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Abstract

The article is devoted to the nonparametric estimation of the quadratic covariation of non-synchronously
observed Itô processes in an additive microstructure noise model. In a high-frequency setting, we aim at
establishing an asymptotic distribution theory for a generalized multiscale estimator including a feasible
central limit theorem with optimal convergence rate on convenient regularity assumptions. The inevitably
remaining impact of asynchronous deterministic sampling schemes and noise corruption on the asymptotic
distribution is precisely elucidated. A case study for various important examples, several generalizations
of the model and an algorithm for the implementation warrant the utility of the estimation method in
applications.
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1. Introduction

The nonparametric estimation of the univariate quadratic variation of a latent semimartingale from n
observations in a high-frequency setting with additive observation noise has been studied intensively in
recent years. It is known from [13] that n1/4 constitutes a lower bound for the rate of convergence. An
important motivation which has stimulated an alliance of economists and statisticians to establish estima-
tion techniques for this kind of latent semimartingale models is their utility in estimating daily integrated
(co-)volatilities from high-frequency intraday returns that serve as a basis for risk management as well
as portfolio optimization and hedging strategies. The last years have seen an enormous increase of the
amount of trading activities for many liquid securities. Paradoxically, the availability of high-frequency
data necessitated a new angle on financial modeling. In fact, for every semimartingale the discrete realized
(co-)volatilities converge in probability to the integrated measures. However, realized volatilities of typical
high-frequency financial time series data explode for very high frequencies. This effect is ascribed to mar-
ket microstructure frictions. Sources of the market microstructure noise are manifold. One important role
plays the occurrence of bid-ask spreads. Aside from that transaction costs, strategic trading, limited market
depths and discreteness of prices spread out the structure of the long-run dynamics that can be character-
ized by semimartingales.
This strand of literature followed [31] that has attracted a lot of attention to this estimation problem. The
so-called two-scales realized volatility by [31] is based on subsampling and a bias-correction and a sta-
ble central limit theorem with n1/6-rate has been proved. A refinement of the subsample approach using
multiple scales in [30] and related alternative techniques in [4], [23] and [29] have led to rate-optimal
estimators and feasible stable central limit theorems. For the more specific nonparametric model with
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Gaussian noise, asymptotic equivalence in the Le Cam sense to a Gaussian shift experiment is shown in
[26] and an asymptotically efficient estimator whose asymptotic variance equals the parametric efficiency
bound is constructed.
In the article on hand we are concerned with a multivariate stetting and apart from taking additive mi-
crostructure noise into account, we focus on a way to deal with non-synchronous observation schemes.
This is also a central theme in financial applications. When realized covolatilities are calculated for fixed
time distances and a previous-tick interpolation is applied, the phenomenon of the so-called Epps effect
described in [10] appears that the realized covolatility tends to zero at the highest frequencies.
A methodology to deal with non-synchronous observations in a bivariate Itô processes model has been
proposed by [15]. The so-called Hayashi-Yoshida estimator has superseded simpler previous-tick inter-
polation methods setting the standard for the estimation of the quadratic covariation from asynchronous
observations in the absence of microstructure noise effects.
Our estimation approach, first proposed in [8], for the most general case in the presence of noise and non-
synchronicity arises as a combination of the multiscale estimator to handle noise contamination on the one
hand and a synchronization algorithm in accordance with the Hayashi-Yoshida estimator to cope with non-
synchronicity on the other hand. A first attempt in the same direction, combining one-scale subsampling
and the Hayashi-Yoshida estimator, has been given in [22].
In [8] it has been shown in the spirit of [13] that the optimal convergence rate n1/4 carries over to the general
multidimensional setup. The mathematical analysis of our generalized multiscale estimator in [8] shows
that it is rate-optimal.
Alternative approaches to similar statistical models has been suggested by [5], [9] and [1]. In [5] a kernel-
based method with a previous-tick interpolation to so-called refresh times is proposed and a stable central
limit theorem with sub-optimal n1/5-rate is established for a multivariate non-synchronous design. This
estimator, furthermore, ensures that the estimated covariance matrix is positive semi-definite. [9] and [1]
come up with combinations of pre-averaging ([23],[19]) and the Hayashi-Yoshida estimator and of the
univariate quasi-maximum-likelihood method by [29], the polarization identity and a generalized synchro-
nization scheme which is different from the Hayashi-Yoshida ansatz that we use, respectively, both also
attaining the optimal rate.
In this article we aim at providing an asymptotic distribution theory for the generalized multiscale estima-
tor. In distinction from alternative methods, the influence of non-synchronicity effects on the expectation
is null and on the variance limited up to an interaction of interpolation steps and microstructure noise. The
main result is a feasible stable central limit theorem for its estimation error with optimal rate and a closed-
form asymptotic variance that does not hinge on interpolation errors in the signal term. The stable weak
convergence of the estimation error to a centred mixed Gaussian limit and the consistent estimation of the
random unknown asymptotic variance are the essential steps towards statistical inference and confidence
sets. The theory is grounded on stable limit theorems for semimartingales from [18].
In Section 2 we present the model and our main findings. Section 3 comes up with a concise overview
on the construction of the estimator and in Section 4 we develop the asymptotic theory. In Section 5 we
propose a consistent estimator for the asymptotic variance and Section 6 comprises various extensions and
and a concluding discussion. The proofs are postponed to the Appendix.

2. Model and key result

The considered statistical model of noisy latently observed Itô processes at deterministic observation
times is precisely described by Assumptions 1-3 in this section.

Assumption 1 (efficient processes). On a filtered probability space (Ω,F , (Ft) ,P), the efficient processes
X = (Xt)t∈R+ and Y = (Yt)t∈R+ are Itô processes defined by the following stochastic differential
equations:

dXt = µXt dt+ σXt dBXt ,

dYt = µYt dt+ σYt dB
Y
t ,

with two (Ft)–adapted standard Brownian motions BX and BY and ρt dt = d
[
BX , BY

]
t
. The drift

processes µXt and µYt are (Ft)–adapted locally bounded stochastic processes and the spot volatilities
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σXt and σYt and ρt are assumed to be (Ft)–adapted with continuous paths. We assume strictly positive

volatilities and the Novikov condition E
[
exp

(
(1/2)

∫ T
0

(µ · /σ · )2t dt
)]

<∞ for X and Y .

Assumption 2 (observations). The deterministic observation schemes T X,n = {0 ≤ t(n)
0 < t

(n)
1 < . . . <

t
(n)
n ≤ T} of X and T Y,m = {0 ≤ τ

(m)
0 < τ

(m)
1 < . . . < τ

(m)
m ≤ T} of Y are assumed to be regular in

the following sense: There exists a constant 0 < α ≤ 1/9 such that

δXn = sup
i∈{1,...,n}

((
t
(n)
i − t(n)

i−1

)
, t

(n)
0 , T − t(n)

n

)
= O

(
n−

8/9−α
)
, (1a)

δYm = sup
j∈{1,...,m}

((
τ

(m)
j − τ (m)

j−1

)
, τ

(m)
0 , T − τ (m)

m

)
= O

(
m−

8/9−α
)
. (1b)

We consider asymptotics where the number of observations of X and Y are assumed to be of the same
asymptotic order n = O(m) and m = O(n) and express that shortly by n ∼ m. The efficient processes
X and Y which satisfy Assumption 1 are discretely observed at the times T X,n and T Y,m with additive
observation noise:

X̃
t
(n)
i

=
∫ t

(n)
i

0

µXt dt+
∫ t

(n)
i

0

σXt dBXt + εX
t
(n)
i

, 0 ≤ i ≤ n , (2a)

Ỹ
τ
(m)
j

=
∫ τ

(m)
j

0

µYt dt+
∫ τ

(m)
j

0

σYt dB
Y
t + εY

τ
(m)
j

, 0 ≤ j ≤ m . (2b)

Although we consider sequences of deterministic observation times, the case of random sampling that
is independent of the observed processes is included when regarding the conditional law.
It turns out that it is accurate to prove the key result of the article on the following i. i. d. assumption on
the microstructure noise since a closed-form expression for the asymptotic variance is not available for
a combination of general asynchronous observation schemes and serially dependent observation errors.
Since an extension to non-i. i. d. noise is crucial for the utility in financial applications, we comment on the
robustness of our estimator to that case in Section 6.

Assumption 3 (microstructure noise). The discrete microstructure noise processes

εX
t
(n)
i

, εY
τ
(m)
j

, 0 ≤ i ≤ n, 0 ≤ j ≤ m .

are centred i. i. d. , independent of each other and independent of the efficient processes X and Y . We
assume that the observation errors have finite fourth moments and denote the variances

η2
X = Var

(
εX
t
(n)
1

)
, η2

Y = Var
(
εY
τ
(m)
1

)
.

The number of synchronized observations N ∼ n ∼ m which appears in the rate of our feasible stable
central limit theorem is introduced in Section 3.

Theorem 1 (feasible stable central limit theorem). The generalized multiscale estimator (12) specified
by the later given weights (A.1), with MN = cmulti ·

√
N converges on the Assumptions 1, 2, 3 and further

mild regularity conditions on the asymptotics of the sampling schemes, stated below in Assumptions 4 and
5, F−stably in law with optimal rate N 1/4 ∼ n1/4 ∼ m1/4 to a mixed Gaussian limiting distribution:

N
1/4

(
[̂X,Y ]

multi

T − [X,Y ]T

)
st
 N (0,AVARmulti)

with an almost surely finite random asymptotic variance given in (18) in Theorem 3. With the consistent
estimator for the asymptotic variance ÂVARmulti in Proposition 5.1 , the feasible central limit theorem

N
1/4

(
[̂X,Y ]

multi

T − [X,Y ]T

)
ÂVARmulti

st
 N(0, 1) , (3)

holds true.
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Figure 1: Sketch of the subsampling approach.

The notion of stable weak convergence going back to [27] is essential for our asymptotic theory. Stable
weak convergence Xn

st
 X is the joint weak convergence of (Xn, Z) to (X,Z) for every measurable

bounded random variable Z. The limiting random variables in stable limit theorems are defined on exten-
sions of the original underlying probability spaces. The reason for us to involve this concept of a stronger
mode of weak convergence is that mixed normal limiting distributions are derived where asymptotic vari-
ances are themselves strictly positive random variables. Provided we have a consistent estimator V 2

n for
such a random asymptotic variance V 2 on hand, the stable central limit theorem Xn

st
 V Z with Z dis-

tributed according to a standard Gaussian law, yields the joint weak convergence (Xn, V
2
n )  (V Z, V 2)

and also Xn/Vn  Z and hence allows to perform statistical inference providing tests or confidence inter-
vals.
In the proofs of our limit theorems we will ‘remove’ the drifts in the sense that after a transformation to an
equivalent martingale measure stable central limit theorems for Itô processes without drift are proved and,
as illustrated in [21], stability of the weak convergence ensures that the asymptotic law holds true under
the original measure. In this sense stable convergence is commutative with measure change.
From now on, we often omit the superscripts of observation times for a shorter notation.

3. Brief review on the foundation

3.1. Subsampling and the multiscale estimator

In the model imposed by Assumption 1, Assumption 2 with synchronous observations, n = m and
t
(n)
j = τ

(n)
j , 1 ≤ j ≤ n, and Assumption 3, the realized (co-)volatilities do not provide consistent estima-

tors for the quadratic (co-)variations any more. The variance due to noise conditional on the paths of the
efficient processes

VarX,Y

 n∑
j=1

(
X̃tj − X̃tj−1

)(
Ỹtj − Ỹtj−1

) = 4n η2
Xη

2
Y ,

increases linearly with n. The error due to noise perturbation can be reduced by the following estimator,
which has been proposed for the univariate estimation of integrated volatility as the “second best approach”
in [31] and which is called one-scale subsampling estimator in [8] and throughout this article. It can
be motivated from two perspectives that are both sketched in Figure 1. On the left-hand side we have
visualized that one can calculate simultaneously lower frequent realized covolatilities using subsamples,
e. g. to the lag three in Figure 1, and (post-)average them.

[̂X,Y ]
sub

T =
1
i

n∑
j=i

(
X̃tj − X̃tj−i

)(
Ỹtj − Ỹtj−i

)
. (4a)
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This motivation given in [31] is in line with the former common practice of a sparse-sampled low-frequency
realized (co-)volatility estimator and proposes to use an average instead of one single lower frequent real-
ized measure.
The same estimator arises as the usual realized covolatility calculated from the time series on that a linear
filter is run before, what means that non-noisy observations at a time tj are estimated with a (pre-)average
of noisy observations at times tj , . . . , tj+i for some i. This is sketched on the right-hand side of Figure 1
for i = 3. Passing over to increments leads to telescoping sums and we end up finally with the one-scale
subsampling estimator.
Since on the Assumption 3 there is no bias due to noise for the bivariate estimator, it already corresponds
to the “first best approach” from [31] whereas in the univariate case a bias-correction completes the two
scales realized volatility (TSRV):

[̂X]
TSRV

T =
1
i

n∑
j=i

(
X̃tj − X̃tj−i

)2

− 1
2n

n∑
i=1

(
X̃tj − X̃tj−1

)2

. (4b)

There is a trade-off between the signal term and the error due to noise. Choosing i = csubn
2/3 dependent

on n with a constant csub, the overall mean square error is minimized and of order n−1/3. The one-
scale subsampling estimator (4a) is hence a consistent and asymptotically unbiased estimator. The rate of
convergence n1/6, however, is slow and does not attain the optimal rate n1/4 determined in [8]. For this
reason, we focus on a multiscale extension of the subsampling approach on which the methods developed
in [8] are based on. The multiscale realized covolatility (MSRC), and the univariate multiscale realized
volatility (MSRV) introduced in [30], are linear combinations of one-scale subsampling estimators with
Mn different subsampling frequencies i = 1, . . . ,Mn:

[̂X,Y ]
multi

T =
Mn∑
i=1

αopti,Mn

i

n∑
j=i

(
X̃tj − X̃tj−i

)(
Ỹtj − Ỹtj−i

)
, (5a)

[̂X]
multi

T =
Mn∑
i=1

αopti,Mn

i

n∑
j=i

(
X̃tj − X̃tj−i

)2

. (5b)

The weights are chosen such that the estimator is asymptotically unbiased and the error due to noise mini-
mized. They are given later in (A.1) and can be chosen equally for the bivariate and the univariate case.
Those are the standard discrete weights of [30] and we abstain from giving a more general class of possible
weight functions.
The mean square error of the multiscale realized covolatility (5a) can be split in uncorrelated addends that
stem from discretization, microstructure noise and cross terms and end-effects. They are of orders Mn/n,
n/M3

n, and M−1
n , respectively. Hence, a choice Mn = cmulti

√
n leads to a rate-optimal n1/4-consistent

estimator.
The following stable central limit theorems for the multiscale realized covolatility (5a) and the one-scale
estimator (4a) are implied by Theorem 3 and Corollary 4.1:

Proposition 3.1. On Assumptions 1, 2 and 3 in the synchronous setup and if (n/T )
∑
i(t

(n)
i − t

(n)
i−1)2 con-

verges to a continuously differentiable limiting function G and the difference quotients converge uniformly
toG′ on [0, T ], the multiscale realized covolatility (5a) and the subsampling estimator (4a) converge stably
in law to mixed normal limiting random variables:

n
1/4

(
[̂X,Y ]

multi

T − [X,Y ]T

)
st
 N (0 , AVARmulti,syn) , (6a)

n
1/6

(
[̂X,Y ]

sub

T − [X,Y ]T

)
st
 N (0 , AVARsub,syn) , (6b)
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with

AVARmulti,syn = c−3
multi24η2

Xη
2
Y + cmulti

26
35
T

∫ T

0

G′(t)(ρ2
t + 1)(σXt σ

Y
t )2 dt (6c)

+ c−1
multi

12
5

(
η2
Xη

2
Y + η2

X

∫ T

0

(σYt )2 dt+ η2
Y

∫ T

0

(σXt )2 dt

)
,

AVARsub,syn = c−2
sub4η

2
Xη

2
Y + csub

2
3
T

∫ T

0

G′(t)(ρ2
t + 1)(σXt σ

Y
t )2 dt . (6d)

3.2. Synchronization and the Hayashi–Yoshida estimator
We use the short notation ∆Xti , i = 1, . . . , n from now on for incrementsXti−Xti−1 and analogously

for Y . The Hayashi-Yoshida estimator

[̂X,Y ]
(HY )

T =
n∑
i=1

m∑
j=1

∆Xti∆Yτj1[min (ti,τj)>max (ti−1,τj−1)] , (7)

where the product terms include all increments of the processes with overlapping observation time in-
stants, has been proved in [15] to be consistent in a model of asynchronously observed Itô processes with
deterministic correlation, drift and volatility functions in the absence of observation noise and on further
regularity conditions to be asymptotically normally distributed in [16].
For a combination of the strategy of the Hayashi-Yoshida estimator with techniques to handle noise conta-
mination, we use an iterative algorithm introduced in [22] as ‘pseudo-aggregation’. Incorporating telescop-
ing sums there are the following rewritings of the estimator (7):

[̂X,Y ]
(HY )

T =
n∑
i=1

∆Xti

(
Yti,+ − Yti−1,−

)
=

N∑
i=1

(Xgi −Xli) (Yγi − Yλi) (8)

=
N∑
i=1

(
XTXi,+

−XTXi−1,−

)(
YTYi,+ − YTYi−1,−

)
,

with the notion of next-tick interpolated times ti,+ := min0≤j≤m (τj |τj ≥ ti) and previous-tick interpo-
lated ones ti,− := max0≤j≤m (τj |τj ≤ ti) in the first equality. This rewriting can be as well done in the
symmetric way.
The illustration of (8) that serves as a basis for the construction of the generalized multiscale estimator
relies on an aggregation of the observations according to Algorithm 1. This algorithm, which is a concise
version of the construction in [8], stops after (N+1) ≤ min (n,m)+1 steps when all observation times are
grouped. Summation in (8) can start with i = 0 or i = 1. In the last equality only the denotation expres-
sions gi, γi, li, λi are substituted emphasizing that those sampling times obtained by Algorithm 1 can be
interpreted as previous- and next-tick interpolations again with respect to a synchronous sampling scheme
Tk := min (gk, γk), 1 ≤ k ≤ N , which we call the closest synchronous approximation. Increments in
(8) are taken from previous-tick interpolations at left-end points of instants [Tk−1, Tk], 2 ≤ k ≤ N to
next-tick interpolated sampling times at right-end points. Since Tk = max (lk+1, λk+1), 1 ≤ k ≤ (N −1)
holds true, we split the estimation error of (8) in two uncorrelated parts DN

T +ANT with

DN
T :=

N∑
i=1

((
XTi −XTi−1

) (
YTi − YTi−1

)
−
∫ Ti

Ti−1

ρtσ
X
t σ

Y
t dt

)
(9)

−
∫ t0∧τ0

0

ρtσ
X
t σ

Y
t dt−

∫ T

tn∧τm
ρtσ

X
t σ

Y
t dt
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Define t+(s) := min {ti ∈ T X,n|ti ≥ s}, τ+(s) := min {τj ∈ T Y,n|τj ≥ s};
t−(s) := max {ti ∈ T X,n|ti < s}, τ−(s) := max {τj ∈ T Y,n|τj < s}.

first step:

• For t0 ≤ τ0 99K g0 = t+(τ0), l0 = t0, γ0 = τ0, λ0 = τ0.

• For t0 > τ0 99K g0 = t0, l0 = t0, γ0 = τ+(t0), λ0 = τ0.

ith step (given gi−1 and γi−1):

• If gi−1 = γi−1

– and t+(gi−1) ≤ τ+(γi−1) 99K gi = t+(τ+(γi−1)), li = gi−1, γi = τ+(γi−1), λi = γi−1.

– and t+(gi−1) > τ+(γi−1) 99K gi = t+(gi−1), li = gi−1, γi = τ+(t+(gi−1)), λi = γi−1.

• If gi−1 < γi−1

– and γi−1 ≤ t+(gi−1) 99K gi = t+(gi−1), li = gi−1, γi = τ+(t+(gi−1)), λi = τ−(γi−1).

– and γi−1 > t+(gi−1) 99K gi = t+(γi−1), li = gi−1, γi = γi−1, λi = τ−(γi−1).

• If gi−1 > γi−1: symmetrically as for gi−1 < γi−1.

Algorithm 1: Iterative synchronization algorithm.

being the discretization error of a synchronous-type realized covolatility including in general non-observable
idealized values at the times of the closest synchronous approximation and ANT an additional error due to
the lack of synchronicity, in particular next- and previous-tick interpolations. The times Tk equal the
so-called refresh times of [5] and thus our synchronization differs from the one in [5] by replacing pure
previous-tick interpolation by the above given machinery of previous- and next-tick interpolations.
The asymptotic theory for the estimator (8) as N → ∞, concisely repeated here, is separately proved and
presented in a more elaborate way in [7].
First, we take up the illustrative example from [8] to motivate the synchronization procedure. For further
details and examples we refer to [8] and [22]. Figure 2 visualizes the aggregation carried out by Algorithm
1 and the times Ti, i = 0, . . . , 8 for a toy example. The example emphasizes the important fact that con-
secutive right-end points of increments can be the same time points. The realized covolatility calculated
from previous-tick interpolated values to refresh times equals

(Xt2 −Xt0)(Yτ1 − Yτ0) + (Xt3 −Xt2)(Yτ3 − Yτ1) + (Xt5 −Xt3)(Yτ4 − Yτ3)+
(Xt6 −Xt5)(Yτ5 − Yτ4) + (Xt7 −Xt6)(Yτ6 − Yτ5) + (Xt8 −Xt7)(Yτ7 − Yτ6)+

(Xt9 −Xt8)(Yτ8 − Yτ7) + (Xt10 −Xt9)(Yτ10 − Yτ8)

and is systematically biased downwards by interpolations, whereas (8) yields

(Xt3 −Xt0)(Yτ1 − Yτ0) + (Xt3 −Xt2)(Yτ3 − Yτ1) + (Xt6 −Xt3)(Yτ4 − Yτ3)+
(Xt7 −Xt5)(Yτ5 − Yτ4) + (Xt8 −Xt6)(Yτ6 − Yτ5) + (Xt8 −Xt7)(Yτ8 − Yτ6)+

(Xt9 −Xt8)(Yτ9 − Yτ7) + (Xt10 −Xt9)(Yτ10 − Yτ8) ,

which is not biased due to interpolations.

Definition 1 (quadratic (co-)variations of time). For any N ∈ N let T (N)
i , i = 0, . . . , N be the times

of the closest synchronous approximation and g(N)
i , γ

(N)
i , l

(N)
i , λ

(N)
i the corresponding observation times

that appear in the estimator (8) defined above by Algorithm 1 . T/N is the mean of the time instants
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i 0 1 2 3 4 5 6 7 8
Hi {t0} {t1, t2, t3} {t3} {t4, t5, t6} {t6, t7} {t7, t8} {t8} {t9} {t10}
Gi {τ0} {τ1} {τ2, τ3} {τ4} {τ5} {τ6} {τ7, τ8} {τ8, τ9} {τ9, τ10}
li t0 t0 t2 t3 t5 t6 t7 t8 t9
gi t0 t3 t3 t6 t7 t8 t8 t9 t10

λi τ0 τ0 τ1 τ3 τ4 τ5 τ6 τ7 τ8
γi τ0 τ1 τ3 τ4 τ5 τ6 τ8 τ9 τ10

Ti t0=τ0 τ1 t3=τ3 τ4 τ5 τ6 t8 t9 t10=τ10

Figure 2: Example for non-synchronous sampling design with the sets constructed by the synchronization algorithm, interpolated
observation times occurring in the estimators and the synchronous approximation.

∆T (N)
i = T

(N)
i − T (N)

i−1 , i = 1, . . . , N . Define the following sequences of functions

GN (t) =
N

T

∑
T

(N)
i ≤t

(
∆T (N)

i

)2

, (10a)

FN (t) =
N

T

∑
T

(N)
i+1≤t

(T (N)
i − λ(N)

i )(g(N)
i − T (N)

i ) +
(
T

(N)
i − l(N)

i

)(
γ

(N)
i − T (N)

i

)
+∆T (N)

i+1

(
T

(N)
i − l(N)

i+1

)
+ ∆T (N)

i+1

(
T

(N)
i − λ(N)

i+1

)
, (10b)

HN (t) =
N

T

∑
T

(N)
i+1≤t

(
T

(N)
i − l(N)

i+1

)(
g
(N)
i − T (N)

i

)
+
(
T

(N)
i − λ(N)

i+1

)(
γ

(N)
i − T (N)

i

)
, (10c)

for t ∈ [0, T ] that we call sequences of quadratic (co-)variations of times.

A stable central limit theorem for the estimation error is deduced in [7] on the assumption that the se-
quences defined by (10a), (10b) and (10c) converge pointwise to continuous differentiable limiting func-
tions G,F,H and the sequences of difference quotients uniformly. The asymptotic quadratic variation of
time G of the T (N)

i s influences the asymptotics of DN
T . The covariation of times FN measures an inter-

action of interpolation errors between the two processes and HN the impact of the in general non-zero
correlations of the products involving previous- and next-tick interpolations at the same T (N)

i s for each
process separately.
Consider as easiest example the synchronous equidistant sampling schemes with N = n = m and
t
(n)
i = τ

(n)
j = i/n, i = 0, . . . , n. In this case FN and HN are identically zero since interpolations

are redundant. The function GN is a step function that will tend to the identity on [0, T ] as N →∞.
Then, consider a situation of completely non-synchronous sampling schemes that originates from the com-
plete synchronous equidistant one by shifting one time-scale half a time instant 1/2N . We will call this
situation intermeshed sampling. For this example, the synchronous approximation is still equidistant with
instants 1/N and, hence, G is the identity function. F and H are linear limiting functions with slope 1 and
1/4, respectively.
In [7] we show for an important special case, independent homogeneous Poisson sampling, that the conver-
gence assumptions on (10a)-(10c) are fulfilled when replacing deterministic convergence by convergence
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in probability. Furthermore, the stochastic limits G′(t), F ′(t), H ′(t) are calculated explicitly.
The main result for the estimator (8) is Theorem 2. It serves as preparation to prove the stable limit theorem
for the generalized multiscale estimator in Theorem 3 and gives insight into the asymptotic distribution of
(8). For the proof we refer to [7]. A similar stable limit theorem for the original Hayashi-Yoshida estimator
is provided in [17].

Theorem 2. The estimation error of (8) converges on the Assumptions 1, 2 and convergence assumptions
on (10a)-(10c) and the difference quotients stably in law to a centred, mixed Gaussian distribution:

√
N

(
N∑
i=1

(Xgi −Xli) (Yγi − Yλi)− [X , Y ]T

)
st
 N (0 , vDT + vAT ) , (11)

with the asymptotic variance

vDT +vAT =T

∫ T

0

G′(t)
(
σXt σ

Y
t

)2(
ρ2
t + 1

)
dt+ T

∫ T

0

(
F ′(t)

(
σXt σ

Y
t

)2
+ 2H ′(t)

(
ρtσ

X
t σ

Y
t

)2)
dt

where the two addends come from the asymptotic variances of DN
T and ANT , respectively.

3.3. Hybrid approach to non-synchronous and noisy observations
In [8] we have proposed the following combined estimation method for the quadratic covariation or in-

tegrated covolatility from noisy asynchronous observations. After applying Algorithm 1 to the observation
times, the generalized multiscale estimator is defined by

[̂X,Y ]
multi

T =
MN∑
i=1

αopti,MN

i

N∑
j=i

(
X̃
g
(N)
j
− X̃

l
(N)
j−i+1

)(
Ỹ
γ
(N)
j
− Ỹ

λ
(N)
j−i+1

)
. (12)

It is a weighted sum of MN one-scale subsampling estimators of the type

[̂X,Y ]
sub

T =
1
iN

N∑
j=iN

(
X̃
g
(N)
j
− X̃

l
(N)
j−iN+1

)(
Ỹ
γ
(N)
j
− Ỹ

λ
(N)
j−iN+1

)
(13)

with subsampling frequencies i = 1, . . . ,MN and optimal weights given later in (A.1). Owing to the ag-
gregation of non-synchronous observation times before applying subsampling and the multiscale approach,
the resulting estimator has a conformable appearance as in the synchronous case (5a). Recall that in the
synchronous setting gj = γj = Tj and lj−i+1 = λj−i+1 = Tj−i holds.
Choosing MN = cmulti ·

√
N and iN = csub ·N 2/3, both estimators above provide consistent and asymp-

totically unbiased estimators with convergence rate N 1/4 and N 1/6, respectively.

4. Asymptotics and a stable central limit theorem for the generalized multiscale estimator

A comprehensive analysis of the asymptotic distribution of the estimation error necessitates an elaborate
screening of the conjunction of Algorithm 1 and the joint sampling design

(
T X,n, T Y,m

)
.

Note that the generalized multiscale estimator (12) differs from the other plausible Hayashi-Yoshida version
of a multiscale estimator

MN∑
i=1

βopti,MN

i

n∑
j=i

∑
k∈Z

(
X̃
t
(n)
j
− X̃

t
(n)
j−i

)(
Ỹ
τ
(m)
j+k·i
− Ỹ

τ
(m)
j+(k−1)·i

)
1{max (t

(n)
j−i,τ

(m)
j+(k−1)·i)<min (t

(n)
j ,τ

(m)
j+k·i)}

, (14)

which arises as natural Hayashi-Yoshida multiscale estimator when, on the basis of (non-synchronized)
observations of X̃ and Ỹ , sparse-sample Hayashi-Yoshida estimators are averaged to one-scale subsample
estimators and those extended to a linear combination using different time lags. We state without proof
that this estimator is consistent, asymptotically unbiased and will attain the optimal rate of convergence.
Nevertheless, we benefit from the data aggregation method and applying subsampling to the synchronized

9



i 1 2 3 4 5 6 7 8
case X 2© 1© 3© 3© 2© 1© 1© 1©
case Y 1© 1© 1© 1© 1© 3© 4© 1©

relations X g1 = g2 = l3 g2 = l3 g3 = l5 g4 = l6 g5 = l7 g6 = l7 g7 = l8 –
relations Y γ1 = λ2 γ2 = λ3 γ3 = λ4 γ4 = λ5 γ5 = λ6 γ6 = λ8 – –

Table 1: Allocation of sampling times to cases 1©− 4© for the example.

scheme, since the variance of our estimator (12) is smaller than the one of this alternative estimator and we
are able to find a feasible closed-form expression of the asymptotic variance.
The crucial difference between both approaches is that for the alternative method next- and previous-tick
interpolation errors take place on sparse-sampling time intervals in average of order i/N whereas the
interpolation errors of the generalized multiscale estimator (12) take place on the highest-frequency-scale
and hence on intervals in average of order 1/N . In particular the decomposition(

X
g
(N)
j
−X

l
(N)
j−iN+1

)
=
(
X
g
(N)
j
−XTj(N)︸ ︷︷ ︸

=Op(N−1/2)

+XTj(N) −X
T

(N)
j−i︸ ︷︷ ︸

=Op((i/N)(1/2))

+X
T

(N)
j−i
−X

l
(N)
j−iN+1︸ ︷︷ ︸

=Op(N−1/2)

)

of the increments of X and analogously for Y , give an heuristic that the interpolation errors driving the
error due to non-synchronicity asymptotically not affect the variance of the signal term. The stochastic
orders are given for time instants of average order N−1.
For a rigorous clarification of the asymptotic error due to noise and the cross term, both influenced by the
i. i. d. observation errors at times gi, li, γi, λi, we figure out the times gi = gi+1 and the right-end points
g
(N)
i = l

(N)
i+1 , g

(N)
i = l

(N)
i+2 that are as well preceding left-end points and analogously for the sampling times

of Ỹ .
All observation times γi, λi are characterized through one of the following four mutually exclusive cases.
Denote γj,− the last observation time of Ỹ before γj and γj,+ the first one after γj . We illustrate the
allocation of the observation times for T Y,m and γj , j = 1, . . . , N − 2:

1© γj ≤ gj ⇒ γj 6= γj+1 , γj = λj+1 , γj 6= λj+2 ,

2© γj > gj , γj ≥ gj,+ ⇒ γj = γj+1 , γj 6= λj+1 , γj = λj+2 ,

3© γj > gj , γj < gj,+ , γj,+ > gj,+ ⇒ γj 6= γj+1 , γj 6= λj+1 , γj = λj+2 ,

4© γj > gj , γj < gj,+ , γj,+ ≤ gj,+ ⇒ γj 6= γj+1 , γj 6= λj+1 , γj 6= λj+2 , γj,+ = λj+2 .

Only sampling times distributed to case 2© lead to repeated γi = γi+1. In cases 1©, 2© and 3© a subsequent
left-end point λk, k = i + 1 or k = i + 2 of observation time instants incorporated in the subsampling
estimators is designated by γi. All other λk, k = 2, . . . , N appear in an allocation of sampling times of the
type 4©, where λj+2 = γj,+ 6= γl ∀l. Recall that λi 6= λk for all i 6= k holds true.
If 2© holds for γj with fixed j ∈ {1, . . . , N − 2} and if k := arg mink∈{j,...,N−1}(γk > gk , γk ≥ gk,+)
exists, then 2© holds necessarily for one gl, l ∈ {j + 1, . . . , k − 1} or gl = γl.
In Table 1 we list the relations for the sampling design of our previous example.

Assumption 4 (asymptotic quadratic variation of time). Assume that for the sequences of sampling
schemes and the times T (N)

i of the closest synchronous approximations and for the sequence of quadratic
variations of time GN (t) defined in Definition 1, the following holds true:

(i) GN (t)→ G(t) as N →∞, where G(t) is a continuously differentiable function on [0, T ].
(ii) For any null sequence (hN ), hN = O

(
N−1

)
GN (t+ hN )−GN (t)

hN
→ G′(t) (15)

uniformly on [0, T ] as N →∞.
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(iii) The derivative G′(t) is bounded away from zero.

Definition 2 (degree of regularity of asynchronicity). For N ∈ N and times g(N)
i , γ

(N)
i , i = 0, . . . , N

constructed from aggregated sampling schemes T X,n, T Y,m that fulfill Assumption 2, define the following
sequences of functions:

INX (t) =
1
N

∑
g
(N)
j ≤t

1{g(N)
j =g

(N)
j−1}

, (16a)

INY (t) =
1
N

∑
γ
(N)
j ≤t

1{γ(N)
j =γ

(N)
j−1}

, (16b)

which describe the degree of regularity of asynchronicity between observation times T X,n and T Y,m.

In the completely asynchronous case, we can directly conclude that |INX (t) − INY (t)| ≤ T/N for all
t ∈ [0, T ] and one sequence suffices to reflect the regularity of the non-synchronous sampling schemes.

Assumption 5 (asymptotic degree of regularity of asynchronicity). Assume that for the sequences of
sampling schemes and for the sequences of functions INX , I

N
Y defined in Definition 2, the following holds

true:

(i) INX (t) → IX(t), INY (t) → IY (t) as N → ∞, where IX(t), IY (t) are continuously differentiable
functions on [0, T ].

(ii) For any null sequence (hN ), hN = O
(
N−1

)
INX (t+ hN )− INX (t)

hN
→ I ′X(t) , (17a)

INY (t+ hN )− INY (t)
hN

→ I ′Y (t) (17b)

uniformly on [0, T ] as N →∞.

For both, synchronous and intermeshed sampling which have been introduced in the last section, the
sequences of functions INX , I

N
Y are identically zero. The functions defined in Definition 2 are non-negative

and bounded above by 1. In Section 6 we explicitly deduce the asymptotic degree of regularity of asyn-
chronicity for mutually independent homogeneous Poisson sampling schemes. The term (asymptotic) de-
gree of regularity of asynchronicity has been chosen since Assumption 5 holds for all non-degenerate se-
quences where observation times conforming to one of the cases 1©− 4© from above tend to be distributed
according to some regular pattern and it gives information on the interaction of allocations of observation
times.
It is interesting and might seem surprising at first glance that the asymptotics of the estimator (12) hinges
on this asymptotic feature whereas, as indicated before, the asymptotic interpolations to the closest syn-
chronous approximation are asymptotically immaterial. This circumstance is caused by the fact that for the
construction of an estimator with Algorithm 1, as for the original Hayashi-Yoshida estimator (8), observed
values of the processes at next-tick interpolated observation times can appear twice. If there is observa-
tion noise, the number of observations allocated conforming to case 2© has an impact on the asymptotics.
The influence of interpolations is asymptotically vanishing for the combined method in contrast to the
estimator (8) with faster convergence rate

√
N since interpolation steps take place on the time-scale of

high-frequency observations, but lower-frequency sparse-sampled increments of the synchronous approxi-
mation are involved to reduce the error due to noise. We continue with the central result of this article:
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Theorem 3 (Central limit theorem for the generalized multiscale estimator). On the Assumptions 1, 2,
3, 4 and 5, the generalized multiscale estimator (12) with noise-optimal weights αopti,MN

= (12i2/M3
N ) −

(6i/M2
N ) (1 + O(1)), that are explicitly given in (A.1), and MN = cmulti ·

√
N converges F−stably in

law with optimal rate N 1/4 to a mixed Gaussian limiting distribution:

N
1/4

(
[̂X,Y ]

multi

T − [X,Y ]T

)
st
 N (0,AVARmulti)

with the asymptotic variance

AVARmulti = c−3
multi (24 + 12 (IX(T ) + IY (T ))) η2

Xη
2
Y︸ ︷︷ ︸

=AVARnoise

+c−1
multi

12η2
Xη

2
Y

5

+ cmulti
26
35
T

∫ T

0

G′(t)(σXt σ
Y
t )2(1 + ρ2

t ) dt︸ ︷︷ ︸
=AVARdis

(18)

+ c−1
multi

12
5

(
η2
Y

∫ T

0

(1 + T I ′Y (t))(σXt )2 dt + η2
X

∫ T

0

(1 + T I ′X(t))(σYt )2 dt

)
︸ ︷︷ ︸

=AVARcross

.

The weak convergence is proved to be stable with respect to the σ-algebra F associated with the ef-
ficient processes. As a side result, we also obtain a stable central limit theorem for a simpler one-scale
subsampling estimator:

Corollary 4.1 (Central limit theorem for the one-scale subsampling estimator). On the Assumptions
1, 2, 3 and 4, the one-scale subsampling estimator with subsampling frequency iN = csub ·N 2/3 converges
F-stably in law with rate N 1/6 to a mixed Gaussian limiting distribution:

N
1/6

(
[̂X,Y ]

sub

T − [X,Y ]T

)
st
 N (0,AVARsub) , (19)

with the asymptotic variance

AVARsub = c−2
sub 4η2

Xη
2
Y︸ ︷︷ ︸

=AVARnoise,sub

+ csub
2
3
T

∫ T

0

G′(t)(σXt σ
Y
t )2(1 + ρ2

t ) dt︸ ︷︷ ︸
=AVARdis,sub

. (20)

For the proof of Theorem 3, we split the total estimation error of the generalized multiscale estimator in
three asymptotically uncorrelated addends due to noise, cross terms and the signal term. For the one-scale
subsampling estimator we follow the same ansatz. The orders of the errors have been derived in [8] and we
focus on the asymptotic distribution here.
The error due to microstructure noise of the one-scale subsampling estimator has expectation zero and the
variance yields

i−2
N

N∑
j=iN

E
[(
εXgj − ε

X
lj−iN+1

)2 (
εYγj − ε

Y
λj−iN+1

)2
]

= 4Ni−2
N η2

Xη
2
Y + O

(
Ni−2

N

)
,

since observation noises of X̃ and Ỹ are independent of each other by Assumption 3 and lk 6= lr for k 6= r,
λk 6= λr for k 6= r and if gk = gk+1 ⇒ γk < γk+1 , 0 ≤ k ≤ (N1). Hence, the error due to noise is a
sum of uncorrelated centred random variables with equal variances and the standard central limit theorem
applies.
For the generalized multiscale estimator, we further decompose the error due to noise in a main part of order
N 1/2M

−3/2
N and two terms due to end-effects of orders M−

1/2
N , where all three terms are asymptotically
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uncorrelated. In Propositions A.1 and A.2 we prove central limit theorems for these terms. Asymptotic
normality holds both, conditionally and unconditionally on the paths of the efficient processes.
The error due to noise of the one-scale estimator does not depend on any further influence of the sampling
schemes except the number of constructed sets N and G′. Cross terms are, in contrast to the multiscale
case, asymptotically negligible since

E


i−1

N

N∑
j=iN

((
Xgj −Xlj−iN+1

)(
εYγj − ε

Y
λj−iN+1

)
+
(
Yγj − Yλj−iN+1

)(
εXgj − ε

X
lj−iN+1

))2


= i−2
N

N∑
j=iN

(∫ gj

lj−iN+1

(σXt )2 dt 2η2
Y +

∫ γj

λj−iN+1

(σYt )2 dt 2η2
X

)
+ O

(
i−2
N

)
= O

(
i−2
N

)
= O(1) .

For the generalized multiscale estimator instead the cross terms are of order M−
1/2

N and will have effect
upon the asymptotic distribution. In Proposition A.11 a limit theorem is stated where the weak conver-
gence also holds conditionally and unconditionally on the paths of the efficient processes. The asymptotic
variance AVARcross includes the influence of the asymptotic degree of regularity of asynchronicity.
The error due to discretization of the one-scale subsampling estimator yields:

1
i

N∑
j=i

(
Xgj −Xlj−i+1

) (
Yγj − Yλj−i+1

)
− [X,Y ]T

=
1
i

N∑
j=i

(
XTj −XTj−i

) (
YTj − YTj−i

)
− [X,Y ]T

+
1
i

N∑
j=i

[(
Xgj −XTj

) (
YTj − YTj−i

)
+
(
Xgj −XTj

) (
YTj−i − Yλj−i+1

)
+
(
XTj−i −Xlj−i+1

) (
Yγj − YTj

)
+
(
XTj−i −Xlj−i+1

) (
YTj − YTj−i

)
+
(
Yγj − YTj

) (
XTj −XTj−i

)
+
(
YTj−i − Yλj−i+1

) (
XTj −XTj−i

)]
=

1
i

N∑
j=i

( j∑
k=j−i+1

∆XTk

)( j∑
k=j−i+1

∆YTk
)
− [X,Y ]T

+
1
i

N−1∑
j=i

(Xgj −XTj

) ( j∑
k=j−i+1

∆YTk
)

+
(
Xgj −XTj

) (
YTj−i − Yλj−i+1

)
+
(
XTj−i −Xlj−i+1

) (
Yγj − YTj

)
+
(
XTj −Xlj+1

) ( j∑
k=j−i+1

∆YTk
)

+
(
Yγj − YTj

) ( j∑
k=j−i+1

∆XTk

)
+
(
YTj − Yλj+1

) ( j∑
k=j−i+1

∆XTk

)+Op
(
N−1

)
=

1
i

N∑
j=i

( j∑
k=j−i+1

∆XTk∆YTk +
∑
l 6=r

l,r∈{j−i+1,...,j}

∆XTl∆YTr
)
− [X,Y ]T

+
1
i

N−1∑
j=i

(Xgj −XTj

) ( j∑
k=j−i+1

∆YTk
)

+
(
Yγj − YTj

) ( j∑
k=j−i+1

∆XTk

)

+ ∆XTj+1

( j∑
k=j−i+1

(
YTk − Yλk+1

) )
+ ∆YTj+1

( j∑
k=j−i+1

(
XTk −Xlk+1

) )
13



+Op
(
i−1N−

1
2

)
+Op

(
N−1

)
.

We have written the overall discretization error of the one-scale estimator as the sum of a discretization
error of the closest synchronous approximation

N∑
j=1

(
∆XTj

i∧j∑
l=1

(
1− l

i

)
∆YTj−l+ ∆YTj

i∧j∑
l=1

(
1− l

i

)
∆XTj−l

)
+Op

(
iN−1

)
+Op

(
N−

1/2
)

(21)

and the asymptotically negligible error due to the lack of synchronicity. A stable central limit theorem
using the theory of [18] for the leading term of order i1/2N−1/2 that will drive the asymptotic distribution
is postponed to Proposition A.4. The error due to asynchronicity is treated in Proposition A.10.
The discretization error of the generalized multiscale estimator is of order M

1/2
N N−1/2 and that of the one-

scale estimator of order i
1/2
N N−1/2. There is a trade-off between the error due to noise and the discretization

error for both estimators. For the generalized multiscale estimator these are of orders N 1/2M
−3/2
N and

M
1/2
N N−1/2, respectively. Remaining other terms are of ordersM−

1/2
N . Thus, choosingMN = cmulti ·N 1/2,

the total estimation error is minimized and of order M−
1/2

N = N−1/4 which constitutes the optimal rate of
convergence in Theorem 3.
The weak convergence of the discretization error is proved to be stable, so it converges jointly in law with
every bounded F-measurable random variable defined on the same probability space. Since the asymptotic
normality of the cross term and the error due to noise holds both, conditionally and unconditionally given
the efficient processes, and the discretization error is independent of εX and εY we can apply a central
limit theorem for mixing triangular arrays as in [28] to the sum that is adapted with respect to Aj =
σ
(
εXtk , tk < Tj+1, ε

Y
τk
, τk < Tj+1,FTj

)
where F is the σ-algebra associated with the efficient processes.

The asymptotic variance is the sum of those of the uncorrelated addends. With the Cramér-Wold device
joint normality and asymptotic independence of the different errors can be concluded.
This is likewise for the one-scale estimator and Corollary 4.1. Choosing the subsampling frequency iN =
csub · N 2/3 balances the variance of the error due to noise which is of order Ni−2 and the discretization
variance of order iN−1.

5. Asymptotic variance estimation

The asymptotic variances (18) and (20) of the generalized multiscale estimator (12) and the one-scale
subsampling estimator (13), appearing in the stable central limit theorems in Theorem 3 and Corollary 4.1,
are random and depend on unknown quantities. In this section, we aim at estimating these asymptotic
variances consistently to make our limit theorems feasible.
It is a known result that a consistent estimator of the noise variance is given by (24) (cf. [31]). Furthermore,
the estimators for η2

X and η2
Y are asymptotically uncorrelated on Assumption 3, since the uncorrelated

noise terms dominate the correlated Brownian parts. The constant IX(T ) + IY (T ) in the noise part of (18)
can be estimated with the empirical version INX (T ) + INY (T ) that converges as N → ∞ on Assumption
5. Eventually, consistent estimators for the discretization variances and the variance due to cross terms for
the multiscale estimator are required.
We propose histogram-type estimators using bins according to timescales associated with the quadratic
variation of synchronized sampling times and associated with the degree of regularity of asynchronicity,
respectively. For this purpose, given a chosen number of bins KN , with KN → ∞ and K−1

N N → ∞
as N → ∞, we determine the assigned non-equispaced bin-widths ∆GNj = GNj − GNj−1, ∆(IX)Nj =
(IX)Nj − (IX)Nj−1 and ∆(IY )Nj = (IY )Nj − (IY )Nj−1, j ∈ {1, . . . ,KN}, where

GNj := inf
{
t ∈ [0, T ]

∣∣ GN (t) = (N/T )
∑

T
(N)
k ≤t

(
∆T (N)

k

)2 ≥ (j/KN ) ·GN (T )
}
,

j ∈ {1, . . . ,KN}, and analogously for the functions INX and INY if INX (T ) > 0 and INY (T ) > 0. Set
GN0 = (IX)N0 = (IY )N0 := 0 and recall that those functions are monotone increasing on [0, T ]. On each
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bin we calculate multiscale estimators in the same spirit as (12) and its univariate version from [30] for the
increase of the quadratic (co-) variations that are denoted ∆̂ [X]GNj , ∆̂ [Y ]GNj , ∆̂ [X,Y ]GNj , ∆̂ [X](IY )Nj

and ∆̂ [Y ](IX)Nj
in the following. The underlain idea is to approximate the continuous random processes

(σXt σ
Y
t ρt)

2, (σXt )2 and (σYt )2, or rather their time-transformed versions, by locally constant functions.
This construction leads to time-adjusted histogram estimators

Î1 =
KN∑
j=1

∆̂ [X,Y ]GNj
∆GNj

2

GN (T )
KN

for
∫ T

0

G′(t)(σXt σ
Y
t ρt)

2 dt, (22a)

Î2 =
KN∑
j=1

∆̂ [X]GNj ∆̂ [Y ]GNj(
∆GNj

)2
 GN (T )

KN
for

∫ T

0

G′(t)(σXt σ
Y
t )2 dt, (22b)

Î3 =
KN∑
j=1

∆̂ [X](IY )Nj

∆(IY )Nj

 INY (T )
KN

for
∫ T

0

I ′Y (t)(σXt )2 dt, (22c)

Î4 =
KN∑
j=1

∆̂ [Y ](IX)Nj

∆(IX)Nj

 INX (T )
KN

for
∫ T

0

I ′X(t)(σYt )2 dt. (22d)

Proposition 5.1. The asymptotic variances (18) and (20) of the generalized multiscale estimator (12) and
the one-scale subsampling estimator (13) with MN = cmultiN

1/2 and iN = csubN
2/3, can be estimated

consistently by

ÂVARmulti =
(
c−3
multi

(
24 + 12

(
INX (T ) + INY (T )

))
+

12
5
c−1
multi

)
η̂2
X η̂

2
Y

+ cmulti
26
35
T
(
Î1 + Î2

)
+ c−1

multi

12
5

(
η̂2
Y (1 + T Î3) + η̂2

X(1 + T Î4)
)
, (23a)

ÂVARsub = c−2
sub4η̂

2
X η̂

2
Y + csub

2
3

(
Î1 + Î2

)
, (23b)

where Î1-Î4 are the estimators (22a)-(22d) and

η̂2
X = (2n)−1

n∑
i=1

(∆Xti)
2 , η̂2

Y = (2m)−1
m∑
j=1

(∆Yτj )
2 . (24)

Remark 1. Convergence rates of the estimators (23a) and (23b) for the asymptotic variances depend on the
smoothness of σX , σY and ρ. For current stochastic volatility models as the Heston model, they are N 1/5-
consistent when choosing KN = cKN

1/5 for a constant cK and MN ∼ N 3/5 for the binwise multiscale
estimators.
In the absence of noise, a consistent estimator for the asymptotic variance 2T

∫ T
0
G′X(t)(σXt )4dt of the

realized volatility has been proposed in [6] as (2n/3)
∑n
i=1(∆Xti)

4. In the bivariate synchronous setting
(n/2)

∑n−1
i=1 (∆Xti)

2
(
(∆Yti)

2 + (∆Yti+1)2
)

is a convenient estimator. Consistency can be proved with
Itô’s formula and partial integration and comprehended by the analogy to a bivariate Gaussian distribution
(X,Y ) ∼ N(0,Σ) with a covariance matrix Σ with entries σ2

X , σ
2
Y , ρσXσY . Then, EX4 = 3σ4

X and
E
[
X2Y 2

]
= 2ρ2σ2

Xσ
2
Y + σ2

Xσ
2
Y hold true.

In the noisy case smoothed versions of the estimators (using multiscale or alternative methods) are adequate
(cf. [9]). However, in the non-synchronous non-noisy setting, there is no direct extension available and for
that reason we have made the effort to construct the consistent histogram-based estimators (22a)-(22d)
above.
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6. Discussion and application

6.1. A case study

We have learned by now that in a synchronous setting the special version of the central limit Theorem
3 from Proposition 3.1 holds true. Since asymptotics of the estimator (12) not hinge on interpolations in
the signal term the same central limit theorem applies in the case of intermeshed sampling introduced in
Section 3. Now we focus on observation schemes that arise as realizations of two homogeneous Poisson
processes that are mutually independent and independent of the processes X̃ and Ỹ . Although this model
can be criticized for its flaw that sampling schemes of two correlated processes follow two independent pro-
cesses and time homogeneity, what might seem to be unrealistic in financial applications, independent and
homogeneous Poisson sampling constitutes the most commonly used model in this research area (cf. [30],
[15] among others) and appertains to show that the general form of (18) is tractable.
Let ñ(n)(t) and m̃(n)(t) be sequences of two independent homogeneous Poisson processes with parameters
Tn/θ1 and Tn/θ2 (n ∈ N), such that the waiting times between jumps of ñ(n) and m̃(n) are exponentially
distributed with expectations E

[
∆t(n)

i

]
= θ1/n and E

[
∆τ (n)

j

]
= θ2/n , i ∈ N, j ∈ N. In this case

∆T (n)
k ∼ F (t) = 1− exp

(
− tn
θ1

)
− exp

(
− tn
θ2

)
+ exp

(
−tn

(
1
θ1

+
1
θ2

))
, k ∈ N ,

INX (t)
p−→ θ1θ2t

(θ1 + θ2)2
, INY (t)

p−→ θ1θ2t

(θ1 + θ2)2

(
=

z t

(z + 1)2
if θ1 = zθ2

)
, (25)

hold true and we derive the following Poisson sampling version of Theorem 3:

Corollary 6.1. On the Assumptions 1 and 3, the generalized multiscale estimator (12) with noise-optimal
weights (A.1), and MN = cmulti ·

√
N , converges conditionally on the independent Poisson sampling

scheme with 0 < θ1 <∞ and 0 < θ2 <∞ stably in law with rate N 1/4 to a mixed normal limit:

N
1/4

(
[̂X,Y ]

multi

T − [X,Y ]T

)
st
 N

(
0,AVARpoiss

multi

)
with the asymptotic variance

AVARpoiss
multi = c−3

multi

(
24 + 12

2θ1θ2
(θ1 + θ2)2

)
η2
Xη

2
Y + c−1

multi

12η2
Xη

2
Y

5

+ cmulti
26
35

∫ T

0

2
(

1− 2θ21θ
2
2

θ21θ
2
2 + (θ21 + θ22)(θ1 + θ2)2

)
(σXt σ

Y
t )2(1 + ρ2

t ) dt (26)

+ c−1
multi

12
5

(
η2
Y

∫ T

0

(1 +
θ1θ2
θ1 + θ2

)(σXt )2 dt + η2
X

∫ T

0

(1 +
θ1θ2
θ1 + θ2

)(σYt )2 dt

)
.

The asymptotic variance of the N 1/6-consistent one-scale estimator becomes

AVARpoiss
sub = c−2

sub 4η2
Xη

2
Y

+ csub
2
3

∫ T

0

2
(

1− 2θ21θ
2
2

θ21θ
2
2 + (θ21 + θ22)(θ1 + θ2)2

)
(σXt σ

Y
t )2(1 + ρ2

t ) dt . (27)

The order for the supremum of time instants in Assumption 2 holds in probability and the proof in
Appendix A stays valid. A Poisson sampling version of Theorem 2 is given in [7], where the stochastic
limit of GN is deduced using the distribution of a maximum of two exponentials stated above.
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6.2. A bridge between the noisy and the non-noisy setup

So far we considered noise variances not dependent on N , but from an applied point of view there
is interest in the case where the noise level may vary with N ∼ n ∼ m. The primary motivation to
accommodate dependence of the noise on the sample size in the model originates from the economic
background. Empirical studies of (ultra) high-frequency financial data suggest to rather model the observed
log-prices as sum of a latent semimartingale and noise for that the variance decreases in N as reported in
[20] and [3], among others.
If an estimation approach uses previous-tick interpolations, as the one proposed in [5], these methods are
not accurate for that setting any more. This also becomes apparent in the simulation study in [8] when the
performance of the estimators is compared for varying noise levels. The generalized multiscale estimator
is not biased due to asynchronicity and passes over to the Hayashi-Yoshida estimator (8) for MN = 1, a√
N -consistent estimator in the complete absence of noise. For that reason, our estimation method achieves

an improved convergence rate in the model with decreasing noise variances. The next Corollary is obtained
by a direct extension of the proof of Theorem 3 in Appendix A when replacing the moments of the noise
processes. A similar extension for the one-scale estimator where we obtain the rateN

1
6+α

3 for a subsample
frequency iN = csubN

2
3 (1−α) holds analogously.

Corollary 6.2. Consider the model imposed by Assumption 1, 2 and 3, but with noise variances η2
X(N) =

ζXN
−α , η2

Y (N) = ζYN
−α , 0 < α < 1 and constants 0 < ζX < ∞ , 0 < ζY < ∞. The generalized

multiscale estimator (12) with MN = cmultiN
1
2−

α
2 and optimal weights (A.1) converges stably in law to

a mixed Gaussian limit:

N
1
4+α

4

(
[̂X,Y ]

multi

T − [X,Y ]T

)
st
 N (0,AVAR∗multi) (28)

with the asymptotic variance

AVAR∗multi = c−3
multi

(
24 + 12

IX(T ) + IY (T )
T

)
ζXζY + c−1

multi

12ζXζY
5

+ cmulti
26
35
T

∫ T

0

G′(t)(σXt σ
Y
t )2(1 + ρ2

t ) dt

+ c−1
multi

12
5

(
ζY

∫ T

0

(1 + I ′Y (t))(σXt )2 dt + ζX

∫ T

0

(1 + I ′X(t))(σYt )2 dt

)
.

Incorporating a pure previous-tick interpolation strategy as in [5], one cannot gain an improved conver-
gence rate in that setting due to the bias by non-synchronicity effects.

6.3. Application

6.3.1. Note on modeling assumptions
For an application to financial time series data the conditions imposed by Assumptions 1-3 seem to be

restrictive and the model will not describe stylized facts of the data in an adequate way. In particular relax-
ing the i. i. d. assumption on the noise is important. On the other hand, the underlying model in the sections
before is convenient to establish an asymptotic distribution theory and ascertains a closed-form expression
for the asymptotic variance. Yet, the generalization for serially dependent observation errors as carried out
in [2] for the one-dimensional case is possible for the generalized multiscale estimator (12) as well. On
the assumption of stationary strong mixing noise processes the multiscale estimator remains consistent and
rate-optimal without any further adjustment. The analysis for the synchronous case can be adopted from
[2], but for the general non-synchronous noisy setting a closed-form expression of the asymptotic variance
and a corresponding limit theorem is not available. Furthermore, the condition that noise processes are mu-
tually independent can be relaxed if one wants to allow some correlation E

[
εXti ε

Y
τj

]
= ηi,jX,Y for ti and τj

located near each other. In any case the generalized multiscale estimator remains asymptotically unbiased
and N 1/4-consistent. This does not necessarily hold true for the one-scale estimator that would have to be
bias-corrected as the TSRV estimator by [31] in the one-dimensional case.
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More general efficient processes including jumps can be covered in the model when we combine the method
to a two-stage approach as presented by [11] for the one-dimensional estimation approach. Considering
semimartingales

Xt =
∫ t

0

µXs ds+
∫ t

0

σXs dB
X
s +

JXt∑
l=1

LXl , Yt =
∫ t

0

µYs ds+
∫ t

0

σYs dB
Y
s +

JYt∑
l=1

LYl ,

with locally bounded drifts, continuous volatilities and counting processes JXt , J
Y
t counting the jumps

of X and Y with jump sizes LXl , l = 1, . . . , JXt and LYl , l = 1, . . . , JYt , respectively, the generalized
multiscale estimator converges in probability to the total quadratic covariation∫ T

0

ρtσ
X
t σ

Y
t +

∑
0≤s≤t

∆Xs∆Ys

where ∆Xs = Xs − Xs,−,∆Ys = Ys − Ys,−, and the second addend is the sum of the simultaneous
co-jumps. When one is interested in disentangling the continuous part from the jumps, one convincing
possibility following [11] is to use wavelet methods that locate the jumps in the sample paths, estimate
jump sizes and afterwards use our estimation approach for the validated observations.
In conclusion the generalized multiscale estimator (12) is capable for usage in various applications. In
[8], we have approved that the estimator performs well and has satisfying finite sample size features in
simulations including serially dependent noise and typical stochastic volatility models.

6.3.2. Choice of tuning parameters
An implementation of the estimation approach requires first a rule to choose tuning parameters. We

provide an accurate algorithm to implement the estimators and to obtain estimates for their asymptotic
variances.
One plausible selection of the constants cmulti =

√
N/MN and csub = N 2/3/iN can be derived as solu-

tions of the minimization problems of the asymptotic variances. This leads to formula (29) in Algorithm 2.
The tactic of Algorithm 2 is the following: Evaluate a pilot estimate ĉ(p)multi for cmulti as solution of formula
(29) inserting a sparse-sampled estimator for the signal term. Then set up the estimation of the asymptotic
variances involving the estimators (22a)-(22d). Take M b

N = cbmulti
√
NKN fixed for the multiscale esti-

mators on all bins and set M b
N = cbmulti

√
NcKN

1/5 where cK = K−1
N N 1/5. This selection is optimal

for common volatility models. We obtain cbmultic
−1/2
K = ĉ

(p)
multi and from the orders of the different errors

of the histogram estimators cbmulti = c
5/2
K . Hence, cbmulti =

(
c
(p)
multi

)5/4

and cK =
√
c
(p)
multi is derived.

Using estimators (22a)-(22d), we calculate estimates for the addends of the asymptotic variance and ĉmulti
according to formula (29) again and MN = dĉmulti

√
N e is used for the final estimator. It turns out that

this strategy it quite robust to the a priori chosen sparse-sample frequency that can be chosen under the
impression of usual diagnostic tools as signature plots and acfs.

6.3.3. Simulation and data analysis check
As completion to the detailed simulation study in the supplementary material to [8] we investigate the

performance of Algorithm 2 and the histogram-estimators (22a)-(22d) here. For this purpose we simulate
from an simple Brownian motion model with zero drifts and constant volatilities σX = σY = 1 and ρ =
1/2 with equal noise variances η2. Sampling schemes are generated by independent time-homogeneous
Poisson sampling with 30.000 expected observation for both processes on [0, 1]. Results of the estimates
are listed in Table 2. In addition, our approach is tested in an application to EUREX future tick-data
taken from a database provided by the Research Data Center (RDC) of the CRC 649 ‘Economic Risk’ in
Berlin. We aim at estimating integrated covolatilities between the four financial securities with the highest
tick-frequencies in the database. These are the Euro-Bund Future (FGBL), that is based on a notional
long-duration debt instrument issued by the Federal Republic of Germany, the Euro-Bobl Future (FGBM),
a likewise medium-duration contract, and futures on the EURO STOXX 50 (FESX) and the German DAX
(FDAX).
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• Choose a priori L and calculate pilot estimator ÂVAR
p

multi with

ÂVAR
p

dis=
N

2

bN/Lc∑
k=1

((
X̃gkL − X̃l(k−1)L+1

)2

+
(
X̃gkL+2 − X̃l(k−1)L+3

)2
)(
ỸγkL − Ỹλ(k−1)L+1

)2

and [̂X]
p

T =
∑
j=kL,k≥1

(
X̃tj − X̃tj−L

)2

and [̂Y ]
p

T analogously and IX(t) ≡ INX (T ) and IY (t) ≡

INY (T ). Calculate η̂2
X and η̂2

Y according to (24).

• Use pilot estimates to estimate optimal constant(s)

ĉ
(p)
multi =

−ÂVAR
p

cross,n +

√(
ÂVAR

p

cross,n

)2

+ 12ÂVAR
p

disÂVAR
p

n

6ÂVAR
p

n


−1/2

(29)

and ĉ(p)sub = 3
√

2ÂVAR
p

n,sub/ÂVAR
p

dis,sub.

• Calculate Î1 − Î4, given in (22a)-(22d), with

KN =
√
ĉ
(p)
multiN

1/5 bins and MN (j) =
(
ĉ
(p)
multi

)5/4

N
3/5 ∀ j .

• Estimate asymptotic variance with Î1− Î4 and η̂2
X , η̂

2
Y and determine ĉmulti and ĉsub with the above

given formulae.

• Calculate the generalized multiscale estimator (12) with optimal weights (A.1) (and the one-scale
subsample estimator) with MN = ĉmulti

√
N (and iN = ĉsubN

2/3)

Algorithm 2: Algorithm for the estimation procedure.

We apply the procedure with Algorithm 1 and Algorithm 2 to a suitable filtered dataset and give the results
for two days in Table 3 with associated estimated optimal multiscale frequencies. The estimates for the
quadratic covariations are given ± estimated standard deviation from the estimated asymptotic variances
and the pertaining N for each pair. Although there are characteristics of the dataset not in accordance with
the model assumptions, above all price discreteness and the fact that most returns are zero, the estimation
approach passes this intuition check. Since the ESX and the DAX share 13 companies constituting c. 28.5%
weighting in the ESX and c. 72.4% in the DAX there is a big systematic positive correlation between both
and we presume that there is as well a high correlation between the two debt instruments which is both
revealed by the estimates. On 09/11/2001, there has been a tremendous impact so that FGBL/FGBM
have increased and the FESX/FDAX decreased. For that day we have significantly negative integrated
covolatilities between debt instruments and stock indices which is not the case for the ordinary trading day
in comparison. As answer to the great amount of zero returns the only adjustment of the method that we
undertake is to estimate noise variances in (24) by dividing the realized volatility by twice the number of
non-zero returns instead of all returns.
To sum up, the estimation approach based on Algorithm 1, a multiscale extension of subsampling and
Algorithm 2 provides a convincing method to obtain integrated covolatility estimates for very general
high-frequency data.
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Table 2: Estimators (22a)-(22d), estimators for the asymptotic variances of the multiscale (18) and the one-scale estimator (20),
calculated asymptotic variances and estimates for the quadratic covariation. The estimates are given± empirical standard deviations.

noise var. η2 0.0001 (0.001/
√

10) 0.001 (0.01/
√

10) 0.01
Î1 0.392± 0.038 0.390± 0.047 0.394± 0.073 0.413± 0.144 0.423± 0.128
Î2 1.557± 0.067 1.552± 0.085 1.538± 0.141 1.529± 0.276 1.462± 0.230
Î3 0.250± 0.007 0.249± 0.010 0.249± 0.016 0.247± 0.031 0.234± 0.085
Î4 0.250± 0.007 0.249± 0.009 0.249± 0.016 0.247± 0.030 0.233± 0.083
ÂVARmulti 0.090± 0.003 0.143± 0.005 0.246± 0.015 0.434± 0.050 0.778± 0.082
AVARmulti 0.0663 0.1185 0.2159 0.3774 0.6737
ÂVARsub 0.0086± 0.0002 0.017± 0.001 0.037± 0.002 0.080± 0.009 0.157± 0.017
AVARsub 0.0077 0.0166 0.0357 0.0768 0.1656

[̂X,Y ]
multi

T 0.501± 0.024 0.499± 0.029 0.498± 0.038 0.499± 0.049 0.501± 0.065

[̂X,Y ]
sub

T 0.500± 0.022 0.499± 0.028 0.499± 0.042 0.500± 0.058 0.503± 0.074

[̂X,Y ]
multi

T (MSFR) FGBL FGBM FESX FDAX
FGBL 5.46± .87 (7) 3.32± .74 (7) 0.98± .99 (9) 0.52± .74 (6)
FGBM 2.42± .47 (6) 0.78± .69 (7) 0.64± .51 (4)
FESX 68.26± 7.1 (10) 29.39± 2.4 (7)
FDAX 61.43± 3.5 (5)

[̂X,Y ]
multi

T (MSFR) FGBL FGBM FESX FDAX
FGBL 27.89± 4.1 (15) 12.94± 1.7 (12) −52.55± 18 (8) −34.13± 11 (7)
FGBM 18.10± 2.5 (8) −26.44± 14 (6) −25.01± 28 (3)
FESX 3070± 172 (6) 757± 15 (4)
FDAX 1870± 94 (4)

Table 3: Estimates for integrated covolatilities, standard deviations (· 106) and used multiscale frequencies for 10/01/2008 (top) and
09/11/2001 (bottom).

Appendix A. Proof of Theorem 3

Appendix A.1. Error due to noise and choosing the weights
The error due to microstructure noise of the generalized multiscale estimator is given by

MN∑
i=1

αi,MN

i

N∑
j=i

(
εXgj − ε

X
lj−i+1

)(
εYγj − ε

Y
λj−i+1

)
=

MN∑
i=1

αi,MN

i

( N∑
j=1

(
εXgj ε

Y
γj + εXlj ε

Y
λj

)

−
N∑
j=i

(
εXgj ε

Y
λj−i+1

+ εYγj ε
X
lj−i+1

)
−

i−1∑
j=1

εXgj ε
Y
γj −

N∑
j=N−i+1

εXlj ε
Y
λj

)
.

Additionally to the standardization condition

MN∑
i=1

αi,MN
= 1 , (C1)

that is necessary for asymptotic unbiasedness and consistency, we now impose the auxiliary condition

MN∑
i=1

αi,MN

i
= 0 , (C2)
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on the weights which assures that the leading term of the noise error equals zero. Hence, there remain three
uncorrelated addends in the error induced by microstructure noise.

Proposition A.1. Let Assumptions 2 and 5 on the observation times and Assumption 3 on the observation
errors hold true. The asymptotic variance of the term

−
MN∑
i=1

αi,MN

i

N∑
j=i

(
εXgj ε

Y
λj−i+1

+ εYγj ε
X
lj−i+1

)
is minimized by the weights

αopti,MN
=
(

12i2

(M3
N −MN )

− 6i
(M2

N − 1)
− 6i

(M3
N −MN )

)
=

12i2

M3
N

− 6i
M2
N

(1 + O(1)) (A.1)

as MN , N → ∞ and MN/N → 0 with N = O
(
M4
N

)
. The following asymptotic normality result holds

true: √
M3
N

N

MN∑
i=1

αopti,MN

i

N∑
j=i

(
εXgj ε

Y
λj−i+1

− εYγj ε
X
lj−i+1

) N (0 , AVARnoise) , (A.2)

with the asymptotic variance

AVARnoise = (24 + 12(IX(T ) + IY (T )))η2
Xη

2
Y (A.3)

with the functions IX and IY defined in Assumption 5. The weak convergence also holds true conditionally
given the paths of the efficient processes.

Proof. The term is centred and we illustrate it in the way

−
MN∑
i=1

αi,MN

i

N∑
j=i

(
εXgj ε

Y
λj−i+1

+ εYγj ε
X
lj−i+1

)
= −

N∑
j=1

MN∧j∑
i=1

αi,MN

i

(
εXgj ε

Y
λj−i+1

(1{gj=gj+1} + 1{gj 6=gj+1}) + εYγj ε
X
lj−i+1

(1{γj=γj+1} + 1{γj 6=γj+1})
)
.

For fixed i the addends of the inner sum are uncorrelated because li 6= lj and λi 6= λj for all i 6= j.
Consecutive right-end points gi, γi can be the same observation times instead, so that the inner sums are
2-dependent random variables. Thus, the variance is given by

Var

 N∑
j=1

αi,MN

i

MN∧j∑
i=1

(
εXgj ε

Y
λj−i+1

− εYγj ε
X
lj−i+1

)
=

N∑
j=1

MN∧j∑
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(αi,MN

i

)2

2η2
Xη

2
Y +

N∑
j=1

(MN−1)∧(j−1)∑
i=1

αi,MN
αi+1,MN

i(i+ 1)
η2
Xη

2
Y (1− 1{gj 6=gj+1 , γj 6=γj+1}) .

The weights that minimize the first addend of the above variance and also the total variance asymptotically
have been determined in [8]. Those weights are in line with the standard weights from [30] in the univariate
setting and correspond to a cubic kernel for the kernel estimator by [5].
Inserting the noise-optimal weights (A.1), we can apply a central limit theorem for strong mixing triangular
arrays from [28] to √

M3
N

N

N∑
j=1

αopti,MN

i

MN∧j∑
i=1

(
εXgj ε

Y
λj−i+1

+ εXlj−i+1
εYγj

)
.
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The sequence of variances with the chosen weights according to (A.1)

Var

√M3
N

N

N∑
j=1

αopti,MN

i

MN∧j∑
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(
εXgj ε

Y
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N∑
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αopti,MN
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)2

η2
Xη

2
Y (3− 1{gj¬j+1 , γj 6=γj+1}) + O(1)

−→ 36η2
Xη

2
Y − 12(1− (IX(T ) + IY (T )))η2

Xη
2
Y

converges to AVARnoise on the Assumption 5.
Since the inner sums are 2-dependent and hence in particular φ-mixing, the Lyapunov condition that holds
obviously suffices to apply the central limit theorem of [28]. This completes the proof of the proposition.

Next, we consider the remaining addends of the error induced by microstructure frictions and insert the
weights (A.1):

Proposition A.2. On the Assumptions 2, 5 and 3, the following weak convergence to a centred normal
distribution holds true:

√
MN

MN∑
i=1

αopti,MN

i

i−1∑
j=1

εXgj ε
Y
γj +

N∑
j=N−i+1

εXlj ε
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 N
(

0,
12
5
η2
Xη

2
Y

)
. (A.4)

This convergence also holds conditionally on the paths of the efficient processes.

Proof.
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Both addends are uncorrelated and treated analogously. We restrict ourselves to the proof for the first term.√
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/i is the endpoint of a discrete centred martingale with respect to

the filtration ANj := σ
(
εXtk |tk ≤ gj , Xtk |0 ≤ k ≤ n

)
∨ σ

(
εYτk |τk ≤ γj , Yτk |0 ≤ k ≤ m

)
. Namely, since

gj = gj−1 ⇒ γj > γj−1 and γj = γj−1 ⇒ gj > gj−1 analogously:

E

[√
MN ε

X
gl
εYγl

MN∑
i=l+1

αopti,MN

i

∣∣∣ANl−1

]
=
√
MN

(
1{gl=gl−1}E

[
εYγl
]
εXgl−1

+1{γl=γl−1}E
[
εXgl
]
εYγl−1

+1{gl 6=gl−1 , γl 6=γl−1}E
[
εXgl
]
E
[
εYγl
])

=0 .

A central limit theorem for martingale triangular arrays from [14] is applied, in particular the non-stable
version of Corollary 3. 1 (cf. the following remark in [14] and references cited therein). The conditional
Lindeberg condition can be verified by the stronger conditional Lyapunov condition. The proof of it is
obtained by a similar calculation as the following one and we omit it. The conditional variance equals

MN

MN−1∑
j=1

Var

εXgj εYγj MN∑
i=j+1

αopti,MN

i

∣∣∣AN,j−1

 = MN

MN−1∑
j=1

 MN∑
i=j+1

αopti,MN

i

2

×
(
η2
Xη

2
Y 1{gj 6=gj−1 , γj 6=γj−1} +

(
εXgj

)2

1{gj=gj−1}η
2
Y +

(
εYγj

)2

1{γj=γj−1}η
2
X

)
p−→ 6

5
η2
Xη

2
Y .

We have used the formula
∑MN−1
j=1

(∑
i=j+1MN (αopti,MN

/i)
)2

= (6/5)M−1
N + O(M−1

N ).
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A.2. Discretization errors of the estimators
Proposition A.3. On the Assumptions 1, 2 and 4, the discretization error of the one-scale subsampling
estimator with subsampling frequency iN converges stably in law to a centred mixed normal limit as iN →
∞, N →∞, iN/Nα → 0 for every α > 2/3:√

N

iN

 N∑
j=i

(
Xgj −Xlj−i+1

) (
Yγj − Yλj−i+1

)
− [X,Y ]T

 st
 N (0,AVARdis,sub) ,

with asymptotic variance

AVARdis,sub =
2
3
T

∫ T

0

G′(t)(σXt σ
Y
t )2(1 + ρ2

t ) dt . (A.5)

Proposition A.4. On the Assumptions 1,2 and 4, the discretization error of the generalized multiscale
estimator with the noise-optimal weights given in (A.1) converges with rate

√
N/MN stably in law to a

centred mixed Gaussian limit as MN →∞, N →∞,MN/N
α → 0 for every α > 2/3:√

N

MN

MN∑
i=1

αopti,MN

i

N∑
j=i

(
Xgj −Xlj−i+1

) (
Yγj − Yλj−i+1

)
− [X,Y ]T

 st
 N (0,AVARdis,multi) ,

with asymptotic variance

AVARdis,multi =
26
35
T

∫ T

0

G′(t)(σXt σ
Y
t )2(1 + ρ2

t ) dt . (A.6)

A.2.1. Time-change in the asymptotic quadratic variation of time
Proposition A.5. In the proof of a central limit theorem for the discretization error of the closest syn-
chronous approximation T (N)

k , k = 0, . . . , N , of our generalized multiscale estimator (12) on the As-
sumptions 2 and 5, we can additionally, without loss of further generality, assume that

N∑
k=1

(
∆T (N)

k − T

N

)2

= O
(
N−1

)
. (A.7)

Remark 2. From Assumptions 1 and 2, we can deduce directly that the sum above is at most of order
N−1. The stronger assertion, that the closest synchronous approximation defined by the times T (N)

k , k =
0, . . . , N introduced in paragraph 3.2 is close to equidistant sampling in the sense that the sum above is of
smaller asymptotic order than N−1, is derived by the concept of a time-change in the asymptotic quadratic
variation of time from Assumption 4. For the proof of (A.7) we refer to Lemma 1 from [30] where this
concept has been presented for the univariate multiscale approach and it directly carries over to the syn-
chronous multivariate case.
On the Assumption 4, a transformation g can be defined that maps the refresh times T (N)

k to values g(T (N)
k ),

so that (A.7) holds true for the transformed synchronous observation scheme. Thanks to the fact that the
corresponding time-changed processes Lg(t) and Mg(t) fulfill Assumption 1 again and the transformed ob-
servation scheme Assumption 2, we are able to prove a central limit theorem for the time-changed version
of the discretization error if (A.7) did not hold.
Since the resulting asymptotic variance will be invariant under the transformation g, the central limit the-
orem will analogously hold true for the original sampling scheme. Hence, no further restriction has to be
made when assuming (A.7).

A.2.2. Discretization error of the closest synchronous approximation
Note that it suffices to prove the foregoing limit theorems for the zero-drift case. Since our limit

theorems are stable, asymptotic mixed normality is assured to hold for the general setting on Assumption
1. Denote Lt =

∫ t
0
σXs dW

X
s and Mt =

∫ t
0
σYs dW

Y
s the continuous martingales that represent the efficient
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processes under the equivalent martingale measure after a Girsanov transformation. The Novikov condition
has been imposed in Assumption 1 to allow for this transformation.
The asymptotic mixed normality result is implied as marginal distribution at t = T of a limiting time-
changed Brownian motion which is proven to be the stable weak limit of the process corresponding to the
discretization error (21) with the theory of [18].
We begin with the discretization error of the closest synchronous approximation of a one-scale subsampling
estimator.

Proposition A.6. On the same assumptions as in Proposition A.3, the continuous martingale

DN
t :=

√
N

iNT

∑
Tk≤t

(
∆LTk +

∫ t

Tk

σXs dW
X
s

)( i∧k∑
l=1

(
1− l

i

)
∆MTk−l

)

+
∑
Tk≤t

(
∆MTk +

∫ t

Tk

σYs dW
Y
s

)( i∧k∑
l=1

(
1− l

i

)
∆LTk−l

)
for t ∈ [0, T ], where ∆ · Tk = · Tk − · Tk−1 is the backward difference operator, converges stably in law
as N →∞, iN →∞, iN/N → 0 to a limiting time-changed Brownian motion

DN
t

st
 
∫ t

0

√
vDs

dW⊥s ,

where W⊥ is independent of F and

vDs =
2
3
G′(s)(σXs σ

Y
s )2(1 + ρ2

s) .

Proof of Proposition A.6:
The subscript of the subsampling frequency is omitted in the following proof and C denotes a generic
constant and δN = supi∈{1,...,N} (Ti − Ti−1).
We apply a simplified martingale version of the stable central limit theorem 2–1 from [18]. For other
applications and expositions of the theory from [18] we refer to [24], [12] and [7]. The above limit theorem
is implied by the following three conditions:

[D]t
p−→
∫ t

0

vDs
ds , (A.8a)

[D, L]t
p−→ 0 , [D,M ]t

p−→ 0, (A.8b)

[
D, L⊥

]
t

p−→ 0 ,
[
D,M⊥

]
t

p−→ 0, (A.8c)

for all t ∈ [0, T ] and for all M⊥ ∈ M⊥ and L⊥ ∈ L⊥ that denote the set of (F)t-adapted bounded
martingales orthogonal to M and L in the sense that

[
L,L⊥

]
= 0, respectively.

Calculating the quadratic variation of DN
t yields

[
DN

]
t

=
N

iT

∑
Tk≤t

∆ [L]Tk

(
i∧k∑
l=1

(
1− l

i

)
∆MTk−l

)2

+ ∆ [M ]Tk

(
i∧k∑
l=1

(
1− l

i

)
∆LTk−l

)2


+ 2
∑
Tk≤t

∆ [L,M ]Tk

(
i∧k∑
l=1

(
1− l

i

)
∆LTk−l

)(
i∧k∑
l=1

(
1− l

i

)
∆MTk−l

)+ Op(1)
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=
N

iT

∑
Tk≤t

∆ [L]Tk

i∧k∑
l=1

(
1− l

i

)2 (
∆MTk−l

)2 +
∑
Tk≤t

∆ [M ]Tk

×
i∧k∑
l=1

(
1− l

i

)2 (
∆LTk−l

)2 + 2
∑
Tk≤t

∆ [L,M ]Tk

i∧k∑
l=1

(
1− l

i

)2 (
∆LTk−l

)2+ Op(1)

=
N

iT

∑
Tk≤t

∫ Tk

Tk−1

(σXs )2ds

(
i∧k∑
l=1

(
1− l

i

)2 ∫ Tk−l

Tk−l−1

(σYs )2ds

)

+
∑
Tk≤t

∫ Tk

Tk−1

(σYs )2ds

(
i∧k∑
l=1

(
1− l

i

)2 ∫ Tk−l

Tk−l−1

(σXs )2ds

)

+ 2
∑
Tk≤t

∫ Tk

Tk−1

ρsσ
X
s σ

Y
s ds

(
i∧k∑
l=1

(
1− l

i

)2 ∫ Tk−l

Tk−l−1

ρsσ
X
s σ

Y
s ds

)+ Op(1)

=
Lemma A.7

N

iT

∑
Tk≤t

2(1 + ρ2
Tk−1

)(σXTk−1
σYTk−1

)2 (∆Tk)2
i∧k∑
l=1

(
1− l

i

)2

+ Op(1)

=
∑
Tk≤t

2
3
GN (Tk)−GN (Tk−1)

Tk − Tk−1

(
ρ2
Tk−1

+ 1
)(

σXTk−1
σYTk−1

)2

∆Tk + Op(1)

p−→ 2
3

∫ t

0

(1 + ρ2
s)(σ

X
s σ

Y
s )2G′(s) ds .

In the first step cross terms of the inner sums have been neglected since they are centred and by Itô isometry
it can be shown that their second moments are bounded from above by Ci3δ3N . We frequently use estimates
δl−1
N for sums of the type

∑N
i (∆Ti)l , l > 1, by Hölder’s inequality with the supremum norm to obtain

upper bounds.
Subsequently, squared increments of L and M and the increments of the product L · M in these inner
sums are substituted by the increments of the quadratic (co-)variation processes. The induced error terms
are centred by Itô isometry and involving the Cauchy-Schwarz inequality it follows that CδN is an upper
bound for their second moments.
The crucial non-standard approximation is that on each block (Tk−1, . . . , Tk−i∨0) the increments of the
form

∫ Tk−l
Tk−l−1

f(t)dt with continuous functions f for l = 1, . . . , k ∧ i are approximated by ∆Tkf (Tk−1).
This blockwise approximation is treated in Lemma A.7 and makes use of the concept of a time-changed
quadratic variation of times and particularly (A.7). Finally, 1/i

∑i
l=1(1 − (l/i))2 = 1/3 + O(1) and the

convergence in probability is ensured by Assumption 4 and the convergence of the Riemann sums to the
integral.

Lemma A.7. On the same assumptions as in Proposition A.3, it holds true that the term

N

iT

∑
Tk≤t

(∫ Tk

Tk−1

(σXs )2ds

(
i∧k∑
l=1

(
1− l

i

)2 ∫ Tk−l

Tk−l−1

(σYs )2ds

)
− (σXTk−1

σYTk−1
∆Tk)2

i∧k∑
l=1

(
1− l

i

)2
)
,

and the analogous blockwise approximations of ∆[M ]Tk and ∆[M ]Tk by constant left-end points converge
to zero in probability.

Proof. The approximation uses the concept of a time-change in the asymptotic quadratic variation of re-
fresh times introduced in [30] which is expounded in Proposition A.5. By virtue of that concept we may
suppose without loss of generality that the sampling design of the closest synchronous approximation sat-
isfies (A.7).
The asymptotic orders of the three terms are deduced analogously and we restrict us to the proof of the
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above given first term. An application of the mean value theorem yields

N

iT

∑
Tk≤t

∫ Tk

Tk−1

(σXs )2ds

(
i∧k∑
l=1

(
1− l

i

)2 ∫ Tk−l

Tk−l−1

(σYs )2ds

)

=
N

iT

∑
Tk≤t

(σXζk)2∆Tk

(
i∧k∑
l=1

(
1− l

i

)2

(σYζ∗k−l)
2∆Tk−l

)

with ζk ∈ [Tk−1, Tk], ζ∗q ∈ [Tq−1, Tq]. Since the volatility processes σX , σY are uniformly continuous on
[0, T ] by Assumption 1

i∧k∑
l=1

(
1− l

i

)2 ∣∣∣(σYζ∗k−l)2 − (σYTk−1
)2
∣∣∣∆Tk−l ≤ iδN sup

|t−s|≤iδN

∣∣(σYt )2 − (σYs )2
∣∣ = Oa. s.(iδN ) ,

∑
Tk≤t

∣∣∣(σXζk)2−(σXTk−1
)2
∣∣∣ (σYTk−1

)2∆Tk
i∧k∑
l=1

(
1− l

i

)2

∆Tk−l ≤ iδN sup
|t−s|≤δN

∣∣(σYt )2−(σYs )2
∣∣= Oa. s.(iδN)

hold almost surely (denoted a. s. ).
With the Cauchy-Schwarz inequality and (A.7), we obtain

N

iT

∑
Tk≤t

(σXTk−1
σYTk−1

)2∆Tk

(
i∧k∑
l=1

(
1− l

i

)2 ∣∣∣∣∆Tk−l − T

N

∣∣∣∣
)

≤ N

iT
sup
s∈[0,t]

(
σXt σ

Y
t

)2 i∑
l=1

N−l∑
j=1

∣∣∣∣(∆Tj −
T

N

)
∆Tj+l

∣∣∣∣
≤ N

iT
C

 N∑
j=1

(
T(j+i)∨N − Tj

)2 N∑
j=1

(
∆Tj −

T

N

)2
1/2

= Oa. s. (1) .

Furthermore,

N

iT

∑
Tk≤t

(σXTk−1
σYTk−1

)2∆Tk

∣∣∣∣∆Tk − T

N

∣∣∣∣ i∧k∑
l=1

(
1− l

i

)2

≤ N

T
C

 N∑
j=1

(∆Tj)2
N∑
j=1

(
∆Tj −

T

N

)2
1/2

holds, where the right-hand side converges to zero almost surely due to (A.7) and the Cauchy-Schwarz
inequality. The preceding estimates imply the statement of the lemma.

We proceed proving (A.8b) that the quadratic covariations
[
DN , L

]
t

and
[
DN ,M

]
t

converge to zero
in probability for all t ∈ [0, T ].

[
DN , L

]
t

=

√
N

iT

∑
Tk≤t

(
∆ [L]Tk

(
i∧k∑
l=1

(
1− l

i

)
∆MTk−l

)
+ ∆ [L,M ]Tk

(
i∧k∑
l=1

(
1− l

i

)
∆LTk−l

))

has an expectation equal to zero for all t ∈ [0, T ] and the second moment is bounded above by iNδ2N .
The order follows from the evaluation of the second moment that is carried out analogously as for the
calculation of

[
DN

]
t

before. For this reason
[
DN , L

]
converges to zero in probability on [0, T ]. It can be

directly deduced that
[
DN ,M

]
t

= Op(1) as well. If L⊥ is a bounded (Ft)-martingale with
[
L,L⊥

]
≡ 0,

the quadratic covariation

[
DN , L⊥

]
t

=

√
N

iT

∑
Tk≤t

∆
[
L⊥,M

]
Tk

(
i∧k∑
l=1

(
1− l

i

)
∆LTk−l

)
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converges to zero in probability on [0, T ] what can be concluded following the same principles and also that[
DN ,M⊥

]
t

= Op(1) ∀M⊥ ∈ M⊥, t ∈ [0, T ]. An application of Jacod’s Theorem from [18] completes
the proof of Proposition A.6. �

Proposition A.8. On the same assumptions as in Proposition A.4, the continuous martingale

MN
t :=

√
N

MN

MN∑
i=1

∑
Tk≤t

(
∆LTk +

∫ t

Tk

σXs dW
X
s

)( i∧k∑
l=1

(
1− l

i

)
∆MTk−l

)

+
∑
Tk≤t

(
∆MTk +

∫ t

Tk

σYs dW
Y
s

)( i∧k∑
l=1

(
1− l

i

)
∆LTk−l

)
for t ∈ [0, T ] converges stably in law as N → ∞,MN → ∞,MN/N

α → 0 for every α > 2/3 to a
limiting time-changed Brownian motion

MN
t

st
 
∫ t

0

√
vMs

dW̃⊥s ,

where W̃⊥ is independent of F and with

vMs =
26
35
TG′(s)(σXs σ

Y
s )2(1 + ρ2

s) .

Proof of Proposition A.8:
The discretization error of the generalized multiscale estimator calculated with the closest synchronous
approximation under the equivalent martingale measure where the drift terms equal zero

MN∑
i=1

αopti,MN

i

N∑
j=i

(
LTj − LTj−i

) (
MTj −MTj−i

)
− [X,Y ]T

=
MN∑
i=1

αopti,MN

1
i

N∑
j=i

(
LTj − LTj−i

) (
MTj −MTj−i

)
− [X,Y ]T


equals the weighted sum of MN → ∞ discretization errors of the type considered in Proposition A.3
because

∑MN

i=1 α
opt
i,MN

= 1. Note, that all approximation errors in the preceding proof of Proposition A.6
converge to zero in probability as long as N →∞, i/Nα → 0 for every α > 2/3.
We begin with the proof of a multivariate stable central limit theorem for a finite-dimensional vector:

Lemma A.9. Consider the sequence ofK-dimensional vectorsDN =
(
Di1N , . . . ,DiKN

)
where the entries

DikN , k = 1, . . . ,K <∞ are the continuous martingales

D
ikN
t =

∑
Tr≤t

(
∆LTr +

∫ t

Tr

σXs dW
X
s

)ikN∧r∑
l=1

(
1− l

ikN

)
∆MTr−l


+
∑
Tr≤t

(
∆MTr +

∫ t

Tr

σYs dW
Y
s

)ikN∧r∑
l=1

(
1− l

ikN

)
∆LTr−l


with a sequence of integers ikN , k = 1, . . . ,K. On the Assumptions 1, 2 and 4 and if for every k ∈
{1, . . . ,K} there exists a constant qk with ikN/MN → qk, the following stable convergence holds true as
N →∞,MN →∞,MN/N

α → 0 for every α > 2/3:√
N

MN
DNt

st
 
∫ t

0

wsdWs , (A.9)
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with a K-dimensional Brownian motionW independent of F and a predictable process ws with

(wsw∗s)mn =
T

3
min (qm, qn)

(
3− min (qm, qn)

max (qm, qn)

)
(1 + ρ2

s)
(
σXs σ

Y
s

)2
G′(s) (A.10)

with the convention that for qm = qn = 0 the ratio is one.
For DNT we obtain the following multivariate stable central limit theorem√

N

MN
DNT

st
 N

(
0, η2Σ

)
, (A.11)

with η2 = 2T
∫ T
0

(1 + ρ2
t )(σ

X
t σ

Y
t )2G′(t)dt and

Σmn =
1
6

min (qm, qn)
(

3− min (qm, qn)
max (qm, qn)

)
.

Proof. Define for k ∈ {1, . . . ,K} the continuous martingales

M
ikN
t =

√
N

MN
D
ikN
t .

By virtue of Proposition A.3, we already have that[
MikN

]
t

p−→ 2
3
Tqk

∫ t

0

(1 + ρ2
s)(σ

X
s σ

Y
s )2G′(s) ds .

The limit of the quadratic covariations
[
MimN ,MikN

]
is derived using the same approximations as for the

quadratic variation in the preceding proof:

[
MimN ,MikN

]
t

=
N

MN

∑
Tr≤t

∆ [L]Tr

min (imN ,i
k
N ,r)∑

l=1

(
1− l

imN

)(
1− l

ikN

)(
∆MTr−l

)2
+
∑
Tr≤t

∆ [M ]Tr

min (imN ,i
k
N ,r)∑

l=1

(
1− l

imN

)(
1− l

ikN

)(
∆LTr−l

)2
+
∑
Tr≤t

2∆ [L,M ]Tr

min (imN ,i
k
N ,r)∑

l=1

(
1− l

imN

)(
1− l

ikN

)
∆LTr−l∆MTr−l

+ Op(1)

= N
∑
Tr≤t

2
G(N)(Tr)−G(N)(Tr−1)

∆Tr
(ρ2
Tr−1

+ 1)(σXTr−1
σYTr−1

)2∆Tr

×

min (imN ,i
k
N ,r)∑

l=1

(
1− l

imN

)(
1− l

ikN

)+ Op(1)

p−→ 2T
∫ t

0

(ρ2
s + 1)(σXs σ

Y
s )2G′(s)

(
1
6

min (qm, qk)
(

3− min (qm, qk)
max (qm, qk)

))
ds ,

since
∑m
l=1(1 − (l/m))(1 − (l/M)) = (1/2)m − (m2/6M) − 1/8 + 1/(12M) for m,M ∈ Z. The

multi-dimensional version of Jacod’s stable central limit Theorem 2–1 from [18] enables us to prove the
result of stable weak convergence of the vector provided we can verify the conditions[

DN ,L
]
t

p−→ 0 ,
[
DN ,M

]
t

p−→ 0, ∀t ∈ [0, T ] ,

where L denotes the vector with entries Lj = L, j = 1, . . . ,K and M with Mj = M, j = 1, . . . ,K,
respectively, and [

DN ,L⊥
]
t

p−→ 0 ,
[
DN ,M⊥

]
t

p−→ 0, ∀t ∈ [0, T ]
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where L⊥ and M⊥ are bounded (Ft)-adapted martingales orthogonal to L and M, respectively. That is
because the reference continuous martingales for all entries of the vectorDN are L andM . The componen-
twise proof of the conditions above is yet analogous as for the univariate case in the preceding proof. We
conclude that the asymptotic distribution of the vector is described by a limiting time-changed Brownian
motion on [0, T ], and the marginal distribution at time T by a mixed Gaussian limit, where the normal dis-
tribution is defined as well as for all componentwise marginals on an orthogonal extension of the original
underlying probability space.

From the preceding multivariate limit theorem the Cramér-Wold device allows to conclude the weak
convergence of all one-dimensional linear combinations of the transformed discretization errors of a finite
collection of one-scale subsampling estimators. For an asymptotically N (0,Σ)-distributed random vector
the sum of all components is asymptotically normally distributed with variance

∑
i,j(Σij) by the Cramér-

Wold device and the normality of any linear sum of components of a multivariate normal distribution (see
e. g. pp. 516-517 in [25]).
The asymptotic variance in Proposition A.4 is deduced from the multivariate limit and

∑
k,l

(Σk,l) = 2
MN∑
k=1

k∑
l=1

l

6MN

(
3− l

k

)
αoptk,MN

αoptl,MN
+ O(1) =

13
35

+ O(1)

with the weights (A.1) inserted.
For the completion of the proof of Propositions A.8 and hence A.4, it remains to extend the result for
asymptotically infinitely many addends. This part of the proof can be adopted from [30] where a stable
central limit theorem for a multiscale estimator for the integrated volatility in the univariate setting is
proved. �

A.2.3. Discretization error due to the lack of synchronicity
Proposition A.10. On the Assumptions 1 and 2, it holds true that

ANT =
1
i

N−1∑
j=i

(Lgj − LTj)
 j∑
k=j−i+1

∆MTk

+
(
Mγj −MTj

) j∑
k=j−i+1

∆LTk


+ ∆LTj+1

 j∑
k=j−i+1

(
MTk −Mλk+1

)+ ∆MTj+1

 j∑
k=j−i+1

(
LTk − Llk+1

) = Op
(√

iN
)
.

for the error associated with interpolation errors ANT for a one-scale subsampling estimator.

Proof. ANT is the endpoint of aFj,N = F
T

(N)
j+1

-measurable discrete martingale with conditional expectation
zero, since the addends incorporate products of Brownian increments over disjoint time intervals. The
conditional variance yields

1
i2

N−1∑
j=i

E

(Lgj − LTj)
 j∑
k=j−i+1

∆MTk

+
(
Mγj −MTj

) j∑
k=j−i+1

∆LTk


+ ∆LTj+1

 j∑
k=j−i+1

(
MTk −Mλk+1

)+ ∆MTj+1

 j∑
k=j−i+1

(
LTk − Llk+1

)2 ∣∣F
T

(N)
j


=

1
i2

N−1∑
j=i

E
[
(Lgj − LTj )2

] j∑
k=j−i+1

∆MTk

2

+ E
[
(Mγj −MTj )

2
] j∑

k=j−i+1

∆LTk

2

+ E
[
(∆LTj+1)2

] j∑
k=j−i+1

(
MTk −Mλk+1

)2

+ E
[
(∆MTj+1)2

] j∑
k=j−i+1

(
LTk − Llk+1

)2

29



+ E

[∫ gj

Tj

(σXt )2dt

] j∑
k=j−i+1

(
MTk −Mλk+1

) j∑
k=j−i+1

∆MTk


+ E

[∫ γj

Tj

(σYt )2dt

] j∑
k=j−i+1

(
LTk − Llk+1

) j∑
k=j−i+1

∆LTk


+ E

[∫ gj

Tj

ρtσ
X
t σ

Y
t dt

] j∑
k=j−i+1

(
LTk − Llk+1

) j∑
k=j−i+1

∆MTk


+ E

[∫ γj

Tj

ρtσ
X
t σ

Y
t dt

] j∑
k=j−i+1

(
MTk −Mλk+1

) j∑
k=j−i+1

∆LTk


= Op

(
i−1N−1

)
.

The variance of the term is of order (iN)−1 which can be proved by taking the expectation of the above
given conditional variance and an upper bound of the second moment. The asymptotic orders of the ad-
dends follow from taking the expectations using Itô isometry and analyzing the differences of the addends
minus their expectations, that converge to zero at a faster rate. That part is similar to the proofs above and
we forgo a more detailed computation here.

Denote AN,iT the error due to non-synchronicity and interpolations for a fixed subsampling frequency
i = 1, . . . ,MN in the following. The error due to asynchronicity of the generalized multiscale estimator
(12) equals the weighted sum

∑MN

i=1 α
opt
i,MN

AN,iT . It has expectation zero and the variance is of order

Var

(
MN∑
i=1

αopti,MN
AN,iT

)
=
∑
i,k

αopti,MN
αoptk,MN

Cov
(
AN,iT , AN,kT

)

=
MN∑
i=1

(
αopti,MN

)2

E
[(
AN,iT

)2
]

︸ ︷︷ ︸
=O(M−2

N N−1)

+
∑
i6=k

αopti,MN
αoptk,MN

E
[
AN,iT A

k,N
T

]
︸ ︷︷ ︸

=O(M−1
N N−1)

= O
(
MN

N

)
.

Thus, the error due to interpolations is of smaller asymptotic order than the discretization error of the
closest synchronous approximation and asymptotically negligible.

A.3. Asymptotics of the cross term
For a one-scale subsampling estimator cross terms are asymptotically negligible and hence the stable

central limit theorem in Theorem 4.1 is implied by Theorem A.3. For the proof of the stable central limit
theorem in Theorem 3 for the multiscale approach, we cope with the asymptotics of the cross terms in this
subsection.

Proposition A.11. On the Assumptions 1, 2, 3 and 5, the cross terms of the generalized multiscale esti-
mator (12) with noise-optimal weights (A.1) weakly converge to a mixed normal limit as MN →∞, N →
∞, MNδN → 0:

√
MN

MN∑
i=1

αopti,MN

i

N∑
j=i

(
(Xgj −Xlj−i+1)(εYγj − ε

Y
λj−i+1

) + (Yγj − Yλj−i+1)(εXgj − ε
X
lj−i+1

)
)

 N (0,AVARcross) , (A.12)

with asymptotic variance

AVARcross =
12
5

(
η2
Y

∫ T

0

(1 + T I ′Y (t))(σXt )2 dt + η2
X

∫ T

0

(1 + T I ′X(t))(σYt )2 dt

)
. (A.13)

The convergence holds conditionally given the paths of the efficient processes.
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Proof. This proof affiliates to the discussion in Section 4, where degrees of regularity of non-synchronous
sampling schemes have been defined in Definition 2 that are assumed to converge to continuously differ-
entiable functions.
On the Assumption 3 of independent observation noise of X and Y , the two different cross terms are
uncorrelated and we prove a central limit theorem for the first one:

√
MN

MN∑
i=1

αopti,MN

i

N∑
j=i

(Xgj −Xlj−i+1)(εYγj − ε
Y
λj−i+1

) N

(
0,

12
5
η2
Y

∫ T

0

(1 + T I ′Y (t))(σXt )2 dt

)
.

The parallel result for the other term can be proved analogously.
For the purpose of a shorter notation we have left out superscripts of the observation times, and write
αi, i = 1, . . . ,MN for the weights although we are interested in the specific weights (A.1). Denote
δN = supi∈{1,...,N}∆Ti and γj,+ = min

(
τk ∈ T Y |τk ∈ Gj+1

)
, gj,+ = min

(
tk ∈ T X |tk ∈ Hj+1

)
and

C a generic constant as before. From

E


√MN

MN∑
i=1

αi
i

N∑
j=i

(Xgj −XTj )(ε
Y
γj − ε

Y
λj−i+1

) + (XTj−i −Xlj−i+1)(εYγj − ε
Y
λj−i+1

)

2


≤MN

∑
i,k∈{1,...,MN}

αiαk
ik

2η2
Y

 N∑
j=i∨k

E(Xgj −XTj )
2 +

N−(i∨k)∑
j=0

E(XTj −Xlj+1)2


≤MN C4η2

Y

∑
i,k∈{1,...,MN}

αiαk
ik

= O
(
M−1
N

)
,

for the errors due to interpolations and

E

(√MN

MN∑
i=1

αi
i

(
N∑

k=N−i+1

εYγk(XTk −XTk−i)−
i∑

k=1

εYλk(XTk+i −XTk)

))2


= MN

∑
i,k∈{1,...,MN}

αiαk
ik

η2
Y

 N∑
r=N−(i∧k)+1

E(XTr −XTr−i)
2 +

i∧k∑
r=1

E(XTr+i −XTr )
2


= O (MNδN )

for boundary terms, we conclude that

√
MN

MN∑
i=1

αi
i

N∑
j=i

(Xgj −Xlj−i+1)(εYγj − ε
Y
λj−i+1

)

=
√
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MN∑
i=1

αi
i

N−i∑
j=i

εYγj (XTj −XTj−i)− εYλj+1
(XTj+i −XTj )

+ Op(1)

=
√
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N−2∑
j=2

εYγj M
∗
N (j)∑
i=1

αi
i

(XTj −XTj−i)− εYλj+1

M∗N (j)∑
i=1

(XTj+i −XTj )

+ Op(1)

=
√
MN

∑
j∈Y1

εYγj

M∗N (j)∑
i=1

αi
i
ζ1
i,j +

∑
j∈Y2

εYγj

M∗N (j)∑
i=1

αi
i
ζ2
i,j +

∑
j∈Y3

εYγj

M∗N (j)∑
i=1

αi
i
ζ3
i,j

+
∑
j∈Y4

εYγj

M∗N (j)∑
i=1

αi
i
ζ4a
i,j −

∑
j∈Y4

εYγj,+

M∗N (j)∑
i=1

αi
i
ζ4b
i,j

+ Op(1) .
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Here, we aggregate the observation times γj , λj , j = 2, . . . , N − 2 in disjoint sets conforming to the four
cases discussed in Section 4. Denote thereto

Y1 = {j ∈ {2, . . . , N2}|γj 6= γj−1 , γj ≤ gj} ,
Y2 = {j ∈ {2, . . . , N2}|γj > gj , γj ≥ gj,+} ,
Y3 = {j ∈ {2, . . . , N2}|γj > gj , γj < gj,+ , γj,+ > gj,+} ,
Y4 = {j ∈ {2, . . . , N2}|γj > gj , γj < gj,+ , γj,+ ≤ gj,+} ,

and M∗N (j) = min (j,N − j,MN ). The increments of X that are multiplied with each observation error
differ according to the set Yk, 1 ≤ k ≤ 4 to which γj belongs. We use the notation

ζ1
i,j = (XTj −XTj−i)− (XTj+i −XTj ) ,

ζ2
i,j = (XTj −XTj−i) + (XTj+1 −XTj−i+1)− (XTj+i+1 −XTj+1) ,

ζ3
i,j = (XTj −XTj−i)− (XTj+i+1 −XTj+1) ,

ζ4a
i,j = (XTj −XTj−i) , ζ

4b
i,j = (XTj+i+1 −XTj+1) .

The resulting aggregated leading term above of the cross term is the endpoint of a discrete martingale
with respect to the filtration Fj,N := σ

(
εYτk |τk < γj+1 , X, Y

)
. Since if j ∈ Y4 ⇒ γj,+ < γj+1, the

martingale property with respect to the filtration Fj,N is assured by Assumption 3.
An application of the non-stable version of the central limit theorem for martingale triangular arrays from
[14] will proof the asymptotic normality of the cross term conditionally on the paths of the efficient pro-
cesses. The conditional Lindeberg condition can be verified (using Chebyshev’s inequality or directly
verifying the conditional Lyapunov condition) in the same way as before and we omit it here. The sum of
conditional variances yields

∑
l∈{1,2,3,4a}

∑
j∈Yl

E
[(√

MN ε
Y
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M∗N (j)∑
i=1
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i
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]
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√
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Y
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]
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2
Y
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i
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2

+
∑
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2
+ Op(1)

= MNη
2
Y
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∑
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ik

(
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)2
+
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ik
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)2+ Op(1)

= MNη
2
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∑
i,k∈{1,...,M∗N (j)}

αiαk
ik

(
(XTj −XTj−(i∧k))
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2
)

+
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∑
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ik

(
4(XTj −XTj−(i∧k))
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2
)+ Op(1)

= MNη
2
Y

N−2∑
j=2

∑
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αiαk
ik

(2 + 1{j∈Y2})(XTj −XTj−(i∧k))
2 + Op(1)

= MNη
2
Y
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i,k∈{1,...,M∗N (j)}

αiαk
ik

2(i ∧ k)[̂X]
sub,i∧k
T +

N∑
j=i∧k

1{j∈Y2}(XTj −XTj−(i∧k))
2

+ Op(1)

p−→ 12
5
η2
Y

(
[X]T +

∫ T

0

T I ′Y (t)(σXt )2 dt

)
.

Since for the shifted increments

(XTj+i+1 −XTj+1) = (XTj+i −XTj ) +Op
(
N−

1/2
)

32



holds, where the order is for time instants of average length N−1, the variances of the sums over all
j ∈ Y1 and j ∈ Y3 are asymptotically equal. The variance of both uncorrelated sums over maxima γj
and minima γj,+ distributed according to the fourth case is also asymptotically equal to the variances of
those two addends. Only the asymptotic variance of the sum over all j ∈ Y2 is bigger. For this reason the
total asymptotic variance hinges on the asymptotic degree of regularity of the non-synchronous sampling
scheme (T X , T Y ) defined in Definition 2.
In the calculation of the asymptotic variance we have used that

ζ1
i,jζ

1
i,k =

(
ζ1
i∧k,j

)2
+ ζ1

i∧k,j

 j−(i∧k)∑
l=j−(i∨k)+1

∆XTl +
j+(i∨k)∑

l=j+(i∧k)+1

∆XTl

 ,

where the second remainder addend has an expectation equal to zero, and analogous formulae for ζ2
i,j , for

all 1 ≤ i ≤MN , 1 ≤ k ≤MN , k ∨ i ≤ j ≤ N − (i ∨ k).
Furthermore, an application of the mean value theorem, Itô isometry and approximations in the same spirit
as in the calculation of the asymptotic variance in the proof of the central limit theorem for the discretization
errors of the estimators, lead to the Riemann sum in the calculation of the asymptotic variance above. The
cross terms in (ζli,j)

2, l = 1, 2 are asymptotically negligible. Since in Y4 repeating maxima γi = γi+1 are
considered only once, it holds true that |Y1|+ |Y3|+ |Y4|+ 2|Y2| = N −3±1 (the last addend can appear
due to boundary term effects). In the last step we have used that

MN

∑
i,k∈{1,...,MN}

αopti,MN
αoptk,MN

ik
(i ∧ k) = 6/5 + O(1)

when inserting the weights (A.1).
From the analysis for the asymptotic discretization error of a one-scale subsampling estimator, we know
that

[̂X]
sub,i∧k
T =

1
i ∧ k

N∑
j=i∧k

(XTj −XTj−(i∧k))
2 = [X]T +Op

(√
(i ∧ k)
N

)
holds true. Similarly, it can be deduced that

1
i

N∑
j=i

1{j∈Y2}(XTj −XTj−i)
2 =

1
i

N∑
l=1

(∆XTl)
2

(
i∑

k=1

1{(k+l−1)∈Y2}

)
+Op

(√
i/N

)
=
∫ T

0

T I ′Y (t)(σXt )2 dt+Op
(√

i/N
)
,

on Assumption 5.

B. Proof of Proposition 5.1

Let RNj , Rnj , Rmj , SN,Xj and SN,Yj denote the number of times T (N)
k , 0 ≤ k ≤ N , t(n)

i and τ (m)
j in

the bins [GNj , G
N
j+1), [(IY )Nj , (IY )Nj+1), [(IX)Nj , (IX)Nj+1), 0 ≤ j ≤ KN − 1,. Define the generalized

multiscale estimator in the fashion of (12)

∆̂ [X,Y ]GNj+1
=
MN (j)∑
i=1

αopti,MN (j)

i

RNj∑
r=i

(
X̃gr − X̃lr−i+1

)(
Ỹγr − Ỹλr−i+1

)
for the increase of the quadratic covariation ∆ [X,Y ]GNj+1

and the univariate multiscale estimators

∆̂ [X]GNj+1
=
Mn(j)∑
i=1

αopti,Mn(j)

i

Rnj∑
r=i

(
X̃tr − X̃tr−i

)2

, ∆̂ [Y ]GNj+1
=
Mm(j)∑
i=1

αopti,Mm(j)

i

Rmj∑
r=i

(
Ỹτr − Ỹτr−i

)2

,
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and ∆̂ [X](IY )Nj+1
, ∆̂ [Y ](IX)Nj+1

analogously, where all binwise multiscale frequencies are of order
√
NKN

with possibly differing constants. Essential when considering the multiscale estimators on bins is that on
Assumption 4 the distances between sampling times are of order N−1 ∼ n−1 ∼ m−1, whereas the
numbers of observations R·j , S

·
j , 1 ≤ j ≤ KN in the specific bin are at most of order NK−1

N . Following
the analysis for the four uncorrelated parts of the estimation error in sections Appendix A, orders of the
discretization variances yield

∑
i,k∈{1,...,MN (j)}

αopti,MN (j)α
opt
k,MN (j)

ik
· i ·RNj

i2

N2
∼MN (j)

RNj
N2
∼ MN (j)

KNN
,

Mn(j)/(nKN ), Mm(j)/(mKN ), Mn(j)
SN,Xj

N2 and Mn(j)
SN,Yj

N2 , respectively. Cross terms are of order
RNj /(NMN (j)) ∼ (MN (j)KN )−1 and analogous orders for the univariate estimators. The errors due to
noise instead depend only on the number of observations in the considered interval. Therefore, the addends
are of orders RNj /M

3
N (j) ∼ N/

(
KNM

3
N (j)

)
and M−1

N (j) and analogous for the univariate estimators.

Choosing all multiscale frequenciesM·(j) ∼ N 1/2K
1/2
N for every j, so thatMN (·)N 1/2 →∞, the error due

to end-effects in the noise part and the discretization error dominate asymptotically the two other addends
and are of order N−1/4K

−1/4
N . This holds as long as KNN

−1/3 → 0, such that MN (j)(N/KN )−1 → 0 as
N →∞.
The estimators (22a)-(22d) are consistent as KN →∞ with KNN

−1/3 → 0 as N →∞, since

Î2 =
KN∑
j=1

∆̂ [X]GNj ∆̂ [Y ]GNj(
∆GNj

)2
GN (T )

KN

=
KN∑
j=1


∫ GNj
GNj−1

(
σXt
)2
dt
∫ GNj
GNj−1

(
σYt
)2
dt+Op

(
N−1/4K

−1/4
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)
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2

GN (T )
KN

=
KN∑
j=1

(
σX
)2
GNj

(
σY
)2
G̃Nj

GN (T )
KN

+Op
(
K

1/4
N N−

1/4
)

=
KN∑
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(
σXσY

)2
GNj−1

GN (T )
KN

+Op
(
K

1/4
N N−

1/4
)

and similar conclusions for the other three estimators. We have used that ∆GNj ∼ N−1 and apply

the mean value theorem. GNj is some value GNj−1 ≤ GNj ≤ GNj . Finally, elementary inequalities∣∣∣∣(σX)2GNj (σY )2G̃Nj − (σXσY )2GNj−1

∣∣∣∣ ≤ (σX)2GNj
∣∣∣∣(σY )2G̃Nj − (σY )2GNj−1

∣∣∣∣+ (σY )2GNj−1

∣∣∣∣(σX)2GNj − (σX)2GNj−1

∣∣∣∣,∑KN
j=1

∣∣∣∣(ρσXσY )2GNj − (ρσXσY )2GNj−1

∣∣∣∣ GN (T )
KN

≤ sup|t−s|≤∆ supj G
n
j

∣∣ρtσXt σYt − ρsσXs σYs ∣∣GN (T ) = Oa. s. (1)

are involved in the approximations of the type above. Considering (22c) and (22d), note that bin-widths
chosen accordingly to INY are asymptotically of order K−1

N in any interval of [0, T ] on that the correspond-
ing part of the integral

∫
I ′Y (t)(σXt )2 dt is strictly positive.

DenoteRkN , k = 1, . . . , 4, the orders of the approximation errors of the four above given integrals and their
Riemann sums evaluated on the partition given KN bins. The variance of the estimators η̂2

X and η̂2
Y for the

noise variances are known to be E
[(
εXt1
)4]

N−1 and E
[(
εYτ1
)4]

N−1 and henceO
(
N−1

)
on Assumption

3 from [31]. From

Îk = Ik +Op
(
RkN +K

1/2
N N−

1/2
)
, k = 1, . . . , 4 ,

we derive that

ÂVARmulti = AVARmulti +Op
(

max
k

RkN +K
1/2
N N−

1/2

)
,

and the same result for the one-scale estimator. �
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