
Iterative Operator Splitting Methods with embedded

Multi-grid methods

Jürgen Geiser a,∗,
aDepartment of Mathematics, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin,

Germany

Abstract

In this article a new approach is considered for implementing iterative operator splitting
methods for differential equations. The underlying idea is to embed fast Multi-grid methods to
accelerate the iterative splitting schemes. The main problem are fast iterative solvers for multi-
scale physics, while different scales, we have to apply multi-grid methods to obtain the optimal
scale, which can be solved by an iterative splitting schemes. Here we discuss the embedding
of such spatial- and time-scale methods, e.g. Multi-grid (spatial) and BDF (time) methods, to
taken into account the different scales.

Key words: numerical analysis, operator splitting method, initial value problems, iterative solver
method, stability analysis, convection-diffusion-reaction equation, multi-grid methods
1991 MSC: [2008] 35K15 35K57 47F05 65M60 65N30.

1. Introduction

We are motivated on solving multi-scale problems that are given for example in trans-
port problem in porous media.

In the last years, the interest in numerical simulations with multi-scale problems,
that can be used to model different physical behavior, e.g. potential damage events, has
significantly increased, while also the methodology is delicate to adapt for such problems,
see [39] and [40].

We concentrate on simplified models and taken into the ideas to adapt the underlying
splitting schemes, see [15]. While the splitting schemes worked optimal for single scale

∗ Corresponding author.
Email address: geiser@mathematik.hu-berlin.de (Jürgen Geiser).

Preprint submitted to J. Comput. Appl. Math. 4 February 2011

problems, we have to embed multi-grid ideas or multi-step ideas to extend our schemes
to multi-scale solvers. We deal with iterative splitting methods and decomposing such
scale problems and accelerate the convergence rates with multi-scale methods, such that
we can overcome to such scaling problems.

Moreover the embedding part is important, while we dealing with multi-grid methods,
we have to extend the underlying spitting analysis and discuss the algorithmic ideas.

The novelty is to embed cheaply the multi-grid and multi-step methods and apply only
cheap iterative schemes to achieve higher order results.

In general, we discuss an elegant way of embedding recently survey on methods for
multi-scale problems with respect to iterative splitting schemes.

In the following, we describe our model problem. The model equation for the multi-
scale equations are given as coupled partial differential equations.

We concentrate on a far-field model for a plasma reactor, see [16] and [30] and assume
a continuum flow, and that the transport equations can be treated with a convection-
diffusion-reaction equation, due to a constant velocity field, see:

∂u

∂t
+ ∇ · Fu = 0, in Ω × [0, t] (1)

F = v − D∇,

c(x, t) = c0(x), on Ω, (2)

∂c(x, t)

∂n
= 0, on ∂Ω × [0, t], (3)

where c is the particle density of the ionized species. F the flux of the species. v is the flux
velocity through the chamber and porous substrate which is influenced by the electric
field. D is the diffusion matrix. The initial value is given as c0 and we assume a Neumann
boundary condition.

The aim of this paper is to present a novel iterative splitting method, that embed
multi-scale methods

The paper is outlined as follows: In Section 2, we present the underlying splitting
methods. The stability analysis of the embedded Multi-grid schemes with the iterative
schemes are given in Section 3. The assembling and algorithms to the embedded multi-
grid method is given in Section 4. Numerical verifications are given in Section 5. In
Section 6, we briefly summarize our results.

2. Iterative splitting methods

The iterative splitting methods are developed in the early 90’ies, see [28], [41].
The idea is to decouple the equations in two or more equations to save computational

times, while letting equation part unchanged with previous results. We obtain inhomo-
geneous partial differential equations and solve them with appropriate methods.

We consider the following the differential equation problem, while the operators A and
B are given spatial discretized operators:

∂u

∂t
= Au + Bu, (4)

2

where the initial conditions are un = u(tn). The operators A and B are spatially dis-
cretized operators, e.g. they correspond in space to the discretized convection and diffu-
sion operators (matrices). Hence, they can be considered as bounded operators with a
sufficient large spatial step ∆x > 0.

In the following we discuss the different methods.

2.1. The sequential iterative splitting method

The classical sequential operator splitting, known as Lie-splitting or Strang-Marchuk
splitting methods, have several drawbacks besides their benefits, see [38], [31] and [?].
For instance, for non-commuting operators there might be a very large constant in the
splitting error which requires the use of an unrealistically small time step. Also, splitting
the original problem into the different subproblems with one operator, i.e. neglecting the
other components, is physically questionable.

In order to avoid these problems, one can use the iterative operator splitting method
on an interval [0, T]. This algorithm is based on the iteration with fixed splitting dis-
cretization step-size τ . On every time interval [tn, tn+1] the method solves the following
subproblems consecutively for i = 0, 2, . . .2m.

∂ui(x, t)

∂t
= Aui(x, t) + Bui−1(x, t), with ui(t

n) = un = v0 (5)

u0(x, tn) = un , u−1 = 0,

and ui(x, t) = ui−1(x, t) = v1 , on ∂Ω × (0, T) ,

∂ui+1(x, t)

∂t
= Aui(x, t) + Bui+1(x, t), (6)

with ui+1(x, tn) = un = v0 ,

and ui(x, t) = ui−1(x, t) = v1 , on ∂Ω × (0, T) ,

where un is the known split approximation at the time level t = tn (see [9]). This
algorithm constitutes an iterative method which involves in each step both operators
A and B. Hence, there is no real separation of the different physical processes in these
equations.
Remark 1 For the presented iterative splitting method, we have a serial algorithm and
we can not use the method parallel in this version. Because of the efficiency, we modify
the method with respect to the parallelization.

2.2. The parallel iterative splitting method

Taken into account to parallelize the standard iterative splitting method, see Section
2.1, we propose a decoupled version.

The iterative scheme can be done in a Jacobian form, so that the two parts of the
algorithm can be computed independently.

In the next iteration steps, we apply the previous solutions and improve them in the
next iteration steps.

We apply the parallel iterative splitting method for i = 0, 2, . . .2m, and we have :

3

∂ui(x, t)

∂t
= Aui(x, t) + Bui−1(x, t), with ui(t

n) = un = v0 (7)

u0(x, tn) = un , u−1 = 0,

and ui(x, t) = ui−1(x, t) = v1 , on ∂Ω × (0, T) ,

∂ui+1(x, t)

∂t
= Aui−2(x, t) + Bui+1(x, t), (8)

with ui+1(x, tn) = un = v0 , u−2 = 0,

and ui(x, t) = ui−1(x, t) = v1 , on ∂Ω × (0, T) ,

where un is the known split approximation at the time level t = tn. This algorithm
constitutes an iterative method which involves in each step both operators A and B.
Hence, there is no real separation of the different physical processes in these equations.

The first iterative steps are given as :

∂u0(x, t)

∂t
= Au0(x, t), with u0(t

n) = v0,

and u0(x, t) = v1 , on ∂Ω × (0, T) ,

∂u1(x, t)

∂t
= Bu1(x, t), (9)

with u1(x, tn) = un = v0,

and u1(x, t) = v1 , on ∂Ω × (0, T) ,

and

∂u2(x, t)

∂t
= Au2(x, t) + Bu1(x, t), with u2(t

n) = v0,

and u2(x, t) = u1(x, t) = v1 , on ∂Ω × (0, T) ,

∂u3(x, t)

∂t
= Au0(x, t) + Bu3(x, t), (10)

with u3(x, tn) = un = v0,

and u3(x, t) = u0(x, t) = v1 , on ∂Ω × (0, T) ,

Remark 2 The effect of the parallelization is to obtain accuracy of the sequential iter-
ative splitting with one more iterative step.

2.3. The Multi-grid Algorithm

For describing the multi-grid method we first initiate the two-grid method. Afterwards
we extend it recursively to the multi-grid method. The smoother on grid level l is denoted
by Sl. The two-grid method is defined as follows:

MZG
l := Sν2

l MZGG
l Sν1

l . (11)

where ν1 denotes the pre-smoothing steps and ν2 the post-smoothing steps. The correc-
tion MZGG

l on the coarse grid is defined by:

MZGG
l := 11 − p A−1

l−1 r Al. (12)

4

Linear multi-grid cycle
MG(xl, bl, l)

{
if (l == 0)

{
x0 = A−1

0 b0 ; exact solving on coarse grid.
}
else
{

xl = Sν1(xl, bl) ; ν1 pre-smoothing steps.

bl−1 = rbl ; defect restricted on next coarser grid.
xl1 = 0 ;
for (i = 0; i < γ; i + +)
{

cl−1 = 0 ;

MG(cl−1, bl−1, l − 1) ; γ-fold recursive invoking of
correction of coarse grid.

xl−1 = xl−1 + cl−1 ;
bl−1 = bl−1 − Al−1cl−1 ;

}
cl = pxl−1 ; interpolation of correction of the

next coarse grid.
xl = xl + cl ;
bl = bl − Alcl ;
xl = Sν2(xl, bl) ; ν2 post-smoothing steps.

}
}

The junction to the multi-grid method is done in such a way, that matrix Al−1 of the
coarse grid in Equation (12) is not inverted exactly, but the two-grid method is invoked
γ-times to solve the equation systems at grid level l − 1. The equation system is only
solved on the coarsest grid.

The multi-grid method is defined as:

MMG
0 := 0, (13)

MMG
1 := MZG

1 , (14)

MMG
l := MZG

l + Sν2

l p (MMG
l−1)γ A−1

l−1 r Al Sν1

l , (15)

where ν1 denotes the pre-smoothing steps and ν2 the post-smoothing steps. The correc-
tions MMGG

l of the coarse grid are defines as:

MMGG
l := 11 − p (I − (MMG

l−1)γ) A−1
l−1 r Al. (16)

This approach is called multi-grid method. For the choice of γ = 1 one speaks of a
V-cycle, for γ = 2 it is a W-cycle.

The multi-grid algorithm is given by: The refinement is done using the strategy of [18].
By assuming a linear effort for the smoothers as well as for the grid-transfer operators, one

5

obtains a linear effort for Algorithms 2.3, if γ ≤ 3, confer [18]. The proofs of convergence
for the W-cycle were don in [17]. The topic of convergence will not be further discussed,
for an overview we refer to [44].

Subsequently, the multi-grid cycles are illustrated in Figure 1. For a further consolida-

Level 0

Level 3

Level 2

Level 1

V−Zyklus W−Zyklus

Exakt Lösen

Nachglätten

Vorglätten

Fig. 1. Multi-grid cycles: V- and W-cycle.

tion of the topic of multi-grid methods we refer to [17], [2] and [18].

2.4. Iterative splitting method with embedded Multi-grid method

The following algorithm is based on embedding the multi-grid method to the operator
splitting method. The iteration with fixed splitting discretization step-size τ . On the time
interval [tn, tn+1] we solve the following sub-problems consecutively for i = 0, 2, . . . 2m.
(cf. [24] and [9].)

∂ci(t)

∂t
= Aci(t) + P lA−lBBci−1(t), with ci(t

n) = cn (17)

∂ci+1(t)

∂t
= RlA−lBAci(t) + Bci+1(t), with ci+1(t

n) = cn , (18)

where c0(t
n) = cn , c−1 = 0 and cn is the known split approximation at the time level

t = tn. We assume A is the fine spatial discretized operator on level lA, where B i the
coarse discretized operator on level lB.

The operators are coupled by the restriction and prolongation operators :

Acoarse = RlA−lBA, (19)

Bfine = P lA−lBB, (20)

where R is the restriction and P the prolongation operator.

2.5. The Waveform-Relaxation Method

A further method to solve large coupled differential equations are the wave-form re-
laxation scheme.

6

We assume two spatial operators A, B, which are discretized by finite difference of finite
element methods.
We solve the time-discretization of our equations

∂ci(t)

∂t
= Aci(t) + P lA−lBBci−1(t), with ci(t

n) = cn (21)

∂ci+1(t)

∂t
= RlA−lBAci(t) + Bci+1(t), with ci+1(t

n) = cn , (22)

where c0(t
n) = cn , c−1 = 0 and cn is the known split approximation at time-level t = tn.

with time-integration and obtain:

(I − A)ci(t
n+1) = ci(t

n) + P lA−lBBci−1(t
n+1), with ci(t

n) = cn (23)

(I − B)ci+1(t) = ci+1(t
n) + RlA−lBAci(t

n+1), with ci+1(t
n) = cn , (24)

We have the multi-grid equations :

Lici(t
n+1) = ci(t

n) + P lA−lB Bci−1(t
n+1), with ci(t

n) = cn (25)

Li+1ci+1(t) = ci+1(t
n) + RlA−lBAci(t

n+1), with ci+1(t
n) = cn , (26)

The iterative method was discussed in [41] and can be done either with Gauss- or
Jacobian form.

We deal with the following ordinary differential equation or assume a semi-discretized
partial differential equation :

ut = f(u, t), in (0, T) ,

u(0) = v0

where u = (u1, . . . , um)t and f(u, t) = (f1(u, t), . . . , fm(u, t))t.
We apply the Waveform-Relaxation method for i = 0, 1, . . .m and have :

∂u1,i(x, t)

∂t
= f1(u1,i, u2,i−1, . . . , um,i−1) with u1,i(t

n) = u1(t
n) (27)

∂u2,i(x, t)

∂t
= f2(u1,i−1, u2,i, u3,i−1 . . . , um,i−1) with u2,i(t

n) = u2(t
n) (28)

...
∂um,i(x, t)

∂t
= f2(u1,i−1, . . . , um−1,i−1, um,i) with um,i(t

n) = um(tn) (29)

where for the initialization of the first step we have u1,−1(t) = u1(t
n), . . . , um,−1(t) =

um(tn).
We reduce to 2 equations and reformulate the method to our iterative splitting meth-

ods.
So we deal with :

∂u1

∂t
= f11(u1, t) + f12(u2, t), in (0, T) , (30)

∂u2

∂t
= f21(u1, t) + f22(u2, t), in (0, T) , (31)

7

u(0) = v0 (32)

where u = (u1, u2)
t.

Our notation for the operator equation is given as :

∂u

∂t
= A(u) + B(u), in (0, T) , (33)

u(0) = v0 (34)

where

A(u) =




f11(u1)

f21(u1)



 (35)

B(u) =




f12(u2)

f22(u2)



 (36)

The iterative splitting method as Waveform-Relaxation method written for i = 0, 1, . . .m
as :

∂ui

∂t
= A(u1,i, u2,i−1) + B(u1,i−1, u2,i) (37)

with u1,i(t
n) = u1(t

n) and u2,i(t
n) = u2(t

n)

where for the initialization of the first step we have u1,−1(t) = u1(t
n), u2,−1(t) = u2(t

n).

2.5.1. Convergence Analysis
In the following we formulate the iterative splitting method as Waveform-Relaxation

method and apply the proof-techniques of the relaxation schemes.
The Waveform-Relaxation Method is given as

dui

dt
= Pui + Qui−1 + f, (38)

ui(t
n) = u(tn), (39)

where A = P + Q, e.g. P is the diagonal part of A (Jacobi-method).
Here the splitting method is done abstract with respect to the matrix A. The method

considered an effective solver method with respect to the underlying matrices.
The reformulation of the iterative operator splitting method is given as:

dui

dt
= Pui + Qui−1 + f, (40)

ui(t
n) = u(tn), (41)

dui+1

dt
= Pui + Qui+1 + f, (42)

ui+1(t
n) = u(tn), (43)

where P, Q are matrices given by spatial discretization, e.g. P is the convection part of
Q the diffusion part.

8

But we can also do an abstract decomposition, take into account A = P + Q, where
P is the matrix with small eigenvalues and Q is the matrix with large eigenvalues.

Theorem 1 We have the iterative operator splitting methods given as outer and inner
iterations.

Outer Iteration :

dUi

dt
= PUi + QUi−1 + F, (44)

Ui(t
n) = U(tn), (45)

where P and Q are the diagonal and outer-diagonal matrices of the splitting methods.
Inner Iteration:

duj

dt
= Puj + Quj−1 + f, (46)

uj(t
n) = u(tn), j = 1, . . . , J (47)

duk

dt
= PuJ + Quk + f, (48)

uk(tn) = u(tn), k = 1, . . . , K (49)

We have a convergent scheme for K is bounded in a Banach-space :

ρ(K) := lim
k→∞

||Kk||1/k, (50)

where ρ(K) ≤ 1 is the spectral radius of K and is given by the variation of constants of
P and Q.
Proof .

The outer iteration given as

dUi

dt
= PUi + QUi−1 + F, (51)

Ui(t
n) = U(tn), (52)

where P and Q are the diagonal and outer-diagonal matrices of the splitting methods,
can be solved by the variation of constants.

We introduce the linear integral operator

KU(t) =

t∫

0

exp((t − s)P)QU(s) ds, (53)

and we have

Ui = KUi−1 + φ, (54)

φ = exp(tP)U(tn) +

t∫

0

exp((t − s)P)F (s) ds, (55)

For the convergence it is sufficient to show :

9

K is bounded in a Banach-space :

ρ(K) := lim
k→∞

||Kk||1/k, (56)

where ρ(K) ≤ 1 is the spectral radius of K
This is given by the bounded operators, see [33] and [34].

3. Error Analysis: Stability Theory for the iterative splitting method with

Multi-grid methods

The following algorithm is based on embedding the multi-grid method in the operator
splitting method. The iteration with fixed splitting discretization step-size τ . On the time
interval [tn, tn+1] we solve the following sub-problems consecutively for i = 0, 2, . . . 2m.
(cf. [24] and [9].)

∂ci(t)

∂t
= Aci(t) + P lA−lBBci−1(t), with ci(t

n) = cn (57)

∂ci+1(t)

∂t
= RlA−lBAci(t) + Bci+1(t), with ci+1(t

n) = cn , (58)

where c0(t
n) = cn , c−1 = 0 and cn is the known split approximation at time-level t = tn.

We assume A to be the fine spatial discretized operator on level lA and B to be the coarse
discretized operator on level lB.

The operators are coupled by the restriction and prolongation operators:

Acoarse = RlA−lBA, (59)

Bfine = P lA−lBB, (60)

where R is the restriction and P the prolongation operator.

Theorem 2 Let us consider the abstract Cauchy problem in a Banach space X

∂tc(t) = Ac(t) + P lA−lB Bc(t), 0 < t ≤ T

c(0) = c0

(61)

where A, P lA−lBB, A + P lA−lBB :X → X are given linear operators being generators of
the C0-semigroup and c0 ∈ X is a given element. Then the iteration process (81)–(82) is
convergent and the rate of convergence is of higher order.
Proof .

We assume A + P lA−lBB ∈ L(X) and assume a generator of a uniformly continuous
semi-group, hence the problem (61) has a unique solution c(t) = exp((A+P lA−lBB)t)c0.

Let us consider the iteration (??)–(??) on the sub-interval [tn, tn+1]. For the local error
function ei(t) = c(t) − ci(t) we have the relations

∂tei(t) = Aei(t) + P lA−lBBei−1(t), t ∈ (tn, tn+1],

ei(t
n) = 0,

(62)

10

and

∂tei+1(t) = RlA−lB Aei(t) + Bei+1(t), t ∈ (tn, tn+1],

ei+1(t
n) = 0,

(63)

for m = 0, 2, 4, . . ., with e0(0) = 0 and e−1(t) = c(t). In the following we use the notations
X2 for the product space X×X endowed with the norm ‖(u, v)‖ = max{‖u‖, ‖v‖} (u, v ∈
X). The elements Ei(t), Fi(t) ∈ X2 and the linear operator A : X2 → X2 are defined as
follows

Ei(t) =




ei(t)

ei+1(t)



 , Fi(t) =




P lA−lB Bei−1(t)

0



 , A =




A 0

RlA−lBA B



 . (64)

Then using the notations (64), the relations (62) and (63) can be written in the form

∂tEi(t) = AEi(t) + Fi(t), t ∈ (tn, tn+1],

Ei(t
n) = 0.

(65)

Due to our assumptions, A is a generator of the one-parameter C0-semi-group
(expAt)t≥0, hence using the variations of constants formula, the solution to the abstract
Cauchy problem (65) with homogeneous initial condition can be written as

Ei(t) =

t∫

tn

exp(A(t − s))Fi(s)ds, t ∈ [tn, tn+1]. (66)

(See, e.g. [8].) Hence, using the denotation

‖Ei‖∞ = sup
t∈[tn,tn+1]

‖Ei(t)‖ , (67)

we have

‖Ei‖(t) ≤ ‖Fi‖∞

t∫

tn

‖exp(A(t − s))‖ds

= ‖B‖‖ei−1‖

t∫

tn

‖exp(A(t − s))‖ds, t ∈ [tn, tn+1].

(68)

Since (A(t))t≥0 is a semi-group, the so called growth estimation

‖ exp(At)‖ ≤ K exp(ωt), t ≥ 0, (69)

holds with some numbers K ≥ 0 and ω ∈ IR, cf. [8].

11

– Assume that (A(t))t≥0 is a bounded or a exponentially stable semi-group, i.e. (69),
holds with some ω ≤ 0. Then obviously the estimate

‖ exp(At)‖ ≤ K, t ≥ 0, (70)

holds, and hence, on base of (68) we have the relation

‖Ei‖(t) ≤ K‖P lA−lB B‖τn‖ei−1‖, t ∈ [tn, tn+1]. (71)

– Assume that (expAt)t≥0 has an exponential growth with some ω > 0. Using (69), we
have

t∫

tn

‖exp(A(t − s))‖ds ≤ Kω(t), t ∈ [tn, tn+1], (72)

where

Kω(t) =
K

ω
(exp(ω(t − tn)) − 1) , t ∈ [tn, tn+1]. (73)

Hence

Kω(t) ≤
K

ω
(exp(ωτn) − 1) = Kτn + O(τ2

n). (74)

The estimations (71) and (74) result in

‖Ei‖∞ = K‖P lA−lB‖‖B‖τn‖ei−1‖ + O(τ2
n). (75)

Taking into account the definition of Ei and the norm ‖ · ‖∞, we obtain

‖ei‖ = K‖P lA−lB‖‖B‖τn‖ei−1‖ + O(τ2
n), (76)

and hence

‖ei+1‖ = K1τ
2
n‖ei−1‖ + O(τ3

n), (77)

which proves our statement.

3.1. Operator-splitting method with embedded Jacobian Newton iterative method

The Newton’s method is used to solve the nonlinear parts of the iterative operator-
splitting method, see the linearization techniques in [24], [25]. We apply the iterative
operator-splitting method and obtain:

F1(ui) = ∂tui − A(ui)ui − B(ui−1)ui−1 = 0,

with ui(t
n) = cn,

F2(ui+1) = ∂tui+1 − A(ui)ui − B(ui+1)ui+1 = 0,

with ui+1(t
n) = cn,

where the time step is τ = tn+1 − tn. The iterations are i = 1, 3, . . . , 2m + 1. c0(t) = 0 is
the starting solution and cn is the known split approximation at time level t = tn. The

12

results of the methods are c(tn+1) = u2m+2(t
n+1). The splitting method with embedded

Newton’s method is given as

u
(k+1)
i = u

(k)
i − D(F1(u

(k)
i))−1(∂tu

(k)
i − A(u

(k)
i)u

(k)
i − B(u

(k)
i−1)u

(k)
i−1),

with D(F1(u
(k)
i)) = −(A(u

(k)
i) +

∂A(u
(k)
i)

∂u
(k)
i

u
(k)
i),

and k = 0, 1, 2, . . . , K, with ui(t
n) = cn,

u
(l+1)
i+1 = u

(l)
i+1 − D(F2(u

(l)
i+1))

−1(∂tu
(l)
i+1 − A(u

(k)
i)u

(k)
i − B(u

(k)
i+1)u

(k)
i+1)c

(l)
2),

with D(F2(u
(l)
i+1)) = −(B(u

(l)
i+1) +

∂B(u
(l)
i+1)

∂u
(l)
i+1

u
(l)
i+1),

and l = 0, 1, 2, . . . , L, with ui+1(t
n) = cn.

Remark 3 For the iterative operator-splitting method with Newton’s method we have two
iteration procedures. The first iteration is Newton’s method for computing the solution
of the nonlinear equations, the second iteration is the iterative splitting method, which
computes the resulting solution of the coupled equation systems. The embedded method is
used for strong nonlinearities.

4. Assembling of the Splitting methods with embedded multi-grid method

In the following we discuss the assembling of our methods.

4.1. Crank-Nicolson and Two-grid Method

In the following we apply the iterative splitting method, with a Crank-Nicolson method
in time, a second order finite difference method in space and underly a two-grid method
as solver.

We apply the Crank-Nicolson scheme separately to the two equations obtained by the
two steps of the iterative operator splitting method after the discretization of the 2D
heat equation. For the i-step of the iterative operator splitting method, as interpolation
operator we choose the bilinear interpolation given by

vh
2i,2j = v2h

ij ,

vh
2i+1,2j =

1

2
(v2h

ij + v2h
i+1,j) ,

vh
2i,2j+1 =

1

2
(v2h

ij + v2h
i,j+1) ,

vh
2i+1,2j+1 =

1

4
(v2h

ij + v2h
i+1,j + v2h

i,j+1 + v2h
i+1,j+1) , 0 ≤ i, j,≤

n

2
− 1.

13

where the superscript h is associated with the fine grid and 2h with the coarse grid.

Step i:

un+1
i,j,k − un

i,j,k

∆t
=

1

2

[(

D1

un+1
i−1,j,k − 2un+1

i,j,k + un+1
i+1,j,k

h2
x

+ PD2

un+1
i−1,j−1,k−1 − 2un+1

i−1,j,k−1 + un+1
i−1,j+1,k−1

h2
y

)

+

(

D1

un
i−1,j,k − 2un

i,j,k + un
i+1,j,k

h2
x

+ PD2

un
i−1,j−1,k−1 − 2un

i−1,j,k−1 + un
i−1,j+1,k−1

h2
y

)]

≡
D1

2
δ̂2
xun+1

i,j,k +
D2

2
P δ̂2

yun+1
i−1,j,k−1 +

D1

2
δ̂2
xun

i,j,k +
D2

2
P δ̂2

yun
i−1,j,k−1

⇔ Pun+1
i−1,j−1,k−1

(
−D2∆t

2h2
y

)

+un+1
i−1,j,k

(
−D1∆t

2h2
x

)

+un+1
i,j,k+un+1

i,j,k

D1∆t

h2
x

+Pun+1
i−1,j,k−1

D2∆t

h2
y

+Pun+1
i−1,j+1,k−1

(
−D2∆t

2h2
y

)

+un+1
i+1,j,k

(
−D1∆t

2h2
x

)

=
1

2
(D1δ̂

2
xun

i,j,k+D2P δ̂2
yun

i−1,j,k−1)+un
i,j,k

⇔ un+1
i−1,j−1,k

(
−D2∆t

2h2
y

)

+un+1
i−1,j,k

(
−D1∆t

2h2
x

)

+un+1
i,j,k+un+1

i,j,k

D1∆t

h2
x

+
1

2
(un+1

i−1,j−1,k+un+1
i−1,j+1,k)

D2∆t

h2
y

+
1

4
(un+1

i−1,j+1,k + un+1
i,j+1,k + un+1

i−1,j+2,k + un+1
i,j+2,k)

(
−D2∆t

2h2
y

)

+ un+1
i+1,j,k

(
−D1∆t

2h2
x

)

=
1

2
D1δ̂

2
xun

i,j,k +
1

2
D2P

un
i−1,j−1,k−1 − 2un

i−1,j,k−1 + un
i−1,j+1,k−1

h2
y

+ un
i,j,k

⇔ un+1
i−1,j,k

(
−D1∆t

2h2
x

)

+ un+1
i,j,k(1 +

D1∆t

h2
x

) + un+1
i−1,j+1,k

D2∆t

2h2
y

+
1

4
(un+1

i−1,j+1,k + un+1
i,j+1,k + un+1

i−1,j+2,k + un+1
i,j+2,k)

(
−D2∆t

2h2
y

)

+ un+1
i+1,j,k

(
−D1∆t

2h2
x

)

=
1

2
D1δ̂

2
xun

i,j,k+
1

2

D2

h2
y

[un
i−1,j−1,k−2

1

2
(un

i−1,j−1,k+un
i−1,j+1,k)+

1

4
(un

i−1,j+1,k+un
i,j+1,k+un

i−1,j+2,k+un
i,j+2,k)]+un

i,j,k

⇔ un+1
i−1,j,k

(
−D1∆t

2h2
x

)

+ un+1
i,j,k(1 +

D1∆t

h2
x

) + un+1
i−1,j+1,k

(
D2∆t

2h2
y

)

+un+1
i,j+2,k

(
−D2∆t

4h2
y

)

+un+1
i−1,j+1,k

(
−D2∆t

4h2
y

)

+un+1
i,j+1,k

(
−D2∆t

4h2
y

)

+un+1
i−1,j+2,k

(
−D2∆t

4h2
y

)

+un+1
i+1,j,k

(
−D1∆t

2h2
x

)

=
1

2
D1δ̂

2
xun

i,j,k+
1

2

D2

h2
y

[−
1

2
un

i−1,j,k−
3

4
un

i−1,j+1,k +
1

4
(un

i,j+1,k+un
i−1,j+2,k +un

i,j+2,k)]+un
i,j,k

14

⇔ un+1
i,j,k








1 +
D1∆t

h2
x

+
D2∆t

2h2
y

︸ ︷︷ ︸

c








+ un+1
i,j−2,k








−D2∆t

4h2
y

︸ ︷︷ ︸

a








+ un+1
i−1,j,k








−D1∆t

2h2
x

︸ ︷︷ ︸

b








+

+un+1
i,j+2,k








−D2∆t

4h2
y

︸ ︷︷ ︸

a








+ un+1
i+1,j,k








−D1∆t

2h2
x

︸ ︷︷ ︸

b








=
1

2
D1δ̂

2
xun

i,j,k +
1

2

D2

h2
y

[
1

2
(un

i,j,k + un
i,j−2,k) − 2un

i,j,k +
1

2
(un

i,j+2,k + un
i,j,k)] + un

i,j,k

︸ ︷︷ ︸

dn
i,j,k

⇔ aui,j−2,k + bui−1,j,k + cui,j,k + bui+1,j,k + aui,j+2,k = dn
i,j,k

This procedure leads to a linear system Au = f , where

u = [u2,2 u3,2 . . . un/2−1,2, u2,3 u3,3 . . . un/2−1,3, . . . u2,n/2−1 u3,n/2−1 . . . un/2−1,n/2−1]
T

f = [d2,2 d3,2 . . . dn/2−1,2, d2,3 d3,3 . . . dn/2−1,3, . . . d2,n/2−1 d3,n/2−1 . . . dn/2−1,n/2−1]
T

The index k + 1 is omitted in the vectors u, f for the sake of better presentation. The
matrix A is given as:

15

A =
















































c b 0 0 0 0 0 a

b c b a

0 b c b a

0 b c b a

0 b c b

0 b c b

0 b c b

a b c b

0 a b c b

...
. . .

. . .
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
. . .

a b c b a
...

. . .
. . .

. . .
. . .

...

a b c b

0 a 0 0 0 0 0 b c
















































For the (i + 1)-step of the iterative operator splitting method, as restriction operator
we choose the most obvious restriction operator, the injection. We prefer it instead of the
standard full weighting operator because it leads to a linear system with better structure
that is easier to handle. Injection is defined by

v2h
i,j = vh

2i,2j .

Step i + 1:

un+1
i+1,j,k+1 − un

i+1,j,k+1

∆t
=

1

2

[(

RD1

un+1
i−1,j,k − 2un+1

i,j,k + un+1
i+1,j,k

h2
x

+ D2

un+1
i+1,j−1,k+1 − 2un+1

i+1,j,k+1 + un+1
i+1,j+1,k+1

h2
y

)

+

(

RD1

un
i−1,j,k − 2un

i,j,k + un
i+1,j,k

h2
x

+ D2

un
i+1,j−1,k+1 − 2un

i+1,j,k+1 + un
i+1,j+1,k+1

h2
y

)]

≡
D1

2
Rδ̂2

xun+1
i,j,k +

D2

2
δ̂2
yun+1

i+1,j,k+1 +
D1

2
Rδ̂2

xun
i,j,k +

D2

2
δ̂2
yun

i+1,j,k+1

⇔ un+1
i+1,j−1,k+1

(
−D2∆t

2h2
y

)

+Run+1
i−1,j,k

(
−D1∆t

2h2
x

)

+un+1
i+1,j,k+1+Run+1

i,j,k

D1∆t

h2
x

+un+1
i+1,j,k+1

D2∆t

h2
y

16

+un+1
i+1,j+1,k+1

(
−D2∆t

2h2
y

)

+Run+1
i+1,j,k

(
−D1∆t

2h2
x

)

=
1

2
(D1Rδ̂2

xun
i,j,k+D2δ̂

2
yun

i+1,j,k+1)+un
i+1,j,k+1

⇔ un+1
i+1,j−1,k+1

(
−D2∆t

2h2
y

)

+un+1
i−1,j,k+1

(
−D1∆t

2h2
x

)

+un+1
i+1,j,k+1+un+1

i,j,k+1

D1∆t

h2
x

+un+1
i+1,j,k+1

D2∆t

h2
y

+un+1
i+1,j+1,k+1

(
−D2∆t

2h2
y

)

+un+1
i+1,j,k+1

(
−D1∆t

2h2
x

)

=
1

2
(D1δ̂

2
xun

i,j,k+1+D2δ̂
2
yun

i+1,j,k+1)+un
i+1,j,k+1

⇔ un+1
i,j−1,k+1








−D2∆t

2h2
y

︸ ︷︷ ︸

a








+ un+1
i−1,j,k+1








−D1∆t

2h2
x

︸ ︷︷ ︸

b








+ un+1
i,j,k+1(1 +

D1∆t

h2
x

+
D2∆t

h2
y

︸ ︷︷ ︸

c

)

+un+1
i,j+1,k+1








−D2∆t

2h2
y

︸ ︷︷ ︸

a








+un+1
i+1,j,k+1








−D1∆t

2h2
x

︸ ︷︷ ︸

b








=
1

2
(D1δ̂

2
xun

i,j,k+1 + D2δ̂
2
yun

i+1,j,k+1) + un
i,j,k+1

︸ ︷︷ ︸

dn
i,j,k+1

⇔ aui,j−1,k+1 + bui−1,j,k,k+1 + cui,j,k+1 + bui+1,j,k+1 + aui,j+1,k+1 = dn
i,j,k+1

Au = f , where

u = [u2,2 u3,2 . . . un/2−1,2, u2,3 u3,3 . . . un/2−1,3, . . . u2,n/2−1 u3,n/2−1 . . . un/2−1,n/2−1]
T

f = [d2,2 d3,2 . . . dn/2−1,2, d2,3 d3,3 . . . dn/2−1,3, . . . d2,n/2−1 d3,n/2−1 . . . dn/2−1,n/2−1]
T

(the index k + 1 is omitted in the vectors u, f for the sake of better presentation)

17

A =










































c b 0 0 a 0

b c b a

0 b c b a

0 b c b a

a b c b a

0 a b c b a

a b c b a
...

. . .
. . .

. . .
. . .

. . .

...
. . .

. . .
. . .

. . .
. . .

a b c b a
...

. . .
. . .

. . .
. . .

...

a b c b

0 0 a 0 0 b c










































The Jacobi iterations for the heat equation are given as:

u
(n+1)
ij = ∆t D1

−u
(n+1)
i−1,j + 2u

(n+1)
ij − u

(n+1)
i+1,j

h2
x

+ ∆t D2

−u
(n+1)
i,j−1 + 2u

(n+1)
ij − u

(n+1)
i,j+1

h2
y

+ u
(n)
ij

4.2. Implementation of the iterative splitting method with embedded two-grid method

The implementation for the heat equation is given as:

un+1
i,j,k − un

i,j,k

∆t
=

1

2

[(

D1

un+1
i−1,j,k − 2un+1

i,j,k + un+1
i+1,j,k

h2
x

+ PD2

un+1
i,j−1,k−1 − 2un+1

i,j,k−1 + un+1
i,j+1,k−1

h2
y

)

+

(

D1R
un

i−1,j,k − 2un
i,j,k + un

i+1,j,k

h2
x

+ D2

un
i,j−1,k+1 − 2un

i,j,k+1 + un
i,j+1,k+1

h2
y

)]

≡
D1

2
δ̂2
xun+1

i,j,k +
D2

2
P δ̂2

yun+1
i,j,k−1 +

D1

2
Rδ̂2

xun
i,j,k +

D2

2
δ̂2
yun

i,j,k+1

⇔ Pun+1
i,j−1,k−1

(
−D2∆t

2h2
y

)

+Run+1
i−1,j,k

(
−D1∆t

2h2
x

)

+un+1
i,j,k +un+1

i,j,k

D1∆t

h2
x

+Pun+1
i,j,k−1

D2∆t

h2
y

+Pun+1
i,j+1,k−1

(
−D2∆t

2h2
y

)

+Run+1
i+1,j,k

(
−D1∆t

2h2
x

)

+un+1
i,j,k =

1

2
(D1Rδ̂2

xun
i,j,k+D2δ̂

2
yun

i,j,k+1)+un
i,j,k

18

⇔ un+1
i,j−1,k








−D2∆t

2h2
y

︸ ︷︷ ︸

a








+ un+1
i−1,j,k−1








−D1∆t

2h2
x

︸ ︷︷ ︸

b








+ un+1
i,j,k(1 +

D1∆t

h2
x

+
D2∆t

h2
y

︸ ︷︷ ︸

c

)

+un+1
i,j+1,k








−D2∆t

2h2
y

︸ ︷︷ ︸

a








+ un+1
i+1,j,k+1








−D1∆t

2h2
x

︸ ︷︷ ︸

b








=
1

2
(D1δ̂

2
xun

i,j,k+1 + D2δ̂
2
yun

i,j,k+1) + un
i,j,k

︸ ︷︷ ︸

dn
i,j

⇔ aun+1
i,j−1,k + bun+1

i−1,j,k−1 + cun+1
i,j,k + aun+1

i,j+1,k + bun+1
i+1,j,k+1 = dn

i,j (1)

The restriction operators are given as:
Run+1

i,j,k lead to 1
16 [un+1

i−1,j−1,k−1 + 2un+1
i,j−1,k−1 + un+1

i+1,j−1,k−1 + 2un+1
i−1,j,k−1 + 4un+1

i,j,k−1 +

2un+1
i+1,j,k−1 + un+1

i−1,j+1,k−1 + 2un+1
i,j+1,k−1 + un+1

i+1,j+1,k−1],

according to the interpretation of the stencil 1
16








1 2 1

2 4 2

1 2 1







.

5. Numerical Experiments

In the following examples, we deal with different test examples and their underlying
multi-scale physics.

5.1. Simple Heat Equation

We deal with a PDE which is parabolic and has a stiffness in the diffusion part.
We have the following equation :

∂tu1 = D11∂xxu1 + D21∂xxu2 ,

∂tu2 = D12∂xxu1 + D22∂xxu2 , (78)

u1(0) = u10 , u2(0) = u20 (initial conditions) , (79)

u1(x, t) = u2(x, t) = 0 (boundary conditions) , (80)

where D11, D21, D12, D22 ∈ IR+ and D11, D12 < D21, D22 are the diffusion operators.
We apply the finite difference scheme for the spatial derivatives :
∂xx = [1 − 2 1] and ∂yy = [1 − 2 1]t.
With the standard projection and restriction :

RH = 1/16








1 2 1

2 4 2

1 2 1








19

Ph = 4RH

The time-derivations are discretized by implicit Euler methods and we obtain the
following linear equation system:

(cn+1
i − cn

i)/∆t = Acn+1
i + PBcn+1

i−1 , with ci(t
n) = cn (81)

(cn+1
i+1 − cn

i+1)/∆t = RAcn+1
i + Bcn+1

i+1 , with ci+1(t
n) = cn , (82)

We obtain after the insertion of the operators an linear equation system:

ÃUn+1
i = B̃Un+1

i−1 + C̃Un
i , (83)

This equation system is solved by a two-grid method.
Here we have two scales and decouple :

∂tu = Au + Bu , (84)

u(0) = (u10, u20)
T , (85)

where u(t) = (u1(t), u2(t))
T for t ∈ [0, T].

Our spitted operators are

A =




D11∂xx 0

D12∂xx 0



 , B =




0 D21∂xx

0 D22∂xx.



 . (86)

We chose such an example to have AB 6= BA, and therefore we have a splitting error of
first order for the usual sequential splitting methods, called A-B splitting.

Our numerical results based on two-grid-methods are presented in the following Table
1.

We choose D11 = D12 = 0.5 and D21 = D22 = 0.05 on the time interval [0,1]. As 2th
order method we choose Crank-Nicolson with θ = 1/2. As 4th order method we choose
the Gauss Runge-Kutta . We apply a two-grid method, see Subsection 4.1.

The numerical results are given in Table 1. We apply the L2 error based on the exact
and the numerical solution.
Remark 4 In the experiments, we improved the iterative splitting scheme with higher
order discretization methods. Further we can accelerate the splitting scheme with an un-
derlying two-grid method, that is embedded in the splitting scheme. Both higher order
time-discretization and also two-grid methods are necessary to obtain such results.

5.2. Second example: Transport-reaction equation

We deal with the following system of transport equation:

∂tu1 + v1∂xu1 = −λu1 + µu2, (87)

∂tu2 + v2∂xu2 = µu1 − λu2, (88)

where we have Dirichlet boundary conditions and u1,0, u2,0 are the initial conditions.

20

Number Iterative err1 err2 err1 err2

of time- Steps (2th order) (2th order) (4th order) (4th order)

partitions

2 1 4.5321e-002 3.6077e-003 4.5321e-002 3.6077e-003

2 10 3.9664e-003 4.7396e-004 3.9664e-003 4.7397e-004

2 100 3.9204e-004 4.8078e-005 3.9204e-004 4.8083e-005

3 1 4.6126e-004 3.6077e-003 4.6126e-004 3.6077e-003

3 10 7.8129e-006 2.9285e-005 7.8069e-006 2.9289e-005

3 100 8.5988e-008 2.8270e-007 8.0050e-008 2.8682e-007

4 1 4.6126e-004 2.2459e-005 4.6126e-004 2.2464e-005

4 10 4.1883e-007 4.2629e-008 4.1321e-007 4.8154e-008

4 100 5.9521e-009 5.4846e-009 4.0839e-010 4.9968e-011

Table 1
Numerical results for the first example with the iterative splitting method and 2 and 4 th order method.

We split the operator in two operators

A =




−v1∂x

−v2∂x



 , B =




−λ µ

µ −λ



 (89)

We see that for µ ≈ 0 the operators commutate.

We choose v1 = 1 , v2 = 0.5 , λ = 0.01.
We let t ∈ [0, 40] and x ∈ [0, 40].
We set ∆t = 1

25 and ∆x = 4
10

In the first figure 2, we choose µ = 0.001 and see that we could say µ ≈ 0 and obtain
nearly the same results as for the A-B splitting.

In the second figure 3, we choose µ = 0.01 and see that µ 6= 0 and obtain more optimal
results for the iterative schemes.

The result is given in the following Figures 2-4.
Remark 5 In this example, we concentrate on the comparison between standard A-
B splitting and iterative splitting methods. We obtain more accurate results for non-
commuting problems. Such problems are related to multi-scale problems and we can apply
our embedded multi-grid method. We have the benefit of receiving higher order results
without reducing of the time-steps.

6. Conclusions and Discussions

We present iterative splitting methods with embedded multi-grid and multi-stepping
methods. Here the idea were to achieve more accurate and faster results as for standard
splitting schemes (e.g. A-B splitting schemes). We obtain a benefit with the embedded

21

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Fig. 2. Blue - Iterative Operator Splitting (4 iterations) Green - A-B Splitting

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Fig. 3. T=2: Blue - Iterative Operator Splitting (4 iterations) Green - A-B Splitting

method to accelerate the iterative schemes and achieve much more accurate results. In
future we concentrate on nonlinear and matrix dependent splitting scheme.

22

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Fig. 4. T=60: Blue - Iterative Operator Splitting (4 iterations) Green - A-B Splitting

References

[1] W. Bangerth and R. Rannacher. Adaptive finite Element Methods for differential equations. Lectures
in Mathematics, ETH Zürich, Birkhäuser Verlag, Basel-Boston-Berlin, 2003.

[2] D. Braess. Finite Elemente. Springer-Verlag, Berlin, Heidelberg, New York, 1992.
[3] X.C. Cai, Additive Schwarz algorithms for parabolic convection-diffusion equations, Numer. Math.

60 (1991) 41-61.
[4] X.C. Cai, Multiplicative Schwarz methods for parabolic problems, SIAM J. Sci Comput. 15 (1994)

587-603.
[5] W. Cheney, Analysis for Applied Mathematics, Graduate Texts in Mathematics., 208, Springer,

New York, Berlin, Heidelberg, 2001.
[6] C. N. Dawson, Q. Du, and D. F. Dupont, A finite Difference Domain Decomposition Algorithm for

Numerical solution of the Heat Equation, Mathematics of Computation 57 (1991) 63-71.
[7] P. Deuflhard, Newton Methods for Nonlinear Problems, Springer-Verlag, New-York, Berlin, 2004.
[8] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer,

New York, 2000.
[9] I. Farago and J. Geiser, Iterative Operator-Splitting methods for Linear Problems, Preprint No.

1043 of Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany. International
Journal of Computational Science and Engineering, accepted September 2007.

[10] M.J. Gander and H. Zhao, Overlapping Schwarz waveform relaxation for parabolic problems in
higher dimension, In A. Handlovičová, Magda Komorńıkova, and Karol Mikula, editors, in: Proc.
Algoritmy 14, Slovak Technical University, 1997, pp. 42-51.

[11] E. Giladi and H. Keller, Space time domain decomposition for parabolic problems. Technical Report
97-4, Center for research on parallel computation CRPC, Caltech, 1997.

[12] J. Geiser, Discretisation Methods with embedded analytical solutions for convection dominated
transport in porous media, in: Proc. NA&A ’04, Lecture Notes in Computer Science, Vol.3401,
Springer, Berlin, 2005, pp. 288-295.

[13] J. Geiser, Iterative Operator-Splitting Methods with higher order Time-Integration Methods and
Applications for Parabolic Partial Differential Equations, J. Comput. Appl. Math., accepted, June
2007.

23

[14] J. Geiser, O. Klein, and P. Philip. Influence of anisotropic thermal conductivity in the apparatus
insulation for sublimation growth of SiC: Numerical investigation of heat transfer. Crystal Growth
& Design 6, 2021 - 2028, 2006.

[15] J. Geiser. Decomposition Methods for Differential Equations: Theory and Applications. CRC Press,
Taylor and Francis Group, Numerical Analysis and Scientific Computing Series, edited by Magoules
and Lai, 2009.

[16] J. Geiser and M. Arab. Modelling and Simulation of a Chemical Vapor Deposition. Journal of
Applied Mathematics, special issue: Mathematical and Numerical Modeling of Flow and Transport
(MNMFT), Hindawi Publishing Corp., New York, accepted, January 2011.

[17] W. Hackbusch. Multi-Gird Methods and Applications. Springer-Verlag, Berlin, Heidelberg, 1985.
[18] W. Hackbusch. Iterative L”osung gro”ser schwachbesetzter Gleichungssysteme. Teubner

Studienb”ucher: Mathematik, B.G. Teubner Stuttgart, 1993.
[19] E. Hannsen and A. Ostermann, Dimensional splittingfor evolution equations. Numer. Math., 108,

557-570, 2008.
[20] H.A. van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge Monographs

on Applied and Computational Mathematics, Cambridge University Press, New York, 2003.
[21] M. Holst, R. Kozack, F. Saied and S. Subramaniam, Treatment of Electrostatic Effects in Proteins:

Multigrid-based Newton Iterative Method for Solution of the Full Nonlinear Poisson-Boltzmann
Equation, Proteins: Stucture, Function, and Genetics, vol. 18, 231–245, 1994.

[22] W. Hundsdorfer and J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-
Reaction Equations, Springer Series in Computational Mathematics Vol. 33, Springer Verlag, 2003.

[23] R. Jeltsch and O. Nevanlinna, Stability and accuracy of time discretizations for initial value

problems. Numerische Mathematik, 40(2), 245-296, 1982.
[24] J. Kanney, C. Miller, and C.T. Kelley, Convergence of iterative split-operator approaches for

approximating nonlinear reactive transport problems, Advances in Water Resources 26 (2003) 247-
261.

[25] K.H. Karlsen and N. Risebro. An Operator Splitting method for nonlinear convection-diffusion

equation. Numer. Math., 77, 3 , 365–382, 1997.
[26] K.H. Karlsen and N.H. Risebro, Corrected operator splitting for nonlinear parabolic equations,

SIAM J. Numer. Anal. 37 (2000) 980-1003.
[27] K.H. Karlsen, K.A. Lie, J.R. Natvig, H.F. Nordhaug and H.K. Dahle, Operator splitting methods

for systems of convection-diffusion equations: nonlinear error mechanisms and correction strategies,
J. Comput. Phys. 173 (2001) 636-663.

[28] C.T. Kelly. Iterative Methods for Linear and Nonlinear Equations. Frontiers in Applied
Mathematics, SIAM, Philadelphia, USA, 1995.

[29] P. Knabner and L. Angermann, Numerical Methods for Elliptic and Parabolic Partial Differential
Equations, Text in Applied Mathematics, Springer Verlag, Newe York, Berlin, vol. 44, 2003.

[30] M.A. Lieberman and A.J. Lichtenberg. Principle of Plasma Discharges and Materials Processing.,
Wiley-Interscience, John Wiley & Sons, Inc Publication, Second Edition, 2005.

[31] G.I. Marchuk, Some applicatons of splitting-up methods to the solution of problems in mathematical
physics, Aplikace Matematiky 1 (1968) 103-132.

[32] G.A. Meurant, Numerical experiments with a domain decomposition method for parabolic problems
on parallel computers, in: R. Glowinski, Y.A. Kuznetsov, G.A. Meurant, J. Périaux and O. Widlund,

(Ed.), Fourth International Symposium on Domain Decomposition Methods for Partial Differential
Equations, Philadelphia, PA, 1991. SIAM.

[33] U Miekkala and O. Nevanlinna. Sets of convergence and stability regions. BIT Numerical
Mathematics, 27, 554-584, 1987.

[34] U Miekkala and O. Nevanlinna. Convergence of dynamic iteration methods for initial value systems.
SIAM, 8(4), 459-482, 1987.

[35] H.A. Schwarz, Über einige Abbildungsaufgaben, Journal für Reine und Angewandte Mathematik
70 (1869) 105-120.

[36] H. Roos, M. Stynes and L. Tobiska. Numerical Methods for Singular Perturbed Differential
Equations, Springer-Verlag, Berlin, Heidelberg, New York, 1996.

[37] H.A. Schwarz, Über einige Abbildungsaufgaben, Journal für Reine und Angewandte Mathematik
70 (1869) 105-120.

[38] G. Strang, On the construction and comparision of difference schemes, SIAM J. Numer. Anal. 5
(1968) 506-517.

24

[39] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential Equations Springer
Series in Computational Mathematics, Springer-Verlag Berlin Heidelberg, New-York, 1997.

[40] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential Equations

Series: Numerical Mathematics and Scientific Computation, Clarendon Press, Oxford, 1999.
[41] S. Vandewalle. Parallel Multigrid Waveform Relaxation for Parabolic Problems. B.G. Teubner,

Stuttgart, 1993.

[42] H.A. van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge Monographs
on Applied and Computational Mathematics, Cambridge University Press, New York, 2003.

[43] H. Yoshida, Construction of higher order symplectic integrators, Physics Letters A, Vol. 150, no.
5,6,7, 1990.

[44] H.Yserentant. Old and New Convergence Proofs for Multigrid Methods. Acta Numerica, 285–326,
1993.

[45] E. Zeidler. Nonlinear Functional Analysis and its Applications. II/B Nonlinear montone operators
Springer-Verlag, Berlin-Heidelberg-New York, 1990.

[46] Z. Zlatev. Computer Treatment of Large Air Pollution Models. Kluwer Academic Publishers, 1995.

25

