
define||v||g’w = (V, V)o,ws ||v’||§’r, = (V,V)or and||q||§’w = (9, 9)ow- We write (,-)o instead of {,-)oq if Not stated
otherwise. Moreover, we staé? := (&(v), (V))o and|IV|[? := [IVI[3 + [vZ which is equivalent to the usubl*-norm on
HZ(2) due to Korn’s inequality. We set

Q:={qe LX(Q;REH) [ tr(q) = 0 a.e. inQ}

and definew := HL(Q) x Q, which is a Hilbert space with the noriitv, g)II? := |IVIIZ + [|qll3 for (v, q) € W.
It is well-known, that the solutiow = (u, p) € W of (2.1) fulfills the variational equation

(W), eM)o = (f,V)o + (9 ¥irw(V)ory (3.1)

for all v e HL(Q) and, additionally, the variational inequality

(p-ow.a- P+ [ i@~ i(pIdx>0 (3.2)
Q
forall g € Q, cf. [5, 15, 17]. Defining
a((u’ p)? (V’ q)) = (O’(U, p)? S(V) - CI)O + (Hp’ q)Oa
Q) = j(g)d
o) = | i
f(V, q) = (f? V)O + (g’ YIrn (V))O,TN’
we observe thaw € W fulfills (3.1) and (3.2) if and only if the variational ineqglity of second kind
a(w,z—w) + ¥(2) — y(w) > £(z—w) (3.3)

holds for allz € W. Note, the bilinear forna is continuous andV-elliptic, i.e., there exist constantg, v; > 0 such
that
azZ) < wolldlliZll. vl < a(z2) (3.4)

forallz, Z e W, see [17].

Remark3.1 ForH tending to zero, we would arrive at the case of perfect gigtiThus, problem (3.3) is no longer
well posed in this case. In fact,lif tends to a non-positive definite tensor the bilinear faris no longer guaranteed
to beW-elliptic. In this article we do not focus on the problem offeet plasticity and therefore neglect the influence
of H on the error estimates. We emphasize that some of the folipestimates no longer hold in the caséib£ 0.
Furthermore, numerical algorithms to solve the discretigmblem may face €iculties in practice foif close to
zero. In any case, stable approximations of the stress nemaasible, cf. [10].

The inequality (3.3) is fulfilled if and only ifv is a minimizer of the functionak := H + ¢ with H(2) :=
%a(z, 2) — {(2) in W. The functionaH is strictly convex, continuous and coercive, cf. [17]. Tiniplies the existence
of a unique minimizew due toy > 0. It is easy to see, that there holds

W(2) = SuAr(u,X(Z))o (3.5)
HE
with x(v,q) = oygqandA = {¢ € Q| u : u < 1}. Indeed, from Cauchy’s inequality we have
nig<(q:q)t? (3.6)

forall u € A and allg € Q. Therefore,

suf x(@)o = [ oy Qs w2

HEA
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Then again, we obtain
supu, x(2)o = (E(A). x(D)o = ¥(2)

UEA

with Z(q) := g/(q : q)¥/?, whereq # 0, and zero elsewhere.
Given the Lagrange functiondl(z 1) := H(2) + (1, x(2))o on W x A, from (3.5) we have

E(W) = inf supL(z y). (3.7)
W A

The identity (3.7) implies thatv is a minimizer ofE, whenever\, 1) = ((u, p), 1) € W x A is a saddle point of’.
The existence of a saddle point is guaranteed, shiseconvex, closed and bounded, cf. [13, Rem. IV.2.1 and Prop.
IV.2.3]. Due to the stationary conditionw(1) € W x A is a saddle point of, if and only if it fulfills the mixed
variational formulation

aw, 2) = £(2) - (4, x(2)o,

(= 2,xW)o <0 (3.8)

forall ze Wandu € A. Since

oylllo—Allo=0y sup (do—A1,Qoe < sup (do— A1, x(2)oo =0
geQilldllo=1 zeW||Z|=1

for some saddle pointsu 1), (w, 1) € W x A, also the uniqueness of the saddle point is guaranteed.
With the identity tensok, we define the deviatoric part afe L%(Q, R*) by dev) := 7 — £ tr(r)[ and observe

forge Q
(tr()L a)o = (tr(7), tr())o = 0. (3.9)

Proposition 3.2. There holds
devi(w) — Hp) = oyA.

Proof. Letz = (v,q) € W. From (3.9) we obtain
1
(devier(w) - Hp) - oy2,@)o = (o(W) — Hp — 1 tr(o(w) — HP)L Qo ~ (A, Qo = (o"(W) — HP, Ao — (oA, Ao
= (O—(W)’ ‘9(V))0 - a(Ws Z) - (U'y/L Q)O = f(v) - a'(W3 Z) - (O-)I/l, q)O = O,
where we use (3.1) in the last line. Since de() — Hp) — oy € Q, we obtain the assertion. O

Remark3.3. The inequality in (3.8) is equivalent to
A:p=(p:p)*2 (3.10)
In fact, it follows from Cauchy’s inequality (3.6) and:= Z(p) in (3.8),

0< (- Z(p), x(W))o = oyfga: p-(p: PH2dx<0

and, hencef, 1: p—(p: p)?dx = 0. Because of (3.6) we have: p— (p : p)*/? < 0 and, therefore, (3.10) holds.
Furthermore, (3.6) and (3.10) yield

(1= A, x(W))o =(fyfﬂﬂ: p—(p: pY?dx<0

which is the inequality in (3.8). A simple consequence ofL(3.together with Cauchy’s inequality (3.6) is that if
p # 0, there holdsl : 1 = 1 and, therefore,

(devie(w) — Hp) : devir(w) — Hp)Y2 = 0. (3.11)
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Remark3.4. In this work we consider elastoplasticity with linear kinatiac hardening for a single yield surface. In
the case of multiple yield surfaces we have to add furthestiglaariabledd;, oy, andp; withi = 0,...,r, wherer +1

is the number of surfaces. Moreover, we have to rep@dy Q := (Q)" andW by W := H3(Q) x Q. The bilinear
form then becomes

&(W,2) 1= (C(e(U) = )" p). &) = D, Gdo + ) (Hipi.G)o
i=0

i=0 i=0
for W= (U, Po,...,pr).2= (V,Qo, ..., ) € W. The nonlinear functional instead ofy reads

0= [ e dx
i=0

with ji(q) := oy;lgl. The saddle point formulation of multi-yield plasticitygeires Lagrange multipliers for each
additional plastic strain variable. Its mixed formulatisrthen given by

&(W,2) = £2) - ) (A xi@)o,
i=0

Z(ﬂi - Ai,xi(9)o <0,
=

wherey;(2) := oy,i0. For more details on the formulation of multi-yield plagigcwe refer to [8].

As we can see, modeling with multi-yield surfaces does naseadditional mathematical complexity. Therefore,
the following results only deal with single yield surfacasdacan easily be transferred to the case of multi-yield
surfaces.

4. Discretization of the mixed variational formulations

Let Vi be a finite dimensional subspacetd} () and Q, be a finite dimensional subspace@f The discrete
saddle point problem of the primal problem of elastoplastiwith linear kinematic hardening is to find a discrete
saddle point\h, An) € Wh x Ap with W, := V;, x Qn andAy, := A N Q;, such that

L(Wh, ) = Zhinf sup L(zn, un)- (4.2)

EWh jineAn
By the stationary condition, we conclude that the discratilie point is equivalently characterized by
VZy € Wh 2 @(Wh, Z) = £(zn) — (A x(z))o
Vun € An * (h = An, x(Wh))o < 0.

Again, the existence of a discrete saddle point is guardntsaceAy is convex, closed and bounded. The first
component is the unique minimizer of the minimization pesbl

(4.2)

E(wh) = min H(z) + ¢(z).
ZheWh
As in Section 3, we conclude fromy, c Q;, that also the second component is unique. Note that

(An, x(Wh))o = SUP(un, x(Wh))o = ¢(Wh) = SUAF(ﬂaX(Wh))O > (4, x(Wh))o (4.3)

HhEAR
for all wy, € Wh,.

Proposition 4.1. There holds
(devir(Wn) — Hpn) = o7y, Gn)o = 0 (4.4)

for all g, € Qn. If devi(Wh)) c Qn, there holds
devio(wh) — Hpn) = oydn. (4.5)
5



Proof. The assertions hold by the same arguments as in Proposifion 3 O

Remark4.2 Condition (4.4) implies thaty4y is the orthogonal 2-projection of devg(wh) — Hpy) in Q.

Remark4.3. By the same arguments as in Remark 3.3, the inequality ifigle?juivalent tol, : p, = (pn : pn)¥2and
there holdsty, : 4, = 1, if p, # 0. The relation (3.11) holds for the discrete variablegyif 0 and devg(W;)) c Qn.

Remark4.4. As mentioned, the uniqueness of the discrete Lagrangeptieitis guaranteed through the canonical
assumptiom, c er. Choosing the sehy, as a subset of a further spa@g # Qp such thatA,, ¢ Qp, one has to
ensure, thatVi, andQ,, satisfy a discrete inf-sup condition,

a|lfinllo < sup (@, x(Wh))o

WheWh

for all fin € &, and a constant > O.

The convergence of the mixed method can be stated withouteanylarity assumptions using some standard
techniques of convex analysis. Only, the coercivityaaind the approximation properties b and Q;, are used.
Here, we present a modification of Theorem 1.1.5.3 in [18].

Theorem 4.5. Assume that for al{z u) € W x A there exists a sequen¢é&, un)} with (z, un) € Wi x A, and
(zn, un) — (z p) as h— 0. Then, the sequendée} strongly converges to w and the sequence of Lagrange niefspl
{An} weakly converges td as h— 0.

Proof. From (4.2), we obtain |[wy|| < |I€]] + ||Anllo, SO that the boundedness{af} implies that{wy} is also bounded.
Due to the reflexivity ofNV x Q there exists a subsequer{¢e;, Ar)} € {(Wh, 4)} which weakly converges tay, 1*) €
W x Q. SinceA is convex and closed and, therefore, weakly closed, we ava() € W x A. It is easy to see that
limg_oa(wi, ;) = a(w*, 2) and limy,_,o(um, x(Wi))o = (1, x(W*)). Passing to the limit in (4.2) yields

aWw', 2) = {(2) - (4", x(D)o. (4.6)
(1.x(W))o < iminf (2 x(Wi)o (4.7
Sincez — a(z 2) is convex and continuous and, therefore, weakly lower sentinuous, we obtain
aw', w') + |irﬁTLiQf (Af X (WR))o < Iirﬁnjgf (a(Wp, Wg) + (45, x(WR))o) = |irr111ig1f t(wg) = €(w")
from (4.2). Hence, using (4.6) with:= w* and (4.7), we find
(e x(W))o < iminf (g, x (Wi))o < £W) — a(w". W) = (47, x (W))o- (4.8)

Since g u) is arbitrarily chosen, (4.6) and (4.8) imply that*(1*) is a saddle point. Due to the uniqueness, we
conclude {*, 1*) = (w, 1) and, additionally, that the entire sequeri@®,, 11,)} converges tow, 1) weakly. To show
that{w} converges tav strongly, we conclude from (4.3)

a(W — Wh, W — Wh) = a(w, W) — 2a(W, Wh) + £(Wh) — (dn, x (Wh))o
< a(w, w) — 2a(w, Wh) + €(Wh) — (4, x(Wh))o — O

ash — 0. O

5. A priori error estimates

In the following, A < B abbreviatesA < CB with a positive constan€ which is independent of, and Qp.
FurthermoreA ~ Brepresente\ < B < A

Lemma 5.1. There holds
1A = Anllo < 1w = Whll + 114 = unllo

for all up € An.



Proof. From (3.4) we obtain

oyllun— Anllo = sup  oy(un — A Oh)o < SUP  (un — An, x(Zh))o
0h€Qn, lldhllo=1 Z0EWh, [1Z0ll=1
= sup  ((unx(zn))o + aWh, zy) — €(z1))
ZneWh, lIznll=1
= sup  ((un— 2, x(Z))o + alWh — W, 7)) < oylld — unllo + vollw — Whl.
ZneWh, lIzoll=1
The assertion follows fror — Apllo < |14 — wnllo + llun — Anllo- O

Theorem 5.2. There holds
I = Whll + 114 = Anllo S 1w = 24l + 112 = pavllo + (A = pan, x (W))g (5.1)
for all z, € W, and all up, € Ay.
Proof. SinceAy c A, we obtain
(An = A, x(W = Wh))o < (2 = Ah, x(Wh))o < (4 = fan, x(Wh))o < (A = pn, x(W))o + (4 = h, x (Wh — W))o.
Consequently, we obtain from (3.4) and Lemma 5.1
W = WhlI? < a(W — Wh, W — Z) + (W — Wh, Z — Wh)
= a(W — Wh, W= Zn) + (Ah = 4, x(Z0 = W))o + (An — 4, x (W — Wh))o

S W = Whlllw = Zoll + (12 = Anlloliw = Zull + 112 = fanllolW — Whll + (A = ptn, x(W))o
S IW = Whll(IIw = Zqll + (12 = nllo) + (A = pn, x (U)o

Sincex? < ax+ bimpliesx < a+ b'/? for x,a,b € R,, we have

W = Wl < W = Zull + 112 = ello + (4 — n, x (W))2/2.

Again with Lemma 5.1, we concludigv — Wy|| + [|2 — Anllo < [Iw — Wyl + ||2 — unllo, which completes the proof. O

Remark5.3. Given the assumptions in Theorem 4.5, Theorem 5.2 yieldmgtconvergence of bothw, and Ay,
whereas Theorem 4.5 only yields weak convergenck, of

6. A posteriori error estimates

Let the residual ResW — V* be defined agRes), v) := (f,V)o + (9, yry(V))or, — (o(W), &(v))o for w e W and
v € V, whereV* is the topological dual space Wf

Lemma 6.1. There holds
[Iw — wh|l < [IRestw)ll + || devio(wh) — Hpn) — oyAnllo.

Proof. With w—wy, = (U— Uunh, p— pn), we obtain from (3.4)

W = Whl? < a(W — Wh, W= Wh) = €(W — Wh) — (4, x(W = Wh))o — &(Wh, W — W)
= €W —Wh) + (Ah — 4, x(W))o + (4 = An, ¥(Wh))o — (An, x (W = Wh))o — a(Wh, W — W)
< O(W = Wh) = (An, X (W = Wh))o — @(Wh, W — Wh)
= {(W — Wh) = (0°(Wh), (U — Un))o + (o(Wh) — Hph — oydn, P — Ph)o
= {(W — Wh) — (0(Wh), (U — Un))o + (devi(wh) — Hpn) — oydn, P = Pn)o
< (IIRes()ll + Il devie(Wh) — Hpn) — oyAnllo)lIW — Whll,

where we useA — A, y(Wy)) < 0 as shown in (4.3). O



To include the errofid — Ayl in the a posteriori estimation, we consider the auxiliargbpem: Findw, € W so
that

a(Wy,2) = {(2) - (A, x (D)o (6.1)
for all ze W. Obviously, the solutiomv, of (6.1) exists and is unique.

Lemma 6.2. There holds
12 = Anllo S 1w — wi]l.

Proof. The assertion follows from

oylld=Allog =0y SUp (A—An, Qoo < SUP (A= Anx(D)oo = SUP AW, —W,2) < vol|W — W,]|.

geQ.llgllo=1 zeW|2lo=1 zeW|lZl=1
O
Lemma 6.3. There holds
| devig(wh) — Hpn) = oydnllo S W = Whll + [I4 = Anllo.
Proof. From Proposition 3.2, we have
| devio-(Wh) — Hpn) — oydnllo < lldevie(wh) — Hpn) — oydllo + 114 = Anllo
= || devie(Wh — W) — H(pn — p))llo + lI4 = Anllo S W = Wl + 1|4 = Anllo-.
O
Theorem 6.4. There holds
IW = Whll + (14 = Anllo ~ | Reswn)ll + [ devio(Wh) — Hpn) — oydnllo. (6.2)

Proof. With w, — Wy = (Ux — Un, Px — Ph), We obtain from (3.4)

Wy = Whl[? < (W — Wh, Wy = Wh) = E(W, = Wh) = (dn, x(Wa — Wh))o — 8(Wh, Wy — Wh)
= {(Wx — Wh) = (0°(Wh), £(Usx = Un))o + (0"(Wh) — Hph — oy dh, P« = Pn)o
= (W, — Wh) = (0°(Wh), (Ux — Up))o + (devio(wh) — Hpn) — oydh, P« = Pn)o
< (IIResn)| + [l devio-(Wh) — Hpn) — oyAnllo)[[Wx — Wh|l

Together with the triangle inequality, Lemma 6.1 and Lemm2ay&Id one of the estimates in (6.2). The other estimate
follows from the definition of the residual, relations (3at)d (3.4) as well as Lemma 6.3. O

Remark6.5. If dev(o-(Wh)) is a subset 0@y, then||A — Anllo = [lw — wh|| and the term| devio-(wh) — Hpn) — oy Anllo in
(6.2) vanishes, i.gjw — wi|| ~ || Res)|l.

7. Low-order finite elements

In this section, we propose three low-order finite elemestrditizations based on triangles and tetrahedrons as
well as quadrilaterals and hexahedrons. We use continueuaswase linear, bilinear or trilinear functions, respec-
tively, to define the discretization spadg. The main diferences of the three approaches are in the definition of the
spaceQy. The simplest discretization space consists of piecevastant functions. Since dex(\W,)) c Q does not
hold on quadrilaterals and hexahedrons in this case, thtautd term|| devio-(Wh) —Hpn) — oy Anllo in (6.2) has to be
taken into account in the a posteriori analysis. To avoisl thim, we also introduce a second discretization approach
for Qy, using piecewise, discontinuous bilinear and trilinearctions on quadrilaterals and hexahedrons, respectively,
and still piecewise constant functions on triangles amdbeidrons. The third approach uses piecewise linearehilin
or trilinear, but continuous functions to defi@, which may lead to a reduction of the degrees of freedom. én th
latter case the additional term in (6.2) has to be considered
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Let{7h} be a shape regular family of finite element mesheQ wfith mesh sizé. We define
Phi={p: Q> R|preP(T), T € Tn},

where
P1(T), T isatriangle or a tetrahedrpon

Q.(T), T isaquadrilateral or a hexahedron

P(T) = {

Here,P1(T) denotes the space of linear polynomialsioa 7, and@Qy(T) is the space of bilinear or trilinear polyno-
mials onT, respectively. Furthermor€}, denotes the space of piecewise constant functiorig,oe define finite
element discretizations of low-order by

Vi = (Pn)* N HB(Q),

Qn:={oh € QI Ghij €Chly On:i={ah € QI hij € Pn)y & := Gn N HYQ; R>S)

W, = \7h X Qh, Wh = \7h X Qh, Wﬁ = \7h X QE

Kh :=AmQ_h» ;\h :AmQh’ A; =Aﬂ©;
The following Proposition summarizes the main approxioratind interpolation results on the spavgsQhn, On and
Q. For this purpose, let € HY(Q; R¥) with vi € H*(Q), g € Q with g;; € H(Q), and6,#” > 0. Moreover, we
assume quadrilaterals to be parallelograms and hexahtalberparallelepipeds. Using thé-projectionII;, onto the
spaceCh, we define ITn(q))ij := IIn(q;j). Furthermore, IetgoT,m}“nLl c P(T) denote the usual nodal basis oni.e.,

with Kronecker’s delta there holdspr m(xt,) = dmi for the verticescry of T, 1 =1,...,ny. We haveZ”rr{=1 etm=1
and 0< ¢, < 1. In particular, there holds

N 2
1= (Z ‘PT,m) = Z OT,1PT,m- (7.1)
m=1

I,m=1

Clement’s interpolanﬁh is defined as

nr
@) = lexnlflf Vdxer)
=1 w

X7
for ¥ € H(Q) with § > 0 andw, := (T € 71 | x € T}, cf. [2]. Thus, we sefn(q))ij := Jn(ij).

Proposition 7.1. There holds

(i) Th(A) € An C Anand J(A) € A2,
(i) 11g-Th(Q)llo < Cr(g)h™n? - with a constant G(q) > 0,
(iii) 1lg— Jn(@llo < Cy(q)h™¥-2 with a constant G(q) > O,

Proof. Proofs of the assertions (ii) and (iii) can be found in, 2. 22]. To show (i), lefu € A and considefTy(u)
andJy(u) on aT € 74. Using Cauchy’s Inequality, we observe

k 2
Z |w| ™2 (f,uij dX) < IwI_lf,u cudx<1 (7.2)

ij=1

for w c Q. Thus, we obtain
k

() Tho() = D ITI2 (fTuij olx)2 <1

ij=1

which gives udIi(A) c Ap. TO proveJy(A) ¢ A2, we derive from Young's inequality and (7.2)

k k 2 k 2

_ _ 1 _ _
2l [f “”'dx)"”z'“' (f "”dx)sz(_Z al U Hi dx] I (f “”dx)}“'
i,j=1 7 Zm i,j=1 2 i,j=1 Zm
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From (7.1), we obtain
k nr nr
In(w) + In(u) = Z Z lwg |t [f Hij dx) e (f Hij dx) ¢Tm< Z eTieTm = 1.
i,j=11,m=1 Wy Wzm I,m=1
O

Remark7.2 The definition off’, allows for the use of hybrid meshes consisting of trianghets guadrilaterals. In
three dimensions, the use of hybrid meshes is more comgtichte to the continuity assumptions\gnand involves
further shapes as pyramids and prism. Therefore, we assombkyibrid meshes in three dimensions.

Remark7.3. Instead of piecewise bilinear functions, we can also ap@gqwise linear functions on parallelograms
or parallelepipeds, respectively, to define a sp@e@vith devi(Wh)) € Qn. In this case, we obtain the same a priori
results as usin@, cf. Section 8.

8. A priori estimates for low-order finite elements

In the following, lety; € H*%(Q) and p;; € H”(Q) with 6,6/ > 0. From Proposition 3.2, we observe that
Aj € H?(Q) with 6 := min{6, 8'}. ChoosingQ := Qn or Q := Qh, we can make use of the orthogonality relation of
the L2-projectionITy.

Corollary 8.1. LetW, := VVh or Wi, := Wh. Hence, there holds
W= Wl + 112 = Al < hmoL,
Proof. Form the orthogonality relation of tHe?-projection and Proposition 7.1, we obtain
(4 = TIn(A), x(W))o = oy(4 — ITn(4), p = IIn(P))o .
< oyl = Ta(Dllollp = T(P)llo < 07y Crr(A)Cr ()™ AL,
This gives us the assertion using Theorem 5.2. O
ForQp := Q;, we obtain the following result by utilizing Cauchy’s inegity:
Corollary 8.2. LetW, := W;. Hence, there holds

W = Whll + |12 = Anllp < hMNLe72),

Proof. Cauchy’s inequality and Proposition 7.1 yield
(A= In(), x(W))o < aylldllolld = In(Dllo < (fyIIQIloCJ(/l)hmi”{z’g]~
The assertion follows by Theorem 5.2. O

Remark8.3. For triangle meshes Corollary 8.1 yields the same optimaemence resutd(h) as shown in [1]. The
Corollary 8.2 implies that the use of globally continuousneénts foiQ, leads to an optimal convergence réigh) if
6 > 2 holds, which, however, requirese H3(Q) andp;; € H*(Q).

Remark8.4. Corollaries 8.1 and 8.2 are dissatisfying in the sense Heatdgularity given by and¢’ is unclear in
general. We refer to [19, 20] for some results on the regylarielastoplasticity.
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9. A posteriori estimates for low-order finite elements

As stated in Theorem 6.4, we have to estimgRes(w,)|| which can be done by standard techniques known from
the context of linear elasticity. Here, we present the steshdesidual approach. For this purpose, we define the
residuals

. s E o’
Rr = [Ifr + divo(wh)lor, Re = {"[””(Wh)]”QE €&

lge — on(Wh)lloe. E € &Y,
where

froim ITI‘lffdx O :=|Er1fgds
T E

&p is the set of all interior edges @f, andar'f the set of edgek with E c I'y. Here, we denote the maximum diameter
of a mesh elemerf € 71, by hr and the length of an eddee &; UE) by he. Moreover, we define the residual-based

error estimator by
1/2
h = (Z MR+ hERg]

TeT Ee&E0UE

and the oscillations by

1/2 1/2
osc(f,Th):=[Zh%uf—ané,T] , oscg,aw):[zhEng—gEnS,T] :

TeTh TeTh

Theorem 9.1. There holds
I Res@n)Il < 1n + 0sc(f, Th) + 0sc, EN).

Proof. Using standard arguments, cf. [4], and Clement's intetfmiadefining Jy(v);i := Ju(v;) for v € H1(Q), we
obtain
(Res{n), V= Jn(v)) < IMIx(n + osc(f, Tr) + 0sc@, &)

From (4.2) withz, := (vy, 0), we conclude
(Restn), Vi) = (. Vh)o + (9. 7iry (Vn))ory — (0(Wh), £(Vh))o = 0
for all v, € V.. Thus, we havéRes(v,), vy = (Resiw,), v—Jn(V)). The definition of| Resw,)|| yields the assertion. [
We setyn := nn + || devie(wh) — Hpn) — oydnllo and use Theorem 6.4 and Theorem 9.1 to conclude
W = Whll + 14 = Anllo S 7 + 0C(f, Th) + 0Sc, &)

which implies thatn, is a reliable error estimator (except for oscillations).inds\W, = W, or the discretization
approach described in Remark 7.3, we are able to follow thermaents proposed, for instance, in [24], to show the
efficiency ofn, where we obtain

1 S W= Wl + osc(f, 7n) + 0sc@, &),

in particular, exploiting equation (3.1) and the fact tifat div o-(W;) is constant. From Lemma 6.3, we obtain
7 < W = Whll + 114 = Anllo + 0sc(f, Th) + 0sc@, &)

which is the diciency ofzn,. Unfortunately, we can not argue in the same waWif = W, or W, = VV;; since
fr + div o(wy) is not constant in these cases.

Remark9.2 In the same way, techniques for a posteriori error contnohfeshes with hanging nodes can be trans-
ferred from linear elasticity, cf. [6].
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Figure 1:(a) Adaptive refinements, the colors indicafi ¢ An)Y/2. (b) Estimated convergence rates for adaptive and uniform refinesme

Remark9.3. Applying Theorem 6.4 with\, = W, on triangle meshes, we obtain the same well-known error esti
mation as in [10]. The estimations seem to be new for meshtasquadrilaterals or hexahedrons where we have to
determine

I devir(wh) — Hpr) — oyanll? = " |1 devir(wh) — Hpr) - oydnll3y

Te@n

with the set of all quadrilaterals or hexahedralsc 71,. This term measures the (local) error between @éwf) —
Hpn) and itsL?-projection. Under the regularity assumption of SectioneBaktain from Corollary 8.1 and Lemma
6.3 that it behaves lik@(h™nL%),

10. Numerical results

In this section, we study some numerical experiments to shewapplicability of the derived estimates within
adaptive schemes and discuss some numerical propertiee ohiked method. We consider problems of elasto-
plasticity with linear kinematic hardening and either omewo yield surfaces. The elasticity tensor is defined as
Cr := Atr(7)I + 2ur with the first and second Laerparametera andu, respectively. Moreover, we set the hardening
tensorH := £1 with a positive real numbef. We restrict ourselves to the two-dimensional case wherdisaetize
with piecewise bilinear and piecewise constant functiana quadrilateral mesh, i.e. we use the finite element spaces
Vi = Vp andQp := Qn. This discretization approach is easy to implement and sderbe new in the context of
elastoplasticity, see also Remark 9.3.

We solve the discrete mixed variational formulation by Uamamethod, cf. [14, 15]. For this purpose, we
introduce the standard nodal bagig)o<j<n Of Vi, and the basi§yjlo<j<m Of Qn Which is given by

1 O 0 1
YT 1=)(T(0 _1), @l’r(T,z)ZZXT(l O)

with n := dimV, andm := dim Qn. Here,xy1(x) is 1 if x € T, and zero otherwise. Furthermore; 74 x {1,2} —
{1,...,m} denotes an appropriate bijective numbering. Consequé¢atB) is equivalent to find(y, 2) € R"xR™x A,
such that,

Ax+ By=1L,

B'x+Cy+Dz=0,
(z-?)"Dy<0

12
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Figure 2: @, : pn)Y? for different ranges and tolerancés) [0, 10°6], (b) [0,107®], (c) [0, 10-1] with tol = 10°5, and(d) [0, 10°%], (e) [0, 1079,
(f) [0, 10-1] with tol = 10-1°.

forallzZe A ;= {ze R™ | Z?‘zl Zjy; € An}. Here, the matriced € R™", L € R", B € R™" andC, D € R™M are
defined as

Ajj = (Ce(g)), el@i))o, L= (f, 0o+ (9 viry(@i))ory
Bij := (-Cyj, e(¢i))o,  Cij := (C+ )y, ¥i)o, Dij = oy, ¥io.

Obviously, the matrice8, C andD are symmetric and positive definite. Moreover, the mati@esdD are diagonal
matrices with the diagonal entri€); = 2|T|(2u + £) andDj; = 2Tloy for T € 7, j = (T, s) ands = 1,2. Using a
projectionP : R™ — A and an invertible matrig € R™m™*(™m \ve obtain an iterative scheme by

(;::i) ) (;t) R (fof: g}k; IESZ“)’ (10.1)
2 = P(Z + po,Dy<*).

The convergence of this method for some parameigrs, > 0 is proven in [14]. In Uzawa’s method with
projection the matrixs is chosen as
-1
S ( A B)

B" C

or, in the case of the inexact Uzawa’s method, as an apptemjproximation of it, cf. [11]. To define a suitable
projectionP, leti, j € {1,...,m}, ze R™andd(, j) := 2(Z + Z). We setP;j(2) := d(i, j) "%z if d(i, j) > 1 and to

z otherwise. Therewith, the projectidhis given byPyt 1y := Prr.1yr(r,2) andPr(r2) := Prroyrray for T € 7n. We
emphasize that we do not focus dii@ent solution algorithms in this paper. We primarily irduee Uzawa's method
because of its implementational simplicity to solve the edixliscretization (4.3). Since the sparsity structure ef th
matrix BTC~!B is included in the structure of the mati it is easy to determine the matrx := A — BC™'B™ by
extending the usual assembling process. It is straightfiaihwo see thaE is symmetric and positive definite, too. The
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Figure 3: @t : An)Y2 ~ (An : An)Y2 for different ranges and tolerancés) [0.999 1], (b) [0.99, 1], (c) [0, 1] with tol = 1075, and(d) [0.999 1], (e)
[0.99,1], (e)[0, 1] with tol = 10°1°.

scheme (10.1) is then simplified to

2= E7XL + «xB2),

X = (1= p)X< = padk,

Y = (1 - po)Y - pa(kZ - CT'BTLY),
21 = P(Z + p,Dy<)

with « := oy(2u + £)~. Further aspects on solution schemes in elastoplastiaitgdon the proposed mixed method
will be considered in future work.

To adapt the finite element meshes, we use the derived etimiagss within a simple fixed fraction strategy, where
a fixed fraction of all mesh elements with the largest erratiGbutions to the total error is refined. The quadrilateral
elements are isotropically refined into four new elements.allow for (multilevel) hanging nodes possibly resulting
from the adaptive refinement process. The first test exaragigen by the standard L-shape domain, wieie set to
(0, 1)?\(0, 0.5)%. Furthermore, we assume homogeneous Dirichlet boundawitins onl'p := [0.5, 1] x {0}. In the
first instance, we consider single yield plasticity and assthe surface tractiogito be non-zero, namely := 1.25,
only on [Q 1] x {1}. The material parameters are chosen as 1000,u = 1000,¢ := 100 andoy = 1.25. The volume
force f is set to zero. Even though, the exact solution for this gnwbis not known, we expect singular behavior at
the reentrant corner and at the points where the boundadjtamrs change. Indeed, we observe adaptive refinements
towards those points as we can see in Figure 1a.

To check the performance of the adaptive refinements, we amthe estimated convergence rates obtained by
the adaptive algorithm with the rates obtained by uniforfmesnents. Obviously, we gain better convergence rates
using adaptive schemes in comparison to uniform mesh reinenMoreover, we observe that the additional term
lldevin — Hpn) — oynll is of the same order as

The use of the mixed methods as proposed in this paper may tieated by the lack of regularization parameters
as required in Newton’s method. Another motivation to aghf/mixed method in conjunction with Uzawa’s method
is to detect regions of pure elastic deformation. Clearighsregions are characterized py= 0. However, using
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Figure 4: Lagrange multipliers describing the first and seageld surface(a) (Ao : don)Y/2, (b) (Avh : A1p)Y2.

discretization as well as solution schemes it is not cleaetthdr the calculated discrete plastic variaple~" pn
approximates zero or just a small value. In Figure @, ("Pn)Y/? is depicted in several ranges and foffelient

tolerances
(XY = 5]+ [yR Tt — WX+ 1290 = ) 700 + Iy + 12) < tol

with tol = 107° (Figure 2a-c) and tok 1071° (Figure 2d-f) using Uzawa’s method. We observe that the racguof
Uzawa’s method has a significant influence on the plasti@kibiclose to zero. Without additional information, the
regions of pure elastic deformations can not be detecteithédiarger toleranctol = 107°.

As discussed in Remark 3.3 and Remark 4p3is equal to zero ift, : A, < 1. Involving the calculated Lagrange
multiplier A, ~ 1n, we obtain a very sharp criterion as we can see in Figure 3zefevthe same tolerances are used,
tol = 10°° (Figure 3a-c) and tok 10719 (Figure 3d-f). We already observe sharp distributions bt 1075,

Finally, we consider multi-yield plasticity with two yieklrfaces as introduced in Remark 3.4 with the parameters
oyo = 1.25,0y1 =5, & = 10Q andé; = 50. Again,Q is the L-shape domain as in the example of single yield
plasticity. The boundary conditions and the exterior feroemain the same as well. Figure 4 shows the Lagrange
multipliers 2o andA,, describing the first and second yield surface on an adaptieéhed mesh.
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