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Abstract

In this article we focus on estimating the quadratic covariation of continuous semimartingales from discrete
observations that take place at asynchronous observation times. The Hayashi-Yoshida estimator serves as
synchronized realized covolatility for that we give our own distinct illustration based on an iterative syn-
chronization algorithm. We consider high-frequency asymptotics and prove a feasible stable central limit
theorem. The characteristics of non-synchronous observation schemes affecting the asymptotic variance
are captured by a notion of asymptotic covariations of times. These are precisely illuminated and explicitly
deduced for the important case of independent time-homogeneous Poisson sampling.

Keywords: non-synchronous observations, quadratic covariation, Hayashi-Yoshida estimator, stable limit
theorem, asymptotic distribution

MSC Classification: 62M10, 62G05, 62G20, 91B84

JEL Classification: C14, C32, C58, G10

1. Introduction

Nonparametric estimation methods for the quadratic variation of semimartingales have become an issue
of great interest in recent years. One reason is the interpretation of the quadratic variation of the continuous
part as integrated volatility in financial modeling.
If a semimartingale is observed discretely at times ti, 0 ≤ i ≤ n on a finite time horizon [0, T ], the sum
of squared returns (increments of the semimartingale), called realized volatility, converges to the quadratic
variation as sup (ti − ti−1) → 0 as n → ∞. The same fact pertains to the multi-dimensional case where
the realized covolatilities of two processes converge to the quadratic covariations. More usually multivari-
ate data, in particular financial time series, are recorded at times following non-synchronous observation
schemes. Therefore, realized covolatility estimates most commonly incorporate a previous-tick interpo-
lation approach. Though, this machinery leads to the so-called Epps effect [8] that realized covolatilities
tend to zero as the sampling frequency increases. Especially for the more and more available ultra high-
frequency financial tick-data this issue poses problems.
A solution for the asynchronous estimation problem has been proposed in [13]. We call this estimator
which arises as realized covolatility from all products of returns with overlapping observation time instants
Hayashi-Yoshida estimator. Our investigation of that estimation approach leads to several useful rewrit-
ings and interpretations. The final representation is based on an iterative synchronization procedure which
has been used first in [19]. This synchronized realized covolatility and the data aggregation technique for
synchronization can serve as a basis for combined approaches in various generalizations of the underlying
statistical model. A very important enhancement of the model in that we take market microstructure noise
into account is covered in [4] and [5] by extending the synchronized realized covolatility to a generalized
multiscale estimator.
The asymptotic theory developed in the article on hand is grounded on stable limit theorems for semi-
martingales from [16]. We obtain a stable limit theorem for the process associated with the estimation
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error of a Hayashi-Yoshida estimator for the quadratic covariation at time t ∈ [0, T ] and for the overall
estimator by the marginal distribution at t = T the stable weak convergence to a centred mixed normal
limiting distribution. The random asymptotic variance splits up in two terms induced by an idealized syn-
chronous approximation and an additional error due to the lack of synchronicity.
The article is arranged in six sections. In the following Section 2 we give insight into the concept of stable
weak convergence and a short review on the essential theory from the literature. In Section 3 the Hayashi-
Yoshida estimator and our related synchronization algorithm that we have first presented in [4] is revisited
and the asymptotic theory including the key result is provided in Section 4. The detailed proof of the central
Theorem 2 is postponed to the Appendix A. Following some simple illustrative and motivating examples
before, Section 5 comes up with the analysis for the important time-homogeneous independent Poisson
sampling case for which we evaluate all ingredients of the asymptotic variance explicitly. To benefit from
the stable central limit theorem and provide a basis for statistical inference, we give a consistent estimator
for the asymptotic variance in Section 6.

2. Stable convergence and Jacod’s stable limit theorem revisited

This section is devoted to the notion of stable weak convergence which will be an essential concept
for the development of our limit theory throughout this article. The concept of stable convergence goes
back to [21] and results about stable limit theorems were extended in [1] and [9]. The reason what makes
stable weak convergence a key element of our asymptotic considerations, is that it allows to conclude joint
weak convergence when we derive results about asymptotic mixed normality. In the case that a sequence
of random variables (Xn) weakly converges to a mixed Gaussian limiting random variable V Z, with Z
being standard normally distributed, Z ∼ N(0,1), and a strictly positive random variable V , independent
of Z, we cannot derive confidence intervals if the distribution of V is unknown. However, if a consistent
estimator V 2

n for the asymptotic variance V 2 is available (in the sense that V 2
n

p−→ V 2), the stable weak
convergence will assure that (Xn, V

2
n )  (V Z, V 2) jointly and also that Xn/Vn  Z. The last implica-

tion also holds in a stable version: Xn/Vn
st
 Z. For that reason, if we are in situations as described above

we gain from proving stable weak convergence which paves the way towards statistical inference.
Next, we present the formal definition and the main properties of stable weak convergence of sequences of
random variables.

Let (Xn) be a sequence of random variables defined on some probability space (Ω,F ,P) and taking values
in a Polish space (E, E). We say that the sequence (Xn) converges weakly in L1 to X if for any bounded
random variable Z

lim
n→∞

E [ZXn] = E [ZX]

holds.

Definition 1. For a sub-σ-field G ⊆ F the sequence of random variables (Xn) is said to converge G-stably,
if there is a random probability measure µ on (Ω× E,G ⊗ E) such that

lim
n→∞

E [Zf(Xn)] =
∫

Ω×E
µ(dω, dx)Z(ω)f(x)

for all f ∈ Cb(E) (continuous and bounded) and G-measurable bounded random variables Z.
If G = F , we say (Xn) converges stably in law to X (Xn

st
 X).

Remark 1. G-stable convergence is the weak convergence in L1 of E [f(Xn)|G] for all f ∈ C(E) to µ◦ f .
This implies convergence in distribution to the probability measure ν defined by

ν(B) =
∫
µ(dω,B)1{X(ω)∈B}P(dω) .

If (Xn) converges stably, the limiting law is µ(Ω, · ).
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The following proposition states some useful equivalent characterizations of (G−)stable convergence.

Proposition 2.1. (Xn) converges G-stably is equivalent to:

(i) For every G-measurable random variable Z on Ω, (Z,Xn) converges in law.
(ii) For every G-measurable random variable Z on Ω, (Z,Xn) converges G-stably.

(iii) The sequence (Xn) is tight, and for all G ∈ G and f ∈ C(E), the sequence E [1Gf(Xn)] converges.

This proposition is proved in [17] as part of Proposition IX.1.4. Stable (weak) convergence is a stronger
mode of ordinary convergence in distribution. It is weaker than convergence in probability, but we empha-
size that the limit depends on the limiting random variable X itself and not only on the distribution of X .
If (Xn) converges stably to X , X is defined on an extension (Ω′,F ′,P′ = µ) of the original probability
space, so that

∀f ∈ C(E) : lim
n→∞

E [f(Xn)Z] = E′ [f(X)Z] .

In the situation that we face in this article, a Gaussian random variable which is independent of F will
appear as limiting law. In this case we call the extension of the original probability space orthogonal. In
particular, if Xn

st
 X holds with an F-measurable random variable X (L1−convergence), the foregoing

proposition yields that (Xn, X) (X,X) and, hence (Xn−X) 0 holds, which implies convergence in
probability. Therefore, in all cases where stable weak convergence is a suitable adequate concept, limiting
laws are defined on a genuine extension of the original probability space.
The following proposition gives the result that stable convergence is the suitable concept to derive feasible
central limit theorems and confidence intervals if the asymptotic variances in limit theorems are unknown
random, but can be estimated consistently.

Proposition 2.2. Let (Xn, Vn) be real-valued random variables defined on (Ω,F ,P). If Xn
st
 X with a

mixed normal limiting random variable X ∼ N(0, V 2) and Vn
p−→ V with V being F-measurable. Then

Xn/Vn
st
 N(0, 1)

holds true.

Note that we use the same denotation expression for mixed normal laws and common normal laws
and the difference becomes clear out of the context and by the specific variances. On the assumptions of
the proposition (Xn, Vn) st

 (X,V ) is implied and the convergence of Xn/Vn follows by the continuous
mapping theorem. This proposition is part of Proposition 2.5 in [20]. We restricted ourselves to real-valued
random variables in the last proposition. A more general version can be found in [17].
The concept of stable convergence also carries over to stochastic processes. For this extension of stable
convergence to stochastic processes, or more precisely to semimartingales, the Polish spaceE in Definition
1 is chosen to be the Skorohod space. The following limit theorem for stable convergence of continuous
local martingales will be the foundation for our later deduced limit theorem in this article:

Theorem 1 (Jacod’s theorem: A martingale version). If (Mt,Ft) with 0 ≤ t <∞ is a continuous local
martingale defined on the probability space (Ω,F ,P), we denote byM⊥ the set of bounded (Ft)-adapted
martingales orthogonal to M = (Mt,Ft) what means that

[
M,M⊥

]
≡ 0. If (Xn) is a sequence of

continuous (Ft)-adapted local martingales for which

[Xn]t
p−→ Vt ∀t ∈ [0,∞) (1)

with a continuous process V holds, the following two conditions

[Xn,M ]t
p−→ 0 ∀t ∈ [0,∞) (2a)

[Xn, N ]t
p−→ 0 ∀t ∈ [0,∞) and ∀N ∈ M⊥ (2b)

are sufficient that (Xn) converges (F)-stably in law to WVt , where W is a standard Brownian motion
independent of F .

3



This theorem is a simplified martingale version of the more general theorem 2–1 in [16]. A similar
special version of the theorem is also used in [10]. A comprehensive illustrative overview on Jacod’s stable
limit theory and further motivation and applications of this result can be found in [20]. A discrete-time
version of that theorem (cf. 3–1 in [16]) is the following:

Corollary 2.3. Assume that Znt =
∑
Tn,i≤tXn,i is the endpoint of a discrete martingale and the Xn,i

are FTn,i -measurable square integrable random variables and (Wt,Ft) a Brownian motion and ∆Tn,i =
Tn,i+1 − Tn,i → 0 as n→∞. If there exists a predictable process (vs)s≥0 such that

∑
Tn,i≤t

E
[
X2
n,i|FTn,i−1

] p−→
∫ t

0

v2
s ds , (3a)

∀ε > 0 :
∑
Tn,i≤t

E
[
X2
n,i 1{Xn,i>ε}|FTn,i−1

] p−→ 0 , (3b)

∑
Tn,i≤t

E
[
Xn,i(WTn,i −WTn,i−1)|FTn,i−1

] p−→ 0 , (3c)

∑
Tn,i≤t

E
[
Xn,i(MTn,i −MTn,i−1)|FTn,i−1

] p−→ 0 , (3d)

for all bounded Ft-martingales with M0 = 0 and [W,M ] ≡ 0. Then the following stable convergence of
the process Znt holds true:

Znt
st
 Zt =

∫ t

0

vs dW
⊥
s (4)

where W⊥ is a Brownian motion defined on an orthogonal extension of the original probability space.

The limiting process in the foregoing Theorem 1 is a time-changed Brownian motion. The Brownian
motion is of central importance in the theory of continuous local martingales, since every continuous local
martingaleMt corresponds to a Dambis, Dubins-Schwarz time-changed Brownian motionB[M ]t

. For each
(Xn

t ) we have a representation as Dambis, Dubins-Schwarz Brownian motion Wn
[Xn]t

and the sequence
converges weakly to a limiting Brownian motion WV by the asymptotic Knight-theorem. We refer to
Theorem 7.7 in [6] for a proof. The conditions (2a) and (2b) about the quadratic covariations converging
to zero in probability ensure that the weak convergence to WV is stable.
For one fixed 0 < T < ∞ we have the result that Xn

T converges stably in law to a centred mixed normal
distribution:

Xn
T

st
 N (0, VT ) . (5)

The independence of the limiting Brownian motion W and (V, Y ) for any F-measurable random variable
Y assures that (WVT , Y ) has the same law as (VTZ, Y ) with Z ∼ N(0, 1) and independent of (VT , Y ).
Note, that in the original theorem 2–1 in [16] for semimartingales the same conditions as in our Theo-
rem 1 are imposed for the predictable quadratic (co-)variation processes that coincide with the quadratic
(co-)variations for continuous semimartingales. Additionally, a condition that the drift can be neglected
asymptotically is imposed. Compared to Theorem 3–1 in [16], we allow for non-equidistant discrete par-
titions which does not harm the deduction of Theorem 3–1 from Theorem 2–1 in [16]. A conditional
Lindeberg-condition (3b) and a convergence condition on the conditional variances (3a) are analogous as
in central limit theorems for triangular martingale arrays. The main difference to the stable limit theorem
Corollary 3. 1 in [12] (page 58 ff. ) is that a certain nesting condition on the filtrations is replaced by con-
ditions (3c) and (3d). Usually the reference Brownian motion W is given and “fully generates” the Xn,is
in the sense that (3d) holds.
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The theorem also extends to a multi-dimensional setting which is formulated separately in the next corol-
lary. For this purpose let M∗ denote the transpose of a vector M and the (d × r)-dimensional quadratic
covariation [M,N∗]t :=

([
M i, N j

]
t

)
ij

with 1 ≤ i ≤ d and 1 ≤ j ≤ r for a d-dimensional M and
r-dimensional N . Recall that convergence in probability of a vector is equivalent to convergence in proba-
bility for every component.

Corollary 2.4. Let (Mt,Ft) be a d-dimensional continuous local martingale and M⊥ again the set of
(Ft)-adapted bounded martingales orthogonal to M (to all components). A sequence of r-dimensional
continuous (Ft)-adapted local martingales (Xn) with

[Xn, Xn∗]t
p−→ Vt =

∫ t

0

wsw
∗
s ds , (6)

where ws is a predictable Rr ⊗Rr process, and

[Xn,M∗]t
p−→ 0 ∀ t ∈ [0,∞) , (7a)

[Xn, N ]t
p−→ 0 ∀ t ∈ [0,∞) and ∀N ∈ M⊥ , (7b)

converges stably in law to the process
∫ t

0
wsdWs, where W is a r-dimensional standard Brownian motion

independent of F .

Jacod’s theorem provides a convenient stable central limit theorem for our purpose. Nesting conditions
on the sequence of filtrations that are required for other stable limit theorems as in [12] and [22] are not
satisfied here.
Furthermore, the concept of stable convergence enables us to prove the stable weak convergence to mixed
Gaussian limiting random variables under an equivalent martingale measure P̃ after a Girsanov transfor-
mation, where the drift processes are zero. Stable convergence guarantees that the asymptotic law carries
over to the case with drift under the original measure P. It is in this sense commutative with measure
change (cf. [18]). If we have the result that Zn

st
 m+AVAR ·N(0, 1) under P̃ with a standard Gaussian

distribution independent of F , defined on an orthogonal extension of the original probability space and
F-measurable bounded random variables m and AVAR, the same convergence holds true under P. Since
stable convergence Zn

st
 Z implies for all f ∈ C(E) and F-measurable bounded random variables X

E [Xf(Zn)] = Ẽ
[
(dP/dP̃)Xf(Zn)

]
→ Ẽ′

[
(dP/dP̃)Xf(Z)

]
= E′ [Xf(Z)] ,

by uniform integrability of Xf(Zn)(dP/dP̃) with

dP/dP̃ = exp
(
−
∫ t

0

γsdBs +
1
2

∫ t

0

γ2
s ds

)
,

where σsγs + µs = 0.

3. A synchronized realized covolatility estimator

Assumption 1. On a filtered probability space (Ω,F , (Ft) ,P), X = (Xt)t∈R+ and Y = (Yt)t∈R+ are
continuous semimartingales defined by the following stochastic differential equations:

dXt = µXt dt+ σXt dBXt ,

dYt = µYt dt+ σYt dB
Y
t ,

with two (Ft)–adapted standard Brownian motions BX and BY and ρt dt = d
[
BX , BY

]
t
. The drift

processes µXt and µYt are (Ft)–adapted locally bounded stochastic processes and the spot volatilities
σXt and σYt and ρt are assumed to be (Ft)–adapted with continuous paths. We assume strictly positive

volatilities and the Novikov condition E
[
exp

(
(1/2)

∫ T
0

(µ · /σ · )2
t dt
)]

<∞ for X and Y .
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We consider the estimation of the quadratic covariation [X,Y ]T of two continuous semimartingales,
also called Itô processes, X and Y as defined in Assumption 1 from discrete observations following non-
synchronous sampling schemes.
We impose the following regularity assumptions on the underlying asynchronous sampling schemes:

Assumption 2. The deterministic observation times T X,n = {0 ≤ t
(n)
0 < t

(n)
1 < . . . < t

(n)
n ≤ T} of X

and T Y,m = {0 ≤ τ
(m)
0 < τ

(m)
1 < . . . < τ

(m)
m ≤ T} of Y are assumed to be regular in the following

sense: There exists a constant 0 < α ≤ 1/3 such that

δXn = sup
i∈{1,...,n}

((
t
(n)
i − t(n)

i−1

)
, t

(n)
0 , T − t(n)

n

)
= O

(
n−

2/3−α
)
, (8a)

δYm = sup
j∈{1,...,m}

((
τ

(m)
j − τ (m)

j−1

)
, τ

(m)
0 , T − τ (m)

m

)
= O

(
m−

2/3−α
)
. (8b)

We consider asymptotics where the number of observations of X and Y are assumed to be of the same
asymptotic order n = O(m) and m = O(n) and express that shortly by n ∼ m.

For synchronous data n = m and t(n)
i = τ

(n)
i for all i ∈ {0, . . . , n} holds. In the non-synchronous case

the number of observations (n + 1) of X and (m + 1) of Y may differ and the sets of observation times
T X,n also contain times t(n)

i /∈ T Y,m and τ (n)
j /∈ T X,n. We work within the general model where also

synchronous observation times can take place and hence T Y,m and T X,n are not assumed to be disjoint.
In the following, we omit the superscripts (n) and (m) for observation times to increase the readability.
Although the sequences of observation times are modeled deterministically, we remark that the case of
random sampling times that are independent of the observed processes is included in that analysis regarding
the conditional law given the observation times.
We use the short notation ∆Xti , i = 1, . . . , n from now on for increments Xti − Xti−1 and analogously
for Y . In [13] the consistency of the estimator

[̂X,Y ]
(HY )

T =
n∑
i=1

m∑
j=1

∆Xti∆Yτj1[min (ti,τj)>max (ti−1,τj−1)] ,

is proved, where the product terms include all increments of the processes with overlapping observation
time intervals, for a similar model of discretely observed Itô diffusions with deterministic correlation, drift
and volatility functions. Consistency directly carries over to our setting including random correlation, drift
and volatility processes. The estimator is also in our setting, furthermore, unbiased if drift terms are zero
and else asymptotically unbiased. In [14] it has further been shown that on stronger regularity assumptions
on the observation schemes this Hayashi-Yoshida estimator is asymptotically distributed according to a
Gaussian law.
For a general strategy leading to a synchronization mechanism that keeps to the Hayashi-Yoshida approach
and its valuable properties, we focus on an alternative useful method to handle the asynchronicity of the
data. It has been introduced in [19], where it was called pseudo-aggregation. The method translates the
Hayashi-Yoshida estimator into an iterative algorithm that allows to rewrite the estimator without indicator
functions. This can be done by aggregation of addends for which partial sums are telescoping. A first
simple rewriting of the Hayashi-Yoshida estimator is obtained by taking the sum of the products of all
increments of X with the telescoping sums of aggregated observed increments of Y for that observation
time instants overlap with the according observation time instant of X (or in the symmetric way):

[̂X,Y ]
(HY )

T =
n∑
i=1

∆Xti

 ∑
j∈{1,...,m}

∆Yτj1[min (ti,τj)>max (ti−1,τj−1)]


=

m∑
j=1

∆Yτj

 ∑
i∈{1,...,n}

∆Xti1[min (ti,τj)>max (ti−1,τj−1)]

 .
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first step:

• for t0 < τ0 and µ0 = min (w ∈ {1, . . . , n}|τ0 ≤ tw):

H0 = {t0, . . . , tµ0} and G0 = {τ0}

q1 =
{
µ0 + 1 if τ0 = tµ0

µ0 if τ0 < tµ0
and r1 = 1

• for t0 = τ0:
H0 = {t0} and G0 = {τ0}

q1 = 1 and r1 = 1

• for t0 > τ0 and w0 = min (l ∈ {1, . . . ,m}|t0 ≤ τl):

H0 = {t0} and G0 = {τ0, . . . , τw0}

q1 = 1 and r1 =
{
w0 + 1 if t0 = τw0

w0 if t0 < τw0

ith step (givenHi−1 and Gi−1):

• for tqi < τri and µi = min (w ∈ {qi + 1, . . . , n}|τri ≤ tw):

Hi = {tqi , . . . , tµi} and Gi = {τri}

qi 99K

{
qi+1 = µi + 1 if τri = tµi
qi+1 = µi if τri < tµi

and ri 99K ri+1 = ri + 1

• for tqi = τri :
Hi = {tqi} and Gi = {τri}

qi 99K qi+1 = qi + 1 and ri 99K ri+1 = ri + 1

• for tqi > τri and wi = min (l ∈ {ri + 1, . . . ,m}|tqi ≤ τl):

Hi = {tqi} and Gi = {τri , . . . , τwi}

qi 99K qi+1 = qi + 1 and ri 99K

{
ri+1 = wi + 1 if tqi = τwi
ri+1 = wi if tqi < τwi

Algorithm 1: Iterative algorithm for construction of the joint grid from asynchronous data.

Defining the next-tick interpolation ti,+ := min0≤j≤m (τj |τj ≥ ti) and the previous-tick interpolation
ti,− := max0≤j≤m (τj |τj ≤ ti), the last expression can be illustrated

[̂X,Y ]
(HY )

T =
n∑
i=1

∆Xti

(
Yti,+ − Yti−1,−

)
.

The algorithm which we will use is a more enhanced method to aggregate the data in an adequate way.
For this purpose (N + 1) sets Hi and Gi are constructed, where N < min (n,m), each set including one
or more than one observation time of X and Y , respectively. This method to construct a joint grid for the
observations of the two processes is described by Algorithm 1.
The Algorithm 1 that we have first presented in [4] stops after (N +1) steps when the last observation time
is reached. We pass over from the original observations to the sums of observed increments XH

i

over sets
Hi and Y G

i

over sets Gi, respectively. The observations are grouped together so that the resulting realized
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covolatility estimator

N∑
i=0

XH
i

Y G
i

=
n∑
i=1

m∑
j=1

∆Xti∆Yτj1[min (ti,τj)>max (ti−1,τj−1)]

calculated from the ‘synchronized’ observations

XH
i

=
∑
tj∈Hi

∆Xtj , Y
Gi =

∑
τj∈Gi

∆Yτj , i ∈ {0, . . . , N} .

for the integrated covolatility will coincide with the one by [13] stated above. We use a different illustration
of this estimator compared to [19] making use of telescoping sums.
With the denotation expressions from Algorithm 1

µi = max (k|tk ∈ Hi), wi = max (k|τk ∈ Gi) and

qi = min (k|tk ∈ Hi), ri = min (k|τk ∈ Gi) , i ∈ {0, . . . , N}

and for the purpose of a simpler notation

Xgi = Xtµi
, Yγi = Yτwi , i ∈ {0, . . . , N} and

Xli = Xtqi−1 , Yλi = Yτri−1 , i ∈ {1, . . . , N}

with l0 := t0, λ0 := τ0, XH
i

and Y Gi can be written as telescoping sums XH
i

= (Xgi −Xli), Y Gi =
(Yγi − Yλi) . This leads to

[̂X,Y ]
(HY )

T =
N∑
i=1

(Xgi −Xli) (Yγi − Yλi) , (9)

where summation starts with i = 0 or i = 1 since the addend for i = 0 is always zero. Although we use this
specific new illustration throughout this article, we will call this realized covolatility of our synchronized
observations also Hayashi-Yoshida estimator in the following. In this notation gi denotes the greatest and
li the last observation time before the least element of the setHi and analogously γi and λi of Gi.

Example
An illustration of the application of Algorithm 1 to observations is given in Figure 1. In this example,
we have H0 = {t0},G0 = {τ0},H1 = {t1, t2, t3},G1 = {τ1},H2 = {t3},G2 = {τ2, τ3},H3 =
{t4, t5, t6},G3 = {τ4},H4 = {t6, t7},G4 = {τ5},H5 = {t7, t8},G5 = {τ6},H6 = {t8},G6 =
{τ7, τ8},H7 = {t9},G7 = {τ8, τ9},H8 = {t10},G8 = {τ9, τ10} .

The example highlights the important features of the synchronization procedure. The sets Hi and Gi are
in general not disjoint and the maxima of consecutive sets can be the same time points. The minimum of
a successive set can as well equal the maximum of the prevenient. Contrarily, consecutive minima are not
equal. For further examples we refer to [19]. Of course the example is just for illustration and the number
of observations is much smaller than in practice. The synchronization of n + 1 = 11 and m + 1 = 11
observations leads to N + 1 = 9 synchronized observations in this example.

The fact that we obtain (N + 1) < min (n,m) + 1 synchronized observations indicates heuristically that
the efficiency of such techniques of covariance estimation mainly depends on the number of observations
available for the less liquid process which is observed at a lower frequency. By Assumption 2 we restrict
us to the case that n and m are of the same order. Thus for the suprema of times between two observations

δXn = O
(
N−

2/3−α
)

and δYn = O
(
N−

2/3−α
)

holds with a constant 0 < α ≤ 1/3.
In the next section, we show that on Assumption 1 and 2 the estimator (9) is

√
N -consistent and, on further
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Figure 1: Example for synchronization using Algorithm 1.

assumptions on the asymptotic behavior of the asynchronous sampling schemes, asymptotically normally
distributed. Using standard interpolation methods such an estimator cannot be obtained.
Another recent approach to deal with non-synchronous discrete observations in a general setting including
market microstructure noise has been proposed by [2]. This method is also related to our approach. The
so-called refresh times are the cumulative sums of waiting times until both processes are observed. As-
sume that in the ith step of Algorithm 1 tqi < τri holds. Then the next observation times of X are grouped
together ending with the first observation time tµi−1 < τri ≤ tµi greater or equal than τri . Then we start
the next comparison step and compare this last observation time grouped to the set Hi to τri+1, except
for the case where two synchronous observations appeared, where we compare the two following times.
Since in the completely asynchronous case at the refresh times only one of the two processes is observed,
the refresh time method used in [2] includes a previous-tick interpolation for the unobserved process at the
refresh times. Refresh times provide the ‘closest synchronous approximation’ to the asynchronous sam-
pling schemes that we define in Proposition 11 below. The number of refresh times which are denoted in
this work by Ti, i = 0, . . . , N , equals the number of sets constructed by pseudo-aggregation. In a setting
that also takes microstructure noise into account, a consistent estimator requires smoothing techniques to
reduce the noise perturbation and the optimal convergence rate is slower (cf. [4]). The previous-tick in-
terpolation, however, causes a negative bias due to asynchronicity when calculating the simple realized
covolatility estimator based on the refresh time and previous-tick approach and it does not equal the esti-
mator of Hayashi-Yoshida. The reason for this bias is that, due to the previous-tick interpolation, products
of increments with overlapping observation time instants fall out of the realized covolatility. The pseudo-
aggregation Algorithm 1 used in this work corresponds to the refresh time method when replacing the
previous-tick interpolation by a next-tick interpolation for the right end points of refresh time instants.
Then, the resulting realized covolatility of ‘synchronized observations’

[̂X,Y ]
(HY )

T =
N∑
i=1

(Xgi −Xli) (Yγi − Yλi)

=
N∑
i=1

(
XTXi,+

−XTXi−1,−

)(
YTYi,+ − YTYi−1,−

)
(10)

coincides with the Hayashi-Yoshida estimator and has no bias due to asynchronicity. As figured out in
the simulation study of [4] the asymptotically vanishing influence of the bias due to pure previous-tick
interpolation also shows up in the setting with noise for finite sample sizes and mild noise variances for
that combined estimators are constructed in [2] and [4], among others.
Figure 2 visualizes refresh times Ti, i = 0, . . . , 8 for our above given example. For this example the
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Figure 2: Example for synchronization using Algorithm 1 including refresh times.

realized covolatility calculated with refresh time previous-tick interpolated values equals

(Xt2 −Xt0)(Yτ1 − Yτ0) + (Xt3 −Xt2)(Yτ3 − Yτ1) + (Xt5 −Xt3)(Yτ4 − Yτ3)+
(Xt6 −Xt5)(Yτ5 − Yτ4) + (Xt7 −Xt6)(Yτ6 − Yτ5) + (Xt8 −Xt7)(Yτ7 − Yτ6)+

(Xt9 −Xt8)(Yτ8 − Yτ7) + (Xt10 −Xt9)(Yτ10 − Yτ8)

and is biased downwards due to non-synchronicity, whereas (9) yields

(Xt3 −Xt0)(Yτ1 − Yτ0) + (Xt3 −Xt2)(Yτ3 − Yτ1) + (Xt6 −Xt3)(Yτ4 − Yτ3)+
(Xt7 −Xt5)(Yτ5 − Yτ4) + (Xt8 −Xt6)(Yτ6 − Yτ5) + (Xt8 −Xt7)(Yτ8 − Yτ6)+

(Xt9 −Xt8)(Yτ9 − Yτ7) + (Xt10 −Xt9)(Yτ10 − Yτ8) ,

which is an unbiased estimator for observations of processes according to Assumption 1, when drift terms
are assumed to be zero.

4. Asymptotic distribution theory

In this section the elements for an analysis of the asymptotic properties of the estimator (9) are devel-
oped where the emphasis is on the asymptotic distribution of the estimator.
The following technical Proposition constitutes the theoretical justification that the refresh times T (n)

i , 1 ≤
i ≤ N introduced in the foregoing section can serve as a convenient basis to decompose the overall esti-
mation error of the synchronized realized covolatility (9). For every N these times induce a partition of the
time horizon [0, T ] that we call the closest synchronous approximation.

Proposition 4.1. If we define T (N)
i := min (gi, γi), i = 0, . . . , N , the set T syn,N = {T (N)

0 , . . . , T
(N)
N }

induces a partition of the time span [0, T ] in the sense that
⋃̇
i[T

(N)
i , T

(N)
i+1 ) = [T (N)

0 , T − T (N)
N ).

The following equality holds true:

T
(N)
i = min

(
g

(N)
i , γ

(N)
i

)
= max

(
l
(N)
i+1 , λ

(N)
i+1

)
, i = 1, . . . , N − 1 (11)

and on Assumption 2 δN := supi∈{1,...,N}
(
T

(N)
i − T (N)

i−1

)
= O

(
N−2/3−α) holds.

In the following we frequently leave out superscripts indicating dependence on N to guarantee clarity
and increase the readability.

Proof. Assume without loss of generality gi ≤ γi for an arbitrarily fixed i ∈ {1, . . . , N − 1}. Taking
Algorithm 1 into account, we proof that (11) holds true.
If gi < γi, then the observation times γi and gi,+ := min

(
tk ∈ T X |tk > gi

)
are compared in the (i +

1)th step of the synchronization Algorithm 1 and gi,+ = min
(
tk ∈ T X |tk ∈ Hi+1

)
holds true. Thus,

gi = li+1 and (11) holds true. We remark that in this case γi ∈ Gi+1 and thus γi > λi+1 = γi,− :=
max

(
τk ∈ T Y |τk < γi

)
≥ γi−1.

If gi = γi, then the observation times gi,+ and γi,+ are compared in the (i+ 1)th step of Algorithm 1 and

10



li+1 = λi+1 = gi = γi what implies (11).
Equation (11) does not hold true for i = 0, N and T0 = t0 ∧ τ0 because we have set l0 = t0 and λ0 = τ0.
Although consecutive maxima gi of the setsHi and γi of the sets Gi, respectively, can be equal, Ti > Ti−1

holds for all i ∈ {1, . . . , N} because gi+1 = gi implies that γi+1 > γi and γi+1 = γi implies that
gi+1 > gi. Hence, the set T syn induces a partition of the time span [0, T ].

The times Ti, i = 0, . . . , N defined through (11) equal the refresh times from [2] as has been mentioned
in the last section. We use Proposition 4.1 to split the error of the estimator (9) for the integrated covolatility
[X,Y ]T in two asymptotically uncorrelated parts. The error of the estimator (9) can be written

N∑
i=1

(Xgi −Xli) (Yγi − Yλi)−
∫ T

0

ρtσ
X
t σ

Y
t dt = DN

T +ANT

where

DN
T :=

N∑
i=1

((
XTi −XTi−1

) (
YTi − YTi−1

)
−
∫ Ti

Ti−1

ρtσ
X
t σ

Y
t dt

)
(12)

−
∫ t0∧τ0

0

ρtσ
X
t σ

Y
t dt−

∫ T

tn∧τm
ρtσ

X
t σ

Y
t dt

is a synchronous-type discretization error of the realized covolatility estimator evaluated with synchronous
observations at the times Ti, i = 0, . . . , N , which is the closest synchronous approximation to the asyn-
chronous sampling scheme, and

ANT =
N∑
i=1

(Yγi − Yλi) (Xgi −XTi)1{Ti=γi} +
(
YTi − YTi−1

) (
XTi−1 −Xli

)
1{Ti−1=λi}

+
N∑
i=1

(XTi −Xli) (Yγi − YTi)1{Ti=gi} +
(
XTi −XTi−1

) (
YTi−1 − Yλi

)
1{Ti−1=li} (13)

is the remaining additional error due to the lack of synchronicity. When we write the increments involved
in the estimator (9) in the way(

Xgj −Xlj

)
= X+

j +XS
j +X−j ,

(
Yγj − Yλj

)
= Y +

j + Y Sj + Y −j ,

where X+
j = Xgj −XTj denotes the next-tick interpolation error at right-end points, X−j = XTj−1 −Xlj

the previous-tick interpolation error at left-end points, XS
j = XTj −XTj−1 , j = 1, . . . , N the increment

over the time instant of the closest synchronous approximation and analogously for Y , DN
T and ANT can be

expressed:

DN
T =

N∑
i=1

XS
i Y

S
i ,

ANT =
N∑
i=1

(
X+
i (Y Si + Y −i ) + Y +

i (XS
i +X−i ) +X−i Y

S
i + Y −i X

S
i

)
.

DN
T is an usual synchronous-type realized covolatility but incorporates an idealized sampling design at the

times of the closest synchronous approximation for which we do not have observations in an asynchronous
setting. Nevertheless, this idealized approximation turns out to be helpful for our further analysis. The
error due to non-synchronicity ANT hinges on the interpolations that have to be carried out since we do not
observe X and Y at the times TNi , 1 ≤ i ≤ N . The term is asymptotically centred since only products
of increments over disjoint time instants remain whereas DN

T is an unbiased estimator for [X,Y ]T . Since
either X or Y is observed at a certain Ti, 1 ≤ i ≤ N , one of each interpolation errors in the illustration
above equals zero.

11



Figure 3: Illustration of the synchronous approximation for our example.

Proposition 4.2. The Brownian parts of ANT and DN
T are uncorrelated. This means, that if we assume

the drift terms to be identically zero in Assumption 1, ANT and DN
T are uncorrelated. If the drift terms are

non-zero, ANT and DN
T are asymptotically uncorrelated.

Proof. ANT and DN
T are both centred. If Assumption 1 holds with µXt ≡ µYt ≡ 0, the expectation of the

product ofANT andDN
T is zero, since the previous- and next-tick interpolated increments in (13) are centred

and uncorrelated to the other three factors in each addend of the inner sums.
If we allow for non-zero drift terms, Assumption 1 and Assumption 2 ensure that the increments over time
intervals due to the drift induce terms at most of order δN in probability by products of drift terms and at
most of order δ

1/2
N in probability by products of drift and Brownian increments in the overall correlation.

In Figure 3 the observation times τj , j = 0, . . . , 11 of Y for our Example 1 from the last section are
plotted against the observation times ti, i = 0, . . . , 11 of X . The dashed lines intersect for synchronous
observation times t0 = τ0, t3 = τ3 and t10 = τ10 on the diagonal of the square in Figure 3. A similar
visualization of the realized covolatility estimator for synchronous and equidistant data would yield coex-
tensive squares around the diagonal, over which multiplied increments are summed up. Refresh times are
(in general) not equidistant but provide a synchronous realized covolatility estimator as an approximation.
The Hayashi-Yoshida estimator (9) is the sum of products of increments with overlapping observation time
instants. The relation to the synchronous approximation DN

T is that we have next-tick interpolations and
previous-tick interpolations to the times Ti, i = 0, . . . , 8 and take increments from previous-tick interpo-
lated values to next-tick interpolated values. The time instants of DN

T are visualized for our example in
Figure 3. The previous- and next-tick interpolations are illustrated in Figure 4. The products of time in-
stants leading to the error ANT are illustrated in the same picture by the grey rectangles. As can be seen
for the example in Figure 4, ANT is the sum of the errors by the ith next-tick interpolation multiplied with
the increments of the other process over [min (li, λi), Ti] and the sum of the errors of the ith previous-tick
interpolation multiplied with the increments of the other process over [Ti−1, Ti]. The sum of the increments
over the squares in Figure 3, D8

T for our example, and the grey rectangles in Figure 4, A8
T for our example,

is the Hayashi-Yoshida estimator evaluated at the end of the last section.

12



Figure 4: Illustration of the next- and previous-tick interpolated values and the error due to non-synchronicity for our example.

Definition 2 (quadratic (co-)variations of time). For any N ∈ N let T (N)
i , i = 0, . . . , N be the times

from the partition of [0, T ] defined in (11) above and g(N)
i , γ

(N)
i , l

(N)
i , λ

(N)
i the corresponding observation

times designated by Algorithm 1 from the estimator (9). T/N is the mean of the time instants ∆T (N)
i =

T
(N)
i − T (N)

i−1 , i = 1, . . . , N . Define the following sequences of functions

GN (t) =
N

T

∑
T

(N)
i ≤t

(
∆T (N)

i

)2

, (14a)

FN (t) =
N

T

∑
T

(N)
i+1≤t

(T (N)
i − λ(N)

i )(g(N)
i − T (N)

i ) +
(
T

(N)
i − l(N)

i

)(
γ

(N)
i − T (N)

i

)
+∆T (N)

i+1

(
T

(N)
i − l(N)

i+1

)
+ ∆T (N)

i+1

(
T

(N)
i − λ(N)

i+1

)
, (14b)

HN (t) =
N

T

∑
T

(N)
i+1≤t

(
T

(N)
i − l(N)

i+1

)(
g

(N)
i − T (N)

i

)
+
(
T

(N)
i − λ(N)

i+1

)(
γ

(N)
i − T (N)

i

)
, (14c)

for t ∈ [0, T ] that we call sequences of quadratic (co-)variations of times.

A stable central limit theorem for the estimation error is deduced on the assumption that the sequences
defined by (14a), (14b) and (14c) converge pointwise and the sequences of difference quotients uniformly:

Assumption 3 (asymptotic quadratic (co-)variation of times). Assume that for the sequences of sam-
pling schemes and the times T (N)

i , g
(N)
i , γ

(N)
i , l

(N)
i , λ

(N)
i and the sequences of quadratic (co-) variations

of times GN (t), FN (t), HN (t) defined in Definition 2 the following holds true:

(i) GN (t) → G(t) , FN (t) → F (t) , HN (t) → H(t) as N → ∞, where G(t), F (t), H(t) are
continuously differentiable functions on [0, T ].
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(ii) For any null sequence (hN ), hN = O
(
N−1

)
GN (t+ hN )−GN (t)

hN
→ G′(t) (15a)

FN (t+ hN )− FN (t)
hN

→ F ′(t) (15b)

HN (t+ hN )−HN (t)
hN

→ H ′(t) (15c)

uniformly on [0,T] as N →∞.

Assumption 3 is necessary to ensure that the sequence of variances of the estimator (9) converges as
n,m → ∞. The derivative of the asymptotic quadratic variation of refresh times (15a) will appear in the
asymptotic variance of the discretization error DN

T , since refresh times are (in general) not equidistant. For
∆T (N)

i = T/N for all i ∈ {0, . . . , N}, G′(t) = 1[0,T ] holds true.
The uniform convergence of the difference quotients defined by (15b) and (15c) are necessary to ensure
that the sequence of variances of ANT converges as N →∞. The assumptions imposed by (15a)-(15c) are
weaker than assuming convergence of the joint sampling design of

(
T X,n, T Y,m

)
and are not very restric-

tive. They hold true whenever the sequences of sampling schemes tend to a certain state of asynchronicity
or have a uniform behaviour of non-synchronicity in the limit as n,m → ∞. For homogeneous sampling
schemes these (co-)variations of time converge to linear limiting functions.
The sequence of functions FN describe an interaction of interpolation steps between the two processes.
In contrast, HN is defined to measure an impact of the in general non-zero correlations of next-tick and
previous-tick interpolations to the same refresh time Ti, for each process separately.

Example:
Consider the synchronous equidistant sampling schemes with N = n = m and t(n)

i = τ
(n)
j = i/n, i =

0, . . . , n. The left-hand side of Figure 5 shows the quadratic (co)variations of time GN , FN and HN for
N = 30000. FN and HN are identically zero since there are no asynchronous observations and because
T

(N)
i = i/N, t

(n)
i = τ

(n)
i , 0 ≤ i ≤ n, interpolation steps are redundant and ANT equals zero. The function

GN is a step function that will tend to the identity on [0, T ] as N →∞.
Next, we consider a situation which originates from the complete synchronous equidistant one by shifting
one time-scale half a time instant 1/2N . Then we have completely non-synchronous sampling schemes
and we will call this situation intermeshed sampling. In this case the synchronous approximation is still
equidistant with instants 1/N and, hence, G is the identity function. F and H are linear limiting functions
with slope 1 and 1/4, respectively. Interpolations are carried out for all 1 ≤ i ≤ N for the same process for
which its first observation takes place after the first observation of the other process. All interpolation steps
equal 1/2N and thus H ′ = 1/4 follows. Since for H interpolated time instants 1/2N are multiplied with
refresh time instants 1/N in both addends due to the specific structure, F equals the identity on [0, T ]. The
functions GN , FN , HN for intermeshed sampling are illustrated in Figure 5 on the right-hand side.

In the next section we will show that for an important special case, independent homogeneous Poisson
sampling, (15a)-(15c) are fulfilled when replacing deterministic convergence by convergence in probabil-
ity. Furthermore, the stochastic limits G′(t), F ′(t), H ′(t) are calculated explicitly and are again constant
on [0, T ]. For data applications one can calculate easily empirical versions G̃′n,m(t), F̃ ′n,m(t), H̃ ′n,m(t) of
G′(t), F ′(t), H ′(t) and use those as estimators for (15a)-(15c).
The key result of this section is the following Theorem 2. The detailed proof is postponed to the Appendix
A. This result gives insight into the asymptotic distribution of the Hayashi-Yoshida estimator. It improves

on the asymptotic normality result in [14], since the weak convergence is stable in the setting where we
allow for random correlation, drift and volatility processes. The representation of the asymptotic variance
using (15a)-(15c) differs from that in [15], where a similar stable convergence result is established, by
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Figure 5: Quadratic (co-)variations of time for synchronous equidistant (left) and intermeshed (right) sampling.

the decomposition of the estimation error in (12) and (13) and the notion of (co-)variations of times. The
latter provide helpful tools to describe the stylized facts and features of non-synchronous data and build
the ground work for combined approaches for widespread generalizations and extensions of the underlying
model. A very important one is the generalized multiscale estimator in [5] when market microstructure
noise effects are taken into account.

Theorem 2. The estimation error of (9) converges on the Assumptions 1, 2 and 3 stably in law to a centred,
mixed Gaussian distribution:

√
N

(
N∑
i=1

(Xgi −Xli) (Yγi − Yλi)− [X , Y ]T

)
st
 N (0 , vDT + vAT ) , (16)

with the asymptotic variance

vDT +vAT =T

∫ T

0

G′(t)
(
σXt σ

Y
t

)2(
ρ2
t + 1

)
dt+ T

∫ T

0

(
F ′(t)

(
σXt σ

Y
t

)2
+ 2H ′(t)

(
ρtσ

X
t σ

Y
t

)2)
dt

where the two addends come from the asymptotic variances of DN
T and ANT , respectively.

5. Independent Poisson sampling

In this section, we consider the model in which the sequences of observation times are supposed to be
realizations of two homogeneous Poisson processes that are mutually independent and independent of the
processes X and Y .
Thereto, let ñ(n)(t) and m̃(n)(t) be sequences of two independent homogeneous Poisson processes with
parameters Tn/θ1 and Tn/θ2 (n ∈ N), such that the waiting times between jumps of ñ(n) and m̃(n) are
exponentially distributed with expectations E

[
∆t(n)

i

]
= θ1/n and E

[
∆τ (n)

j

]
= θ2/n , i ∈ N, j ∈ N.

Thus, ñ(n)(T ) and m̃(n)(T ) correspond to the sequences giving the numbers of observation times ofX and
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Y in the time span [0, T ]. The increments of the sampling times of the closest synchronous approximation
(11) are maxima of the exponentially distributed waiting times and we obtain:

∆T (n)
k ∼ F (t) = 1− exp

(
− tn
θ1

)
− exp

(
− tn
θ2

)
+ exp

(
−tn

(
1
θ1

+
1
θ2

))
, k ∈ N .

Denote Ñ(T )(n) = maxN∈N {
∑N
k=0 ∆T (n)

k ≤ T}. We focus on the characteristics of the sampling
schemes affecting the asymptotics of the synchronized realized covolatility estimator (9). In particular
our interest is in the quadratic (co-)variations of times defined in Definition 2.

Proposition 5.1. In the independent homogeneous Poisson model for sampling schemes, it holds true that

GN (t)
p−→ 2

(
1− 2θ2

1θ
2
2

θ2
1θ

2
2 + (θ2

1 + θ2
2)(θ1 + θ2)2

)
t

T

(
=

14
9
t

T
if θ1 = θ2 = θ

)
, (17a)

FN (t)
p−→

 2θ1θ2

(θ2
1 + θ1θ2 + θ2

2)
+

4θ2
1θ

2
2(

θ1 + θ2 − θ1θ2
θ1+θ2

)2

(θ1 + θ2)2

 t

T
(17b)

(
=

10
9
t

T
if θ1 = θ2 = θ

)
,

HN (t)
p−→ 2

 1(
θ1 + θ2 − θ1θ2

θ1+θ2

)2

θ2
1θ

2
2

(θ1 + θ2)2

 t

T

(
=

2
9
t

T
if θ1 = θ2 = θ

)
. (17c)

Proof. Poisson processes are Markovian and the exponential distribution of the increments between arrival

times is memoryless. Wald’s identity ensures that E
[∑Ñ(T )(n)

k=0 ∆T (n)
k

]
= E

[
Ñ(T )(n)

]
E
[
∆T (n)

1

]
. For

the proofs of these attributes and further information on properties of mutually independent homogeneous
Poisson processes we refer interested readers to [7].
First of all we ascertain that t(n)

i 6= τ
(n)
j ∀ (i, j) ∈ {1, . . . , ñ(n)(T )} × {1, . . . , m̃(n)(T )} almost surely.

For an arbitrarily fixed i, the expected values of next-tick, previous-tick and refresh time instants yield

E
[
g

(n)
i − T (n)

i

]
= E

[(
g

(n)
i − T (n)

i

) ∣∣T (n)
i = γ

(n)
i

]
P
(
T

(n)
i = γ

(n)
i

)
=
θ1

n

θ2

θ1 + θ2
,

E
[
γ

(n)
i − T (n)

i

]
=
θ2

n

θ1

θ1 + θ2
,

E
[
T

(n)
i − l(n)

i+1

]
=
∫ ∞

0

y
n

θ2
e−

yn
θ2 e−

yn
θ1 dy =

1
n

θ2
1θ2

(θ1 + θ2)2
,

E
[
T

(n)
i − λ(n)

i+1

]
=

1
n

θ1θ
2
2

(θ1 + θ2)2
,

E
[
T

(n)
i+1 − T

(n)
i

]
=
θ1

n
+
θ2

n
− 1
n

θ1θ2

θ1 + θ2
.

The conditional expectations given that the ith refresh time T (n)
i = γ

(n)
i is an arrival time of m̃(n) yield

E
[
T

(n)
i+1 − T

(n)
i |T

(n)
i = γ

(n)
i

]
= E

[
T

(n)
i+1 − T

(n)
i

]
and E

[
T

(n)
i − l(n)

i+1|T
(n)
i = γ

(n)
i

]
= E

[
T

(n)
i − l(n)

i+1

]
,
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since the latter previous-tick interpolation is zero with probability 1 if T (n)
i 6= γ

(n)
i . Only for (T (n)

i −λ(n)
i )

the conditional expectation differs from the unconditional and can be calculated by further conditioning

E
[
T

(n)
i − λ(n)

i |T
(n)
i = γ

(n)
i

]
=

E
[
T

(n)
i − λ(n)

i |T
(n)
i = γ

(n)
i , T

(n)
i−1 = λ

(n)
i

]
P
(
T

(n)
i−1 = λ

(n)
i |T

(n)
i = γ

(n)
i

)
+ E

[
T

(n)
i − λ(n)

i |T
(n)
i = γ

(n)
i , T

(n)
i−1 = l

(n)
i

]
P
(
T

(n)
i−1 = l

(n)
i |T

(n)
i = γ

(n)
i

)
=
(
θ1 + θ2 −

θ1θ2

θ1 + θ2

)
θ1

θ1 + θ2
+ 2θ1

θ2

θ1 + θ2
,

where the factor 2θ1 in the second addend is simply the expectation of the waiting time for two jumps of
ñ. Here, we have used some simplifying symmetry aspects, a rigorous proof using the density functions is
obtained by calculation of

E
[
T

(n)
i − λ(n)

i 1{T (n)
i =γ

(n)
i ,T

(n)
i−1=λ

(n)
i }

]
=
∫ ∞

0

∫ ∞
x

x
n

θ1
e−x

n
θ1 e−y

n
θ2 y

n

θ2
e−x

n
θ1 e−y

n
θ2 dx dy =

2θ1θ2

θ1 + θ2
.

The conditional expectations on T (n)
i = g

(n)
i are deduced analogously. Since E

[
T

(n)
i − l(n)

i

]
=

E
[
T

(n)
i − T (n)

i−1

]
+E

[
T

(n)
i−1 − l

(n)
i

]
and the (conditional) expectations of the products occurring inGN , FN ,

HN equal the products of (conditional) expectations thanks to the memorylessness of exponential distri-
butions, the latter results suffice to apply the law of large numbers to the empirical (co-)variations of
times. For the asymptotics of GN (T ), FN (T ) and HN (T ), we conclude for the number of addends
Ñ(T )(n), that EÑ(T )(n) = (T/θ)n + O(n) with θ = θ1 + θ2 − (θ1θ2)/(θ1 + θ2) what follows from
EÑ(T )(n)E

[
∆T (N)

1

]
= T +Op(n−1) and Var

(
Ñ(T )(n)

)
= O(n−1) since

Var

Ñ(T )(n)∑
k=0

∆T (n)
k

 = Var
(
Ñ(T )(n)

)
E
[(

∆T (n)
1

)2
]

+ E
[
Ñ(T )(n)

]
Var
(

∆T (n)
1

)
.

The exact probability mass functions of the counting processes Ñ(t)(n) associated with the maxima of the
waiting times ∆t(n)

i ,∆τ (n)
j have a quite complicated form, so that we only give the last two results on the

expectation and the variance that are necessary for the proof of the proposition.
From the preceding conclusions, it follows that

GN (t) =
Ñ(T )(n)

T

∑
T

(n)
i ≤t

(
∆T (n)

i

)2 p−→ n2

θ2

(
2θ2

1

n2
+

2θ2
2

n2
− 2

(
θ1θ2

(θ1 + θ2)

)2 1
n2

)
t

T
,

FN (t) =
Ñ(T )(n)

T

∑
T

(n)
i+1≤t

(T (n)
i − λ(n)

i )(g(n)
i − T (n)

i ) +
(
T

(n)
i − l(n)

i

)(
γ

(n)
i − T (n)

i

)
+ ∆T (n)

i+1

(
T

(n)
i − l(n)

i+1

)
+ ∆T (n)

i+1

(
T

(n)
i − λ(n)

i+1

)
p−→ t

Tθ2

(
θ1θ2

(θ1 + θ2)

(
2θ1 + 2θ2 − 2

θ1θ2

(θ1 + θ2)
+

2θ1θ2

(θ1 + θ2)

)
+
(
θ1 + θ2 −

θ1θ2

(θ1 + θ2)

)
θ2

1θ2 + θ1θ
2
2

(θ1 + θ2)2

)
,

HN (t) =
Ñ(T )(n)

T

∑
T

(n)
i+1≤t

(
T

(n)
i − l(n)

i+1

)(
g

(n)
i − T (n)

i

)
+
(
T

(n)
i − λ(n)

i+1

)(
γ

(n)
i − T (n)

i

)
p−→ t

Tθ2

θ2
1θ

2
2(θ1 + θ2)

(θ1 + θ2)3
.
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Figure 6: Quadratic (Co-)variations of times for homogeneous Poisson sampling.

Inserting θ we obtain formulae (17a)-(17c). In the evaluation of GN we have also used the second moment
of ∆T (n)

1 which can be calculated using the above given distribution function.

Figure 6 depitcs the quadratic (co-)variations of times for simulated mutually independent homoge-
neous Poisson processes. On the left-hand side both parameters have been set θ = 1 for T = 1 and
n = 30000. The stochastic limits are linear increasing functions on [0, 1] with slope 14/9, 10/9, 2/9 and
1/4, respectively. On the right-hand side we see the (co-)variations of times for T = 1, n = 30000, θ1 =
1, θ2 = 0.5. Those tend in probability to linear limiting functions with slope 82/49, 44/49, 8/49 and 2/9,
respectively.
In the model of non-synchronously observed Itô processes X and Y which fulfill Assumption 1 and ob-
servation times following an independent Poisson sampling scheme of the above given form, we derive the
following stable central limit theorem as special case of Theorem 2:

Corollary 5.2. The estimation error of the synchronized realized covolatility estimator (9) converges on
the Assumption 1 conditionally on the independent Poisson sampling scheme with 0 < θ1 < ∞ and
0 < θ2 <∞ stably in law to a centred mixed Gaussian distribution:

√
Ñ(T )(n)

Ñ(T )(n)∑
i=0

(
X
g
(n)
i
−X

l
(n)
i

)(
Y
γ
(n)
i
− Y

λ
(n)
i

)
− [X , Y ]T

 st
 N (0 , vT ) , (18)

with the asymptotic variance

vT = 2
∫ T

0

(
ρtσ

X
t σ

Y
t

)2
dt+

(
2

θ1θ2

θ(θ1 + θ2)
+ 1
)∫ T

0

(
σXt σ

Y
t

)2
where the two addends come from the asymptotic variances of the discretization error DN

T of the closest
synchronous approximation (12) and the additional error ANT due to interpolations (13), respectively, and
θ = θ1 + θ2 − θ1θ2

θ1+θ2
.
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Proof. It is a basic result in the theory of extreme values that for the supremum of n i. i. d. exponentially
distributed waiting times ∆Ti with E∆Ti = n−1, it holds true that supi (∆Ti) = Op (log (n)/n). We refer
to [11] for a proof. In the setting of mutually independent homogeneous Poisson processes with param-
eters Tn/θ1 and Tn/θ2, we conclude that supi∈{1,...,Ñ(T )(n)} = Op

(
log Ñ(T )(n)/Ñ(T )(n)

)
. Hence,

Assumption 2 holds for the sampling design where the orders of δXn , δ
Y
m hold in probability. Then all

findings in the proofs of Propositions A.2 and A.5 stay valid when we insert the (co-)variations of time
deduced above in the limits of the variances.

The stable convergence holds conditionally given the observation times, what means that endogenous
observation times are not covered but Poisson sampling independent of the processes X and Y .
The asymptotic variance of the mixed Gaussian limit is in line with the results by [14] and [15]. We remark
that one has to pay attention to the proportionality to θ in the rate Ñ(T )(n) when comparing the asymptotic
variance to the one in [15].
From an applied point of view, the model considered in this section could be criticized for its flaw that
sampling schemes of two correlated processes are modeled to follow two independent processes and for
time homogeneity. Both seems to be rather unrealistic in financial time series. However, independent and
homogeneous Poisson sampling times designs constitute the most commonly used model in this research
area (cf. [23], [13] among others) because they are handy and allow for explicit calculations while the
model is not too far away from the real world.

6. Asymptotic variance estimation

Finally, we state a consistent estimator for the asymptotic variance of the Hayashi-Yoshida estimator
(9) from Theorem 2. Since in [14] a central limit theorem for the case of deterministic correlation and
volatility functions has been proved, the asymptotic variance is non-random in that setting. In a recent
publication [15], in that the authors also generalize the asymptotic distribution result to a stable central
limit theorem in the setting of random volatility and correlation functions, a consistent estimation method
for the asymptotic variance is provided using kernel estimates. Our estimator differs from this method and
we incorporate only one time transformed histogram-type estimator.

Proposition 6.1. Define the estimator

ÂVARHY := N

N−1∑
j=1

(Xgj −Xlj )(Yγj − Yλj )
[
(Xgj −Xlj )(Yγj − Yλj )

+ 2(Xgj+1 −Xlj+1)(Yγj+1 − Yλj+1)
]
− 3T Ĩ1

with

Ĩ1 :=
KN∑
j=1

∆̂ [X,Y ]
HY

GNj

∆GNj


2

GN (T )
KN

being a histogram-based estimator for
∫ T

0
(ρtσXt σ

Y
t )2G′(t)dt. The estimators for the increase of the

quadratic covariation on bins are Hayashi-Yoshida estimators of the type

∆̂ [X,Y ]
HY

GNj
:=

∑
r∈[GNj ,G

N
j+1)

(Xgr −Xlr )(Yγr − Yλr ) .

It holds true that

ÂVARHY
p−→T

∫ T

0

G′(t)
(
σXt σ

Y
t

)2(
ρ2
t + 1

)
dt+ T

∫ T

0

(
F ′(t)

(
σXt σ

Y
t

)2
dt+ 2H ′(t)

(
ρtσ

X
t σ

Y
t

)2
dt
)
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on the Assumptions 1, 2 and 3. Thus, we have on hand a consistent estimator for the asymptotic variance
of the Hayashi-Yoshida estimator and the feasible stable central limit theorem

[̂X,Y ]
(HY )

T√
ÂVARHY

st
 N(0, 1) . (19)

For more motivation and details on the construction of histogram estimators for which bins are cho-
sen equispaced according to a transformed timescale associated with a certain monotonic function, as the
asymptotic quadratic variation of refresh times here, we refer to [5]. Proposition 6.1 is proved in Appendix
B.

A. Proof of Theorem 2

A.1. Discretization error of the synchronous approximation

Proposition A.1. On the Assumptions 1, 2 and (15a) the discretization error of the closest synchronous
approximation converges stably in law to a centred mixed Gaussian distribution:√

N

T
DN
T

st
 N

(
0 ,
∫ T

0

G′(t)
(
σXt σ

Y
t

)2
(ρ2
t + 1) dt

)
. (A.1)

Proof. In the proofs superscripts of the sampling times are frequently omitted to increase the readability.
First note that on Assumption 1, by Girsanov’s theorem we may without loss of generality further suppose
that µXt = µYt = 0 identically since we have learned in Section 2 that stable convergence is commu-
tative with measure change. Let Mt and Lt be the continuous martingales Lt =

∫ t
0
σXs dWX

s , Mt =∫ t
0
σYs dW

Y
s whereWX ,WY are two standard Brownian motions with quadratic covariation

[
WX ,WY

]
t

=∫ t
0
ρsσ

X
s σ

Y
s ds and denote Li =

∫ Ti
0
σXs dWX

s , Mi =
∫ Ti

0
σYs dW

Y
s .

Proposition A.2. On the same Assumptions as in Proposition A.1, the process DNt defined by

DNt :=

√
N

T

∑
T

(N)
i ≤t

(Li − Li−1)(Mi −Mi−1)−
∫ t

0

ρsσ
X
s σ

Y
s ds

for 0 ≤ t ≤ T converges as N →∞ stably in law:

DNt
st
 
∫ t

0

√
vDsdW

⊥
s (A.2)

where W⊥ is a Brownian motion independent of F and

vDs = G′(s)(σXs σ
Y
s )2(ρ2

s + 1) . (A.3)

Proof. We will prove this stable convergence of the process associated with the transformed discretization
error by application of Jacod’s stable limit Theorem 1. It is also possible to use the discrete-time version
of this Theorem from Corollary 2.3 which we apply in the next subsection.
Using the definition of the quadratic covariation process of martingales or integration by parts formula,
we find an illustration of the discretization error by a sum of stochastic integrals and an asymptotically
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negligible term:∑
T

(N)
i ≤t

(
LTi − LTi−1

) (
MTi −MTi−1

)
=

∑
T

(N)
i ≤t

(Li − Li−1) (Mi −Mi−1)

=
∑

T
(N)
i ≤t

(LiMi − LiMi−1 −MiLi−1 + Li−1Mi−1)

=
∑

T
(N)
i ≤t

(∫ Ti

Ti−1

LsdMs +
∫ Ti

Ti−1

MsdLs + ∆ [L,M ]Ti

−Mi−1(Li − Li−1)− Li−1(Mi −Mi−1)
)

= [L,M ]T(t) − [L,M ]T0
+

∑
T

(N)
i ≤t

(∫ Ti

Ti−1

(Ls − Li−1)dMs +
∫ Ti

Ti−1

(Ms −Mi−1)dLs

)

where we denote T(t) := maxi (T (N)
i ≤ t).

Thus, we obtain√
N

T
DNt =

√
N

T

∑
T

(N)
i ≤t

(∫ Ti

Ti−1

(Ls − Li−1)dMs +
∫ Ti

Ti−1

(Ms −Mi−1)dLs

)
+ Op

(√
N

T

)
,

since [L,M ]T(t) − [L,M ]T0
= [L,M ]t + Op(1). Consider the centred continuous martingale

φ(N)
τ :=

√
N

T

( ∑
T

(N)
i ≤t

(∫ Ti

Ti−1

(Ls − Li−1)dMs +
∫ Ti

Ti−1

(Ms −Mi−1)dLs

)

+
∫ τ

T(t)

(Ls − LT(t))dMs +
∫ τ

T(t)

(Ms −MT(t))dLs
)
, τ ∈ [T(t), t] .

We calculate the corresponding quadratic variation process at time t:

[
φ(N)

]
t

=
N

T

 ∑
T

(N)
i ≤t

(∫ Ti

Ti−1

(Ls − Li−1)dMs +
∫ Ti

Ti−1

(Ms −Mi−1)dLs

)
t

+
[
φ(N)

]
t
−
[
φ(N)

]
T(t)

=
N

T

∑
T

(N)
i ≤t

(∫ Ti

Ti−1

(Ls − Li−1)2d [M ]s +
∫ Ti

Ti−1

(Ms −Mi−1)2d [L]s

+ 2
∫ Ti

Ti−1

(Ls − Li−1)(Ms −Mi−1)d [M,L]s
)

+
[
φ(N)

]
t
−
[
φ(N)

]
T(t)

=
(Lemma A.3)

N

T

∑
T

(N)
i ≤t

(∫ Ti

Ti−1

[L− Li−1]s d [M ]s +
∫ Ti

Ti−1

[M −Mi−1]s d [L]s

+ 2
∫ Ti

Ti−1

[L− Li−1]s [M −Mi−1]s d [M,L]s
)

+ Op(1)

=
N

T

N∑
i=1

(∫ Ti

Ti−1

d ([L− Li−1]s [M −Mi−1]s)

+ 2
∫ Ti

Ti−1

[L− Li−1]s [M −Mi−1]s d [M,L]s
)

+ Op(1)
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=
N

T

∑
T

(N)
i ≤t

(∫ Ti

Ti−1

(
σXs
)2
ds

∫ Ti

Ti−1

(
σYs
)2
ds

)
+

(∫ Ti

Ti−1

ρsσ
X
s σ

Y
s ds

)2

+ Op(1)

=
N

T

∑
T

(N)
i ≤t

((
(ρσXσY )i

)2

(∆Ti)
2 +

(
(σX)i(σY )i

)2

(∆Ti)
2

)
+ Op(1)

=
∑

T
(N)
i ≤t

((
G(N)(Ti)−G(N)(Ti−1)

)
∆Ti

((
σXTi−1

σYTi−1

)2 (
1 + ρTi−1

2
))

∆Ti

)
+ Op(1)

p−→
∫ t

0

G′(s)(ρ2
s + 1)(σXs σ

Y
s )2 ds .

In this calculation we have used integration by parts and the change of variables Theorem for the integrals
with quadratic covariation integrators that are of finite variation. The second last equality is an applica-
tion of the mean value theorem (the volatility and the correlation processes are continuous and thus also
bounded on compact sets) where the constants (σX)i, (σY )i and (ρσXσY )i come from. The Riemann
sum converges and with Definition 2 and Assumption 3 this yields the convergence in probability of the
quadratic variation to

∫ t
0
G′(s)(ρ2

s + 1)(σXs σ
Y
s )2 ds =

∫ t
0
vDs . The third equality above is proved in:

Lemma A.3. It holds true that the approximation error terms

∑
T

(N)
i ≤t

(∫ Ti

Ti−1

(Ls − Li−1)2d [M −Mi−1]s −
∫ Ti

Ti−1

[L− Li−1]s d [M −Mi−1]s

)
(A.4a)

∑
T

(N)
i ≤t

(∫ Ti

Ti−1

(Ms −Mi−1)2d [L− Li−1]s −
∫ Ti

Ti−1

[M −Mi−1]s d [L− Li−1]s

)
(A.4b)

∑
T

(N)
i ≤t

(∫ Ti

Ti−1

(Ms −Mi−1)(Ls − Li−1)d [M,L]s −
∫ Ti

Ti−1

[M −Mi−1, L− Li−1]s d [M,L]s

)
(A.4c)

N

T

∑
T

(n)
i ≤t

(∆Ti)2

(
(ρσXσY )2

i + (σX)2
i (σY )2

i −
((

ρTi−1σ
X
Ti−1

σYTi−1

)2

+
(
σXTi−1

σYTi−1

)2
))

(A.4d)

converge to zero in probability.

Proof. The proofs for (A.4a) and (A.4b) are completely analogous and we restrict ourselves to prove it for
(A.4a). By Itô’s formula

(Ls − Li−1)2 = 2
∫ s

Ti−1

(Lr − Li−1)dLr + [L− Li−1]s

holds. The left-hand side of (A.4a) equals

∑
T

(N)
i ≤t

(∫ Ti

Ti−1

(
2
∫ s

Ti−1

(Lr − Li−1)dLr

)
d [M −Mi−1]r

)

=
∑

T
(N)
i ≤t

(
2
∫ Ti

Ti−1

(Ls − Li−1)([M −Mi−1]Ti) dLs − 2
∫ Ti

Ti−1

(Ls − Li−1)([M −Mi−1]s) dLs

)
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by application of the integration by parts formula in the way

ZTi [M −Mi−1]Ti =
∫ Ti

0

Ztd [M −Mi−1]t +
∫ Ti

0

[M −Mi−1]t dZt

with Zt :=
∫ t
Ti−1

2(Ls−Li−1)dLs for Ti−1 ≤ t ≤ T to the addends. Therefore, we can write the left-hand

side of (A.4a) in the wayM(N)
1 +M(N)

2 with two centred continuous martingalesM(N)
1 ,M(N)

2 defined
in the fashion of φ(N) above and calculate the quadratic covariation processes at time t:

[
M(N)

2

]
t

= 4
∑

T
(N)
i ≤t

(∫ Ti

Ti−1

(Ls − Li−1)2([M −Mi−1]s)
2d [L]s

)
+ Op(1)

≤ 4 max
i

sup
s∈(Ti−1,Ti]

(Ls − Li−1)2max
i

sup
s∈(Ti−1,Ti]

[M −Mi−1]2s
∑

T
(N)
i ≤t

∫ Ti

Ti−1

d [L]s + Op(1) .

The first addend is up to a logarithmic factor Op(δ3
N ) and henceM(N)

2 = Op(1) on Assumption 2. That
M(N)

1 = Op(1) is proved analogously. This implies that (A.4a) is Op(1).
The strategy of the proof for (A.4c) follows the same approach, starting with the equation

(Ls − Li−1)(Ms −Mi−1) =
∫ s

Ti−1

(Lr − Li−1)d(M −Mi−1)r +
∫ s

Ti−1

(Mr −Mi−1)d(L− Li−1)r

+ [L− Li−1,M −Mi−1]s

and applying integration by parts as above with Zt =
∫ t
Ti−1

(Ls − Li−1)d(M −Mi−1)s +
∫ t
Ti−1

(Ms −
Mi−1)d(L− Li−1)s for Ti−1 ≤ t ≤ Ti.
We complete the proof of the convergence of the quadratic variation with the proof for (A.4d). Denote

(ρσXσY )
2

i = (̃σX)2
i · (̃σY )2

i · (̃ρ)2
i to distinguish between the values from the application of the mean

value theorems to the two different addends. An upper bound of the left-hand side of (A.4d) can be found
by elementary algebra and the triangle inequality for the absolute value:

N

T

∑
T

(N)
i ≤t

(∆Ti)2

(
(ρ̃σ̃X σ̃Y )2

i + (σX)2
i (σY )2

i −
((

ρTi−1σ
X
Ti−1

σYTi−1

)2

+
(
σXTi−1

σYTi−1

)2
))

≤ N

T

∑
T

(N)
i ≤t

(∆Ti)2
(

(̃σX)2
i(̃σY )2

i

∣∣∣(̃ρ)2
i − ρ

2
Ti−1

∣∣∣+ (̃σY )2
iρ

2
Ti−1

∣∣∣(̃σX)2
i − (σXTi−1

)2
∣∣∣

+ρ2
Ti−1

(σXTi−1
)2
∣∣∣(̃σY )2

i − (σYTi−1
)2
∣∣∣+ (σY )2

i

∣∣∣(σX)2
i − (σXTi−1

)2
∣∣∣+ (σXTi−1

)2
∣∣∣(σY )2

i − (σYTi−1
)2
∣∣∣)

= Op(1) .

The martingales φ(N) can be written for every N as time-changed Brownian motions B(DDS,N)

[φ(N)]
t

=

φ
(N)
t by the Dambis-Dubins-Schwarz theorem. The sequence of martingales φ(N) or associated time-

changed Dambis-Dubins-Schwarz Brownian motions converges weakly to a limiting Brownian motion by
the asymptotic Knight-theorem. The limiting Brownian motion will be defined on an orthogonal extension
of the original probability space. To obtain the stable convergence result, we apply Jacod’s Theorem 1 and
thus, we are left to verify conditions (2a) and (2b).
Consider the quadratic covariation process of φ(N) and the reference martingale L

[
L, φ(N)

]
t

=

√
N

T

∑
T

(N)
i ≤t

(∫ Ti

Ti−1

(Ls − Li−1)d [M,L]s +
∫ Ti

Ti−1

(Ms −Mi−1)d [L]s

)
+ Op(1) .
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The term of smaller order than 1 in probability comes from the increment of the covariation process on
[T(t), t]. As before, this equality holds true for all t, since for t < T1 the covariation is Op(1). Integration
by parts yields:

[
L, φ(N)

]
t

=

√
N

T

∑
T

(N)
i ≤t

[
([M,L]Ti − [M,L]Ti−1

)(Li − Li−1)−
∫ Ti

Ti−1

[M,L]s d(Ls − Li−1)

+([L]Ti − [L]Ti−1
)(Mi −Mi−1)−

∫ Ti

Ti−1

[L]s d(Ms −Mi−1)

]
.

It remains to show that this term converges to zero in probability. The term is centred and using Itô isometry
we find the following upper bound for the second moment:

E
[([

L, φ(N)
]
t

)2
]
≤ 2

N

T
E

 ∑
T

(N)
i ≤t

(
([M,L]Ti − [M,L]Ti−1

)2(Li − Li−1)2

+([L]Ti − [L]Ti−1
)2(Mi −Mi−1)2

)
+ max
i∈{1,...,N}

sup
s∈(Ti−1,Ti]

([M,L]s − [M,L]Ti−1
)2
∑
i

∫ Ti

Ti−1

d [L− Li−1]t

+ max
i∈{1,...,N}

sup
s∈(Ti−1,Ti]

([L]s − [L]Ti−1
)2
∑
i

∫ Ti

Ti−1

d [M −Mi−1]t

]
= O

(
Nδ2

N

)
.

The term is bounded by a constant times Nδ2
N since squared increments, cross products of increments

and increments of the quadratic (co-)variations of L and M over time instants ∆T (N)
i are bounded by

∆T (N)
i times a constant. To sums with products of time instants we can apply Hölder’s inequality with

the supremum norm to obtain upper bounds. There are at most order δ−1
N time instants ∆T (N)

i of order
supi ∆T (N)

i = δN since
∑
i ∆T (N)

i ≤ T and the time span T is fixed.
Hence,

[
L, φ(N)

]
t

= Op(1) ∀t ∈ [0, T ]. With the same strategy
[
M,φ(N)

]
t

= Op(1) ∀t ∈ [0, T ] can
be shown.
For every bounded Ft-martingale L⊥ satisfying

[
L,L⊥

]
≡ 0 the covariation

[
L⊥, φ(N)

]
t

=
N

T

∑
T

(N)
i ≤t

(∫ Ti

Ti−1

(L⊥s − L⊥i−1)d
[
M,L⊥

]
s

)
+ Op(1) = Op(1)

converges to zero. The same holds true for every bounded Ft-martingale orthogonal to M . Applying
Theorem 1, we deduce that Proposition A.2 holds true.

Proposition A.1 is a direct consequence of the stronger result in Proposition A.2 since for t = T the
marginal distribution is a mixed normal distribution which is independent of F . The stable convergence
assures that the convergence also holds under the original probability measure and non-zero drift terms
with the same asymptotic law.

A.2. Error due to non-synchronicity

Proposition A.4. Let Assumptions 1, 2 and (15b)-(15c) from Assumption 3 be satisfied. The error ANT
due to the lack of synchronicity converges stably in law to a centred mixed Gaussian distribution:√

N

T
ANT

st
 N (0, vAT ) , (A.5)
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with asymptotic variance

vAT =
∫ T

0

F ′(t)
(
σXt σ

Y
t

)2
dt+

∫ T

0

2H ′(t)
(
ρtσ

X
t σ

Y
t

)2
dt . (A.6)

Proof. First, we write the ith increments occurring as factors in the addends of the estimator (9) as the
sum of the next-tick interpolation at Ti, the increments ∆XTi = XTi −XTi−1 and ∆YTi = YTi − YTi−1 ,
respectively, and the previous-tick interpolation at Ti−1 and multiply out the addends.

[̂X,Y ]T =
N∑
i=1

(
Xgi−XTi+XTi−XTi−1 +XTi−1−Xli

) (
Yγi− YTi+YTi−YTi−1 +YTi−1−Yλi

)
=

N∑
i=1

(
(Xgi−XTi)∆YTi + (Yγi−YTi)∆XTi + (XTi−1−Xli)∆YTi + (YTi−1 − Yλi)∆XTi

+(Xgi −XTi)(YTi−1 − Yλi) + (Yγi − YTi)(XTi−1 −Xli)
)

+DN
T

The indicator functions in (13) have been dropped since the corresponding addends are zero if the indicator
functions were zero. Since at least one of the next-tick interpolation errors is zero and as well one of the
previous-tick interpolation errors, too, two addends, namely the products of next-tick interpolation errors
and the product of previous-tick interpolation errors, equal zero. Thus, the error due to asynchronicity can
be written as the sum of the remaining six terms (where at least another three equal zero in each addend).
We conclude, that the error ANT can be expressed in the following way:

ANT =
N−1∑
i=1

((Xgi −XTi)(YTi − Yλi) + (Yγi − YTi)(XTi −Xli)

(XTi+1 −XTi)(YTi − Yλi+1) + (XTi −Xli+1)(YTi+1 − YTi)
)

+ Op(1) .

In this equality an index shift has been applied to the partial sum of previous-tick interpolated errors multi-
plied with ∆XTi and ∆YTi , respectively, leading to the structure that in the ith addend the factors contain
next- and previous-tick interpolated errors to the same Ti. The Op(1)-term emerges from end-effects when
shifting the original sum.
In the last illustration of ANT consecutive addends of the sum are uncorrelated in contrast to the non-shifted
illustration. The reason is that, if without loss of generality γi = Ti holds, (Xgi −XTi)∆YTi and (XTi −
Xli+1)∆YTi+1 have in general a non-zero correlation whereas (Xgi −XTi)∆YTi and (XTi−1 −Xli)∆YTi
are uncorrelated. Furthermore, the fact that γi = Ti ⇒ λi+1 = Ti assures that the addends in the last
illustration of ANT are uncorrelated. Roughly speaking we capture correlation between subsequent addends
of the outer sum and transfer it into additional correlation in the inner sum.
As in the foregoing proof of Proposition A.1, it is sufficient to prove the stable convergence result for
the zero-drift case. We denote, as before, the corresponding transformed processes Lt =

∫ t
0
σXs dW

X
s and

Mt =
∫ t

0
σYs dW

Y
s .

Consider the sum

ANt =
∑

T
(N)
i+1≤t

∆ANi : =

√
N

T

∑
T

(N)
i+1≤t

((Lgi − LTi)(MTi −Mλi) + (Mγi −MTi)(LTi − Lli)

+(LTi − Lli+1)(MTi+1 −MTi) + (MTi −Mλi+1)(LTi+1 − LTi)
)

(A.7)

for fixed 0 ≤ t ≤ T .

Proposition A.5. Assume the same conditions as in Proposition A.4. For fixed 0 ≤ t ≤ T the transformed
error due to non-synchronicityANt is the endpoint of a discrete, centred, square-integrable martingale with
respect to the filtration Fi,N := F

T
(N)
i+1

. The process ANt converges as N →∞ stably in law:

ANt
st
 At =

∫ t

0

√
vAsdW

⊥
s (A.8)
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where W⊥ is a Brownian motion independent of F and

vAs = F ′(s)
(
σXs σ

Y
s

)2
+ 2H ′(s)

(
ρsσ

X
s σ

Y
s

)2
. (A.9)

Proof. The expectation of the absolute value of the sum is bounded for all t ∈ [0, T ] and ∆ANi , i =
0, . . . , N are Fi,N = F

T
(N)
i+1

-measurable. Since

E
[
∆ANi |Fi−1,N

]
= E

[
∆ANi |FT (N)

i

]
= E [(Lgi − LTi)(MTi −Mλi) + (Mγi −MTi)(LTi − Lli)

+(LTi − Lli+1)∆MTi+1 + (MTi −Mλi+1)∆LTi+1 |FT (N)
i

]
= E [Lgi − LTi ] (MTi −Mλi) + E [Mγi −MTi ] (LTi − Lli)

+ (LTi − Lli+1)E
[
∆MTi+1

]
+ (MTi −Mλi+1)E

[
∆LTi+1

]
= 0

for the conditional expectation of the increments holds, ANt is the endpoint of a Fi,N -martingale.
The stable weak convergence to a limiting Brownian motion is proven with Corollary 2.3 to Jacod’s Theo-
rem 1.
First, we verify the conditional Lindeberg condition that is implied by the stronger conditional Lyapunov
condition. It is sufficient to proof the following:

Lemma A.6. The sum of the conditional fourth moments of the martingale increments ANi converges to
zero in probability:

E

 ∑
T

(N)
i+1≤t

(
∆ANi

)4 ∣∣∣Fi−1,N

 = Op(1) .

Proof. Throughout the proof C denotes a generic constant that does not depend on N . We consider dif-
ferent addends of the fourth conditional moments consecutively. The sum of conditional fourth moments
incorporates addends of the following types:

• fourth-order moments:

N2

T 2

∑
T

(N)
i+1≤t

E
[
(Lgi − LTi)4

]
(MTi −Mλi)

4 ,

• second-order moments:

N2

T 2

∑
T

(N)
i+1≤t

E
[
(Lgi − LTi)2(∆MTi+1)2

]
(LTi − Lli+1)2(MTi −Mλi)

2 ,

• third- and first-order moments:

N2

T 2

∑
T

(N)
i+1≤t

4(MTi −Mλi)
3(LTi − Lli+1)3E

[
∆MTi+1(Lgi − LTi)

]
.

For the partial sum with addends of the first type an application of the Burkholder-Davis-Gundy (BDG)
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inequalities yields

N2

T 2

∑
T

(N)
i+1≤t

E
[
(Lgi − LTi)4

]
(MTi −Mλi)

4

≤C N2

T 2

∑
T

(N)
i+1≤t

E

[(∫ gi

Ti

(σXs )2ds

)2
]

(MTi −Mλi)
4

≤C N2

T 2
sup

s∈[0,T ]

(σXs )2
∑

T
(N)
i+1≤t

(MTi −Mλi)
4(gi − Ti)2 ≤ Op

(
Nδ2

N

)
= Op(1) .

The last inequality can be deduced by the result that the convergence (N/(3T ))
∑
i(∆MTi)

4 →
∫ t

0
(σYs )4ds

holds almost surely as N →∞ for the so-called realized quarticity ([3]) and that (gi − Ti) ≤ δN . Without
the result about the convergence of the realized quarticity, the asymptotic order in probability can be de-
rived by the convergence to zero of the expectation of the above sum and calculating the second moment
that is bounded from above by a constant times N4δ7

N .
For the partial sum including addends that incorporate second-order moments we obtain an upper bound
by application of the Cauchy-Schwarz inequality and the BDG inequalities:

N2

T 2

∑
T

(N)
i+1≤t

6 E
[
(Lgi − LTi)2(∆MTi+1)2

]
(LTi − Lli+1)2(MTi −Mλi)

2

≤N
2

T 2

∑
T

(N)
i+1≤t

6
√

E [(Lgi − LTi)4]
√

E
[
(∆MTi+1)4

]
(LTi − Lli+1)2(MTi −Mλi)

2

≤C N2

T 2

∑
T

(N)
i+1≤t

6

E

[(∫ gi

Ti

(σXs )2ds

)2
]

E

(∫ Ti+1

Ti

(σYs )2ds

)2
 1

2

(LTi − Lli+1)2(MTi −Mλi)
2

= Op(1) .

The stochastic order follows, since the term has the expectation

C
N2

T 2

∑
T

(N)
i+1≤t

6

E

[(∫ gi

Ti

(σXs )2ds

)2
]

E

(∫ Ti+1

Ti

(σYs )2ds

)2
 1

2

E
[
(LTi − Lli+1)2(MTi −Mλi)

2
]

≤ C N2

T 2

∑
T

(N)
i+1≤t

6

E
(∫ gi

Ti

(σXs )2ds

)2

E

(∫ Ti+1

Ti

(σYs )2ds

)2

E

(∫ Ti

li+1

(σXs )2ds

)2

E

(∫ Ti

λi

(σYs )2ds

)2
 1

2

≤ C N2δ3
N = O(1) ,

where again the Cauchy-Schwarz and BDG inequalities have been applied. The variance is bounded from
above by a constant times N4δ7

N , what can be shown by a similar calculation where thanks to the fact
that Ti = γi ⇒ λi+1 = Ti the addends are uncorrelated and the variance of the sum equals the sum of
variances.
We treat the third type of addends occurring in the sum of conditional fourth moments in the same way. Itô
isometry yields

N2

T 2

∑
T

(N)
i+1≤t

4(MTi −Mλi)
3(LTi − Lli+1)3E

[
∆MTi+1(Lgi − LTi)

]
=
N2

T 2

∑
T

(N)
i+1≤t

4(MTi −Mλi)
3(LTi − Lli+1)3E

[∫ gi

Ti

ρsσ
X
s σ

Y
s ds

]
.
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This term has expectation

N2

T 2

∑
T

(N)
i+1≤t

4E
[
(MTi −Mλi)

3(LTi − Lli+1)3
]
E
[∫ gi

Ti

ρsσ
X
s σ

Y
s ds

]

≤ N2

T 2

∑
T

(N)
i+1≤t

4
√

E [(MTi −Mλi)6] E
[
(LTi − Lli+1)6

]
E
[∫ gi

Ti

ρsσ
X
s σ

Y
s ds

]

≤ C N2

T 2

∑
T

(N)
i+1≤t

4

E

(∫ Ti

λi

(σYs )2ds

)3
E

(∫ Ti

li+1

(σXs )2ds

)3
1/2

E
[∫ gi

Ti

ρsσ
X
s σ

Y
s ds

]
≤ CN2δ3

N = O(1) ,

and an analogous calculation as before yields that the variance is of order N4δ7
N .

Thereby, the sum converges to zero in probability.

Next, we consider the sum of conditional variances of the increments of the discrete martingale.

Lemma A.7.

E

 ∑
T

(N)
i+1≤t

(
∆ANi

)2 ∣∣∣FT (N)
i

 p→
∫ t

0

F ′(s)
(
σXs σ

Y
s

)2
ds+

∫ t

0

2H ′(s)
(
ρsσ

X
s σ

Y
s

)2
ds . (A.10)

It holds true that

Proof.

E

 ∑
T

(N)
i+1≤t

(
∆ANi

)2 ∣∣∣FT (N)
i


=
N

T

∑
T

(N)
i+1≤t

E
[
(Lgi−LTi)2(MTi−Mλi)

2 +(Mγi−MTi)
2(LTi−Lli)2 + (LTi−Lli+1)2(∆MTi+1)2

+ (MTi −Mλi+1)2(∆LTi+1)2 + 2(Lgi − LTi)(MTi −Mλi)(LTi − Lli+1)∆MTi+1

+ 2(Mγi −MTi)(LTi − Lli)(MTi −Mli+1)∆LTi+1

∣∣∣FT (N)
i

]
=

(Itô isometry)

N

T

∑
T

(N)
i+1≤t

(
E
[∫ gi

Ti

(σXs )2ds

]
(MTi −Mλi)

2 + E
[∫ γi

Ti

(σYs )2ds

]
(LTi − Lli)2

+ (LTi − Lli+1)2E

[∫ Ti+1

Ti

(σYs )2ds

]
+ (MTi −Mλi+1)2E

[∫ Ti+1

Ti

(σXs )2ds

]

+ 2(MTi −Mλi)(LTi − Lli+1)E
[∫ gi

Ti

ρsσ
X
s σ

Y
s ds

]
+ 2(LTi − Lli)(MTi −Mli+1)E

[∫ γi

Ti

ρsσ
X
s σ

Y
s ds

])
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=
(Lemma A.8)

N

T

∑
T

(N)
i+1≤t

(
E
[∫ gi

Ti

(σXs )2ds

] ∫ Ti

λi

(σYs )2ds+ E
[∫ γi

Ti

(σYs )2ds

] ∫ Ti

li

(σXs )2ds

+
∫ Ti

li+1

(σXs )2dsE

[∫ Ti+1

Ti

(σYs )2ds

]
+
∫ Ti

λi+1

(σYs )2dsE

[∫ Ti+1

Ti

(σXs )2ds

]

+
∫ Ti

li+1

ρsσ
X
s σ

Y
s dsE

[∫ gi

Ti

ρsσ
X
s σ

Y
s ds

]
+
∫ Ti

li+1

ρsσ
X
s σ

Y
s dsE

[∫ γi

Ti

ρsσ
X
s σ

Y
s ds

])
+ Op(1)

=
(Lemma A.8)

N

T

∑
T

(N)
i+1≤t

(∫ gi

Ti

(σXs )2ds

∫ Ti

λi

(σYs )2ds+
∫ γi

Ti

(σYs )2ds

∫ Ti

li

(σXs )2ds

+
∫ Ti

li+1

(σXs )2ds

∫ Ti+1

Ti

(σYs )2ds+
∫ Ti

λi+1

(σYs )2ds

∫ Ti+1

Ti

(σXs )2ds

+ 2
∫ Ti

li+1

ρsσ
X
s σ

Y
s ds

∫ gi

Ti

ρsσ
X
s σ

Y
s ds+ 2

∫ Ti

li+1

ρsσ
X
s σ

Y
s ds

∫ γi

Ti

ρsσ
X
s σ

Y
s ds

)
+ Op(1)

=
(Lemma A.9)

N

T

∑
T

(N)
i+1≤t

(
(σXTiσ

Y
Ti)

2 ((Ti − λi)(gi − Ti) + (γi − Ti)(Ti − li) + (Ti − li+1)∆Ti+1

+ (Ti − λi+1)∆Ti+1)+(ρTiσ
X
Tiσ

Y
Ti)

2(2(Ti − li+1)(gi − Ti)+2(Ti − λi+1)(γi − Ti))
)
+Op(1)

=
∑

T
(N)
i+1≤t

F (Ti+1)− F (Ti)
Ti+1 − Ti

(σXTiσ
Y
Ti)

2∆Ti+1 + 2
H(Ti+1)−H(Ti)

Ti+1 − Ti
(ρTiσ

X
Tiσ

Y
Ti)

2∆Ti+1 + Op(1)

p−→
∫ t

0

F ′(s)
(
σXs σ

Y
s

)2
ds+

∫ t

0

2H ′(s)
(
ρsσ

X
s σ

Y
s

)2
ds .

In the last step we have involved Definition 2. The Riemann sum converges on the Assumption 3 (in par-
ticular (15b) and (15c)) in probability asN →∞ to the expression

∫ t
0
vAsds with vAs given in Proposition

A.5.
The detailed proofs of the approximations are postponed in the following two lemmas.

Lemma A.8. On the assumptions as before, the following equations hold true:

N

T

∑
T

(N)
i+1≤t

(
(MTi −Mλi)

2 −
∫ Ti

λi

(σYs )2ds

)
E
[∫ gi

Ti

(σXs )2ds

]
= Op(1) ,

N

T

∑
T

(N)
i+1≤t

∫ Ti

λi

(σYs )2ds

(
E
[∫ gi

Ti

(σXs )2ds

]
−
∫ gi

Ti

(σXs )2ds

)
= Op(1) ,

N

T

∑
T

(N)
i+1≤t

(
(LTi − Lli)2 −

∫ Ti

li

(σXs )2ds

)
E
[∫ γi

Ti

(σYs )2ds

]
= Op(1) ,

N

T

∑
T

(N)
i+1≤t

∫ Ti

li

(σXs )2ds

(
E
[∫ γi

Ti

(σYs )2ds

]
−
∫ γi

Ti

(σYs )2ds

)
= Op(1) ,

N

T

∑
T

(N)
i+1≤t

(
(MTi −Mλi+1)2 −

∫ Ti

λi+1

(σYs )2ds

)
E

[∫ Ti+1

Ti

(σXs )2ds

]
= Op(1) ,
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N

T

∑
T

(N)
i+1≤t

∫ Ti

λi+1

(σYs )2ds

(
E

[∫ Ti+1

Ti

(σXs )2ds

]
−
∫ Ti+1

Ti

(σXs )2ds

)
= Op(1) ,

N

T

∑
T

(N)
i+1≤t

(
(LTi − Lli+1)2 −

∫ Ti

li+1

(σXs )2ds

)
E

[∫ Ti+1

Ti

(σYs )2ds

]
= Op(1) ,

N

T

∑
T

(N)
i+1≤t

∫ Ti

li+1

(σXs )2ds

(
E

[∫ Ti+1

Ti

(σYs )2ds

]
−
∫ Ti+1

Ti

(σYs )2ds

)
= Op(1) ,

N

T

∑
T

(N)
i+1≤t

(
(MTi −Mλi)(LTi − Lli+1)−

∫ Ti

li+1

ρsσ
X
s σ

Y
s ds

)
E
[∫ gi

Ti

ρsσ
X
s σ

Y
s ds

]
= Op(1) ,

N

T

∑
T

(N)
i+1≤t

∫ Ti

li+1

ρsσ
X
s σ

Y
s ds

(
E
[∫ gi

Ti

ρsσ
X
s σ

Y
s ds

]
−
∫ gi

Ti

ρsσ
X
s σ

Y
s ds

)
= Op(1) ,

N

T

∑
T

(N)
i+1≤t

(
(LTi − Lli)(MTi − Lλi+1)−

∫ Ti

λi+1

ρsσ
X
s σ

Y
s ds

)
E
[∫ γi

Ti

ρsσ
X
s σ

Y
s ds

]
= Op(1) ,

N

T

∑
T

(N)
i+1≤t

∫ Ti

λi+1

ρsσ
X
s σ

Y
s ds

(
E
[∫ γi

Ti

ρsσ
X
s σ

Y
s ds

]
−
∫ γi

Ti

ρsσ
X
s σ

Y
s ds

)
= Op(1) .

Proof. We restrict ourselves to the proof of the first two equalities, since all other terms can shown to con-
verge to zero in probability in an analogous way. The left-hand side of the first equality has an expectation
equal to zero which can be concluded directly by Itô isometry:

E

N
T

∑
T

(N)
i+1≤t

(
(MTi −Mλi)

2 −
∫ Ti

λi

(σYs )2ds

)
E
[∫ gi

Ti

(σXs )2ds

] = 0 .

In order to derive the stochastic order of the term, consider the second moment:

E


N
T

∑
T

(N)
i+1≤t

(
(MTi −Mλi)

2 −
∫ Ti

λi

(σYs )2ds

)
E
[∫ gi

Ti

(σXs )2ds

]
2

=
N2

T 2

∑
T

(N)
i+1≤t

E

(MTi −Mλi)
4 − 2(MTi −Mλi)

2

∫ Ti

λi

(σYs )2ds+

(∫ Ti

λi

(σYs )2ds

)2


×
(

E
[∫ gi

Ti

(σXs )2ds

])2

= O(1) ,

where the asymptotic order is deduced by Itô isometry and the BDG inequalities. Since the error induced by
this term in the approximation of the conditional variance before is centred and has a variance converging
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to zero as N →∞, the error is asymptotically negligible.
In the second equality we consider the error when the expected increment of the quadratic variation of X
over the next-tick interpolated time interval is substituted by the integral itself. We proceed as before for
the first approximation. Since

E

N
T

∑
T

(N)
i+1≤t

∫ Ti

λi

(σYs )2ds

(
E
[∫ gi

Ti

(σXs )2ds

]
−
∫ gi

Ti

(σXs )2ds

) = 0

and

E


N
T

∑
T

(N)
i+1≤t

∫ Ti

λi

(σYs )2ds

(
E
[∫ gi

Ti

(σXs )2ds

]
−
∫ gi

Ti

(σXs )2ds

)
2

=
N2

T 2

∑
T

(N)
i+1≤t

Var

(∫ Ti

λi

(σYs )2ds

)
E

(∫ Ti

λi

(σYs )2ds

)2
 = O(1) ,

the approximation error is asymptotically negligible. The fact that γi = Ti ⇒ λi+1 = Ti has been used
that guarantees that the addends of the sum are uncorrelated.

Lemma A.8 has been applied in the second and third equality in the evaluation of the sum of conditional
variances and the proof of Lemma A.7 is completed by the following

Lemma A.9. On the same assumptions as before, the following equation holds true

N

T

∑
T

(N)
i+1≤t

(∫ gi

Ti

(σXs )2ds

∫ Ti

λi

(σYs )2ds− (σXTiσ
Y
Ti)

2(Ti − λi)(gi − Ti)

)
= Op(1)

and analogously the errors in the five other addends converge to zero in probability when replacing the
product of increments of quadratic (co-)variations by the values of ρTi , σ

X
Ti
, σYTi multiplied with the corre-

sponding times increments.

Proof. We prove the equality explicitly given in the lemma. The five remaining terms can be handled by the
same strategy. By an application of the mean value theorem, elementary algebra and the triangle inequality
for the absolute values, we deduce that

N

T

∑
T

(N)
i+1≤t

(∫ gi

Ti

(σXs )2ds

∫ Ti

λi

(σYs )2ds− (σXTiσ
Y
Ti)

2(Ti − λi)(gi − Ti)

)

=
N

T

∑
T

(N)
i+1≤t

(
(σXςi σ

Y
ξi)

2 − (σXTiσ
Y
Ti)

2
)

(Ti − λi)(gi − Ti)

≤ N

T

∑
T

(N)
i+1≤t

∣∣(σXςi σYξi)2 − (σXTiσ
Y
Ti)

2
∣∣ (Ti − λi)(gi − Ti)

≤ N

T

∑
T

(N)
i+1≤t

((
(σYξi)

2
∣∣(σXςi )2 − (σXTi)

2
∣∣+ (σXTi)

2
∣∣(σYξi)2 − (σYTi)

2
∣∣) (Ti − λi)(gi − Ti)

)

≤ C N

T

∑
T

(N)
i+1≤t

((
sup

s∈[λi,Ti]

∣∣(σXs )2 − (σXTi)
2
∣∣+ sup

s∈[Ti,gi]

∣∣(σYs )2 − (σYTi)
2
∣∣) (Ti − λi)(gi − Ti)

)

= Op(1)

holds on Assumption 1.
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To prove the stability of the convergence in Proposition A.5, we show in the following that the discrete
covariations ofANt with theF-generating underlying martingales L andM converge to zero in probability.

Lemma A.10. ∑
T

(N)
i+1≤t

E
[
∆ANi ∆L

T
(N)
i+1

∣∣∣FT (N)
i

]
p−→ 0 ,

∑
T

(N)
i+1≤t

E
[
∆ANi ∆M

T
(N)
i+1

∣∣∣FT (N)
i

]
p−→ 0 .

Proof. Both relations are proven similarly and we restrict ourselves to the proof of the first one. The
left-hand side equals√

N

T

∑
T

(N)
i+1≤t

E
[
∆LTi+1 ((Lgi − LTi)(MTi −Mλi) + (Mγi −MTi)(LTi − Lli)

+(LTi − Lli+1)(MTi+1 −MTi) + (MTi −Mλi+1)(LTi+1 − LTi)
) ∣∣∣FTi(N)

]
=

√
N

T

∑
T

(N)
i+1≤t

(
E
[∫ gi

Ti

(σXs )2ds

]
(MTi −Mλi) + E

[∫ γi

Ti

ρsσ
X
s σ

Y
s ds

]
(LTi − Lli)

+(LTi − Lli+1)E

[∫ Ti+1

Ti

ρsσ
X
s σ

Y
s ds

]
+ (MTi −Mλi+1)E

[∫ Ti+1

Ti

(σXs )2ds

])
=: Γ .

Γ is centred and using Itô isometry the variance is shown to converge to zero:

N

T

∑
T

(N)
i+1≤t

((
E
[∫ gi

Ti

(σXs )2ds

])2

E

[∫ Ti

λi

(σYs )2ds

]
+
(

E
[∫ γi

Ti

ρsσ
X
s σ

Y
s ds

])2

E

[∫ Ti

li

(σXs )2ds

]

+E

[∫ Ti

li+1

(σXs )2ds

](
E

[∫ Ti+1

Ti

ρsσ
X
s σ

Y
s ds

])2

+ E

[∫ Ti

λi+1

(σYs )2ds

](
E

[∫ Ti+1

Ti

(σXs )2ds

])2

+2E

[∫ Ti

li+1

ρsσ
X
s σ

Y
s ds

]
E
[∫ gi

Ti

(σXs )2ds

]
E

[∫ Ti+1

Ti

ρsσ
X
s σ

Y
s ds

]

+2E

[∫ Ti

λi+1

ρsσ
Y
s σ

Y
s ds

]
E

[∫ Ti+1

Ti

(σXs )2ds

]
E
[∫ γi

Ti

ρsσ
X
s σ

Y
s ds

])
≤ CNδ2

N = O(1) .

Once more we can conclude that the addends are uncorrelated since γi = Ti ⇒ λi+1 = Ti and gi = Ti ⇒
li+1 = Ti, respectively.

Finally, we prove that the discrete covariation of our considered martingale with every bounded Ft-
martingale that is orthogonal toLt orMt, converges to zero in probability. Hence, this lemma will complete
the proof of Proposition A.5.
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Lemma A.11. Assume thatL⊥t andM⊥t are boundedFt-martingales, with
[
L,L⊥

]
≡ 0 and

[
M,M⊥

]
≡

0, respectively. It holds true that ∑
T

(N)
i+1≤t

E
[
∆ANi ∆L⊥

T
(N)
i+1

∣∣∣FT (N)
i

]
p−→ 0 ,

∑
T

(N)
i+1≤t

E
[
∆ANi ∆M⊥

T
(N)
i+1

∣∣∣FT (N)
i

]
p−→ 0 .

Proof. As in the preceding lemma, we only prove the first part of the result. The left-hand side of the first
equation equals√

N

T

∑
T

(N)
i+1≤t

E
[
∆L⊥Ti+1

((Lgi − LTi)(MTi −Mλi) + (Mγi −MTi)(LTi − Lli)

+(LTi − Lli+1)(MTi+1 −MTi) + (MTi −Mλi+1)(LTi+1 − LTi)
) ∣∣∣FTi(N)

]
=

√
N

T

∑
T

(N)
i+1≤t

(
E
[∫ gi

Ti

d
[
L,L⊥

]
s

]
(MTi −Mλi) + E

[∫ γi

Ti

d
[
M,L⊥

]
s

]
(LTi − Lli)

+(LTi − Lli+1)E

[∫ Ti+1

Ti

d
[
M,L⊥

]
s

]
+ (MTi −Mλi+1)E

[∫ Ti+1

Ti

d
[
L,L⊥

]
s

])

=

√
N

T

∑
T

(N)
i+1≤t

E

[∫ Ti+1

Ti

d
[
M,L⊥

]
s

]
(LTi − Lli+1) + E

[∫ γi

Ti

d
[
M,L⊥

]
s

]
(LTi − Lli) .

This term is centred and the has the variance

N

T

∑
T

(N)
i+1≤t

E

(∫ Ti+1

Ti

d
[
M,L⊥

]
s

)2
E

[(
LTi − Lli+1

)2]+ E

[(∫ γi

Ti

d
[
M,L⊥

]
s

)2
]

× E
[
(LTi − Lli)

2
]

+ E
[
(LTi − LLi+1)2

]
E

[∫ Ti+1

Ti

d
[
M,L⊥

]
s

]
E
[∫ γi

Ti

d
[
M,L⊥

]
s

]

=
Itô isometry

N

T

∑
T

(N)
i+1≤t

E

(∫ Ti+1

Ti

d
[
M,L⊥

]
s

)2
E

[∫ Ti

li+1

(σXs )2ds

]

+ E

[(∫ γi

Ti

d
[
M,L⊥

]
s

)2
]

E

[∫ Ti

li

(σXs )2ds

]

+ E

[∫ Ti

li+1

(σXs )2ds

]
E

[∫ Ti+1

Ti

d
[
M,L⊥

]
s

]
E
[∫ γi

Ti

d
[
M,L⊥

]
s

]
= O(1) .

Thus, the covariations converge to zero in probability.

The Lemma completes the proof of Proposition A.5.

The mixed normal limit in Proposition A.4 can be obtained as the marginal distribution of ANT in
t = T .

Proposition A.4 for the error of the approximation by the discretization error of the closest synchronous
approximation (13) and the stable limit theorem for this synchronous discretization error (12) given in
Proposition A.1 suffice to imply Theorem 2. That is because the multivariate stable convergence Theorem
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2.4 applies to the vector of the two uncorrelated terms and since the covariations converge to zero , the sta-
ble convergence to the mixed Gaussian limit with the sum of the two asymptotic variances is concluded.�

B. Proof of Proposition 6.1

The proof will be divided into three parts in that the sum of squared products, products of consecutive
increments and the histogram estimator are considered, respectively. Denote X+

j = Xgj − XTj , X
−
j =

XTj−1 −Xlj and XS
j = XTj −XTj−1 , j = 1, . . . , N . In the first step it is proved that

N

N−1∑
j=1

(
Xgj −Xlj

)2 (
Yγj − Yλj

)2 p−→T
∫ T

0

G′(t)
(
σXt σ

Y
t

)2(
2ρ2
t + 1

)
dt+ T

∫ T

0

F ′(t)
(
σXt σ

Y
t

)2
dt .

N

N−1∑
j=1

(
X+
j +XS

j +X−j
)2 (

Y +
j + Y Sj + Y −j

)2
=N

N−1∑
j=1

(
(X+

j )2(Y Sj + Y −j )2 +(Y +
j )2(XS

j +X−j )2

+(X−j )2(Y Sj )2 +(Y −j )2(XS
j )2 +(XS

j Y
S
j )2

)
+Op(1)

All centred addends have a variance tending to zero as N → ∞ and converge to zero in probability.
The sum of the first four addends times the factor N/T has been proved to converge in probability to∫ T

0
F ′(t)(σXt σ

Y
t )2dt in Lemma A.7 where this term has appeared in the sequence of conditional variances

of the error due to non-synchronicity.
Hence, it remains to prove that N

∑N−1
j=1 (XS

j Y
S
j )2 p→ T

∫ T
0

(2ρ2
t + 1)(σXt σ

Y
t )2G′(t)dt. For this purpose

recall the notation from the proof of Proposition A.1. With Lt =
∫ t

0
σXs dW

X
s , Mt =

∫ t
0
σYs dW

Y
s ,

Li = LTi ,Mi = MTi , we can write the term

N

N−1∑
j=1

((L− Li−1)Ti(M −Mi−1)Ti)
2 = N

N−1∑
i=1

(
2
∫ Ti

0

(L− Li−1)t(M −Mi−1)2
td(L− Li−1)t

+ 2
∫ Ti

0

(L− Li−1)2
t (M −Mi−1)td(M −Mi−1)t

+ 4
∫ Ti

0

(L− Li−1)t(M −Mi−1)td [M −Mi−1, L− Li−1]t

+
∫ Ti

0

(M −Mi−1)2
td [M −Mi−1]t +

∫ Ti

0

(L− Li−1)2
td [L− Li−1]t

)
,

where we have applied Itô’s formula. The sum of the first two addends converges to zero in probability
since it is centred and the variance converges to zero. Since∫ Ti

0

(L− Li−1)t(M −Mi−1)td [M −Mi−1, L− Li−1]t =
∫ Ti

Ti−1

(L− Li−1)t(M −Mi−1)td [M,L]t ,

the sum of the third addends has been considered in the proof of Proposition A.2 as part of the quadratic
variation of the discretization error of the closest synchronous approximation and converges in probability
to 2T

∫ T
0
G′(t)(ρtσXt σ

Y
t )2dt. The remaining sum of the fourth addends is also similar to the other part of

the quadratic variation in the proof of Proposition A.2. An analogous approximation and integration by
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parts yields ∫ Ti

Ti−1

(M −Mi−1)2
td [M ]t +

∫ Ti

Ti−1

(L− Li−1)2
td [L]t

=
∫ Ti

Ti−1

[M −Mi−1]t d [M ]t +
∫ Ti

Ti−1

[L− Li−1]t d [L]t + Op(1)

=
∫ Ti

Ti−1

d([L− Li−1]t [M −Mi−1]t) + Op(1)

and the convergence of the above given term to T
∫ T

0
(σXt σ

Y
t )2G′(t)dt.

In the second part of the proof we are concerned with the term

2N
N−1∑
j=1

(X+
j +XS

j +X−j )(X+
j+1 +XS

j+1 +X−j+1)(Y +
j + Y Sj + Y −j )(Y +

j+1 + Y Sj+1 + Y −j+1)

= 2N
N−1∑
j=1

(
XS
j Y

S
j X

S
j+1Y

S
j+1 +X+

j Y
S
j X

−
j+1Y

S
j+1 + Y +

j X
S
j Y
−
j+1X

S
j+1

)
+ Op(1) .

The sum incorporating all centred addends converges to zero in probability. The last two addends capture
the only dependence between consecutive addends in the error due to non-synchronicity (13), namely when
next-tick interpolations and previous-tick interpolations at the same Ti, i = 1, . . . , N are included. Those
have appeared in the proof of Lemma A.7 and have been proved to converge to T

∫ T
0

2H ′(t)(σXt σ
Y
t )2dt

in probability. That 2N
∑

(XS
j Y

S
j X

S
j+1Y

S
j+1)

p→ 2
∫ T

0
G′(t)(ρtσXt σ

Y
t )2dt follows with the methodology

from [5] and Lemma 1 from [23] using the concept of a time-change in the asymptotic quadratic variation
of refresh times such that

∑
i(∆Ti − T/N)2 = O(N−1) holds true. Using the mean value theorem and

(∆Tj)2 −∆Tj∆Tj+1 = ∆Tj(∆Tj − T/N) + ∆Tj(T/N −∆Tj+1) together with the Cauchy-Schwarz
inequality

N

∣∣∣∣∣∣
N−1∑
j=1

(
∆Tj

(
∆Tj −

T

N

))∣∣∣∣∣∣ ≤ N
√√√√N−1∑

j=1

(∆Tj)2

√√√√N−1∑
j=1

(
∆Tj −

T

N

)2

yields the result.
The Hayashi-Yoshida estimators on the bins in the histogram-based estimator (19) fulfill

∆̂ [X,Y ]
(HY )

GNj
=
∫ GNj

GNj−1

ρtσ
X
t σ

Y
t dt+Op

(
K

1/2
N N−

1/2
)

so that the estimation error of the sum is of order K
3/4
N N−1/2 in probability and for KN → ∞ , N →

∞ , KNN
−2/3 → 0 consistency holds and we conclude consistency of the estimator of the asymptotic

variance. �
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