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Abstract

In this paper, a mixed formulation and its discretization are introduced for elastoplasticity with linear kinematic
hardening. The mixed formulation relies on the introduction of a Lagrange multiplier to resolve the non-differentia-
bility of the plastic work function. The main focus is on the derivation of a priori and a posteriori error estimates
based on general discretization spaces. The estimates are applied to several low-order finite elements. In particular,
a posteriori estimates are expressed in terms of standard residual estimates. Numerical experiments are presented,
confirming the applicability of the a posteriori estimates within an adaptive procedure.
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1. Introduction

Elastoplasticity with hardening is of great importance in many problems of mechanical engineering. A well-
established case of elastoplasticity with linear kinematic hardening is the holonomic constitutive law which allows
for the modeling of elastoplastic deformation in an incremental sense, cf. [15, 16]. One pseudo time-step of the
holonomic model is given by a variational inequality of second kind which is equivalent to a minimization problem
with a non-differentiable term arising from the plastic flow law.

This non-differentiable term can be resolved by the regularization of theplastic work function using an appropriate
regularization so that Newton’s method can be applied to obtain a suitable discretization scheme. However, the influ-
ence of the regularization to the discretization can cause numerical difficulties which must be handled very carefully.
This is possible, for instance, through the adaptation of a regularization parameter during the Newton iteration and
through an appropriate damping strategy of Newton’s method. We refer to [8, 9, 12, 17] for more details on solution
schemes in elastoplasticity.

An alternative approach not requiring regularization is given by the mixed formulation which captures the plastic
work function as a supremum over a convex and closed set of bounded Lagrange multipliers. The corresponding min-
imization problem is then equivalent to a saddle point problem of which the stationary conditions yield a variational
equation in terms of the deformation and plastic variable aswell as a variational inequality in terms of the introduced
Lagrange multiplier. The mixed formulation can be discretized by finite element approaches and solved, for instance,
by the simple Uzawa’s method with projection, cf. [15].

At the first glance, this mixed method seems to be unfavorablein comparison to discretization schemes based
on a pure primal formulation, since the Lagrange multiplieris an additional variable which also has to be discretized
involving the same order of unknowns as the primal variables(in contrast to mixed methods, e.g., for contact problems
where the Lagrange multiplier is only defined on the boundary.) However, the discrete Lagrange multiplier can be
used to detect regions of pure elastic deformations which isoften a difficult task.

In the literature, mixed methods that resolve the non-differentiable part of the plastic work function by a Lagrange
multiplier are rarely studied. We refer to [15, 16] for the derivation of such mixed methods. To the best of the
authors’ knowledge there are no a priori results including the discretization of Lagrange multipliers. In [21], some
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recent results on a posteriori estimates are published. Forsome goal-oriented error estimates for a model problem in
elastoplasticity, we refer to [23].

In this paper, we discuss the mixed formulation and its discretization for elastoplasticity with linear kinematic
hardening. Since we assume the set of discrete Lagrange multipliers to be a subset of the discretization space of
the plastic variable, the stability of the discretization is straightforward. Moreover, under this assumption, the mixed
method is equivalent to the discretization of the variational inequality of second kind given by the pure primal ap-
proach.

The main focus is on the derivation of a priori and a posteriori error estimates for the mixed method with general
discretization spaces. We apply the estimates to several low-order finite elements on triangle, quadrilateral, tetrahedron
and hexahedron meshes. Constricting to the primal variableand using piecewise linear elements, we find the same
results as for the pure primal approach which is, of course, expected due to the equivalence of the discretization
approaches. Moreover, we obtain the same a posteriori estimates expressed in terms of standard residuals as already
known in the literature for this case, cf. [3, 7].

The piecewise linear approach on triangles or tetrahedron provides the deviatoric part of the discrete stress tensor
to be contained in the discretization space of the plastic variable which is usually assumed to be piecewise constant.
For piecewise bilinear or trilinear approaches on quadrilaterals or hexahedrons this property is not given if the plastic
variables are approximated by piecewise constant functions as well. We find that in this case, an additional term
measuring the error of theL2-projection of some deviatoric part is unavoidable in the a posteriori estimates.

The paper is organized as follows: In the Section 2, we introduce the formulation of one quasi-static time step in
the primal problem of elastoplasticity with linear kinematic hardening. In the Sections 3 and 4, we consider the mixed
formulation and introduce a discretization for general discretization spaces. A priori and a posteriori estimates are
derived in Section 5 and Section 6, respectively. They are based on general discretization spaces as well. Low-order
finite elements are introduced in Section 7 and the application of the estimates to them is contained in the Sections 8
and 9. Finally, numerical results are presented in Section 10, confirming the applicability of the a posteriori estimates
within an adaptive procedure. Furthermore, we introduce Uzawa’s method with projection and discuss the detection
of regions with pure elastic deformations.

2. Elastoplasticity with linear kinematic hardening

We consider the deformation of a body which is represented bya domainΩ ⊂ R
k, k ∈ {2,3}, with a sufficiently

smooth boundaryΓ := ∂Ω. The body is clamped at a boundary part given by the closed setΓD ⊂ Γ with positive mea-
sure. Volume and surface forces act on the body. They are described by functionsf ∈ L2(Ω;Rk) andg ∈ L2(ΓN;Rk)
with ΓN := Γ\ΓD, respectively. The resulting deformation is described by displacement fieldsv ∈ H1(Ω;Rk) with the
linearized strain tensorε(u) := 1

2(∇u+ (∇u)⊤). The elasticity tensorC with Ci jkl ∈ L∞(Ω) satisfies the standard sym-
metry conditionCi jkl = C jilk = Ckli j and is uniformly elliptic, i.e. with a constantκ > 0 there holds (Cτ) : τ ≥ κτ : τ
for all τ ∈ L2(Ω;Rk×k

sym) whereRk×k
sym := {M ∈ R

k×k | Mi j = M ji } andτ : τ :=
∑k

i, j=1 τi jτi j . The stress tensor is

defined asσ(u, p) := C(ε(u) − p) wherep ∈ L2(Ω;Rk×k
sym) with trace tr(p) :=

∑k
j=1 p j j = 0 is the plastic strain. We

setH1
D(Ω) := {v ∈ H1(Ω;Rk) | γ|ΓD(vi) = 0, i = 1, . . . , k} with the trace operatorγ ∈ L(H1(Ω), L2(Γ)) and define

σn(u, p) := σ(u, p)n with outer normaln of Γ. The primal problem of elastoplasticity with linear kinematic hardening
is to find a displacement fieldu and a plastic strainp such that

−divσ(u, p) = f in Ω,

u = 0 onΓD,

σn(u, p) = g onΓN,

σ(u, p) −Hp ∈ ∂ j(p).

(2.1)

Here, j is the non-differentiable part of the minimum plastic work function withj(q) := σy(q : q)1/2 and the yield
stressσy > 0 in uniaxial tension. The hardening tensorH is assumed to be symmetric and positive definite, i.e.,
(Hτ) : τ > 0 for all τ ∈ L2(Ω;Rk×k

sym), τ > 0.

Remark2.1. Replacing∂ j(p) by ∂ j(ṗ) with ṗ = ∂p/∂t in the inclusion condition we observe that the formulation (2.1)
describes one time step of quasi-static elastoplasticity with hardening and initial conditionsp0 = 0, cf. [7, 15, 17].
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3. Mixed variational formulation of elastoplasticity with l inear kinematic hardening

To derive a variational formulation, let (·, ·)0,ω, (·, ·)0,Γ′ be the usualL2-scalar products for vector-valued or matrix-
valued functions onω ⊂ R

k andΓ′ ⊂ Γ\ΓD, respectively. Forv ∈ H1
D(Ω), v′ ∈ L2(Γ′;Rk) andq ∈ L2(Ω;Rk×k), we

define‖v‖20,ω := (v, v)0,ω, ‖v′‖20,Γ′ := (v′, v′)0,Γ′ and‖q‖20,ω := (q,q)0,ω. We write (·, ·)0 instead of (·, ·)0,Ω if not stated
otherwise. Moreover, we state|v|21 := (ǫ(v), ǫ(v))0 and‖v‖21 := ‖v‖20 + |v|

2
1 which is equivalent to the usualH1-norm on

H1
D(Ω) due to Korn’s inequality. We set

Q := {q ∈ L2(Ω;Rk×k
sym) | tr(q) = 0 a.e. inΩ}

and defineW := H1
D(Ω) × Q, which is a Hilbert space with the norm‖(v,q)‖2 := ‖v‖21 + ‖q‖

2
0 for (v,q) ∈W.

It is well-known, that the solutionw = (u, p) ∈W of (2.1) fulfills the variational equation

(σ(w), ε(v))0 = ( f , v)0 + (g, γ|ΓN (v))0,ΓN (3.1)

for all v ∈ H1
D(Ω) and, additionally, the variational inequality

(Hp− σ(w),q− p)0 +

∫

Ω

j(q) − j(p) dx≥ 0 (3.2)

for all q ∈ Q, cf. [5, 15, 17]. Defining

a((u, p), (v,q)) := (σ(u, p), ε(v) − q)0 + (Hp,q)0,

ψ(v,q) :=
∫

Ω

j(q) dx,

ℓ(v,q) := ( f , v)0 + (g, γ|ΓN (v))0,ΓN ,

we observe thatw ∈W fulfills (3.1) and (3.2) if and only if the variational inequality of second kind

a(w, z− w) + ψ(z) − ψ(w) ≥ ℓ(z− w) (3.3)

holds for allz ∈ W. Note, the bilinear forma is continuous andW-elliptic, i.e., there exist constantsν0, ν1 > 0 such
that

a(z, z′) ≤ ν0‖z‖ ‖z
′‖, ν1‖z‖

2 ≤ a(z, z) (3.4)

for all z, z′ ∈W, see [17].

Remark3.1. ForH tending to zero, we would arrive at the case of perfect plasticity. Thus, problem (3.3) is no longer
well posed in this case. In fact, ifH tends to a non-positive definite tensor the bilinear forma is no longer guaranteed
to beW-elliptic. In this article we do not focus on the problem of perfect plasticity and therefore neglect the influence
of H on the error estimates. We emphasize that some of the following estimates no longer hold in the case ofH = 0.
Furthermore, numerical algorithms to solve the discretized problem may face difficulties in practice forH close to
zero. In any case, stable approximations of the stress remain possible, cf. [10].

The inequality (3.3) is fulfilled if and only ifw is a minimizer of the functionalE := H + ψ with H(z) :=
1
2a(z, z) − ℓ(z) in W. The functionalH is strictly convex, continuous and coercive, cf. [17]. Thisimplies the existence
of a unique minimizerw due toψ ≥ 0. It is easy to see, that there holds

ψ(z) = sup
µ∈Λ

(µ, χ(z))0 (3.5)

with χ(v,q) = σyq andΛ := {µ ∈ Q | µ : µ ≤ 1}. Indeed, from Cauchy’s inequality we have

µ : q ≤ (q : q)1/2 (3.6)

for all µ ∈ Λ and allq ∈ Q. Therefore,

sup
µ∈Λ

(µ, χ(z))0 =

∫

Ω

σyµ : q dx≤ ψ(z).
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Then again, we obtain
sup
µ∈Λ

(µ, χ(z))0 ≥ (Ξ(q), χ(z))0 = ψ(z)

with Ξ(q) := q/(q : q)1/2, whereq , 0, and zero elsewhere.
Given the Lagrange functionalL(z, µ) := H(z) + (µ, χ(z))0 onW× Λ, from (3.5) we have

E(w) = inf
z∈W

sup
µ∈Λ

L(z, µ). (3.7)

The identity (3.7) implies thatw is a minimizer ofE, whenever (w, λ) = ((u, p), λ) ∈ W × Λ is a saddle point ofL.
The existence of a saddle point is guaranteed, sinceΛ is convex, closed and bounded, cf. [13, Rem. IV.2.1 and Prop.
IV.2.3]. Due to the stationary condition, (w, λ) ∈ W × Λ is a saddle point ofL, if and only if it fulfills the mixed
variational formulation

a(w, z) = ℓ(z) − (λ, χ(z))0,

(µ − λ, χ(w))0 ≤ 0
(3.8)

for all z ∈W andµ ∈ Λ. Since

σy‖λ0 − λ1‖0 = σy sup
q∈Q,‖q‖0=1

(λ0 − λ1,q)0,Ω ≤ sup
z∈W,‖z‖=1

(λ0 − λ1, χ(z))0,Ω = 0

for some saddle points (w, λ0), (w, λ1) ∈W× Λ, also the uniqueness of the saddle point is guaranteed.
With the identity tensorI, we define the deviatoric part ofτ ∈ L2(Ω,Rk×k) by dev(τ) := τ − 1

k tr(τ)I and observe
for q ∈ Q

(tr(τ)I,q)0 = (tr(τ), tr(q))0 = 0. (3.9)

Proposition 3.2. There holds
dev(σ(w) −Hp) = σyλ.

Proof. Let z= (v,q) ∈W. From (3.9) we obtain

(dev(σ(w) −Hp) − σyλ,q)0 = (σ(w) −Hp−
1
k

tr(σ(w) −Hp)I,q)0 − (σyλ,q)0 = (σ(w) −Hp,q)0 − (σyλ,q)0

= (σ(w), ε(v))0 − a(w, z) − (σyλ,q)0 = ℓ(v) − a(w, z) − (σyλ,q)0 = 0,

where we use (3.1) in the last line. Since dev(σ(w) −Hp) − σyλ ∈ Q, we obtain the assertion.

Remark3.3. The inequality in (3.8) is equivalent to

λ : p = (p : p)1/2. (3.10)

In fact, it follows from Cauchy’s inequality (3.6) andµ := Ξ(p) in (3.8),

0 ≤ (λ − Ξ(p), χ(w))0 = σy

∫

Ω

λ : p− (p : p)1/2 dx≤ 0

and, hence,
∫

Ω
λ : p− (p : p)1/2 dx = 0. Because of (3.6) we haveλ : p− (p : p)1/2 ≤ 0 and, therefore, (3.10) holds.

Furthermore, (3.6) and (3.10) yield

(µ − λ, χ(w))0 = σy

∫

Ω

µ : p− (p : p)1/2 dx≤ 0

which is the inequality in (3.8). A simple consequence of (3.10) together with Cauchy’s inequality (3.6) is that if
p , 0, there holdsλ : λ = 1 and, therefore,

(dev(σ(w) −Hp) : dev(σ(w) −Hp))1/2
= σy. (3.11)
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Remark3.4. In this work we consider elastoplasticity with linear kinematic hardening for a single yield surface. In
the case of multiple yield surfaces we have to add further plastic variablesHi , σy,i , andpi with i = 0, . . . , r, wherer +1
is the number of surfaces. Moreover, we have to replaceQ by Q̃ := (Q)r andW by W̃ := H1

D(Ω) × Q̃. The bilinear
form then becomes

ã(w̃, z̃) := (C(ε(u) −
r

∑

i=0

pi), ε(v) −
r

∑

i=0

qi)0 +

r
∑

i=0

(Hi pi ,qi)0

for w̃ = (u, p0, . . . , pr ), z̃= (v,q0, . . . ,qr ) ∈W. The nonlinear functional̃ψ instead ofψ reads

ψ̃(z̃) :=
r

∑

i=0

∫

Ω

j i(qi) dx

with j i(qi) := σy,i |qi |. The saddle point formulation of multi-yield plasticity requires Lagrange multipliers for each
additional plastic strain variable. Its mixed formulationis then given by

ã(w̃, z̃) = ℓ(z̃) −
r

∑

i=0

(λi , χi(z̃))0,

r
∑

i=0

(µi − λi , χi(z̃))0 ≤ 0,

whereχi(z̃) := σy,iqi . For more details on the formulation of multi-yield plasticity, we refer to [8].
As we can see, modeling with multi-yield surfaces does not cause additional mathematical complexity. Therefore,

the following results only deal with single yield surfaces and can easily be transferred to the case of multi-yield
surfaces.

4. Discretization of the mixed variational formulations

Let Vh be a finite dimensional subspace ofH1
D(Ω) andQh be a finite dimensional subspace ofQ. The discrete

saddle point problem of the primal problem of elastoplasticity with linear kinematic hardening is to find a discrete
saddle point (wh, λh) ∈Wh × Λh with Wh := Vh × Qh andΛh := Λ ∩ Qh such that

L(wh, λh) = inf
zh∈Wh

sup
µh∈Λh

L(zh, µh). (4.1)

By the stationary condition, we conclude that the discrete saddle point is equivalently characterized by

∀zh ∈Wh : a(wh, zh) = ℓ(zh) − (λh, χ(zh))0,

∀µh ∈ Λh : (µh − λh, χ(wh))0 ≤ 0.
(4.2)

Again, the existence of a discrete saddle point is guaranteed, sinceΛh is convex, closed and bounded. The first
component is the unique minimizer of the minimization problem

E(wh) = min
zh∈Wh

H(zh) + ψ(zh).

As in Section 3, we conclude fromΛh ⊂ Qh that also the second component is unique. Note that

(λh, χ(wh))0 = sup
µh∈Λh

(µh, χ(wh))0 = ψ(wh) = sup
µ∈Λ

(µ, χ(wh))0 ≥ (λ, χ(wh))0 (4.3)

for all wh ∈Wh.

Proposition 4.1. There holds
(dev(σ(wh) −Hph) − σyλh,qh)0 = 0 (4.4)

for all qh ∈ Qh. If dev(σ(Wh)) ⊂ Qh, there holds

dev(σ(wh) −Hph) = σyλh. (4.5)
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Proof. The assertions hold by the same arguments as in Proposition 3.2.

Remark4.2. Condition (4.4) implies thatσyλh is the orthogonalL2-projection of dev(σ(wh) −Hph) in Qh.

Remark4.3. By the same arguments as in Remark 3.3, the inequality in (4.2) is equivalent toλh : ph = (ph : ph)1/2 and
there holdsλh : λh = 1, if ph , 0. The relation (3.11) holds for the discrete variables, ifph , 0 and dev(σ(Wh)) ⊂ Qh.

Remark4.4. As mentioned, the uniqueness of the discrete Lagrange multiplier is guaranteed through the canonical
assumptionΛh ⊂ Qh. Choosing the setΛh as a subset of a further spaceQ̃h , Qh such thatΛh 1 Qh, one has to
ensure, thatWh andQ̃h satisfy a discrete inf-sup condition,

α‖µ̃h‖0 ≤ sup
wh∈Wh

(µ̃h, χ(wh))0

for all µ̃h ∈ Q̃h and a constantα > 0.

The convergence of the mixed method can be stated without anyregularity assumptions using some standard
techniques of convex analysis. Only, the coercivity ofa and the approximation properties ofWh andQh are used.
Here, we present a modification of Theorem 1.1.5.3 in [18].

Theorem 4.5. Assume that for all(z, µ) ∈ W × Λ there exists a sequence{(zh, µh)} with (zh, µh) ∈ Wh × Λh and
(zh, µh)→ (z, µ) as h→ 0. Then, the sequence{wh} strongly converges to w and the sequence of Lagrange multipliers
{λh} weakly converges toλ as h→ 0.

Proof. From (4.2), we obtainν1‖wh‖ ≤ ‖ℓ‖ + ‖λh‖0, so that the boundedness of{λh} implies that{wh} is also bounded.
Due to the reflexivity ofW×Q there exists a subsequence{(wh̃, λh̃)} ⊂ {(wh, λh)} which weakly converges to (w∗, λ∗) ∈
W × Q. SinceΛ is convex and closed and, therefore, weakly closed, we have (w∗, λ∗) ∈ W × Λ. It is easy to see that
limh̃→0 a(wh̃, zh̃) = a(w∗, z) and limh̃→0(µh̃, χ(wh̃))0 = (µ, χ(w∗)). Passing to the limit in (4.2) yields

a(w∗, z) = ℓ(z) − (λ∗, χ(z))0, (4.6)

(µ, χ(w∗))0 ≤ lim inf
h̃→0

(λh̃, χ(wh̃))0. (4.7)

Sincez 7→ a(z, z) is convex and continuous and, therefore, weakly lower semicontinuous, we obtain

a(w∗,w∗) + lim inf
h̃→0

(λh̃, χ(wh̃))0 ≤ lim inf
h̃→0

(

a(wh̃,wh̃) + (λh̃, χ(wh̃))0
)

= lim inf
h̃→0

ℓ(wh̃) = ℓ(w∗)

from (4.2). Hence, using (4.6) withz := w∗ and (4.7), we find

(µ, χ(w∗))0 ≤ lim inf
h̃→0

(λh̃, χ(wh̃))0 ≤ ℓ(w
∗) − a(w∗,w∗) = (λ∗, χ(w∗))0. (4.8)

Since (z, µ) is arbitrarily chosen, (4.6) and (4.8) imply that (w∗, λ∗) is a saddle point. Due to the uniqueness, we
conclude (w∗, λ∗) = (w, λ) and, additionally, that the entire sequence{(wh, λh)} converges to (w, λ) weakly. To show
that{wh} converges tow strongly, we conclude from (4.3)

a(w− wh,w− wh) = a(w,w) − 2a(w,wh) + ℓ(wh) − (λh, χ(wh))0

≤ a(w,w) − 2a(w,wh) + ℓ(wh) − (λ, χ(wh))0→ 0

ash→ 0.

5. A priori error estimates

In the following, A . B abbreviatesA ≤ CB with a positive constantC which is independent ofVh and Qh.
Furthermore,A ≈ B representsA . B . A.

Lemma 5.1. There holds
‖λ − λh‖0 . ‖w− wh‖ + ‖λ − µh‖0

for all µh ∈ Λh.
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Proof. From (3.4) we obtain

σy‖µh − λh‖0 = sup
qh∈Qh, ‖qh‖0=1

σy(µh − λh,qh)0 ≤ sup
zh∈Wh, ‖zh‖=1

(µh − λh, χ(zh))0

= sup
zh∈Wh, ‖zh‖=1

((µh, χ(zh))0 + a(wh, zh) − ℓ(zh))

= sup
zh∈Wh, ‖zh‖=1

((µh − λ, χ(zh))0 + a(wh − w, zh)) ≤ σy‖λ − µh‖0 + ν0‖w− wh‖.

The assertion follows from‖λ − λh‖0 ≤ ‖λ − µh‖0 + ‖µh − λh‖0.

Theorem 5.2. There holds

‖w− wh‖ + ‖λ − λh‖0 . ‖w− zh‖ + ‖λ − µh‖0 + (λ − µh, χ(w))1/2
0 (5.1)

for all zh ∈Wh and allµh ∈ Λh.

Proof. SinceΛh ⊂ Λ, we obtain

(λh − λ, χ(w− wh))0 ≤ (λ − λh, χ(wh))0 ≤ (λ − µh, χ(wh))0 ≤ (λ − µh, χ(w))0 + (λ − µh, χ(wh − w))0.

Consequently, we obtain from (3.4) and Lemma 5.1

‖w− wh‖
2 . a(w− wh,w− zh) + a(w− wh, zh − wh)

= a(w− wh,w− zh) + (λh − λ, χ(zh − w))0 + (λh − λ, χ(w− wh))0

. ‖w− wh‖‖w− zh‖ + ‖λ − λh‖0‖w− zh‖ + ‖λ − µh‖0‖w− wh‖ + (λ − µh, χ(w))0

. ‖w− wh‖(‖w− zh‖ + ‖λ − µh‖0) + (λ − µh, χ(u))0.

Sincex2 ≤ ax+ b impliesx ≤ a+ b1/2 for x,a,b ∈ R+, we have

‖w− wh‖ . ‖w− zh‖ + ‖λ − µh‖0 + (λ − µh, χ(w))1/2
0 .

Again with Lemma 5.1, we conclude‖w− wh‖ + ‖λ − λh‖0 . ‖w− wh‖ + ‖λ − µh‖0, which completes the proof.

Remark5.3. Given the assumptions in Theorem 4.5, Theorem 5.2 yields strong convergence of bothwh andλh,
whereas Theorem 4.5 only yields weak convergence ofλh.

6. A posteriori error estimates

Let the residual Res :W→ V∗ be defined as〈Res(w), v〉 := ( f , v)0 + (g, γΓN (v))0,ΓN − (σ(w), ε(v))0 for w ∈ W and
v ∈ V, whereV∗ is the topological dual space ofV.

Lemma 6.1. There holds
‖w− wh‖ . ‖Res(wh)‖ + ‖dev(σ(wh) −Hph) − σyλh‖0.

Proof. With w− wh = (u− uh, p− ph), we obtain from (3.4)

‖w− wh‖
2 . a(w− wh,w− wh) = ℓ(w− wh) − (λ, χ(w− wh))0 − a(wh,w− wh)

= ℓ(w− wh) + (λh − λ, χ(w))0 + (λ − λh, χ(wh))0 − (λh, χ(w− wh))0 − a(wh,w− wh)

≤ ℓ(w− wh) − (λh, χ(w− wh))0 − a(wh,w− wh)

= ℓ(w− wh) − (σ(wh), ε(u− uh))0 + (σ(wh) −Hph − σyλh, p− ph)0

= ℓ(w− wh) − (σ(wh), ε(u− uh))0 + (dev(σ(wh) −Hph) − σyλh, p− ph)0

≤ (‖Res(wh)‖ + ‖dev(σ(wh) −Hph) − σyλh‖0)‖w− wh‖,

where we use (λ − λh, χ(wh)) ≤ 0 as shown in (4.3).
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To include the error‖λ − λh‖0 in the a posteriori estimation, we consider the auxiliary problem: Findw⋆ ∈ W so
that

a(w⋆, z) = ℓ(z) − (λh, χ(z))0 (6.1)

for all z ∈W. Obviously, the solutionw⋆ of (6.1) exists and is unique.

Lemma 6.2. There holds
‖λ − λh‖0 . ‖w− w⋆‖.

Proof. The assertion follows from

σy‖λ − λh‖0,Ω = σy sup
q∈Q,‖q‖0=1

(λ − λh,q)0,Ω ≤ sup
z∈W,‖z‖0=1

(λ − λh, χ(z))0,Ω = sup
z∈W,‖z‖=1

a(w⋆ − w, z) ≤ ν0‖w− w⋆‖.

Lemma 6.3. There holds
‖dev(σ(wh) −Hph) − σyλh‖0 . ‖w− wh‖ + ‖λ − λh‖0.

Proof. From Proposition 3.2, we have

‖dev(σ(wh) −Hph) − σyλh‖0 . ‖dev(σ(wh) −Hph) − σyλ‖0 + ‖λ − λh‖0

= ‖dev(σ(wh − w) −H(ph − p))‖0 + ‖λ − λh‖0 . ‖w− wh‖ + ‖λ − λh‖0.

Theorem 6.4. There holds

‖w− wh‖ + ‖λ − λh‖0 ≈ ‖Res(wh)‖ + ‖dev(σ(wh) −Hph) − σyλh‖0. (6.2)

Proof. With w⋆ − wh = (u⋆ − uh, p⋆ − ph), we obtain from (3.4)

‖w⋆ − wh‖
2 . a(w⋆ − wh,w⋆ − wh) = ℓ(w⋆ − wh) − (λh, χ(w⋆ − wh))0 − a(wh,w⋆ − wh)

= ℓ(w⋆ − wh) − (σ(wh), ε(u⋆ − uh))0 + (σ(wh) −Hph − σyλh, p⋆ − ph)0

= ℓ(w⋆ − wh) − (σ(wh), ε(u⋆ − uh))0 + (dev(σ(wh) −Hph) − σyλh, p⋆ − ph)0

≤ (‖Res(wh)‖ + ‖dev(σ(wh) −Hph) − σyλh‖0)‖w⋆ − wh‖

Together with the triangle inequality, Lemma 6.1 and Lemma 6.2 yield one of the estimates in (6.2). The other estimate
follows from the definition of the residual, relations (3.1)and (3.4) as well as Lemma 6.3.

Remark6.5. If dev(σ(Wh)) is a subset ofQh, then‖λ − λh‖0 ≈ ‖w−wh‖ and the term‖dev(σ(wh) −Hph) −σyλh‖0 in
(6.2) vanishes, i.e.‖w− wh‖ ≈ ‖Res(wh)‖.

7. Low-order finite elements

In this section, we propose three low-order finite element discretizations based on triangles and tetrahedrons as
well as quadrilaterals and hexahedrons. We use continuous piecewise linear, bilinear or trilinear functions, respec-
tively, to define the discretization spaceVh. The main differences of the three approaches are in the definition of the
spaceQh. The simplest discretization space consists of piecewise constant functions. Since dev(σ(Wh)) ⊂ Qh does not
hold on quadrilaterals and hexahedrons in this case, the additional term‖dev(σ(wh)−Hph)−σyλh‖0 in (6.2) has to be
taken into account in the a posteriori analysis. To avoid this term, we also introduce a second discretization approach
for Qh using piecewise, discontinuous bilinear and trilinear functions on quadrilaterals and hexahedrons, respectively,
and still piecewise constant functions on triangles and tetrahedrons. The third approach uses piecewise linear, bilinear
or trilinear, but continuous functions to defineQh, which may lead to a reduction of the degrees of freedom. In the
latter case the additional term in (6.2) has to be considered.
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Let {Th} be a shape regular family of finite element meshes ofΩ with mesh sizeh. We define

Ph := {p : Ω→ R | p|T ∈ P(T), T ∈ Th},

where

P(T) :=















P1(T), T is a triangle or a tetrahedron,

Q1(T), T is a quadrilateral or a hexahedron.

Here,P1(T) denotes the space of linear polynomials onT ∈ Th andQ1(T) is the space of bilinear or trilinear polyno-
mials onT, respectively. Furthermore,Ch denotes the space of piecewise constant functions onTh. We define finite
element discretizations of low-order by

V̂h := (Ph)k ∩ H1
D(Ω),

Q̄h := {qh ∈ Q | qh,i j ∈ Ch}, Q̂h := {qh ∈ Q | qh,i j ∈ Ph}, Q̂◦h := Q̂h ∩ H1(Ω;R3×3)

W̄h := V̂h × Q̄h, Ŵh := V̂h × Q̂h, Ŵ◦h := V̂h × Q̂◦h
Λ̄h := Λ ∩ Q̄h, Λ̂h := Λ ∩ Q̂h, Λ̂

◦
h := Λ ∩ Q̂◦h.

The following Proposition summarizes the main approximation and interpolation results on the spacesV̂h, Q̄h, Q̂h and
Q̂◦h. For this purpose, letv ∈ H1(Ω;Rk) with vi ∈ H1+θ(Ω), q ∈ Q with qi j ∈ Hθ′ (Ω), andθ, θ′ > 0. Moreover, we
assume quadrilaterals to be parallelograms and hexahedronto be parallelepipeds. Using theL2-projectionΠ̃h onto the
spaceCh, we define (Πh(q))i j := Π̃h(qi j ). Furthermore, let{ϕT,m}

nT

m=1 ⊂ P(T) denote the usual nodal basis onT, i.e.,
with Kronecker’s deltaδ there holdsϕT,m(xT,l) = δml for the verticesxT,l of T, l = 1, . . . ,nT . We have

∑nT

m=1 ϕT,m = 1
and 0≤ ϕT,m ≤ 1. In particular, there holds

1 =















nT
∑

m=1

ϕT,m















2

=

nT
∑

l,m=1

ϕT,lϕT,m. (7.1)

Clement’s interpolant̃Jh is defined as

J̃h(ṽ|T)|T :=
nT
∑

l=1

|ωxT,l |
−1

∫

ωxT,l

ṽ dxϕT,l

for ṽ ∈ Hθ̃(Ω) with θ̃ ≥ 0 andωx := {T ∈ Th | x ∈ T}, cf. [2]. Thus, we setJh(q))i j := J̃h(qi j ).

Proposition 7.1. There holds

(i) Πh(Λ) ⊂ Λ̄h ⊂ Λ̂h and Jh(Λ) ⊂ Λ̂◦h,
(ii) ‖q− Πh(q)‖0 ≤ CΠ(q)hmin{θ′,1} with a constant CΠ(q) > 0,

(iii) ‖q− Jh(q)‖0 ≤ CJ(q)hmin{θ′,2} with a constant CJ(q) > 0,

Proof. Proofs of the assertions (ii) and (iii) can be found in, e.g.,[2, 22]. To show (i), letµ ∈ Λ and considerΠh(µ)
andJh(µ) on aT ∈ Th. Using Cauchy’s Inequality, we observe

k
∑

i, j=1

|ω|−2

(∫

ω

µi j dx

)2

≤ |ω|−1
∫

ω

µ : µdx≤ 1 (7.2)

for ω ⊂ Ω. Thus, we obtain

Πh(µ) : Πh(µ) =
k

∑

i, j=1

|T |−2

(∫

T
µi j dx

)2

≤ 1

which gives usΠh(Λ) ⊂ Λ̄h. To proveJh(Λ) ⊂ Λ̂◦h, we derive from Young’s inequality and (7.2)

k
∑

i, j=1

|ωzl |
−1















∫

ωzl

µi j dx















|ωzm|
−1

(∫

ωzm

µi j dx

)

≤
1
2

















k
∑

i, j=1

|ωzl |
−2















∫

ωzl

µi j dx















2

+

k
∑

i, j=1

|ωzm|
−2

(∫

ωzm

µi j dx

)2
















≤ 1.
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From (7.1), we obtain

Jh(µ) : Jh(µ) =
k

∑

i, j=1

nT
∑

l,m=1

|ωzl |
−1















∫

ωzl

µi j dx















ϕT,l |ωzm|
−1

(∫

ωzm

µi j dx

)

ϕT,m ≤

nT
∑

l,m=1

ϕT,lϕT,m = 1.

Remark7.2. The definition ofPh allows for the use of hybrid meshes consisting of triangles and quadrilaterals. In
three dimensions, the use of hybrid meshes is more complicated due to the continuity assumptions onV̂h and involves
further shapes as pyramids and prism. Therefore, we assume non-hybrid meshes in three dimensions.

Remark7.3. Instead of piecewise bilinear functions, we can also apply piecewise linear functions on parallelograms
or parallelepipeds, respectively, to define a spaceQh with dev(σ(Wh)) ⊂ Qh. In this case, we obtain the same a priori
results as usinĝQh, cf. Section 8.

8. A priori estimates for low-order finite elements

In the following, letui ∈ H1+θ(Ω) and pi j ∈ Hθ′(Ω) with θ, θ′ > 0. From Proposition 3.2, we observe that
λi j ∈ Hθ̄(Ω) with θ̄ := min{θ, θ′}. ChoosingQh := Q̄h or Qh := Q̂h, we can make use of the orthogonality relation of
theL2-projectionΠH.

Corollary 8.1. Let Wh := W̄h or Wh := Ŵh. Hence, there holds

‖w− wh‖ + ‖λ − λh‖0 . hmin{1,θ̄}.

Proof. Form the orthogonality relation of theL2-projection and Proposition 7.1, we obtain

(λ − Πh(λ), χ(w))0 = σy(λ − Πh(λ), p− Πh(p))0

≤ σy‖λ − Πh(λ)‖0‖p− Πh(p)‖0 ≤ σyCΠ(λ)CΠ(p)hmin{1,θ̄}+min{1,θ′}.

This gives us the assertion using Theorem 5.2.

For Qh := Q̂◦h, we obtain the following result by utilizing Cauchy’s inequality:

Corollary 8.2. Let Wh := Ŵ◦h. Hence, there holds

‖w− wh‖ + ‖λ − λh‖0 . hmin{1,θ̄/2}.

Proof. Cauchy’s inequality and Proposition 7.1 yield

(λ − Jh(λ), χ(w))0 ≤ σy‖q‖0‖λ − Jh(λ)‖0 ≤ σy‖q‖0CJ(λ)hmin{2,θ̄}.

The assertion follows by Theorem 5.2.

Remark8.3. For triangle meshes Corollary 8.1 yields the same optimal convergence resultO(h) as shown in [1]. The
Corollary 8.2 implies that the use of globally continuous elements forQh leads to an optimal convergence rateO(h) if
θ̄ ≥ 2 holds, which, however, requiresui ∈ H3(Ω) andpi j ∈ H2(Ω).

Remark8.4. Corollaries 8.1 and 8.2 are dissatisfying in the sense that the regularity given byθ andθ′ is unclear in
general. We refer to [19, 20] for some results on the regularity in elastoplasticity.
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9. A posteriori estimates for low-order finite elements

As stated in Theorem 6.4, we have to estimate‖Res(wh)‖ which can be done by standard techniques known from
the context of linear elasticity. Here, we present the standard residual approach. For this purpose, we define the
residuals

RT := ‖ fT + divσ(wh)‖0,T , RE :=















‖[σn(wh)]‖0,E, E ∈ E◦h,

‖gE − σn(wh)‖0,E, E ∈ EN
h ,

where

fT := |T |−1
∫

T
f dx, gE := |E|−1

∫

E
g ds,

E◦h is the set of all interior edges ofT , andEN
h the set of edgesE with E ⊂ ΓN. Here, we denote the maximum diameter

of a mesh elementT ∈ Th by hT and the length of an edgeE ∈ E◦h∪E
N
h by hE. Moreover, we define the residual-based

error estimator by

ηh :=

















∑

T∈T

h2
TR2

T +

∑

E∈E0∪E

hER2
E

















1/2

and the oscillations by

osc(f ,Th) :=

















∑

T∈Th

h2
T‖ f − fT‖

2
0,T

















1/2

, osc(g,EN
h ) :=

















∑

T∈Th

hE‖g− gE‖
2
0,T

















1/2

.

Theorem 9.1. There holds
‖Res(wh)‖ . ηh + osc(f ,Th) + osc(g,EN

h ).

Proof. Using standard arguments, cf. [4], and Clement’s interpolation definingJh(v)i := J̃h(vi) for v ∈ H1
D(Ω), we

obtain
〈Res(wh), v− Jh(v)〉 . ‖v‖1(ηh + osc(f ,Th) + osc(g,EN

h )).

From (4.2) withzh := (vh,0), we conclude

〈Res(wh), vh〉 = ( f , vh)0 + (g, γ|ΓN (vh))0,ΓN − (σ(wh), ε(vh))0 = 0

for all vh ∈ Vh. Thus, we have〈Res(wh), v〉 = 〈Res(wh), v−Jh(v)〉. The definition of‖Res(wh)‖ yields the assertion.

We set ¯ηh := ηh + ‖dev(σ(wh) −Hph) − σyλh‖0 and use Theorem 6.4 and Theorem 9.1 to conclude

‖w− wh‖ + ‖λ − λh‖0 . η̄h + osc(f ,Th) + osc(g,EN
h )

which implies that ¯ηh is a reliable error estimator (except for oscillations). Using Wh = W̄h or the discretization
approach described in Remark 7.3, we are able to follow the arguments proposed, for instance, in [24], to show the
efficiency ofη̄h where we obtain

ηh . ‖w− wh‖ + osc(f ,Th) + osc(g,EN
h ),

in particular, exploiting equation (3.1) and the fact thatfT + divσ(wh) is constant. From Lemma 6.3, we obtain

η̄h . ‖w− wh‖ + ‖λ − λh‖0 + osc(f ,Th) + osc(g,EN
h )

which is the efficiency of η̄h. Unfortunately, we can not argue in the same way ifWh = Ŵh or Wh = Ŵ◦h since
fT + divσ(wh) is not constant in these cases.

Remark9.2. In the same way, techniques for a posteriori error control for meshes with hanging nodes can be trans-
ferred from linear elasticity, cf. [6].
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(b)

Figure 1:(a) Adaptive refinements, the colors indicate (λh : λh)1/2. (b) Estimated convergence rates for adaptive and uniform refinements.

Remark9.3. Applying Theorem 6.4 withWh = W̄h on triangle meshes, we obtain the same well-known error esti-
mation as in [10]. The estimations seem to be new for meshes with quadrilaterals or hexahedrons where we have to
determine

‖dev(σ(wh) −Hph) − σyλh‖
2
=

∑

T∈Qh

‖dev(σ(wh) −Hph) − σyλh‖
2
0,T

with the set of all quadrilaterals or hexahedronsQh ⊂ Th. This term measures the (local) error between dev(σ(wh) −
Hph) and itsL2-projection. Under the regularity assumption of Section 8 we obtain from Corollary 8.1 and Lemma
6.3 that it behaves likeO(hmin{1,θ̄}).

10. Numerical results

In this section, we study some numerical experiments to showthe applicability of the derived estimates within
adaptive schemes and discuss some numerical properties of the mixed method. We consider problems of elasto-
plasticity with linear kinematic hardening and either one or two yield surfaces. The elasticity tensor is defined as
Cτ := λ tr(τ)I + 2µτ with the first and second Laḿe parametersλ andµ, respectively. Moreover, we set the hardening
tensorH := ξI with a positive real numberξ. We restrict ourselves to the two-dimensional case where wediscretize
with piecewise bilinear and piecewise constant functions on a quadrilateral mesh, i.e. we use the finite element spaces
Vh := V̂h andQh := Q̄h. This discretization approach is easy to implement and seems to be new in the context of
elastoplasticity, see also Remark 9.3.

We solve the discrete mixed variational formulation by Uzawa’s method, cf. [14, 15]. For this purpose, we
introduce the standard nodal basis{ϕi}0≤i<n of V̂h and the basis{ψ j}0≤ j<m of Q̄h which is given by

ψr(T,1) := χT

(

1 0
0 −1

)

, ψr(T,2) := χT

(

0 1
1 0

)

with n := dim V̂h andm := dim Q̄h. Here,χT(x) is 1 if x ∈ T, and zero otherwise. Furthermore,r : Th × {1,2} →
{1, . . . ,m} denotes an appropriate bijective numbering. Consequently, (4.2) is equivalent to find (x, y, z) ∈ Rn×Rm×Λ̃,
such that,

Ax+ By= L,

B⊤x+Cy+ Dz= 0,

(z− z̃)⊤Dy ≤ 0

12



(a) (b) (c)

(d) (e) (f)

Figure 2: (p̃h : p̃h)1/2 for different ranges and tolerances,(a) [0,10−6], (b) [0,10−5], (c) [0,10−1] with tol = 10−5, and(d) [0,10−6], (e) [0,10−5],
(f) [0,10−1] with tol = 10−10.

for all z̃ ∈ Λ̃ := {z ∈ R
m |

∑m
j=1 zjψ j ∈ Λ̄h}. Here, the matricesA ∈ R

n×n, L ∈ R
n, B ∈ R

m×n andC,D ∈ R
m×m are

defined as

Ai j := (Cε(ϕ j), ε(ϕi))0, Li := ( f , ϕi)0 + (g, γ|ΓN (ϕi))0,ΓN ,

Bi j := (−Cψ j , ε(ϕi))0, Ci j := ((C +H)ψ j , ψi)0, Di j := σy(ψ j , ψi)0.

Obviously, the matricesA, C andD are symmetric and positive definite. Moreover, the matricesC andD are diagonal
matrices with the diagonal entriesC j j = 2|T |(2µ + ξ) andD j j = 2|T |σy for T ∈ Th, j = r(T, s) ands = 1,2. Using a
projectionP : Rm→ Λ̃ and an invertible matrixS ∈ R(n+m)×(n+m), we obtain an iterative scheme by

(

xk+1

yk+1

)

=

(

xk

yk

)

− ρ1S

(

Axk
+ Byk − L

B⊤xk
+Cyk

+ Dzk

)

,

zk+1
= P(zk

+ ρ2Dyk+1).

(10.1)

The convergence of this method for some parametersρ1, ρ2 > 0 is proven in [14]. In Uzawa’s method with
projection the matrixS is chosen as

S :=

(

A B
B⊤ C

)−1

or, in the case of the inexact Uzawa’s method, as an appropriate approximation of it, cf. [11]. To define a suitable
projectionP, let i, j ∈ {1, . . . ,m}, z ∈ R

m andd(i, j) := 2(z2
i + z2

j ). We setPi, j(z) := d(i, j)−1/2zi if d(i, j) > 1 and to
zi otherwise. Therewith, the projectionP is given byPr(T,1) := Pr(T,1),r(T,2) andPr(T,2) := Pr(T,2),r(T,1) for T ∈ Th. We
emphasize that we do not focus on efficient solution algorithms in this paper. We primarily introduce Uzawa’s method
because of its implementational simplicity to solve the mixed discretization (4.3). Since the sparsity structure of the
matrix B⊤C−1B is included in the structure of the matrixA, it is easy to determine the matrixE := A − BC−1B⊤ by
extending the usual assembling process. It is straightforward to see thatE is symmetric and positive definite, too. The
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(a) (b) (c)

(d) (e) (f)

Figure 3: (̃λh : λ̃h)1/2 ≈ (λh : λh)1/2 for different ranges and tolerances,(a) [0.999,1], (b) [0.99,1], (c) [0,1] with tol = 10−5, and(d) [0.999,1], (e)
[0.99,1], (e) [0,1] with tol = 10−10.

scheme (10.1) is then simplified to

ζk
= E−1(L + κBzk),

xk+1
= (1− ρ1)xk − ρ1ζ

k,

yk+1
= (1− ρ1)yk − ρ1(κzk −C−1B⊤ζk),

zk+1
= P(zk

+ ρ2Dyk+1)

with κ := σy(2µ + ξ)−1. Further aspects on solution schemes in elastoplasticity based on the proposed mixed method
will be considered in future work.

To adapt the finite element meshes, we use the derived error estimates within a simple fixed fraction strategy, where
a fixed fraction of all mesh elements with the largest error contributions to the total error is refined. The quadrilateral
elements are isotropically refined into four new elements. We allow for (multilevel) hanging nodes possibly resulting
from the adaptive refinement process. The first test example is given by the standard L-shape domain, whereΩ is set to
(0,1)2\(0,0.5)2. Furthermore, we assume homogeneous Dirichlet boundary conditions onΓD := [0.5,1] × {0}. In the
first instance, we consider single yield plasticity and assume the surface tractiong to be non-zero, namelyg := 1.25,
only on [0,1]× {1}. The material parameters are chosen asλ := 1000,µ = 1000,ξ := 100 andσy = 1.25. The volume
force f is set to zero. Even though, the exact solution for this problem is not known, we expect singular behavior at
the reentrant corner and at the points where the boundary conditions change. Indeed, we observe adaptive refinements
towards those points as we can see in Figure 1a.

To check the performance of the adaptive refinements, we compare the estimated convergence rates obtained by
the adaptive algorithm with the rates obtained by uniform refinements. Obviously, we gain better convergence rates
using adaptive schemes in comparison to uniform mesh refinement. Moreover, we observe that the additional term
‖dev(σh −Hph) − σyλh‖ is of the same order as ¯η.

The use of the mixed methods as proposed in this paper may be motivated by the lack of regularization parameters
as required in Newton’s method. Another motivation to applythe mixed method in conjunction with Uzawa’s method
is to detect regions of pure elastic deformation. Clearly, such regions are characterized byp = 0. However, using
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(a) (b)

Figure 4: Lagrange multipliers describing the first and second yield surface:(a) (λ0,h : λ0,h)1/2, (b) (λ1,h : λ1,h)1/2.

discretization as well as solution schemes it is not clear whether the calculated discrete plastic variable ˜ph ≈ ph

approximates zero or just a small value. In Figure 2, ( ˜ph : p̃h)1/2 is depicted in several ranges and for different
tolerances

(|xk+1 − xk| + |yk+1 − yk| + |zk+1 − zk|)/(|xk| + |yk| + |zk|) < tol

with tol = 10−5 (Figure 2a-c) and tol= 10−10 (Figure 2d-f) using Uzawa’s method. We observe that the accuracy of
Uzawa’s method has a significant influence on the plastic variable close to zero. Without additional information, the
regions of pure elastic deformations can not be detected forthe larger tolerancetol = 10−5.

As discussed in Remark 3.3 and Remark 4.3,ph is equal to zero ifλh : λh < 1. Involving the calculated Lagrange
multiplier λ̃h ≈ λh, we obtain a very sharp criterion as we can see in Figure 3a-f where the same tolerances are used,
tol = 10−5 (Figure 3a-c) and tol= 10−10 (Figure 3d-f). We already observe sharp distributions for tol = 10−5.

Finally, we consider multi-yield plasticity with two yieldsurfaces as introduced in Remark 3.4 with the parameters
σy,0 := 1.25,σy,1 := 5, ξ0 := 100, andξ1 := 50. Again,Ω is the L-shape domain as in the example of single yield
plasticity. The boundary conditions and the exterior forces remain the same as well. Figure 4 shows the Lagrange
multipliersλ0,h andλ1,h describing the first and second yield surface on an adaptively refined mesh.

References

[1] J. Alberty, C. Carstensen, D. Zarrabi, Adaptive numerical analysis in primal elastoplasticity with hardening., Comput. Methods Appl. Mech.
Eng. 171 (3-4) (1999) 175–204.

[2] C. Bernardi, V. Girault, A local regularization operator for triangular and quadrilateral finite elements., SIAM J. Numer. Anal. 35 (5) (1998)
1893–1916.

[3] V. Bostan, W. Han, B. Reddy, A posteriori error estimationand adaptive solution of elliptic variational inequalities of the second kind., Appl.
Numer. Math. 52 (1) (2005) 13–38.

[4] D. Braess, Finite elements. Theory, fast solvers and applications in solid mechanics. Translated from German by Larry L. Schumaker.,
Cambridge: Cambridge University Press. xvii, 365 p., 2007.

[5] C. Carstensen, Numerical analysis of the primal problem ofelastoplasticity with hardening., Numer. Math. 82 (4) (1999) 577–597.
[6] C. Carstensen, J. Hu, Hanging nodes in the unifying theory of a posteriori finite element error control., J. Comput. Math. 27 (2-3) (2009)

215–236.
[7] C. Carstensen, R. Klose, A. Orlando, Reliable and efficient equilibrated a posteriori error finite element error control in elastoplasticity and

elastoviscoplasticity with hardening, Comput. Methods Appl. Mech. Engrg. 195 (19-22) (2006) 2574–2598.
[8] C. Carstensen, J. Valdman, M. Brokate, A quasi-static boundary value problem in multi-surface elastoplasticity: part 1 - analysis, Math.

Methods Appl. Sci. 27 (2004) 1697–1710.
[9] C. Carstensen, J. Valdman, M. Brokate, A quasi-static boundary value problem in multi-surface elastoplasticity: part 2 - numerical solution,

Math. Methods Appl. Sci. 28 (2005) 881–901.
[10] C. Carstensen, J. Valdman, A. Orlando, A convergent adaptive finite element method for the primal problem of elastoplasticity, Internat. J.

Numer. Methods Engrg. 67 (13) (2006) 1851–1887.

15



[11] X.-l. Cheng, W. Han, Inexact uzawa algorithms for variational inequalities of the second kind., Comput. Methods Appl. Mech. Eng. 192 (11-
12) (2003) 1451–1462.

[12] P. W. Christensen, A nonsmooth newton method for elastoplastic problems., Comput. Methods Appl. Mech. Eng. 191 (11-12)(2002) 1189–
1219.

[13] I. Ekeland, R. Temam, Convex analysis and variational problems., Studies in Mathematics and its Applications., North-Holland Publishing
Company, Amsterdam, 1976.
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