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FOREWORD

This volume contains papers and invited talks presented at the “International

Conference on Mathematics and Its Applications” (ICMA04-Kuwait), which was

held at Kuwait University from April 5 to 7, 2004. All papers contained in this

volume are refereed/peer reviewed.

The Conference covered active research fields of the Department of Mathematics

and Computer Science:

(A) Computational Differential Equations and Linear Algebra.

(B) Integral Transforms and Special Functions with Fractional Calculus.

(C) Groups, Rings & Categories, and Differential Geometry.

The ICMA04-Kuwait was jointly sponsored and organized by the Department of

Mathematics and Computer Science, Kuwait University, and the Kuwait Foundation

for the Advancement of Sciences (KFAS). The Conference was attended by sixty

three participants from twenty two countries.

Keynote speakers at the conference were: G. V. Berghe (Belgium), S. Caenepeel

(Belgium), L. Debnath (USA), D. J. Evans (UK), V. D. Mazurov (Russia), A. J.

Scholl (UK) and B. Wegner (Germany).

The organizers would like to thank all the participants for their cooperation in

preparing their contributions for this Proceedings and their active interest in the

peer reviewing process for the volume. Thanks are also due to all colleagues who

helped in the reviewing process.

All papers in this volume are arranged alphabetically according to the name of

the first author.

We would like to take this opportunity to express our gratitude to the administra-

tion at Kuwait University and Kuwait Foundation for the Advancement of Sciences,

for sponsoring this Conference and publication of the Proceedings.

Finally we offer our sincere thanks to the faculty and staff of the Department of

Mathematics and Computer Science at Kuwait University for taking active interest,

shouldering several responsibilities during the conference and publication of these

proceedings.

Mansour A. Al-Zanaidi, Shyam L. Kalla and Man M. Chawla

Chairman Editors

Kuwait, December 2004.
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ON AN INTEGRAL TRANSFORM INVOLVING BESSEL
FUNCTIONS

M. Al-Hajri and S. L. Kalla

Department of Mathematics & Computer Science

Kuwait university, P. O. Box. 5969, Safat 13060, KUWAIT

email: kalla@mcs.sci.kuniv.edu.kw

Abstract

This paper deals with a new integral transform, involving a combination of Bessel

functions as a kernel. The inversion formula is established and some properties

are given. This transform can be used to solve some mixed boundary value prob-

lems. We consider here a problem of heat conduction in an infinite and semi-infinite

cylinder a ≤ r ≤ b, with radiation-type boundary conditions.

AMS Subj. classification: 44A20, 35K20, 80A20.

Keywords: Integral transform, Bessel Functions, Differential equations, Boundary

conditions.

1. INTRODUCTION

Let f(t) be a given function defined on an interval [a, b], that belongs to a certain

class of functions. An integral transform of f(t) is a mapping of the form,

T [f(t); s] = f̄(s) =

∫ b

a

K(s, t)f(t)dt,

provided that the integral exists. K(s, t) is a prescribed function, called the ker-

nel of the transform [2,5,6,11]. Among the well known transforms are the Laplace,

Fourier, Hankel, Stieltjes and Mellin transforms. The most versatile of these, the

Laplace transform has been widely used to solve differential equations, and par-

ticularly problems related to heat transfer and electrical circuits. On the other

hand for problems in which there is an axial symmetry, the Hankel transforms are

found to be most appropriate. The Mellin transform being closely related to the

Fourier transform, has its own peculiar uses, as for deriving expansion and solving

problems with wedge shape boundaries. In general, the use of an integral transform

often reduces a partial differential equation in n independent variables to (n − 1)

variables, that provides a simplification of the problem.
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The success of the use of integral transforms to solve boundary value problems

and to exclude a variable with range (0,∞) or (−∞,∞) led investigators to con-

sider finite integral transforms. Doetsch considered finite Fourier transforms, and

Sneddon [11] extended the idea of Bessel function kernel, called ’Finite Hankel

Transforms’. Using the Sturm-Liouville theory [3,], a number of integral transforms

can be implemented, according to the prescribed boundary conditions.

Recently Khajah [9] has considered a modified Hankel transform in the form,

Jµ[f(z); s, λ] =

∫ b

0

zλf(z)Jµ(zs)dz

where f(z) satisfies Dirichlet’s conditions on the interval [a, b]. He has derived

the inversion formula, Parseval-type identities, transform of derivatives, as well as

transforms of products of the form zλf(z).

Using the Sturm-Liouville theory Kalla and Villalobos [7,8] have defined and

studied an integral transform defined as,

T [f(x), a, b, ν;λi] = f̄ν(λi) =

∫ b

a

xf(x)Cν(λix)dx,

where

Cν(λix) = {Yν(λia) +Bν(λib)}Jν(λix)

−{Jν(λia) + Aν(λib)}Yν(λix)

and

Aν(λx) = Jν(λx) + hλJ
′
ν(λx)

Bν(λx) = Yν(λx) + hλY
′
ν (λx)

and λi are the positive roots of equation,

Jν(λa)Bν(λb)− Yν(λa)Aν(λb) = 0

This transform has been used to solve a heat conduction problem in an infinite

cylinder bounded by the surface r = a, r = b (b > a).

In this paper we define and study a new integral transform involving Bessel

functions of first and second kind, by invoking the Sturm-Liouville theory. Inversion

formula is established and some properties are mentioned. The transform has been

2



used to solve a heat conduction problem in an infinite and a semi- infinite circular

cylinder, bounded by surfaces r = a and r = b (b > a), with radiation-type boundary

conditions on both surfaces.

2. DEFINITION AND INVERSION FORMULA

Consider Bessel’s differential equation

x2y
′′

+ xy
′
+ (λ2x2 − ν2)y = 0 , x ∈ [a, b] (1)

with homogeneous boundary conditions:

y(a) + h1y
′
(a) = y(b) + h2y

′
(b) = 0 (2)

The general solution of (1) is given by:

y(x) = c1Jν(λx) + c2Yν(λx) (3)

where c1 , c2 are arbitrary constants, and Jν(x), Yν(x) are the Bessel functions of first

and second kind respectively. To obtain a solution of (1) that satisfies conditions

(2), we have

c1

[
Jν(λa) + h1λJ

′
ν(λa)

]
+ c2

[
Yν(λa) + h1λY

′
ν (λa)

]
= 0 (4)

c1

[
Jν(λb) + h2λJ

′
ν(λb)

]
+ c2

[
Yν(λb) + h2λY

′
ν (λb)

]
= 0 (5)

from which we deduce

c1
c2

= −Yν(λa) + h1λY
′
ν (λa)

Jν(λa) + h1λJ
′
ν(λa)

= −Yν(λb) + h2λY
′
ν (λb)

Jν(λb) + h2λJ
′
ν(λb)

(6)

Let

Aν(λx, hk) = Jν(λx) + hkλJ
′
ν(λx) , k = 1, 2

Bν(λx, hk) = Yν(λx) + hkλY
′
ν (λx) , k = 1, 2

Then, the function given by (3) is a solution of equation (1), subject to the conditions

(2), if λ is a root of the transcendental equation,

Bν(λa, h1)Aν(λb, h2)− Aν(λa, h1)Bν(λb, h2) = 0 (7)

Henceforth, we take λi (i = 1, 2, . . .) to be the positive roots of equation (7). Then,

from (4–5), we have

yi(x) =
c1

Bν(λia, h1)
[Jν(λix)Bν(λia, h1)− Aν(λia, h1)Yν(λix)] (8)

=
c1

Bν(λib, h2)
[Jν(λix)Bν(λib, h2)− Aν(λib, h2)Yν(λix)] (9)

3



If we define

Zi = Bν(λia, h1) +Bν(λib, h2) , Wi = Aν(λia, h1) + Aν(λib, h2)

then the following functions are taken to be solutions of (1–2):

Mν(λix) = Zi Jν(λix)−Wi Yν(λix) (10)

By Sturm-Liouville theory [3], the functions of the system (10) are orthogonal on

the interval [a, b] with weight function x, that is

∫ b

a

xMν(λix)Mν(λjx)dx =

⎧⎨⎩
0 , i �= j

Mν(λi) , i = j

(11)

where Mν(λi) = ‖√xMν(λix)‖22 — the weighted L2 norm. If a function f(x) and

its first derivative are piecewise continuous on the interval [a, b], then the relation

T [f(x), a, b, ν;λi] = f̄ν(λi) =

∫ b

a

xf(x)Mν(λix)dx (12)

defines a linear integral transform. To derive the inversion formula for this transform,

given the series expansion,

f(x) =
∞∑
i=1

aiMν(λix) (13)

we multiply (13) by xMν(λjx) and integrate both sides with respect to x to get the

coefficients:

ai =
1

Mν(λi)

∫ b

a

x f(x)Mν(λix) dx =
f̄ν(λi)

Mν(λi)
, i = 1, 2, . . . (14)

and the inversion formula becomes

f(x) =
∞∑
i=1

f̄ν(λi)

Mν(λi)
Mν(λix) (15)

Using some well known properties of Bessel functions [12] we can easily derive the

following relation:

2Mν(λi) = Z2
i

[
b2P (λi, b, ν)− a2P (λi, a, ν)

]− 2ZiWi

[
b2Q(λi, b, ν)− a2Q(λi, a, ν)

]
+W2

i

[
b2R(λi, b, ν)− a2R(λi, a, ν)

]
(16)

4



in which

P (λi, µ, ν) = J2
ν (λiµ)− Jν−1(λiµ)Jν+1(λiµ)

R(λi, µ, ν) = Y 2
ν (λiµ)− Yν−1(λiµ)Yν+1(λiµ)

and

Q(λi, µ, ν) = J
′
ν(λiµ)Yν−1(λiµ)− 1

λiµ
Jν−1(λiµ)Yν(λiµ)− J

′
ν−1(λiµ)Yν(λiµ)

and µ stands for a or b . It is not difficult to verify some properties of the transform

from definition (12). For example,

T [αf(x) + βg(x), a, b, ν;λi] = αf̄(λi) + βḡ(λi) (17)

T [f(px), a, b, ν;λi] =

∫ b

a

xf(px)Mν(λix)dx =
1

p2
T [f(x), pa, pb, ν;λi/p ] (18)

3. TRANSFORM OF A DIFFERENTIAL OPERATOR

We derive the transform of the following operator

Df(x) =
d2

dx2
f(x) +

1

x

d

dx
f(x)− ν2

x2
f(x) , a ≤ x ≤ b (19)

Let I be the transform of the first two terms of D , that is

I =

∫ b

a

x
[
f ′′(x)+

1

x
f ′(x)

]
Mν(λix) dx =

∫ b

a

xf ′′(x)Mν(λix)dx+

∫ b

a

f ′(x)Mν(λix)dx

Integration by parts of the first integral leads to,∫ b

a

xf ′′(x)Mν(λix)dx = xMν(λix)f ′(x)
∣∣∣b
a
−
∫ b

a

f ′(x)
[
xλiM

′
ν(λix) +Mν(λix)

]
dx,

and hence,

I = xMν(λix)f ′(x)
∣∣∣b
a
− λi

∫ b

a

xf ′(x)M ′
ν(λix) dx

Integrating by parts once again leads to,

I = x [f ′(x)Mν(λix)−λif(x)M ′
ν(λix)]

∣∣∣b
a
+

∫ b

a

x−1
[
λ2

ix
2M ′′

ν (λix)+λixM
′
ν(λix)

]
f(x) dx

Since Mν satisfies (1)we have

λ2
ix

2M ′′
ν (λix) + λixM

′
ν(λix) = (ν2 − λ2

ix
2)Mν(λix)

5



and∫ b

a

x−1
[
λ2

ix
2M ′′

ν (λix) + λixM
′
ν(λix)

]
f(x) dx =

∫ b

a

x
[ν2

x2
− λ2

]
f(x)Mν(λix) dx

Furthermore, it follows from the boundary conditions (2) that

λiM
′
ν(λia) =

1

h1

Mν(λia) , λiM
′
ν(λib) =

1

h2

Mν(λib)

Hence

I =
b

h2

Mν(λib)
[
f(b)+h2f

′(b)
]− a

h1

Mν(λia)
[
f(a)+h1f

′(a)
]−λ2

i f̄(λi)+T

[
ν2

x2
f(x)

]
and the transform of the operator D in (19) becomes

T [Df(x)] =
b

h2

Mν(λib)
[
f(b) + h2f

′(b)
]− a

h1

Mν(λia)
[
f(a) + h1f

′(a)
]− λ2

i f̄(λi)

(20)

Transform of x
ν

From definition (12) we have

T [xν , a, b, ν;λi] =

∫ b

a

xν+1Mν(λix) dx

Using a result of [12], namely∫
xρ+1Zρ(x)dx = xρ+1Zρ+1(x)

where Zρ(x) is any of the Bessel functions, we obtain

T [xν , a, b, ν;λi] =
1

λi

[
bν+1 Mν+1(λib)− aν+1 Mν+1(λia)

]
Since

Mν+1(cz) =
ν

cz
Mν(cz)−M ′

ν(cz)

the transform becomes,

T [xν , a, b, ν;λi] =
bν+1

λi

[
ν

λib
Mν(λib)−M ′

ν(λib)

]
− aν+1

λi

[
ν

λia
Mν(λia)−M ′

ν(λia)

]
Then, from the boundary conditions (2) this reduces to,

T [xν , a, b, ν;λi] =
bν+1

λ2
i

[
ν

b
+

1

h2

]
Mν(λib)− aν+1

λ2
i

[
ν

a
+

1

h1

]
Mν(λia) (21)

6



In particular, the transform of a constant (where ν = 0) is found to be

T [c, a, b, 0;λi] =
c

λ2
i

[
b

h2

M0(λib)− a

h1

M0(λia)

]
= c T [1, a, b, 0;λi] (22)

4. HEAT CONDUCTION IN AN INFINITE CYLINDER

Consider a long hollow cylinder of inner radius a and outer radius b , with radiation

type boundary conditions in both outer and inner surface, and a prescribed initial

temperature. The differential equation of the phenomena is:

1

K

∂U

∂t
=

∂2U

∂r2
+

1

r

∂U

∂r
, (23)

where a < r < b , t > 0 and U(r, t) denotes the temperature at any radial position r

at time t; K is a constant that depends on the material of the cylinder. The initial

and boundary conditions are as follows:

U(r, 0) = I(r) , a < r < b (24)

U + h1
∂U

∂r

∣∣∣∣
r=a

= f(t) , U + h2
∂U

∂r

∣∣∣∣
r=b

= g(t) , t > 0 (25)

Taking ν = 0 , we consider the transform of U with respect to the radial variable,

that is

U(λi, t) =

∫ b

a

r U(r, t)M0(λir) dr (26)

Referring to (20) and (23), we obtain

1

K

∂U

∂t
=

b

h2

M0(λib)

[
U + h2

∂U

∂r

]
r=b

− a

h1

M0(λia)

[
U + h1

∂U

∂r

]
r=a

− λ2
iU

From the boundary conditions (25) we have this reduced to

1

K

∂U

∂t
=

b

h2

M0(λib) g(t)− a

h1

M0(λia) f(t)− λ2
iU

and the following ODE is obtained

∂U

∂t
+Kλ2

iU = K

[
b

h2

M0(λib) g(t)− a

h1

M0(λia) f(t)

]
(27)

whose solution is given by

U(λi, t) = exp(−Kλ2
i t)

[
K

∫ t

0

exp(Kλ2
i s)
[ b
h2

M0(λib) g(s)− a

h1

M0(λia) f(s)
]
ds+ C

]
7



Taking the transform of the initial condition (24), namely

U(λi, 0) = I(λi)

leads to C = I(λi) , hence

U s(λi; t) = exp(−Kλ2
i t)[

K

∫ t

0

exp(−Kλs
[ b
h2

M0(λib) g(s)− a

h1

M0(λia) f(s)
]
ds + I(λi)

]
(28)

The solution of (23) follows after applying the inversion formula to the above,

thus

U(r, t) =
∞∑
i=1

U(λi, t)

Mν(λi)
M0(λir) (29)

with the understanding that the summation is taken over all the positive roots of

the equation:

B0(λa, h1)A0(λb, h2)− A0(λa, h1)B0(λb, h2) = 0 (30)

Special cases:

(i) Let us consider the previous problem with the following initial and boundary

conditions;

U(r, 0) = 0 , a < r < b (31)

U + h1
∂U

∂r

∣∣∣∣
r=a

= U0 (constant), U + h2
∂U

∂r

∣∣∣∣
r=b

= U1(constant), t > 0

(32)

Then equation (28) will become

U(λi; t) = exp(−Kλ2
i t)[

K

∫ t

0

exp(Kλ2
ix)

{
b

h2

M0(λib)U1 − a

h1

M0(λia)U0

}
dx

]
(33)

=
1− exp(−Kλ2

i t)

λ2
i

[
bU1

h2

M0(λib)− aU0

h1

M0(λia)

]
And according to (29) the solution will become

U(r, t) =
∞∑
i=1

1− exp(−Kλ2
i t)

λ2
iMν(λi)

[
bU1

h2

M0(λib)− aU0

h1

M0(λia)

]
M0(λir), i = 1, 2, 3, ...

(34)

where the summation is taken over all positive roots of (30).
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(ii) If h1 −→ 0 in (25), that is U |r=a = f(t) , our result (29) reduces to a result of

Kalla and Villalobos [8, p.41, eq.(20].

5. HEAT CONDUCTION IN A SEMI-INFINITE CYLINDER

Let us consider the problem of finding the temperature distribution U(r, z, t) in a

hollow semi-infinite cylinder with outer radius b and inner radius a. This problem

is expressed by the differential equation,

1

K

∂U

∂t
=

∂2U

∂r2
+

1

r

∂U

∂r
+
∂2U

∂z2
(35)

where a < r < b ; z , t > 0 , and the initial/boundary conditions are taken to be:

U(r, z, 0) = I(r, z) (36)

U(r, 0, t) = V (r, t) , lim
z→∞

U(r, z, t) = 0 (37)

U + h1
∂U

∂r

∣∣∣∣
r=a

= f(z, t) , U + h2
∂U

∂r

∣∣∣∣
r=b

= g(z, t) (38)

Consider the integral transform,

U(λi, z, t) =

∫ b

a

r U(r, z, t)M0(λir) dr (39)

and the Fourier sine transform

U s(λi, p, t) =

∫ ∞

0

U(λi, z, t) sin(p z) dz (40)

Following a similar argument as in the previous section, the transformed equation

of (35) becomes

1

K

∂U

∂t
=

b

h2

M0(λib)g(z, t)− a

h1

M0(λia)f(z, t)− λ2
i Ū +

∂2U

∂z2

whose Fourier sine transform is found to be,

1

K

dU s

dt
=

b

h2

M0(λib)gs(p, t)− a

h1

M0(λia)fs(p, t)− λ2
iU s − p2U s + pV (λi, t)

and which is expressed as,
dU s

dt
+K(λ2

i + p2)U s

= K

[
b

h2

M0(λib)gs(z, t)− a

h1

M0(λia)fs(z, t) + pV (λi, t)

]
(41)

9



Now we have the solution of the above ODE given by

U s(λi, p, t) = e−K(λ2
i +p2)t

[
K

∫ t

0

eK(λ2
i +p2) τ

[ b
h2

M0(λib)gs(z, τ)

− a

h1

M0(λia)fs(z, τ) + pV (λi, τ)
]
dτ + C

]
and from the initial condition, we have C = Is(λi, p) , so that

U s(λi, p, t) = e−K(λ2
i +p2)t

[
K

∫ t

0

eK(λ2
i +p2) τ

[
b

h2

M0(λib)gs(z, τ)

− a

h1

M0(λia)fs(z, τ) + pV (λi, τ)
]
dτ + Is(λi, p)

]
(42)

Finally, taking respective inverse transforms will lead to the solution:

U(r, z, t) =
2

π

∞∑
i=1

1

Mν(λi)

[∫ ∞

0

U s(λi, p, t) sin(pt) dp

]
M0(λir). (43)

Special cases:

(i) We consider the previous partial differential equation with the following con-

ditions

(
U + h1

∂U

∂r

)
r=a

= 0, z > 0, t > 0(
U + h2

∂U

∂r

)
r=b

=
1

z
, z > 0, t > 0

U(r, 0, t) = U0, (constant) a < r < b, t > 0

U(r, z, 0) = 0 a < r < b, z > 0

U(r, z, t)→ 0 as z →∞

then (42) will become

Ūs(λi, p, t) = e−K(λ2
i +p2)t

⎡⎣K t∫
0

e−K(λ2
i +p2)x

{
b

h2

M0(λib)
π

2

+p
U0

λ2
i

[
b

h2

M0(λib)− a

h1

M0(λia)

]}
dx

]
=

1− e−K(λ2
i +p2)t

λ2
i + p2

{
p

h2

[
π

2
+
PU0

λ2
i

]
M0(λib)− aPU0

λ2
ih1

M0(λia)

}
10



and according to (43)

U(r, z, t) =
∞∑
i=1

⎧⎨⎩ 2

π

∞∫
0

1− e−K(λ2
i +p2)t

λ2
i + p2

{
p

h2

[
π

2
+
PU0

λ2
i

]
M0(λib)− aPU0

λ2
ih1

M0(λia)

}

sin(pt)dz} × M0(λir)

Mν(λi)
.

(ii) For h1 −→ 0 in (38), that U |r=a = f(z, t) , our result (43) reduces to one

considered in [8, p.43; eq. (36)].

6. CONCLUSIONS

Here we have introduced a new finite integral transform (Hankel-type) involving

product of Bessel functions as the Kernel. This transform can be used to solve

certain class of mixed boundary value problems. As indicated in previous sections

4 and 5, this transform is suitable to solve heat conduction problems in hollow

cylinders with radiation (mixed) conditions on both surfaces (r = a and r = b).

The Hankel-type finite transforms considered earlier in [5, 7, 8, 11] were able to

solve problems with both surfaces of the cylinder kept at prescribed temperature or

radiation condition on only one surface, r = b [8].

Numerical treatment of the results obtained here can be done by using “Matem-

atica” and [S. L. Kalla and S. Conde: Tables of Bessel Functions and Roots of

Transcendental Equations, Univ. Zulia, Venezuela, 1978].
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Abstract

In Evans & Sahimi (1989) the discretization of parabolic partial differential equation

is derived from Iterative Alternating Decomposition Explicit Method (IADE). Six

strategies of parallel algorithms for IADE were found to be more effective using a

cluster of workstations (Alias, Sahimi & Abdullah ,2002). In this review paper, we

consider some important developments and trends in algorithm design for IADEI (

Sahimi, et. al 2003), concentrating on aspects that involve the modification of ADI

scheme. IADEI was found to be more convergent and accurate compared to IADE.

The absorption of the several parallel strategies for IADEI has been developed to be

run on PC cluster systems based on Parallel Virtual Machine environment (Geist

.el, 1994). This paper surveys how the cost communication affected the parallel

strategies. The analysis of the proposed strategies demonstrates that parallelism

is limited by using explicit blocks technique. The elements of explicit blocks were

expressed as sub-blocks. These schemes can be effective in reducing data storage

accesses on a distributed parallel computer systems. The experiments were run on

the homogeneous PC cluster system, which contains of 20 Intel Pentium IV CPUs,

each with a storage of 20GB and speed of 1.6Mhz, connected with internal network

Intel 10/100 NIC under RedHat Linux 7.2 operation and using message-passing

libraries, PVM 3.4. The results of some computational experiments and the parallel

performance measurements of the parallel strategies will be discussed.

Keywords. Iterative Alternating Decomposition Explicit Method (IADE), A New
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Iterative Alternating Decomposition Explicit Method (IADEI), Parabolic equation,

Parallel Virtual Machine (PVM).

1. INTRODUCTION

The model problem under consideration is one dimensional Parabolic equation (Smith,

1979).

∂U

∂t
=

∂2U

∂x2
, 0 ≤ x ≤ 1, 0 < t, (1)

with initial condition, U(x, 0) = f(x), 0 ≤ x ≤ 1,.

Boundary condition, U(0, t) = g(t), 0 < t ≤ T and U(1, t) = h(t), 0 < t ≤ T .

Where f(x) = sin(πx), 0 ≤ x ≤ 1, and g(t) = h(t) = 0, 0 < t ≤ 1,.

and subject to the exact solution of equation, U(x, t) = e−
2t
π sin(πx)

Lets Ω be the domain of 0 ≤ x ≤ 1 and 0 < t ≤ 1 with mesh ∆x = 1
m

= h.

Equation 1 is discretized by the finite difference formula and leads to the generalised

approximation stencil as,

−λθui−1,j+1 + (1 + 2λθ)ui,j+1 − λθui+1,j+1

= λ(1− θ)ui−1,j + [1− 2λ(1− θ)]ui,j

+ λ(1− θ)ui+1,j (2)

where i = 1, 2, 3, ...,m, j = 1, 2, 3, ..., T and λ = ∆t
(∆x)2

leads to the a large system of

equation,

Au = f (3)

The ADI technique known as a new of Iterative Alternating Decomposition Explicit

Method (IADEI) is applied to linear system in equation (3). The sequential and the

parallel strategies of IADEI algorithms are described in detail and the numerical

results are presented.

2. A NEW ITERATIVE ALTERNATING DECOMPOSITION EXPLICIT

METHOD

The New Iterative Alternating Decomposition Explicit Method (IADEI) is based on

Iterative Alternating Decomposition Explicit (Sahimi, 1989) and the modification

of matrix A. Another stable and (4,2) accurate difference replacement of

∂u

∂t
=

∂2u

∂x2
+
∂2u

∂y2
(4)
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is as follows,

(1 + (
1

12
− 2

3
λ)δ2

x)(1 + (
1

12
− 2

3
λ)δ2

y)ui,j,k+1

=
2

3
λ(δ2

x + δ2
y +

1

2
δ2
xδ

2
y)ui,j,k + (1 + (

1

12
+

2

3
λ)

δ2
x + δ2

y))ui,j,k−1 + (
1

12
− 2

3
λ)2δ2

xδ
2
y(2ui,j,k − ui,j,k−1) (5)

whose ADI analogue is given by

(1 + (
1

12
− 2

3
λ)δ2

x)ui,j,k+1/2

= −(
1

12
− 2

3
λ)δ2

y(2ui,j,k − ui,j,k−1) +
2

3
λ(δ2

x + δ2
y +

1

2
δ2
xδ

2
y)ui,j,k

+(1 +
1

12
+

2

3
λ)δ2

x + δ2
y))ui,j,k−1 (6)

and

(1 + (
1

12
− 2

3
λ)δ2

y)ui,j,k+1

= ui,j,k+1/2 + (
1

12
− 2

3
λ)δ2

y(2ui,j,k − ui,j,k−1) (7)

As the temperature reaches steady state over time, the parabolic equation 4 reduce

to elliptic equation (Laplace’s equation). Whose numerical solution can be obtained

iteratively using ADI technique,

(1 + (
1

12
− 2

3
λ)δ2

x)u
∗
i,j = (−(

1

12
− 2

3
r)δ2

y +
2

3
r(δ2

x + δ2
y +

1

2
δ2
xδ

2
y)

+ (1 + (
1

12
+

2

3
λ)δ2

x + δ2
y))u

p
i,j (8)

and

(1 + (
1

12
− 2

3
λ)δ2

y)u
(p+1)
i,j = u∗i,j + (

1

12
− 2

3
λ)δ2

yu
p
i,j (9)

Where r is the acceleration parameter. By considering the two-step iterates corre-

sponding to equations 8 and 9, IADEI formulas are as follows,

at time level (k +
1

2
)

(I + αG1)u
(k+ 1

2
) = (I + (α + 2r)G1)(I + 2rG2) + βG1G2)u

(k) − 2rf

(10)

at time level (k + 1)

(I + αG2)u
(k+1) = u(k+ 1

2
) + αG2u

(k) (11)

with α =
1

12
− 2

3
r and β =

2r(3ν − 2r)

3
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The coefficient matrix A in equation (3) however is decomposed into,

A = G1 + G2 +
1

6
G1G2 (12)

The discretization of IADEI method is obtained in the implicit and explicit forms

as follows,

i. at time level (k + 1
2
)

u
(k+ 1

2
)

i =
1

A
(si−1u

(k)
i−1 + viu

(k)
i + ssu

(k)
i+1 − wi−1u

(k+ 1
2
)

i−1 −DDfi),

i = 1, 2, ...,m

s0 = v0 = w0 = 0 and A �= 0, ∀i ∈ [1,m]. (13)

ii. At time level (k + 1)

u
(k+1)
m+1−i =

1

1 + dm+1−i

(u
(k+ 1

2
)

m+1−i + dm+1−iu
(k)
m+1−i + ddu

(k)
m+2−i − ddu

(k+1)
m+2−i)

with di �= 0 and ∀i ∈ [1,m] (14)

3. PARALLEL STRATEGIES

The sequential algorithm for IADEI shown that the approximation solution for

u
(k+ 1

2
)

i is dependent on u
(k+ 1

2
)

i−1 and the approximation solution for u
(k+1)
m+1−i is de-

pendent on u
(k+1)
m+2−i. To avoid dependently situation, some parallel strategies are

developed to create the non-overlapping subdomains for domain Ω.

3.1. IADEI SUB

The strategy of Incomplete Block LU preconditioners is slightly non-overlapping

subdomains, the domain Ω is decomposed into p processors with incomplete subdo-

main Ω. This strategy implemented the incomplete factorization with parameter β

of algebraic boundary condition as follows,

i. at time level (k + 1
2
)

Au
(k+ 1

2
)

i−1 − si−1u
(k)
i−1 − vi−1u

(k)
i−1 − ssu

(k)
i + βwi−2u

(k+ 1
2
)

i−2 − βwi−1u
(k+ 1

2
)

i−1

= −DDfi−1), i ε Ω.

ii. at time level (k + 1)

(1 + di+1)u
(k+1)
i+1 − (u

(k+ 1
2
)

i + di+1u
(k+1)
i+1 + ddu

(k)
i+2 − ddu

(k+1)
i+2 ) = 0i ε Ω.

i ε Ω.
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3.2. IADEI RB

On IADEI RB strategy, the domain Ω is decomposed into two different subdo-

mains ΩH and ΩM . ΩH is the approximate solution on the odd grids and ΩM is the

approximate solution on the even grids. Computation on ΩH is executed followed

by ΩM . These two subdomains are not dependent on each other. ΩH is decomposed

into groups, H1, H2, ..., Hm
p

and ΩM is decomposed into groups, M1,M2, ...,Mm
p
.

Every group of Hi or Mi, i = 1, 2, ..., m
p

is assigned to processors p . IADEI RB

is run in parallel for each subdomain in alternating way on time steps (k + 1
2
) and

(k + 1). The parallel strategy of IADEI RB for equations 13 and 14 are as follows,

i) at time level (k + 1
2
)

u
(k+ 1

2
)

i = u
(k+ 1

2
)

i +
ω

A
(−Au(k+ 1

2
)

i + si−1u
(k)
i−1 + viu

(k)
i + ssu

(k)
i+1 − wi−1u

(k+ 1
2
)

i−1

−DDfi), i ∈ ΩR

u
(k+ 1

2
)

i = u
(k+ 1

2
)

i +
ω

A
(−Au(k+ 1

2
)

i + si−1u
(k)
i−1 + viu

(k)
i + ssu

(k)
i+1 − wi−1u

(k+ 1
2
)

i−1

−DDfi), i ∈ ΩH

ii) at time level (k + 1)

u
(k+1)
m+1−i =

ω

1 + dm+1−i

(−(1 + dm+1−i)u
(k+1)
m+1−i + u

(k+ 1
2
)

m+1−i + dm+1−iu
(k)
m+1−i + ddu

(k)
m+2−i

−ddu(k+1)
m+2−i), i ∈ ΩR

u
(k+1)
m+1−i =

ω

1 + dm+1−i

(−(1 + dm+1−i)u
(k+1)
m+1−i + u

(k+ 1
2
)

m+1−i + dm+1−iu
(k)
m+1−i + ddu

(k)
m+2−i

−ddu(k+1)
m+2−i), i ∈ ΩH

3.3 IADEI SOR

Using the well-known fact of the IADEI RB, the parallel algorithm for IADE CG SOR

takes the form similar to IADEI RB. The acceleration parameter ω was chosen to

provide the most rapid convergence.

3.4 IADEI MULTI

Multicoloring technique has been used extensively for the solution of the a large-

scale problems of linear system of equations Ax = b on parallel and vector computer

(Ortega, 1987). By the definition of multidomain, domain Ω is decomposed into w

different groups. IADEI MULTI is an advanced concept of IADEI RB. Typically,

one chooses the minimum number of colors w so that the coefficient matrix takes
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the block form. In particular. If w = 2, then IADEI MULTI is the IADEI RB. The

Domains for colors 1, 2, 3, ..., w are noted as Ωw1 ,Ωw2 , ...,Ωww . The subdomains Ωwi

are distributed into different groups of grid Wi1,Wi2, ...,Wi m
wp

, where i = 1, 2, ..., w.

In the process of assignment, Wij, i = 1, 2, ..., w and j = 1, 2, ..., m
wp

are mapped into

the processors p in the alternating way.

At each time step, the computational grid for domain Ω started its execution

with Ωw1 , followed by Ωw2 and ends with Ωww . The IADEI MULTI allows the pos-

sibility of a high degree of parallelism and vectorization. However, IADEI MULTI,

as opposed to the natural ordering, may have a deleterious effect on the rate of

convergence.

3.5. IADEI VECTOR

The parallel strategy of IADEI VECTOR is implemented in two convergence

sections. The first section is at time level (k+ 1
2
) and the second section is time level

(k + 1). This method converges if the inner convergence criterion is achieved for

each section. The inner convergence criterions ε(k+ 1
2
) and ε(k+1) are definite global

convergence criterion ε.

3.6 IADEI Michell-Fairweather

The IADEI Michell-Fairweather (IADEI MF) which is fully explicit is derived

to produce the approximation of grid-i and which is not totally dependent on the

grid (i − 1) and (i + 1). The approximation at the first and second intermediate

levels are computed directly by inverting (rI + G1) and (rI + G2). The explicit

form of equation (10) and (11) are given by,

i. at time level (k + 1
2
),

u
(k+ 1

2
)

i =
i−1∑
l=1

(−1)Tvi−l−1
∏i−2

j=l kj(Eki−1 +Gei−1ki−1)∏i−1
l A

u
(k)
l

i∑
l=1

(−1)Hvi−l
∏i−1

j=l kj(J +Hei +G(ki−1h+ ei)∏i
l A

u
(k)
l

i+1∑
l=1

(−1)Tvi−k+l
∏i

j=l kj(Hh+Gh)∏i+1
l A

u
(k)
l +

i∑
l=1

(−1)Hvi−k
∏i−1

j=l kjfk∏i
l A

u
(k)
l

H =

{
l + 1, i = 1, 3, 5, ...,m− 1

l, i = 2, 4, 6, ...,m
T =

{
l, i = 1, 3, 5, ...,m− 1

l + 1, i = 2, 4, 6, ...,m

with L = 2r, E = α + L, G = L(α + L) + β dan J = 1 + α + L.
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at time level (k + 1),

u(k+1)
m =

αem

tm
u(k)

m +
u

(k+ 1
2
)

m

tm

u
(k+1)
i =

αei

di

u
(k)
i + α

m−1∑
l=i

(−1)H
∏l

j=i h∏l
j=i tj

u
(k)
l+1 + α

m−1∑
l=i

(−1)T
∏l

j=i hel+1∏l+1
j=i tj

u
(k)
l+1

+
m−1∑
l=i

(−1)Thl−i+1
j∏l+1

j=i tj
u

(k+ 1
2
)

l+1

H =

{
l + 1, i = 1, 3, 5, ...,m− 1

l, i = 2, 4, 6, ...,m
T =

{
l, i = 1, 3, 5, ...,m− 1

l + 1, i = 2, 4, 6, ...,m

4. IMPLEMENTATION ON MESSAGE PASSING SYSTEMS

All the parallel strategies are based on the non-overlapping subdomain. There are

no data exchange between the neighboring processors at the iteration (k) but there

are inter-processor communications between the iteration (k) and the next iteration

(k + 1). A typical parallel implementation of a parallel IADEI assigns several mesh

points to each processor p such that each processor only communicates with its two

nearest neighbors.The computations of the approximation solutions in subdomain

Ωp are executed independently.

The stopping criteria in the processors p is investigated by measuring the size

of the inner residuals. Let us define the residual computed in the processors p as

Rp(k) = max{| u(k+1)
i,j − u

(k)
i,j |, (i, j) ∈ p}. This quantity is kept in the processor’s

memory between successive iterations and it is checked if the residual is reduced

by the convergence criterion εp = 1.0 × 10−15. The master processor checked the

maximum of Rp(k) and the iteration stopped when the global convergence criterion

is met.

5. NUMERICAL RESULTS

Table 1 shows that the sequential performance of IADEI is better than IADE in

terms of time execution and number of iterations for all cases. The results obtained

for the various parallel strategies of IADEI in table 2. The worst performances are

shown by IADEI MF and IADEI VECTOR. The sequential IADEI is better in ac-

curacy and convergence than all the parallel strategies of IADEI. In comparison with

the parallel strategies of IADEI, these results also show that the time execution for

IADEI SUB was about 2 times shorter than other parallel strategies. Furthermore,

IADEI SUB is the best in terms of convergence and accuracy.
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Table 1: Sequential performance of IADEI and IADE are based on three cases

method CASE 1 CASE 2 CASE 3
IADEI-IMP IADEI-CG IADEI-DG IADEI-IMP IADEI-CG IADEI-DG IADEI-IMP IADEI-CG IADEI-DG

time 487 442 435 671 589 570 692 596 609
iteration 111 103 100 147 131 127 159 136 134
rmse 2.89E-03 1.81E-03 3.76E-06 5.00E-03 1.22E-03 2.85E-05 1.58E-03 1.95E-04 1.99E-05
r.maxs 9.08E-06 3.57E-06 2.21E-11 2.82E-05 1.68E-06 9.37E-10 2.82E-06 4.29E-08 4.52E-10
ave.rmx 3.76E-03 2.36E-03 8.79E-06 7.12E-03 1.74E-03 4.11E-05 2.25E-03 2.78E-04 2.86E-05
|r| 2.51E-05 2.83E-05 5.16E-05 5.09E-05 3.52E-05 2.99E-05 1.86E-05 8.38E-06 7.64E-06
lam. 0.1 0.1 0.1 0.5 0.5 0.5 1.0 1.0 1.0
t 0.05 0.05 0.05 0.25 0.25 0.25 0.5 0.5 0.5
del.t 0.001 0.001 0.001 0.005 0.005 0.005 0.01 0.01 0.01
del.x 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
r 0.820 0.813 0.818 0.830 0.830 0.830 0.800 0.820 0.830
exp 1.00E-04 1.00E-04 1.00E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04

method CASE 1 CASE 2 CASE 3
IADE-IMP IADE-CG IADE-DG IADE-IMP IADE-CG IADE-DG IADE-IMP IADE-CG IADE-DG

time 590 477 438 678 621 606 900 598 544
iteration 150 107 103 165 150 149 231 150 138
rmse 2.89E-03 1.80E-03 1.43E-05 4.99E-03 1.22E-03 2.82E-05 1.53E-03 1.92E-04 1.24E-05
r.maxs 9.07E-06 3.53E-06 2.87E-10 2.81E-05 1.68E-06 9.35E-10 2.62E-06 4.19E-08 1.72E-10
ave.rmx 3.76E-03 2.35E-03 2.67E-05 7.10E-03 1.74E-03 4.15E-05 2.16E-03 2.74E-04 1.75E-05
|r| 1.46E-05 5.15E-05 4.01E-05 1.96E-05 5.68E-06 9.99E-05 4.40E-05 2.72E-05 1.84E-05
lam. 0.1 0.1 0.1 0.5 0.5 0.5 1.0 1.0 1.0
t 0.05 0.05 0.05 0.25 0.25 0.25 0.5 0.5 0.5
del.t 0.001 0.001 0.001 0.005 0.005 0.005 0.01 0.01 0.01
del.x 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
r 0.960 1.140 1.240 0.720 0.920 0.980 2.700 0.770 0.700
exp 1.00E-04 1.00E-04 1.00E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04

rmse= root means square error, |r|= absolute error, r.maxs = maximum error and ave rmx = average of rmse

This paper presents the numerical properties of the parallel solver on the ho-

mogeneous architecture which contains of 20 Intel Pentium IV CPUs, each with

a storage of 20GB and speed of 1.6Mhz, connected with internal network Intel

10/100 NIC under RedHat Linux 7.2 operation and using message-passing libraries,

PVM 3.4. The following definitions are used to measure the parallel strategies,

speedup Sp = T1

Tp
, efficiency Cp = Sp

p
effectiveness Fp = Sp

Cp
and temporal performance

Lp = T−1
p . Where T1 is the execution time on one processor, Tp is the execution

time on p processors and the unit of Lp is work done per micro second. Parallel

Gauss Seidel Red Black is chosen as the control scheme. The graph of the execution

time, speedup, efficiency, effectiveness and the temporal performance versus number

of the processors were plotted in Figures 1, 2, 3, 4 and 5. The algorithm of parallel

strategies with the highest performance executed in the least time and is therefore

the best algorithm. As expected, Figure 1 shows the execution time decreases with

the increasing p. IADEI SUB strategy is found to give the best performance be-

cause of the minimum memory access and data sharing. Figure 2 illustrates that

20



Table 2: Performance measurements of the parallel strategies of IADEI methods

m = 720003, ∆x = 1.3889E−6, ∆t = 9.6450E−13, level=50 t = 4.8225E−11 λ = 0.5, θ = 1.00,
ε = 1.0E−15

IADEI
tpara
iterat.
rmse|r|
ave rmse
r.maxs
r
ωy
ωz
Ly

Lz
εy
εz

SQENT

43.0972
261
1.5921E−9

6.6613E−16

1.9846E−7

5.3374E−17

0.74
−
−
−
−
−
−

SUB

45.5205
301
1.5921E−9

9.9920E−16

1.9846E−7

5.3374E−17

0.7
−
−
−
−
−
−

SOR

103.873
358
1.5567E−9

6.1062E−16

1.9846E−7

5.3374E−17

0.54
1.01
1.0
−
−
−
−

RB

114.8103
360
1.5921E−9

6.1062E−16

1.9846E−7

5.3314E−17

0.55
1.0
1.0
−
−
−
−

MULTI

198.0183
360
1.5921E−9

8.8818E−12

1.9846E−7

5.3374E−17

0.56
1.02
0.94
−
−
−
−

VEKT0R

291.0482
261
1.5921E−9

9.9920E−16

1.9846E−7

5.3374E−17

0.73
−
−
1036
987
1.0E−14

1.0E−15

MF

2106.659
261
1.5921E−9

6.6613E−16

1.9846E−7

5.3374E−17

0.74
−
−
−
−
−
−

GBRB

156.4432
600
1.5921E−9

1.1123E−16

1.9846E−7

5.3374E−17

−
−
−
−
−
−
−

rmse= root means square error, |r|= absolute error, r.maxs = maximum error and ave rmse = average of rmse

at p = 20 processors, all the parallel strategies of IADEI yield approximately equal

performance in speedup.

Figure 3 shows that the efficiency of IADEI MF and IADEI VECTOR strategies

are decreased drastically. This is the result of the additional overhead imposed by

having communications routed though the PVM daemon with high number of iter-

ations.

From table 2 and figure 4, the results have shown that the effectiveness of

IADEI SUB is superior than the IADEI SOR, IADEI RB and IADEI MULTI for

all numbers of processors. Usually, the temporal performance is used to compare the

performance of different parallel algorithms. Figure 5 has shown that the temporal

performance of the parallel strategies as in the following order,

1. IADEI LU 2. IADEI SOR 3. IADEI RB 4. IADEI MULTI 5. IADEI VECTOR

6. IADEI MF
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Figure 3: The efficiency vs. number of processors
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Figure 5: Temporal performance vs. number of processors
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Table 3: Computational complexity per iteration for the parallel strategies of IADEI

methods

method c.computation c.communication

SUB ( 2408m
p + 4214)T + (3010m

p + 4816)D 3010tdata + 2408(tstart + tidle)

SOR 3580mT
p + 5012mD

p 5012tdata + 2864(tstart + tidle)

RB 3600mT
p + 5040mD

p 5040tdata + 2880(tstart + tidle)

MULTI 3600mT
p + 4680mD

p 5762tdata + 3600(tstart + tidle)

VECTOR 2112012mT
p + 2652804mD

p 2113584tdata + 1057050(tstart + tidle)

MF 261( pD∑p
i=1 i

+ 2m− 3m
p 3136tdata + 2610(tstart + tidle)

+ pT∑p
i=1 i

+ 14p− 14)

GSRB ( 1800m
p + 1200)T + (2400m

p + 1800)D 8400tdata + 4800(tstart + tidle)

c.computational=computational complexity , c.communication= communications cos, D=multiplications,
T=additions

6. CONCLUDING REMARKS

This paper has outlined the parallel strategies of a numerical schemes in class of iter-

ative and explicit two-steps methods to solve one dimensional he equations. As the

basic of derivation is the unconditionally stable (4,2) accurate IADEI scheme, the

parallel strategies of IADEI are convergent and computationally stable. A compar-

ison with the parallel strategies of IADEI scheme, shows that the IADEI SUB has

extended range of efficiency, speedup and effectiveness. Furthermore, the superior-

ity of the IADEI SUB is also indicated by the highest value of the temporal perfor-

mance, accuracy and convergence in solving a large-scale linear algebraic equations

on a PC cluster system. Because of message latency, load balancing, data-sending

and number of iteration, the communication times of IADEI SUB is lowest than

other strategies.
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Abstract

Using the standard reductive perturbation method, the two dimensional dynamics

of nonlinear ion-acoustic waves in plasma comprising cold ions and nonisothermal

electrons has been considered. A new nonlinear equation is found which is valid for

unmagnetized and magnetized plasmas. For exactly vanishing magnetic fields the

Modified Kadomtsev-Petviashvili (MKP) equation is recovered. For weak magnetic

fields, however, the dynamics is mainly different from the MKP equation, depending

on amplitude. For increasing magnetic field, the new equation is similar (but not

identical) to the Modified Zakharov-Kuznetsov (MZK) equation which is fulfilled

for very strong magnetic fields.

1. INTRODUCTION

Now a days, the study of nonlinear waves in plasma, especially ion-acoustic waves,

has become one of the most important subject of plasma physics, Washimi and

Taniuti[1] derived the Korteweg-deVries (KdV) equation in their study of ion-acoustic

solitary waves in a cold plasma, using the reductive perturbation method. Without

external magnetic field, the behavior of the two dimensional small-amplitude weakly

nonlinear ion acoustic wave in a plasma comprising cold ions and isothermal elec-

trons is described by the Kadomtsev-Petviashvili (KP) equation [2]. On the other

hand in the presence of a strong external magnetic field and under the same con-

ditions, Zakharov-Kuznetsov (ZK) equation describes ion acoustic waves in plasma

[2]. In the presence of resonant electrons, the plasma behaves nonisothermally. Res-

onant electrons strongly interact with the wave during its evolution and therefore

cannot be treated with a Boltzmann distribution ne = exp(Φ) as considered in an

isothermal plasma. There are interesting results in the case of a plasma consisting

of non-isothermal electrons. Schamel [3,4] was first who considered the effects of

nonisothermality of electrons in a plasma and derived Modified Korteweg-deVries

(MKdV) equation. So far only in the extreme values of Ωc(Ωc = 0, Ωc →∞) with

small but finite amplititudes the models have been derived, where Ωc = B0√
4πnimic

,

MKP equation for Ωc = 0, and MKZ equation for Ωc → ∞ [5,6]. In this article we
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tried to fill this gap and to derive a new model equation, which is valid for finite

Ωc, which occur in most experiments. This paper is organized as follows. The basic

equation governing the non-isothermal plasma model under investigation are given

in Section 2. Derivation of MKP and MZK equation are briefly studied by reductive

perturbation method in Section 3. The new scaling leading to a new model equation

is given in Section 4. Finally, a brief discussion is presented in Section 5.

2. BASIC EQUATIONS

We consider a collisionless magnetized plasma comprising cold ions and hot electrons.

In dimensionless form, the ion dynamics are governed by the following system of

equations:

∂tn +∇.(nV ) = 0, (1)

∂tV + (V.∇)V +∇Φ + Ωcx̂ ∧ V = 0, (2)

∇2Φ = ne − n. (3)

where, n, ne, uΦ are respectively the non-dimensional ion number density, the elec-

tron number density, the ion fluid velocity and the electrostatic potential. The

reference density, speed, time, length and electrostatic potential are respectively the

unperturbed number density n0, the ion sound speed cs =
(

KBTef

mi

) 1
2
, (ωpi)

−1, λDe

and
KBTef

e
. Here KB is Boltzmann constant, Tef is the constant temperature of the

free electrons, mi is the ion mass, λDe =
(

εoKBTe

n0ee2

) 1
2

is the electron Debye length and

ε0 is the vaccum permittivity. We consider the more realistic situation in which the

electrons are non-isothermal. In this case the electron number density is replaced

by [3,4],

ne = exp(Φ)erf
(
Φ

1
2

)
+ β− 1

2 ×
⎧⎨⎩

exp(βΦ)erf((βφ)
1
2 ) β ≥ 0

(2/π
1
2 )W ((−βΦ)

1
2 ) β < 0

⎫⎬⎭
Where W is the Dawson integral. β =

Tef

Tet
�= 1 and Tet is the constant temperature

of the trapped electrons. For weekly nonlinear waves the electron number density

becomes

ne = 1 + Φ− 4

3
bΦ

3
2 +

1

2
(Φ2) (4)

where b = (1− β)π− 1
2 , measures the deviation from isothermality. We assume that

b > 0, which is suggested by experiment [3], and this term is the contribution of
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the resonant electrons to the electron density. b = 0 if electrons are isothermal and

resonant effects are absent.

3. DERIVATION OF MKP AND MZK EQUATION

To derive the Modified Kadomtsev-Petviashvili equation, we use the standard re-

ductive perturbation method and in order to find a suitable choice of scaling for the

independent variable, we use a linear dispersion argument, similar to the one used

by Infeld and Rowlands (1990, Appendix 1) in their derivation of the ZK equation.

According, we choose the following scaling for the independent variables:

ξ = ε
1
4 (x− t) , σ = ε

1
2y , τ = ε

3
4 t (5)

From the basic Eqs. (1)-(3) and (4), we expand the density, fluid velocities and

electrical potential asymptotically by a smallness parameter ε as

n = 1 + εn(1) + ε
3
2n2 + ...

Φ = εΦ(1) + ε
3
2 Φ(2) + ... (6)

νx = εν(1)
x + ε

3
2ν(2) + ...

νy = ε
1
4 (εν(1)

y + ε
3
2ν(2)

y + ...)

For Ωc = 0 and using the scaling above, the basic equation is simplified to the

Modified Kadomtsev-Petviashili equations [5].[
∂τn + bn

1
2∂ξn +

1

2
∂3

ξn

]
ξ

+
1

2
∂2σn = 0 (7)

Here, we have set n1 = n. One dimensionally (∂σ = 0) this equation is identical

to the Modified Korteweg-deVries (MKdV) equation. It was shown that the MKP

equation has the stationary plane soliton solutions [5].

On the other hand, for Ωc ∼ 1, the MZK equation can be derived. In the

presence of an external magnetic field we replace in (5) and (6) the following variables

σ = ε
1
4y , η = ε

1
4 z , v⊥ = ε

5
4ν

(1)
⊥ + ε

3
2v

(2)
⊥ + ... (8)

The longitudinal dynamics and therefore the longitudinal scaling is unchanged com-

pared with (5),(6). Straightforward but lengthy calculations lead to the MZK equa-

tion

2∂τn + 2bn
1
2∂ξn + ∂3

ξn + (1 + Ω−2c)∂ξ(∂
2
σ + ∂2

η)n = 0 (9)
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As discussed in reference [6], the soliton solutions are stable with respect to trans-

verse perturbations when Ωc = 0, on the other hand, for Ωc ∼ 1 soliton solutions

are unstable.

4. SCALING FOR WEAK MAGNETIC FIELDS

In Sec. 3 we have shown that in the two limits Ωc = 0 and Ωc ∼ 1 qualitatively

different results for the two-dimensional dynamics are obtaining most particle ap-

plications are in the region where Ωc 
 1; the behavior in that region is described

correctly neither by the MKP equation nor by the MZK equation. Therefore, we

derive a new equation which is valid in this intermediate region. To derive the new

equation, we use the following stretched variables

ξ = ε
1
4 (x− t) τ = ε

3
4 t

σ = ε
1
2y η = ε

1
2 z (10)

together the additional condition, Ωc ∼ ε
1
4 . We expect the dependent variables to

take the form

n = 1 + εrn1n(1) + εrn2 + ...

Φ = εrΦ1Φ(1) + εrΦ2Φ(2)... (11)

νx = εrx1ν(1)
x + εrx2ν(2)

x + ...

ν⊥ = εr⊥1ν
(1)
⊥ + εr⊥2ν

(2)
⊥ + ...

From the basic equation and Eqs.(10) and (11), we obtain all powers of variables in

Eq.(11). Comparing the various order in ε, we obtain the lowest order

∂ξn
(1) = ∂ξν

(1)
x , rn1 = rx1 (12)

∂ξv
(1)
x = ∂ξΦ

(1), rx1 = rΦ1, (13)

∂ξν
(1)
y = ∂σΦ(1) − Ωcν

(1)
z , ν⊥1 = rΦ1 +

1

4
(14)

∂ξν
(1)
z = ∂τΦ

(1) − Ωcν
(1)
y , (15)

Φ(1) = n(1) rΦ1 = rn1. (16)

the higher-order equations then yield

∂τn
(1) − ∂ξn

(2) + ∂ξν
(2)
x + ∂σν

(1)
y + ∂ην

(1)
z = 0 rx2 = rn2 (17)

∂τν
(1)
x + ∂ξΦ

(2) − ∂ξν
(2)
x = 0 (18)
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∂ξν
(2)
y = ∂τν

(1)
y + ∂σΦ(2) − Ωcν

(2)
z r⊥2 = r⊥1 +

1

2
(19)

∂ξν
(2)
z = ∂τν

(1)
z + ∂ηΦ

(2) + Ωcν
(2)
y (20)

∂2
ξ Φ

(1) = Φ(2) − 4

3
bΦ(1)

3
2 − n(2) , rΦ2 = rn2 (21)

From Eqs. (12), (13) and (16) we get

n(1) = Φ(1) = ν(1)
x (22)

Taking the derivative of Eq. (21) with respect to

∂ξn
(2) = ∂ξΦ

(2) − 2bΦ(1)
1
2 ∂ξΦ

(1) − ∂3
ξ Φ

(1),

and using equation (16) and (17), we obtain from Eq. (18)

2∂τn
(1) + 2bΦ(1)

1
2 ∂ξΦ

(1) + ∂3
ξ Φ

(1) + ∂σν
(1)
y + ∂ην

(1)
z = 0 (23)

whereas Eqs. (14) and (15) yield.(
∂2

ξ + Ω2
c

)
∂σν

(1)
y = ∂σσξΦ

(1) − Ωc∂ησΦ(1) (24)(
∂2

ξ + Ω2
c

)
∂ην

(1)
z = ∂ηηξΦ

(1) + Ωc∂σηΦ
(1)

We can combine Eqs. (23) and (24) to get

2∂τn + 2bn
1
2∂3

ξn + ∂3
ξn +

(
∂2

ξ + Ω2
c

)−1
∂ξ

(
∂2

σ + ∂2
η

)
n = 0. (25)

where we have set n1 = n. Equation (25) is the new nonlinear equation for ion

acoustic waves in weak magnetic fields. First for ∂σ = ∂η = 0 we recover the

MKVdV equation. Secondly for Ωc = 0, the MKP equation (7) is obtained. Finally

for Ω2
c � ∂2

ξ , an equation similar to the MZK equation, (9) arises. However it should

not be expected that Eq.(9) and (25) have a common region of applicability since

they have been derived for complementary Ωc regions.

5. CONCLUSION

In this paper we have derived a new nonlinear equation using the well-known re-

ductive perturbation method. This nonlinear equation describes ion-acoustic waves

in a plasma consisting of cold ions and nonisothermal electrons with weak magnetic

fields. The new equation is transformed into the MKP from for Ωc = 0, and the

MZK equation for Ωc 1. It covers the most important region, where the transition

from stable to unstable behavior occurs. The stability of this equation is not inves-

tigated in this paper but is under investigation.
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1. INTRODUCTION

Derivatives are financial instruments which derive their value from some other un-

derlying asset; examples include options and futures on equities and equity indices.

This paper is concerned with options, which as their name suggests give the holder

a choice, carrying the right but not the obligation to buy (or sell) the underlying

asset. They have numerous uses, such as speculation, hedging, generating income,

and they contribute to market completeness. Although options have existed for far

longer, their use has exploded since the occurrence in 1973 of two seminal events in

the history of options: the publication of the Black-Scholes option pricing formula

[1, 2], enabling investors to price certain options, and the opening of the Chicago

Board Options Exchange (CBOE), the first secondary market for options, which gave

an investor holding options a marketplace for reselling those options to another in-

vestor, in addition to the choices of holding the option to expiry, or exercising early

if that was permitted.

Options can be categorized in several ways, one method being by the exercise

characteristics. It is fairly easy to value European options, which can be exercised

only at expiry, a pre-determined date specified in the option contract. However,

American options, which can be exercised at the holder’s discretion at or before

expiry, are much harder to price, since the early exercise feature necessitates a

decision by the holder as to whether and when to exercise such an option, and this

is one of the best-known problems in mathematical finance, leading to an optimal

exercise boundary and an optimal exercise policy, which if followed will maximize

the expected return to the holder and thereby the value of the option. Ideally, an

investor would be able to constantly calculate the expected return from continuing

to hold the option, and if that is less than the return from immediate exercise, he
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should exercise the option. This process would tell the investor the location of the

optimal exercise boundary. However, except for one or two very special cases, no

closed form solutions are known for the location of the optimal exercise boundary,

and in general either numerical solutions or approximations must be used to locate

it. Both of these approaches are fairly well-developed, and for a review, the reader

is referred to the monographs [3, 4]. Both of these approaches can also be difficult

and time-consuming, and whereas an institution can perform those calculations

and thereby optimize their return, an individual may well be unable to do this, and

instead have his own elementary exercise policy, choosing to exercise the option when

certain conditions are met, for example when the value of the option reaches some

multiple of the exercise price. We will refer to such an individual as an uninformed

investor. The expected return from such sub-optimal strategies will be less than or

equal to that when the optimal exercise policy is pursued, indeed hence the term

sub-optimal.

2. MONTE CARLO SCHEME

In this study, we use a Monte Carlo scheme to look at several such strategies that

an amateur investor might follow, and calculate the expected return using each of

these strategies. We considered both call options, which give the holder the right

to buy the underlying stock at the strike price E, and put options, which carry the

right to sell the underlying at the price E. In what follows, S denotes the price of

the underlying at time t, while S0 = S(t0) is the initial value of S at the time t0 the

option was purchased. In terms of S and S0, the 8 strategies we used for the call

option to exercise the option when:

(1): Never (i.e. treat the option like a European).

(2): If S is 110% or more of S0 (put: S ≤ 0.9 S0).

(3): If S is 115% or more of S0 and in money (put: S ≤ 0.85 S0).

(4): If S is greater than S0 and at or in money (put: S < S0).

(5): If S goes down by 10% and still in money (put: S ≥ 1.1S0).

(6): If S goes down by 5% (put: S ≥ 1.05S0).

(7): If S goes down by 10% from its peak and in money (put: S up by 10% from

trough).

(8): If S goes up on 5 successive time-steps and is in money (put: down).

In the above, the corresponding strategy used for the put is given in parentheses

where it differs from that for the call. We should recall that for the call with no

dividends, it is never optimal to exercise, so we would expect strategy (1) to be

the best for the call. In strategies (2)-(6), we are treating the option as a barrier
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option. The motivation for strategies (2)-(3) was that some investors will exercise

when they feel they have made sufficient profit, while that for strategies (5)-(6) was

that other investors will be spooked by losses and pull out of the market.

In addition to evaluating the expected return to an investor if he were to follow

one of these elementary strategies, we will also look at how the expected return is

affected by how often the investor checks to see if his exercise criteria have been

met. As we mentioned above, we will tackle this problem with Monte Carlo simula-

tion. This approach is well-suited for this particular problem, since the underlying

stock price S is assumed to follow a random walk. The use of Monte Carlo meth-

ods for option pricing was pioneered by Boyle [5], and these methods have since

become extremely popular because they are both powerful and extremely flexible.

Although the use of Monte Carlo methods to value American options is still a nebu-

lous problem, with for example several researchers pursuing Malliavin calculus while

others are attempting different approaches, the difficulties with American options

stem from the need to locate the optimal exercise boundary, and for the problem

studied here, that is not an issue: rather, we are calculating what an option is worth

if one of several elementary strategies is followed, and so the location of our (sub-

optimal) exercise boundary is fairly simple. Returning to option pricing in general,

in this context, Monte Carlo methods involve the direct stochastic integration of

the underlying Langevin equation for the stock price, which is assumed to follow a

log-normal random walk or geometric Brownian motion. The heart of any Monte

Carlo method is the random number generator, and our code employed the Netlib

routine RANLIB, which produces random numbers which are uniformly distributed

on the range (0, 1) and which were then converted to normally distributed random

numbers. This routine was itself based on the article by L’Ecuyer and Cote [6]. An-

tithetic variables were used to speed convergence, and a large number of realizations

were performed to ensure accurate results. Our simulations, including other runs

not presented here, required about a month’s CPU time on a DEC Alpha and were

performed on the Beowulf cluster at the University of Western Ontario.

The starting point of our analysis is the risk-neutral random walk for the price

of the underlying S in the absence of dividends,

dS/S = rdt+ σdX, (1)

where dX describes the random walk, dt is the step size, taken to be 0.01 in our

simulations, r is the risk free rate, σ the volatility, and dS is the change in S in

time dt. If we assume that the simulation is started at time t0 and ends at expiry

T , then the other parameters which affect the simulations are the initial stock price
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S0 = S(t0), the exercise price E and the tenor or time to expiry, τ = T − t0. For

each value of the parameters, a separate set of runs was done for each of the exercise

strategies. For each realization, at each time step, we first check to see if the exercise

criteria has been satisfied, and either exercise at that step or continue to the next

time step, and repeat this procedure either the option has been exercised or we

reach expiry, at which time the option is either exercised or expires worthless. For

each realization, we calculate the payoff, which is max [S (TE)− E, 0] for the call

and max [E − S (TE) , 0] for the put, where TE is the time at which the option was

exercised. We then discount this value back to the starting time to find its present

value, using the discount factor exp [r(TE − t0)]. The value of the option is the

average over all realizations of this present value.

3. RESULTS

In this section, we present the results of some of our simulations, and in particular

examine the effects of varying the various parameters. In figures 1 (for the call) and

2 (for the put), we look at the effect of varying the strike price E for the call while

holding the other parameters fixed.

For the call, strategy (1) (holding) is best, which is to be expected given that it

is never optimal to exercise a call with no dividends. By contrast, for the put, no one

strategy is best, and in actuality, they are all bad. Holding is no longer optimal and

is sometimes the worst strategy amongst those studied. While for the call, the value

always increased with time to expiry, for the put sometimes the value decreased and

sometimes it increased. Presumably, this happens because some of the strategies

for the put are especially bad, and increasing the tenor increases the possibility of

inopportune exercise. The results from figures 1 and 2 are collapsed onto single

curves in figure 3, where we see that as we increased the exercise price, the value of

the call decreased while that of the put increased. This dependence on exercise price

is of course to be expected from our knowledge of the greeks. Similarly, in figure 4,

we looked at the effect of varying the initial stock price, finding as expected that as

we increased S0 the option value increased for the call but decreased for the put. As

expected, the dependence on S0 is in the opposite direction to that on E.
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Fig1: Effect of E: call. S0 = 1, r = .05, σ = .1. (a) E=.5, (b) 1, (c) 1.5, (d) 2.
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Figure 3: Effect of E. S0 = 1, r = .05, σ = .1, τ = .5. (a) call, (b) put.
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Figure 4: Effect of S0. E = 2, r = .05, σ = .1, τ = .5. (a) call, (b) put.

In figure 5, we examine the effects of varying the volatility, and find that for

both the put and call, increasing σ leads to an increase in the value of the option,

again as expected from our knowledge of vega.

In figure 6, we look at the effect of varying the risk-free rate, and find that

increasing r increases the option value for the call but decreases it for the put, and

again, this was as expected from our knowledge of theta.
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Figure 5: Effect of σ. cE = 2, r = .05, S0 = 1, τ = .5. (a) call, (b) put.

39



0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
interest rate

(a)

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
interest rate

(b)

Figure 6: Effect of r. E = 2, σ = .1, S0 = 1. (a) call τ = 2.5, (b) put τ = .5.

We also studied the effect that the frequency of application of the strategy

had on the expected returns from the option. Our results are shown in figure 7,

with a logarithmic scale used solely for ease of viewing. The time-step used in our

simulations was dt = 0.01, and to examine the effects of frequency we applied the

strategy initially every step or 0.01 time units, and then (in different runs) every 10

steps (0.1 units), 100 steps (1 units), 500 steps (5 units) and 1000 steps (10 units).

The motivation for this was an attempt to model the real world behavior of different

classes of investor, ranging from institutions using computer trading through a day

trader who is constantly checking prices, and an average investor who might check

prices daily of weekly, to a pension fund investor gets report once a month. Here,

we are essentially treating the option like a Bermudan (which is sometimes known

as a semi-American option as it can be exercised on a finite number of dates prior to

expiry), as indeed we have in this entire study since we are using a finite time-step

and therefore checking for exercise on a finite (if fairly large) number of occasions.
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Figure 7: Effect of checking. E = 2, σ = .1, r = .05, S0 = 1, τ = 20. (a) call, (b) put.

We see that for the call, strategy (1), which was holding, is unaffected by the fre-

quency of checking and while (5), a down-and-out barrier at S = 0.9S0, is little

affected by the frequency since exercise is infrequent for these particular parameter

value, but that amongst the other strategies increasing the interval between checks

leads to an increase in value. We should recall that it is never optimal to exercise the

call without dividends, so that increasing the interval reduces the likelihood of inop-

portune exercise. For the put, strategy (1), which was holding, is again unaffected

by the frequency, while for the other strategies, increasing the interval leads to a

decrease in value. We should recall that it is sometimes optimal to exercise the put

even without dividends, so that increasing the interval reduces exercise possibilities.

4. CONCLUSION

In this paper, we have looked at a number of elementary exercise strategies for

American options, and used a Monte Carlo scheme to find the returns that an

investor would expect if he followed one of these strategies, looking at the effects

of varying each parameter while holding the others fixed. The variation of the

expected returns with these parameters was largely as expected from the greeks

such as vega and rho. As expected, for a call without dividends, holding was the

best strategy. For the put, no single strategy amongst those studied was best, with

different strategies being better in different areas of parameter space; in fact, all

of the strategies for the put and all apart from holding for the call were fairly bad

strategies from the point of view of the returns that an investor would expect if he

pursued one of those strategies, and so our advice to an unsophisticated investor

would be to steer clear of American options.
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In closing, we would like to point out some related work which we recently

presented. In [7], rather than consider the elementary exercise strategies presented

here, we calculated the value of an American option if the holder employed an

exercise strategy based on the series solutions for the optimal exercise boundary

presented in [8, 9].
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1. INTRODUCTION

Let G be a finite group, H a subgroup of G and H ′ the subgroup of H generated by

the commutators of H. If Hτ1, Hτ2 · · ·Hτn are the distinct cosets of H in G, then

for every σ ∈ G and each index i there is an element φi(σ) ∈ G and an index j such

that

τiσ = φi(σ)τj.

The transfert from G to H is a homomorphism V defined on G with values in H/H ′

by

V (σ) = H ′φ1(σ) · · ·φn(σ).

The principal ideal theorem of group theory is an application of the transfert map

from G to G′.

Theorem 1.1 (Principal ideal theorem of group theory). Let G be a finite group,

then the transfert from G to G′ is the trivial homomorphism.

Let k be a number field of finite degree over Q, Ok be its ring of integers and

Ck the class group of k, i.e. the quotient of the set of fractional ideals of k by the

set of principal fractional ideals of k.

Let F be an unramified extension of k of finite degree and let OF be its ring of

integers. We say that an ideal A of k (or the ideal class of A) capitulates in F if it

becomes principal in F, i.e., if AOF is principal in F.

The Hilbert class field k1 of k is by definition the maximal abelian unramified

extension of k. Let p be a prime number; the Hilbert p-class field k
(p)
1 of k is the

maximal abelian unramified extension of k such that [k
(p)
1 : k] = pn for some integer

n.

The first important result on capitulation was conjectured by D. Hilbert and proved

by E. Artin and P. Furtwängler by the transfer theory of groups (theorem 1.1). It
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deals with the case F = k1.

Theorem 1.2 (Principal ideal theorem). Let k1 be the Hilbert class field of k, then

every ideal of k capitulates in k1.

The case where F/k is a cyclic extension of prime degree was studied by D.

Hilbert in his Theorem 94:

Theorem 1.3 (Theorem 94). Let F/k be an unramified cyclic extension of prime

degree, then there exists at least one non trivial class in k which capitulates in F.

We find in the proof of Theorem 94 this result:

Let σ be a generator of the Galois group of F/k and NF/k be the norm of F/k.

Let EL be the unit group of the field L. Let E∗
F be the group of units of norm 1

in F/k. Then the group of classes of k which capitulates in F is isomorphic to the

quotient group E∗
F/E

1−σ
F = H1(EF), the cohomology group of G = 〈σ〉 acting on the

group EF.

With this result and other results on cohomology, we have:

Theorem 1.4 Let F/k be an unramified cyclic extension of prime degree, then the

number of classes which capitulate in F/k is equal to [F : k][Ek : NF/k(EF)].

The case where F/k is an unramified abelian extension was treated by H. Suzuki

who has proved Miyake’s conjecture: In an unramified abelian extension F/k the

number of classes of k which capitulate in F is a multiple of [F : k]. Moreover, H.

Suzuki has proved the next theorem which is generalization of the principal ideal

theorem, the Hilbert theorem 94 and Tannaka-Terada’s principal ideal theorem:

Theorem 1.5 Let k be a finite cyclic extension of an algebraic number field k0 of

finite degree, and let K be an unramified extension of k which is abelian over k0.

Then the number of the G(k/k0)-invariant ideal classes of k which become principal

in K is divisible by the degree [K : k] of the extension K/k.

The group theoretical endomorphism version of this theorem is

Theorem 1.6 Let g be an endomorphism of finite group G, and H be a normal

subgroup of G containing the commutator subgroup G′. If g(H) ⊂ H and g induces
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the identity map on G/H, then the order of the subgroup

{hG′ ∈ KerVG−→H : g(h)h−1 ∈ G′}

of the transfer kernel is divisible by [G : H]. Here VG−→H is the group transfer from

G to H.

For more details, see [23], [22], [18], [7], [5], [10] and [12].

2. CAPITULATION OF THE 2-IDEAL CLASSES OF SOME BIQUADRATIC

FIELDS

2.1 The General Case

Let k be a number field such that the 2-component Ck,2 of Ck is isomorphic

to Z/2Z×Z/2Z. Let G2 be the Galois group of k
(2)
2 /k and k∗ be the genus field of

k

( the maximal unramified extension of k of the form k�L where �L is an abelian

extension of Q). By class field theory, Gal(k
(2)
1 /k) � Ck,2 � Z/2Z × Z/2Z. Then

k
(2)
1 contains three quadratic extensions of k denoted by F1, F2 and F3.

k
(2)
2

k
(2)
1

F1 F2 F3

k

Q

Diagram 1

Under these conditions, from the results of Kisilevsky [12], we have the following

Theorem 2.1 Let k be such that Ck,2 � Z/2Z × Z/2Z. Then we have three types

of capitulation:
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Type 1: The four classes of Ck,2 capitulate in each extension Fi, i = 1, 2, 3. This is

possible if and only if k
(2)
1 = k

(2)
2 . In this case G2 � Z/2Z× Z/2Z.

Type 2: The four classes of Ck,2 capitulate only in one extension among the three

extensions Fi, i = 1, 2, 3. In this case the group G2 is dihedral.

Type 3: Only two classes capitulate in each extension Fi, i = 1, 2, 3. In this case the

group G2 is semi-dihedral or quaternionic. It is the quaternionic group if and

only if there exists an i such that the non trivial class which capitulates in Ki

is norm in Ki/k.

2.2 The Case Of Biquadratic Fields

In this paragraph, we suppose that k is a biquadratic field such that the 2-group

Ck,2 � Z/2Z×Z/2Z, and we study the capitulation problem in the extensions Fi/k,

i = 1, 2, 3 and the structure of the group G2.

In particular, we found the next theorem

Theorem 2.2 Let k = Q(
√

2q1q2, i) where q1 and q2 are primes such that, (
q1
q2 ) =

−(
q2
q1 ) = ( 2

q1 ) = −( 2
q2 ) = 1, then k

(1)
2 = Q(

√
2,
√
q1,
√
q2, i). Let K1 = Q(

√
q1,
√

2q2, i),

K2 = Q(
√
q2,
√

2q1, i) and K3 = Q(
√

2,
√
q1q2, i), then two classes of Ck,2 capitulate

in each extension Ki, i = 1, 2, 3. In this case the group G2 is semi-dihedral or

quaternionic.

Proof.

By [2], we have that the 2-class group of k is the Klien group, and by computing

the degree of the genus field of k we found that k
(1)
2 = Q(

√
2,
√
q1,
√
q2, i). We have

to study the capitulation problem in the three sub-extensions of k
(1)
2 /k. Using the

fundamental system of units of the fields Ki, i = 1, 2, 3 (Theorem 9 and 12 of [5]

and [3]), we have:

Let ε1 (resp. ε2, ε3) be the fundamental units of k′
1 = Q(

√
q1) (resp. k′

2 =

Q(
√

2q2), k′
3 = Q(

√
2q1q2). In our case 2ε3 is not a square in k′

3; then the fun-

damental system of units of K is {ε3} and the fundamental system of units of K1

is

{√iε1,
√
iε2,
√
iε3} or {√iε1,

√
iε2,
√
ε3}.

The torsion subgroup of the units group of K is generated by
√−1 = i and the
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torsion subgroup of the units group of K1 is generated by
√−1 = i. So, we have

[Ek : NK1/k(EK1)] = 1.

Let ε1 (resp. ε2, ε3) be the fundamental units of k′
1 = Q(

√
q2) (resp. k′

2 =

Q(
√

2q1), k′
3 = Q(

√
2q1q2). In our case 2ε3 is not a square in k′

3; then the funda-

mental system of units of K is {ε3} and and the fundamental system of units of K2

is

{√iε1,
√
iε2,
√
iε3} or {√iε1,

√
iε2,
√
ε3}.

The torsion subgroup of the units group of K is generated by
√−1 = i and the

torsion subgroup of the units group of K2 is generated by
√−1 = i. So, we have

[Ek : NK2/k(EK2)] = 1.

Let ε1 (resp. ε2, ε3) be the fundamental units of k′
1 = Q(

√
2) (resp. k′

2 =

Q(
√
q1q2), k′

3 = Q(
√

2q1q2). In our case 2ε3 is not a square in k′
3; then the funda-

mental system of units of K is {ε3} and and the fundamental system of units of K3

is

{ε1, ε2,
√
ε2ε3}.

The torsion subgroup of the units group of K is generated by
√−1 = i and the

torsion subgroup of the units group of K3 is generated by
√
i. So, we have [Ek :

NK3/k(EK3)] = 1.

Finally, the number of classes of Ck,2 which capitulate in each extension Ki,

i = 1, 2, 3 is equal to [Ki : k][Ek : NKi/k(EKi
)] = 2.

The 2-class group of k can be generated by classes of prime ideals of k laying

above the ramified primes in k/Q. But in our case this is not possible, we have only

one non trivial class generated by the prime ideal I0 above the prime 2 ( 2Ok = I4
0 ).

We choose the second generator as the following:

Let l be a prime such that (
q1
l

) = (
q2
l

) = −1 and (2
l
) = (−1

l
) = 1. The prime l

exists

( see [sim- 95]) and splits completely in k/Q, then there exists some ideals I1, I2, I3
and I4 of k such that lOk = I1I2I3I4. We prove that I1 is not principal and if m is

the odd part of the class number of k then Ck,2 is generated by the class of I0 and

the class of Im
1 .

The ideal I1 is inert in Ki/k, i = 1, 2 and splits in K3/k. Also the ideal I0 is

inert in Ki/k, i = 2, 3 and splits in K1/k. So we have

- the ideal class of Im
1 isn’t norm in K2/k.

- the ideal class of I0 isn’t norm in K2/k.
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- the ideal class of I0I
m
1 isn’t norm in K2/k.

- the ideal class of Im
1 is norm in K3/k.

- the ideal class of I0 isn’t norm in K3/k.

- the ideal class of I0I
m
1 isn’t norm in K3/k.

- the ideal class of Im
1 isn’t norm in K1/k.

- the ideal class of I0 is norm in K1/k.

- the ideal class of I0I
m
1 isn’t norm in K1/k.

- The ideal I0 capitulates in K3:

We have (
√

2
√
i)OK3 = I2

0 and
√

2
√
iε1 = α2 where

α =
1 +
√

2 + i√
2

∈ K3.

Then

I0 = αOK3 with α ∈ K3.

From this remarks and using theorem 2.1, we obtain that

• One class from the classes of I0, I
m
1 or I0I

m
1 capitulates in K2/k and it isn’t

norm from K2.

• If I0 capitulates in K1/k, then the group G2 is quaternionic.

• If I1 capitulates in K3/k, then the group G2 is quaternionic; but I0 capitulates

in K3/k and the number of classes which capitulate in K3/k is equal to 2. So

this case can’t occur.

• In the other cases the group G2 is semi-dihedral.

We conclude that G2 is quaternionic if and only if I0 capitulates in K1/k.

More generally, we have the following theorem

Theorem 2.3 Let k be a biquadratic field such that Ck,2 � Z/2Z × Z/2Z, and G2

be the Galois group of k
(2)
2 /k.

i) If k = Q(
√
d, i), then the group G2 is dihedral, semi-dihedral, quaternionic or

Z/2Z× Z/2Z.

ii) If k = Q(
√
d,
√−2), then the group G2 is dihedral, semi-dihedral, quaternionic

or Z/2Z× Z/2Z.

iii) If k = Q(
√
d,
√
p) where d ∈ N, p ≡ 1 mod 4 is prime, then the group G2 is

dihedral, quaternionic or Z/2Z× Z/2Z.
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iv) If k = Q(
√
d,
√

2), where d ∈ N then the group G2 is dihedral, quaternionic or

Z/2Z× Z/2Z.

v) If K = Q(
√

2p′,
√
qp) where p, p′ and q are primes such that ( p

p′ ) = ( q
p
) = −(2

p
) =

−( 2
p′ ) = −( q

p′ ) = −(2
q
) = 1 then the group G2 is semi-dihedral.

As the last theorem, to prove this theorem we must

1) study the structure of Ck,2. Using the Genus theory, the class number formula for

biquadratic fields, Kaplan’s results on the 2-part of the class number for quadratic

number fields and other results.

2) determine the number of ideal classes which capitulate in Fi/k, i = 1, 2, 3. So

we have to determine the unit group of each Fi, i = 1, 2, 3, where Fi is a composite

of three quadratic fields. 3) determine the conditions such that k
(2)
1 = k

(2)
2 .

4) study the structure of the 2-class group of some Fi.

5) determine some classes of Ck,2 and study their capitulation in every Fi.

For more details on this theorem, see [4], [5], [18], [7] and [10].

Numerical examples

Let be k = Q(
√
d, (
√
d′).

d d’ G2

119 -1 Z/2Z× Z/2Z

287 -1 dihedral

-2 102 dihedral

-2 493 quaternionic

2 24947 semi-dihedral

113 10 quaternionic
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Abstract

In this paper Runge-Kutta Neural Networks (RKNN’s) for solving delay differen-

tial equations(DDE) in high accuracy have been developed. These networks are

constructed according to the Runge-Kutta approximation method. The learning

algorithm is developed for the RKNN’s nonlinear recursive least-squares based al-

gorithm.

KEY WORDS: Runge-Kutta methods, Delay differential equations, Nonlinear

recursive least square.

1. INTRODUCTION

The Runge-Kutta method for solving DDE have been studied by several authors [1],

[2], [3]. In recent years neural networks have been widely used for identification for

dynamical system [4], [5].

Using the neural networks, in this paper a class of feed forward neural networks

called Runge-Kutta Neural Networks (RKNN’s) for precisely modeling a DDE in

the form x′(t) = f(xt) with an unknown f , have been established.

The neural approximation of f is used in the well known Runge-Kutta inte-

gration formulae [6] to obtain an approximation of x. With the designed network

structure and learning scheme, the RKNN’s perform high order discretization of

unknown DDE systems implicitly without the aforementioned complexity and in-

tractability problems. The main attraction of RKNN’s that they can precisely es-

timate the changing rates of system states directly in their subnetwork based on

52



the space- domain interpolation within one sampling interval such that they can do

long-term prediction of systems state trajectories and are good at parallel model

prediction. Also, since the RKNN’s models the right hand side of DDE in its sub-

networks directly, some known continuous relationship of the identified system can

be incorporated into the RKNN directly to speed up its learning. Such kind of a

priori knowledge is not easy to be used directly in normal neural identifiers. Another

important feature of RKNN is that it can predict the system behavior at any time

instant, not limited by fixed time step as the case in normal neural modeling. An

n-order RKNN consists of n identical subnetworks connected in the way realizing

an n-order Runge-Kutta algorithm.

The subnetwork is a normal neural network such as multilayer perceptron net-

work or radial basis function network. Each subnetwork models the right-hand side

of DDE directly, and thus the RKNN can approximate an DDE system in high-

order accuracy. Here verify theoretically the superior generalization and long-term

prediction ability of the RKNN’s over the normal neural networks by providing

some quantitative measures of the errors involved in the RKNN’s modelling. Asso-

ciated with the RKNN’s is a class of learning algorithms derived by the recursive

least-square (RLS) method. Especially a class of RLS algorithm, called non linear

recursive least-square(NRLS)learning algorithm, is derived to increase the learning

rate and prediction accuracy of the RKNN’s. The NRLS generalizes the original

RLS to non linear cases such that it can tune the parameters in the hidden layers of

the RKNN’s such as the centers and variances of the radial basis function networks.

2. RUNGE-KUTTA NEURAL NETWORK

Consider a non linear system described by the following DDE

x′(t) = f(xt), t ≥ 0, x0 = φ. (1)

xt will denote the function with domain [−r, 0) defined by xt(θ) = x(t + θ),−r ≤
θ ≤ 0, the state vector x(t) ∈ �m. The objective of this paper is to develop a neural

network that can model an DDE system precisely whose right-hand side function f

is unknown such that it can do long-term prediction of the state trajectory x(t) of

the system described in (1). The derived model is to be a parallel-model predictor.

It uses the initial system state φ, which yield the long-term output y(t), with high

accurate prediction of the state x(t) over t ∈ [−r, T ] giving the previous outputs of

the identifier back to itself recursively.

To predict the state trajectory of the unknown system described by (1). There
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are two methods available, first is known as conventional and the second namely

neural-network based approach see [4], [8]. To construct a neural network say Ñf (·),
this will learn the system state trajectory, that is x(ih;φ) ∼= Ñf

(
x((i− 1)h);φ

)
.

Here a learning algorithm for the RKNN such that the function f(·) in (1)

directly approximated from Nf (·) is developed and then the state trajectory x(t)

can be predicted by the solution of y′(t) = Nf (yt) with initial conditions y(0) = φ

where y(t) ∈ �m.

3. THE STRUCTURE OF RKNN

The new neural network Nf (·) such that y′(t) = Nf (yt;w) can do long-term pred-

ication of the state trajectory x(t) to any degree of accuracy. From the universal

approximation theory of neural networks [9] and the delay differential equations

theory, we prove the following lemma.

Lemma 3.1 Given any solution x(t, φ) of the system described in (1)with φ ∈ D, t ∈
[−r, T ] and a function f(·) satisfying the assumption(see[7]) for any ε > 0 there exist

a neural network Nf (·) such that the trajectory y(t;φ) corresponding to the system

y′ = Nf (yt;w) with y(0) = φ satisfies ||yt(φ)− xt(φ)|| < ε for all −r ≤ t ≤ T, which

shows the existence of the neural network that meets the required property.

Construct a neural network RKNN, that fits Lemma 3.1. which is motivated

by the Runge-Kutta algorithm [6] and construct an n- order RKNN to realize the

computation flow of an n-order RKNN algorithm.

The input -output relationship of the fourth-order RKNN is described by

y(i+ 1) = y(i) +
h

6
(k0 + 2k1 + 2k2 + k3), (2)

where

k0 = Nf (yti(·);w),

k1 = Nf (yti(·) +
1

2
hk0;w),

k2 = Nf (yti(·) +
1

2
hk1;w),

k3 = Nf (yti(·) + hk2;w)
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The neural network Nf (xt;w) with input x and weights w can be the multi

layer perceptron network or the radial basis function network. It is noted that four

Nf (x;w) are identical, which means, that they have same structure and use the

same corresponding weights. It is enough to train only one network for software or

hardware implementation.

Using supervised learning algorithms, we can tune the weights, w of Nf (xt;w)

by training the RKNN on training trajectories obtained by the system (1). The

total prediction error is sufficiently small or the weight vector w converges to w∗,
from this obtain a RKNN Nf (xt;w

∗) which approximates the continuous function

f(xt) of the system in (1) accurately.

4. LEARNING ALGORITHM FOR THE RKNN

Consider an initial state φ ∈ D and a trajectory x(t, φ) which is the solution of

system x′(t) = f(xt) corresponding to the initial state φ. At each time step h, the

sampling data

x(i;φ) ≡ x(ih;φ), i = 0, . . ., (T/h) = L− 1, where h is small.

Collecting x(i;φ) for several different initial states φ ∈ D as a training data

of the RKNN. By the learning algorithm developed in this section, the weights

w of Nf (xt;w) in the RKNN are tuned such that the outputs y(t;φ) of the iden-

tified system y′(t) = Nf (yt;w), y(0) = φ can approximate the solution x(t, φ) of

x′(t) = f(xt), x(0) = φ, for all t in some fixed interval [−r, T ]. We shall develop the

non linear recursive least square (NRLS) algorithm, for the RKNN’s. The NRLS

algorithm, generalize the conventional recursive least square (RLS) algorithms to

non linear cases. The number of iteration is increased to improve the accuracy by

minimizing the square error function E(w). The RLS method finds the root of the

equation ∂E(w)
∂w

= 0 to locate the local minimum points directly. . This equation can

be transformed into regression model as ψT (·)w = 0, where w represents network

weight and ψ is the regressor. To solve the equation ψT (·)w = 0 we use a recursive

algorithm.

4.1 Zero order NRLS learning algorithm

The radial basis functions Nf (·) in the RKNN is chosen to tune the weights

W on the links connecting the radial basis functions nodes ψj(·; tl, δl) to the output
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layer of Nf (·). Assume the training trajectories {x(i;φ)| i = 0, . . ., L − 1, φ ∈ D}
from the system x′(t) = f(xti) with x(0) = φ

Define, E(W ) = 1
2

∑
(x(i) − y(i))2, i = 1 to L, where y(i) is the output of the

RKNN. According to the RKNN structure described in (2) the output y(i) of the

RKNN with input x(i− 1) at time step i− 1 can be written as

y(i) = x(i− 1) +
h

6

[ N∑
l=1

Wlψl(x(i− 1)) + 2
N∑

l=1

Wlψl(x(i− 1) +
h

2
K0(i− 1))

+2
N∑

l=1

Wlψl(x(i− 1) +
h

2
K1(i− 1)) +

N∑
l=1

Wlψl(x(i− 1) + hK2(i− 1))
]
, (3)

where ψl is the lthradial basis function, Wl is the connection weight between ψl node

to the output node of Nf (·) and Ko, K1, K2 are the output of Nf (·) subnetwork in

the RKNN defined by (2). The regression form ψ(x(i − 1);W ) of y(i) − x(i − 1)

in(3) such that the connection weights Wl ’s can be obtained using the non linear

least-square method in [9].

It observed that minimization of E(W ) is equivalent to finding the solution of

the following equations in the least square sense:⎛⎜⎝ ψT (x(0);W )
...

ψT (x(L− 1);W )

⎞⎟⎠
⎛⎜⎝W1

...

WN

⎞⎟⎠ =

⎛⎜⎝ x(1)− x(0)
...

x(L)− x(L− 1)

⎞⎟⎠ (4)

.

If dT ≡ (x(1)− x(0), x(2)− x(1), . . . , x(L)− x(L− 1)),

ζ(x(0), . . . , x(L− 1);W ) = [ψ(x(0);W ) . . . , ψ(x(L− 1);W )]T

then (4) can be expressed as ζ(x(0), . . . , x(L−1);W )W = d. The problem of solving

(4) is a nonlinear lest-square problem, because the regression matrix ζ(x(0), . . . , x(L−
1);W ) is a function of parameter W . Combining the fixed point method and the

RLS algorithm to find the solution W ∗ of (4) in the least square sense. Consider

this method as the zero- order NRLS algorithm for the RKNN’s.The algorithm is

listed as follows.

step 1. Fix appropriate initial weights W (0) = W0 and fix i = 0.
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step 2. Replace the W (i) into the regression matrix to get ζ(x(0) . . . x(L− 1);W (i)).

step 3. Use RLS algorithm to solve ζ(x(0), . . . , x(L − 1);W (i))W = d to get the

solution W = W ∗.

step 4. Let W (i + 1) = W ∗.

step 5. If the sequence W (i) converges, then stop; otherwise, set i = i + 1 and go to

step 2.

The sufficient condition for the convergence of the nonlinear least square method

are given in [9]. To prove the convergence property of the zero-order NRLS learning

algorithm which own required sufficient condition in [9].

To simplify the analysis consider the second order RKNN with single state

variable and to find the solution of W ∗ by substituting W and proving Theorem

6.2.2 in [9]. Using this concept it is sure that W will converge to a fixed point W ∗.
This convergence property for second order RKNN’s can be expanded as fourth

order RKNN’s or even for higher order RKNN’s directly.

5. CONCLUSION

In this paper RKNN is constructed for identification of DDE system with unknown

right-hand-side function and also derived a zero-order NRLS learning algorithm.

The NRLS algorithm to nonlinear cases such that it can tune the parameters in the

hidden layers of RKNN’s fastly. The convergence property of the proposed NRLS

algorithm is studied theoretically. The algorithm derivation and theory focused on

the fourth order RKNN’s, these can be generalized to any n-order RKNN’s directly.

ACKNOWLEDGEMENTS

The work of the first author was supported by the DST,Govt.of India,New Delhi

under grant No.SR/FTP/MA-05/2002.

REFERENCES

[1] Harier, E., Norsett, S. and Wanner, G., Solving ordinary differential equations,

nonstiff problems, Springer, Berlin, 1987.

[2] Hout, K.J. and Spijker, M.N., Stability analysis of numerical methods for delay

differential equations, Numer. Math., 59 (1991), 807-814.

57



[3] Zennaro, M. P-Stability properties of Runge-Kutta methods for delay differen-

tial equations, Numer. Math., 49 (1986), 305-318.

[4] Miller, W. T., Sutton, R. S. and Werbos, P. J., Neural Networks for Control,

Cambridge, MA:MIT press, 1990.

[5] Hunt, K.J., Sabarbaro, D., Zbikowski, R. and Gawthrop,P.J., Neural networks

for control systems: A survey, Automatica, 28 (1992), 1083-1112.

[6] Lambert, J. D. Computation Methods in O.D.E., New York, Wiley, 1973, ch.4.

[7] Caller, F. and Desoer, C., Linear System Theory. New York, Springer-verlag,

1992.

[8] Narendra, K. S. and Parthasarathy, K., Identification and control of dynamical

natural system using neural networks, IEEE Trans. Neural Networks, 1 (1990),

4-27.

[9] Flechter, R. Practical Methods of Optimization, 2nd ed.,Chichester, U.K., Wi-

ley, 1987

58



ON ROSENBERGER’S CONJECTURE FOR
GENERALIZED TRIANGLE GROUPS OF TYPES

(2, 10, 2) AND (2, 20, 2)

V. Beniash-Kryvets

Department of Algebra

Byelorussian State University, 4, F. Skaryny Ave., 220050, Minsk, Belarus

e-mail: benyash@bsu.by

1. INTRODUCTION

Tits [16] proved that if G is a finitely generated linear group then G contains either

a non abelian free subgroup or a solvable subgroup of finite index. Let Γ be an

arbitrary finitely generated group. One says that the Tits alternative holds for Γ if

Γ contains either a non abelian free subgroup or a solvable subgroup of finite index.

A one-relator free product of a family of groups {Gi}, i ∈ I, is called the group

G = (∗Gi)/N(S), where S is a cyclically reduced word in the free product ∗Gi,

N(S) is its normal closure. Here S is called the relator. One-relator free products

share many properties with one-relator groups (Howie [8]). We consider the case

when Gi’s are cyclic groups.

Definition 1. A group Γ having a presentation

Γ =< a1, . . . , an; al1
1 = . . . = aln

n = Rm(a1, . . . , an) = 1 >, (1)

where n ≥ 2, m ≥ 1, li = 0 or li ≥ 2 for all i, and R(a1, . . . , an) is a cyclically

reduced word in the free group on a1, . . . , an which is not a proper power, is called a

one-relator product of n cyclic groups.

One relator products of cyclic groups provide a natural algebraic generalization

of Fuchsian groups which are one relator products of cyclics relative to the standard

Poincare presentation (see Fine and Rosenberger [7])

F = 〈a1, . . . , ap, b1, . . . , bt, c1, d1, . . . , cr, dr;

ami
i = a1 . . . apb1 . . . bt[c1, d1] . . . [cr, dr] = 1〉.

If n = 2 and m ≥ 2 in (1) then we have so-called generalized triangle groups

T (k, l,m,R) = 〈a, b; ak = bl = Rm(a, b) = 1〉.
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If R(a, b) = ab then we obtain an ordinary triangle group.

Let Γ be a group of the form (1) and m ≥ 2. If either n ≥ 4 or n = 3

and (l1, l2, l3) �= (2, 2, 2) then Γ contains a free subgroup of rank 2. If n = 3 and

(l1, l2, l3) = (2, 2, 2) then Γ contains either a free subgroup of rank 2 or a free abelian

subgroup of rank 2 and index 2 (Fine, Levin and Rosenberger[6]).

The case when Γ is a generalized triangle group is much more difficult. Rosen-

berger [14] stated the following conjecture.

Conjecture 1. The Tits alternative holds for generalized triangle groups.

Fine, Levin, and Rosenberger [6] proved this conjecture in the following cases:

1) l = 0 or k = 0; 2) m ≥ 3. Now suppose that k, l,m ≥ 2. Let s(Γ ) = 1/k + 1/l +

1/m. If s(Γ ) < 1 then Baumslag, Morgan and Shalen [1] proved that the group Γ

contains a non abelian free subgroup. Using some new methods, Howie [9] proved

Conjecture 1 in the case when s(Γ ) = 1 and up to equivalence R �= ab. If s(Γ ) = 1

and R = ab then Γ is an ordinary triangle group. The classical result says that Γ

contains Z as a subgroup of finite index.

Now consider groups of the form

Γ = T (2, l, 2, R) = 〈a, b; a2 = bl = R2(a, b) = 1〉, (2)

where l > 2, R = abv1 . . . abvs , 0 < vi < l. In the following cases Conjecture 1

holds for Γ : 1) s ≤ 4 (Rosenberger [14], Levin and Rosenberger[10]); 2) l > 5 and

l �= 6, 10, 12, 15, 20, 30, 60 (Beniash-Kryvets [2], [3]); 3) l = 6, 12, 30, 60 (Beniash-

Kryvets, Barkovich [4]). In this paper we prove the following theorem.

Theorem 1. Let Γ be a group of the form (2) with s ≥ 5 and l = 10, 20. Then Γ

contains a free subgroup of rank 2.

Thus, Conjecture 1 is still open for groups T (k, l, 2, R) with k = 2, 3 and l =

3, 4, 5 and T (2, 15, 2).

2. SOME AUXILIARY RESULTS

In this section we prove several auxiliary results used in the proof of Theorem 1.

Throughout we shall denote the ring of algebraic integers in C by O, the group of

units inO byO∗, the free group of a rank 2 with generators g and h by F2 =< g, h >,

the greatest common divisor of integers a and b by (a, b), the image of a matrix

60



A ∈ SL2(C) in PSL2(C) by [A], the trace of a matrix A by trA, and the identity

matrix in SL2(C) by E. The following lemma characterizes elements of finite order

in PSL2(C).

Lemma 1. Let 2 ≤ m ∈ Z and ±E �= X ∈ SL2(C). Then [X]m = 1 in PSL2(C) if

and only if trX = 2 cos rπ
m

for some r ∈ {1, . . . ,m− 1}.

The proof easily follows from the fact that ε, ε−1, where ε is a root of unity of

degree m, are the eigenvalues of the matrix X.

We shall use standard facts from geometric representation theory (see Culler

and Shalen [5], Lubotzky and Magid [11]). Here we recall some notations. Let

Fn = 〈g1, . . . , gn〉 be a free group, R(Fn) = SL2(C)n be a representation variety of Fn

in SL2(C). The group GL2(C) acts naturally on R(Fn) (by simultaneous conjugation

of components) and its orbits are in one-to-one correspondence with the equivalence

classes of representations of Fn. GL2(C)-orbits are not necessarily closed and so the

variety of orbits (the geometric quotient) is not an algebraic variety. However one can

consider the categorical quotient R(Fn)/GL2(C) (see Mumford [13]), which we shall

denote by X(Fn) and call it the variety of characters. By construction, its points

parametrize closed GL2(C)-orbits. It is well known that an orbit of a representation

is closed iff the corresponding representation is fully reducible and so the points of

the variety X(Fn) are in one-to-one correspondence with the equivalence classes of

fully reducible representations of Γ in SL2(C).

For an arbitrary element g ∈ Fn one can consider the regular function

τg : R(Fn)→ C, τg(ρ) = tr ρ(g).

Usually τg is called a Fricke character of the element g. It is known that the

C-algebra T (Fn) generated by all functions τg, g ∈ Fn, is equal to C[X(Fn)] =

C[R(Fn)]GL2(C). Combining results of Culler and Shalen [5], Sibirskij [15], it is

easy to see that T (Fn) is generated by Fricke characters τgi
= xi, τgigj

= yij, and

τgigjgk
= zijk, where 1 ≤ i < j < k ≤ n. Consider a morphism π : R(Fn) → At

defined by

π(ρ) = (x1(ρ), . . . , xn(ρ), y12(ρ), . . . , yn−1,n(ρ),

z123(ρ), . . . , zn−2,n−1,n(ρ)), (3)

where t = n+n(n−1)/2+n(n−1)(n−2)/6. The image π(R(Fn)) is closed in At (see

Culler and Shalen [11]). Since X(Fn) and π(R(Fn)) are biregularly isomorphic, we

shall identify X(Fn) and π(R(Fn)). Obviously, dimR(Fn) = 3n and dimX(Fn) =

3n− 3. Set

Rs(Fn) = {ρ ∈ R(Fn) | ρ is irreducible}, Xs(Fn) = π(Rs(Fn)).
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The sets Rs(Fn) and Xs(Fn) are open in Zariski topology subsets of R(Fn) and

X(Fn) respectively (see Culler and Shalen [5]).

Now, consider a free group F2 = 〈g, h〉. The ring T (F2) is generated by the

functions τg, τh, and τgh.

Lemma 2. For all α, β, γ ∈ C there exist matrices A,B ∈ SL2(C) such that

τg(A,B) = trA = α, τh(A,B) = trB = β, τgh(A,B) = trAB = γ.

This lemma can be easily proved by straightforward computations.

Lemma 2 implies that X(F2) = π(R(F2)) = A3. Moreover, the functions

τg, τh, andτgh are algebraically independent over C and for every u ∈ F2 we have

τu = Qu(τg, τh, τgh),

where Qu ∈ Z[x, y, z] is a uniquely determined polynomial with integer coefficients

(see Culler and Shalen [5]). The polynomial Qu is usually called the Fricke polyno-

mial of the element u.

Consider polynomials Pn(λ) satisfying the initial conditions P−1(λ) = 0, P0(λ) =

1 and the recurrence relation

Pn(λ) = λPn−1(λ)− Pn−2(λ).

If n < 0 then we set Pn(λ) = −P|n|−2(λ). The degree of the polynomial Pn(λ) is

equal to n if n > 0 and to |n|−2 if n < 0. It is easy to verify by induction on n that

Pn(2 cosϕ) =
sin(n + 1)ϕ

sinϕ
. (4)

It follows from (4) that the polynomial Pn(λ), n ≥ 1, has n zeros described by the

formula

λn,k = 2 cos
kπ

n + 1
, k = 1, 2, . . . , n. (5)

Moreover, it is easy to verify by induction that for n ≥ 0 we have

P2n(λ) = λ2n + · · ·+ (−1)n,

P2n−1(λ) = λ(λ2n−2 + · · ·+ (−1)n−1n). (6)

Lemma 3. Let k, l ∈ Z and assume that (k, l) = 1 and l ≥ 2 is not a power of a

prime. Then 2 sin kπ
l
∈ O∗.
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Proof. Let l = 2tu, where u is odd. If t = 1 then k is odd and 2 sin kπ
l

= 2 cos rπ
u

with r = (u− k)/2 ∈ Z. Since u− 1 is even, it follows from (6) that 2 cos rπ
u
∈ O∗.

If t > 1 then k is odd and 2 sin kπ
l

= 2 cos rπ
2tu

with r = 2t−1u− k.

If t = 0 then 2 sin kπ
l

= 2 cos rπ
2u

with r = u− 2k.

Thus, it is sufficient to prove that 2 cos rπ
2tu
∈ O∗, where t ≥ 1, (r, 2tu) = 1,

u > 1 and u is not a power of a prime in the case t = 1. Let u = pα1
1 . . . pαs

s , where

pi is a prime and 0 < αi ∈ Z for i = 1, 2, . . . , s. By (5) numbers λi = 2 cos i
2tu

π,

i = 1, 2, . . . , 2tu− 1, are the roots of the polynomial P2tu−1(λ), so that

P2tu−1(λ) =
2tu−1∏
i=1

(λ− λi)

and the constant term of P2tu−1 is equal to (−1)2t−1−12t−1pα1
1 . . . pαs

s . On the other

hand, the polynomials P2p
αi
i −1(λ), i = 1, 2, . . . , s, and P2t−1(λ) have the roots

2 cos jπ

2p
αi
i

, j = 1, 2, . . . , 2pαi
i −1, and 2 cos jπ

2t , j = 1, 2, . . . , 2t−1, respectively. Hence,

all these polynomials divide P2tu−1(λ) and any two of them have only one common

root λ = 0. Hence,

P2tu−1(λ) = F (λ)F1(λ),

where

F (λ) = λ−sP2t−1(λ)
s∏

i=1

P2p
αi
i −1(λ).

By (5) the constant term of F (λ) is equal to (−1)2t−1−12t−1pα1
1 . . . pαs

s . Consequently,

the constant term and the leading coefficient of F1(λ) are equal to 1. Since 2 cos rπ
2tu

is

not a root of F (λ), it is a root of F1(λ) and we obtain 2 cos rπ
2tu
∈ O∗ as required.

Furthermore, we require more detailed information on the Fricke polynomials.

Let w = gα1hβ1 . . . gαshβs ∈ F2 and let x = τg, y = τh, z = τgh. Let us treat the

Fricke polynomial Qw(x, y, z) as a polynomial in z. Set

Qw(x, y, z) = Mn(x, y)zn +Mn−1(x, y)z
n−1 + . . . +M0(x, y).

Lemma 4 ([17]). The degree of the Fricke polynomial Qw(x, y, z) with respect to

z is equal to s and its leading coefficient Ms(x, y) has the form

Ms(x, y) =
s∏

i=1

Pαi−1(x)Pβi−1(y). (7)
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A subgroup H ∈ PSL2(C) is called non-elementary if H is infinite, irreducible

and non-isomorphic to a dihedral group.

Lemma 5 ([12]). Let H ∈ PSL2(C) be a non-elementary subgroup. Then H

contains a non-abelian free subgroup.

Lemma 6 ([5]). Let A,B ∈ SL2(C) and trA = x, trB = y, and trAB = z. A

subgroup < A,B > is irreducible if and only if

trABA−1B−1 = x2 + y2 + z2 − xyz − 2 �= 2.

3. Proof of Theorem 1.

Let Γ be a group in Theorem 1, that is,

Γ = T (2, l, 2, R) = 〈a, b; a2 = bl = R2(a, b) = 1〉, (8)

where l ∈ {10, 15, 20}, R = abv1 . . . abvs , 0 < vi < l, s > 4. Set V =
∑s

i=1 vi. If

(V, l) �= 1 then Γ contains a non-abelian free subgroup (see Beniash-Kryvets [2]).

So we shall assume that (V, l) = 1. Without loss of generality we may assume that

V ≡ 1 (mod l).

If V �≡ 1 (mod l) then one can apply an automorphism of the free product 〈a; a2 =

1〉 ∗ 〈b; bl = 1〉, a �→ a and b �→ bp with (p, l) = 1 and pV ≡ 1 (mod l) to the word

R(a, b). To prove Theorem 1, we construct a representation ρ : Γ → PSL2(C) such

that ρ(Γ ) contains a non-abelian free subgroup. Set

β = 2 cos
π

l
, fR(z) = QR(0, β, z), (9)

where QR is the Fricke polynomial of R.

Definition 2. Let z0 be a root of a polynomial fR(z) and A,B ∈ SL2(C) be matrices

such that trA = 0, trB = β, and trAB = z0. We shall denote a subgroup of

PSL2(C), generated by [A], [B], by G(z0).

The group G(z0) is an epimorphic image of Γ since by Lemma 1

[A]2 = [B]l = R2([A], [B]) = 1.

Lemma 7. Numbers ±2 sin π
l

are not roots of the polynomial fR(z).
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Proof. Suppose that fR(−2 sin π
l
) = 0. Let ε be a primitive root of unity of degree

4l. Consider a representation ρk : F2 → SL2(C) defined by

ρk(g) = A =

(
εl 0

1 ε−l

)
, ρk(h) = Bk =

(
ε2k x

0 ε−2k

)
. (10)

Then we have trA = 0, trB1 = βk, and trAB1 = x− 2 sin π
l
. So we obtain

fR(z)(ρ1) = fR(x− 2 sin
π

l
) = g(x) = trR(A,B1).

Since −2 sin π
l

is a root of fR(z), 0 is a root of g(x). This means that a constant

term of g(x) is equal to 0. On the other hand, a constant term of trR(A,B1) is

equal to

εls+2V + ε−ls−2V = 2 cos(
ls+ 2V

2l
π) �= 0,

since (V, l) = 1 by assumption. This contradiction proves that −2 sin π
l

is not a

root of fR(z). Analogously, by considering a matrix B−1 instead the matrix B1, we

obtain that 2 sin π
l

is not a root of fR(z).

Lemma 8. Assume that the polynomial fR(z) has a root z0 �= 0. Then Γ contains

a non-abelian free subgroup.

Proof. By Lemma 7 we have z0 �= ±2 sin π
l
. Let us show that G(z0) is a non-

elementary subgroup of PSL2(C). First, G(z0) is irreducible by Lemma 6 since

trABA−1B−1 − 2 = z2
0 − 4 sin2 kπ

l
�= 0.

Second, G(z0) is not a dihedral group since two of three numbers trA, trB, trAB

are not equal to 0 (see Majeed and Mason [12]). Third, it follows from classification

of finite subgroups of SLC [12] that G(z0) is infinite because it is irreducible and

contains an element [B] of order greater than 5. Thus, G(z0) (and consequently Γ )

contains a non-abelian free subgroup.

Bearing in mind lemmas 7 and 8, we shall assume in what follows that

fR(z) = MRz
s, (11)

where by Lemma 4

MR =
s∏

i=1

Pvi−1(2 cos
π

l
) = (2 sin

π

l
)−s

s∏
i=1

2 sin
viπ

l
. (12)
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Let A, Bt be matrices defined in (10), W (A,Bt) = ABu1
t . . . ABus

t , where 0 < ui < l.

A set (u1, . . . , us) will be considered as cyclically ordered. Let

li = |{j | uj = i}|, fi,j = |{r | ur = i, ur+1 = j}|. (13)

We have the following equations:

l−1∑
i=1

li = s,

l−1∑
i=1

fij = lj,

l−1∑
j=1

fij = li, i, j = 1, . . . , l − 1. (14)

The following lemma will be heavily used.

Lemma 9. Let g(x) = trW (A,Bt) = a0x
s + · · · + as, hi = Pi−1(ε

2t + ε−2t). Then

we have a0 =
∏s

j=1 huj
and

a2 =a0

l−1∑
j=1

fii

hi

(
li − 2

hi

+
∑
j �=i

ljε
2ti−2tj

hj

)
+

a0

∑
i�=j

fij

hi

(
li − 1

hi

+
(lj − 1)ε2ti−2tj

hj

+
∑

k �=i,k �=j

lkε
2ti−2tk

hk

)
−

a0

(
l−1∑
i=1

li(li − 1)

2h2
i

(ε4ti + ε−4ti) +
∑
i�=j

lilj
hihj

(ε2ti+2tj + ε−2ti−2tj)

)
.

(15)

This lemma can be proved by direct computations.

Lemma 10. Let fR,1(z) = MR,1z
s.

1. If l = 10 and s is odd then l1 + l9 = l3 + l7 + 1 and l2 = l4 = l5 = l6 = l8 = 0.

2. If l = 10 and s = 4s1 then l2 = 1, l1 + l9 = l3 + l7 − 1, l4 = l5 = l6 = l8 = 0

and V = 20t + 1 for some t ∈ Z.

3. If l = 10 and s = 4s1 + 2 then l8 = 1, l1 + l9 = l3 + l7 − 1, l2 = l4 = l5 = l6
and V = 20t + 11 for some t ∈ Z.

Proof. Let ρ−1 be a representation defined by (10). Then

g(x) = fR,1(x + 2 sin
π

l
) = MR,1(x + 2 sin

π

l
) = trR(A,B−1). (16)
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Comparing constant terms in (16), we obtain

s∏
i=1

2 sin
viπ

l
= 2 cos

ls− 2V

2l
π. (17)

1. If l = 10 and s = 2s1 + 1 then we must have 2 cos 10s1+5−V
10

π = 2 sin π
10
∈ O∗.

Hence 2 sin viπ
10
∈ O∗, i = 1, . . . , s. By Lemma 3 (vi, 10) = 1 for all vi’s. Since

2 sin π
10

2 sin 3π
10

= 1, it follows from (17)

(2 sin
π

10
)l1+l9−l3−l7−1 = 1.

Hence, l1 + l9 − l3 − l7 − 1 = 0 as required.

2. If l = 10 and s = 4s1 then we must have

2 cos
20s1 − V

10
π = 2 cos

V π

10
= 2 sin

2π

5
.

Hence V = 20t+ 1 for some t ∈ Z. Since 2 sin rπ
5
/∈ O∗ and 2 sin 2π

5
/2 sin rπ

5
∈ O∗ for

any r prime to 5, we obtain from (17) that only one of vi’s is even (let, for example,

v1 is even). If v1 = 2 then

(2 sin
π

10
)l1+l9−l3−l7+1 = 1,

hence l1 + l9 = l3 + l7 − 1 as required. If v1 = 4 or v1 = 6 then it follows from (17)

that l1 + l9 = l3 + l7. But in this case V = v1 + l1 +3l3 +7l7 +9l9 = v1 +4l3 +8l7 +8l9
is even which is a contradiction. If v1 = 8 then as above l1 + l9 = l3 + l7 − 1 and

V = 20t+ 1 = 7 + 4l3 + 8l7 + 8l9,

which is a contradiction.

3. This case can be proved in the same way as the previous one.

Let

Γ1 = T (2, 5, 2, R) = 〈c, d; c2 = d5 = S2(c, d) = 1〉, (18)

where S = cdu1 . . . cd
us , 0 < ui < 5, s > 4. Set U =

∑s
i=1 ui. If (U, 5) �= 1 then Γ

contains a non-abelian free subgroup (see Beniash-Kryvets [2]). So we shall assume

that (U, 5) = 1. As above, without loss of generality we may assume that

U ≡ 1 (mod 5).

67



Set

hS(z) = QS(0, 2 cos
π

5
, z), (19)

where QS is the Fricke polynomial of S. Let z0 be a root of a polynomial fR(z) and

A,B ∈ SL2(C) be matrices such that trA = 0, trB = β, trAB = z0. As above

we shall denote a subgroup of PSL2(C), generated by [A], [B], by G(z0). The group

G(z0) is an epimorphic image of Γ1 since by Lemma 1

[A]2 = [B]5 = S2([A], [B]) = 1.

Lemma 11. Numbers ±2 sin π
5

are not roots of the polynomial hS(z).

The proof of Lemma 11 is similar to proof of Lemma 7.

Lemma 12. Assume that the polynomial hS(z) has a root z0 �∈ {0,±1,±2 cos 2π
5
}.

Then Γ1 contains a non-abelian free subgroup.

Proof. By Lemma 11 we have z0 �= ±2 sin π
5
. Let us show that G(z0) is a non-

elementary subgroup of PSL2(C). First, G(z0) is irreducible by Lemma 6 since

trABA−1B−1 − 2 = z2
0 − 4 sin2 π

5
�= 0.

Second, G(z0) is not a dihedral group since two of the three numbers trA, trB, trAB

are not equal to 0 (see Majeed and Mason [12]). Third, it follows from classification

of finite subgroups of PSL2(C) (see Vinberg, Kaplinsky [18]) that G(z0) is infinite.

Thus, G(z0) (and consequently Γ1) contains a non-abelian free subgroup.

Bearing in mind lemmas 11 and 12, we shall assume in what follows that

hS(z) = KSz
a1(z − 1)a2(z + 1)a3(z − 2 cos

2π

5
)a4(z + 2 cos

2π

5
)a5 , (20)

where by Lemma 4

KS =
s∏

i=1

Pui−1(2 cos
π

5
) = (2 cos

π

5
)l2+l3 . (21)

Lemma 13. Let hS(z) has the form (20). Then

1. If s is even then a1 = 0, a2 = a3, a4 = a5 and l2 + l3 = 2a3 + 1, where l2, l3
are defined by (13).

1. If s is odd then a1 = 1, a2 = a3, a4 = a5 and l2 + l3 = 2a3.
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Proof. Let ρ−1 be a representation defined by (10) with l = 5. Then

p(x) = hS(x + 2 cos
3π

10
) = trR(A,B−1). (22)

Comparing constant terms in (22),we obtain

(2 cos
π

5
)l2+l3(2 cos

3π

10
)a1(2 cos

3π

10
− 1)a2(2 cos

3π

10
+ 1)a3(2 cos

3π

10
− 2 cos

2π

5
)a4

(2 cos
3π

10
+ 2 cos

2π

5
)a5 = 2 cos

5s + 2U

10
π. (23)

1. If s is even then we must have 2 cos 5s+2U
10

π = 2 cos π
5
∈ O∗ in (23). Hence

a1 = 0. Using identities

(2 cos
3π

10
− 1)(2 cos

3π

10
+ 1) = (2 cos

π

5
)−2,

(2 cos
3π

10
− 2 cos

2π

5
)(2 cos

3π

10
+ 2 cos

2π

5
) = 1,

we can write (23) in the form

(2 cos
π

5
)l2+l3−2a3−1(2 cos

3π

10
− 1)a2−a3(2 cos

3π

10
− 2 cos

2π

5
)a4−a5 = 1. (24)

It is not difficult to see that (24) implies

a2 = a3, a4 = a5, l2 + l3 = 2a3 + 1,

as required.

The case when s is odd can be proved analogously.

3.1. THE CASE l = 10

First, let s = 4s1. Consider a representation ρ : F2 → PSL2(C), ρ(g) = A, ρ(h) =

B1, where A, B1 are defined in (10). Then we have

f1(x) = fR(z)(ρ) = MR(x + 2 cos
3π

5
)s = trR(A,B1). (25)
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Further, l2 = 1, l4 = l5 = l6 = l8 = 0 and equations (14) have the form

f11 + f12 + f13 + f17 + f19 = l1, f31 + f32 + f33 + f37 + f39 = l3,

f71 + f72 + f73 + f77 + f79 = l7, f91 + f92 + f93 + f97 + f99 = l9,

f11 + f21 + f31 + f71 + f91 = l1, f13 + f23 + f33 + f73 + f93 = l3,

f17 + f27 + f37 + f77 + f97 = l7, f19 + f29 + f39 + f79 + f99 = l9, (26)

f12 + f32 + f72 + f92 = 1, f21 + f23 + f27 + f29 = 1,

l1 + l9 = l3 + l7− 1, l3 + 2 ∗ l7 + 2 ∗ l9 = 5 ∗ t,
l1 + l3 + l7 + l9 + 1 = 4 ∗ s1 .

The coefficient a2 of the polynomial f1(x) is equal to

a2 = MR(2 cos
3π

5
)2s(s− 1)/2

by (25). Taking into account Lemma 9, we obtain following equation

(2 cos
3π

5
)2s(s− 1)/2 =

l−1∑
j=1

fii

hi

(
li − 2

hi

+
∑
j �=i

ljε
2i−2j

hj

)
+

∑
i�=j

fij

hi

(
li − 1

hi

+
(lj − 1)ε2i−2j

hj

+
∑

k �=i,k �=j

lkε
2i−2k

hk

)
−

l−1∑
i=1

li(li − 1)

2h2
i

(ε4i + ε−4i) +
∑
i�=j

lilj
hihj

(ε2i+2j + ε−2i−2j).

(27)

The equation (27) can be written in the form

X0 +X1ε
4 +X2ε

8 +X3ε
12 = 0, (28)

where X0, X1, X2, X3 are polynomial with integer coefficients of li, fij, t and s1.

Since 1, ε4, ε8, ε12 are linearly independent over Q, one obtains a system

X0 = X1 = X2 = X3 = 0. (29)

Now, consider an epimorphic image Γ1 = 〈c, d; c2 = d5 = R2(c, d) = 1〉 of

the group Γ , where R(c, d) = cdv1 . . . cdvs . We can write the word R(c, d) from

the free product 〈c; c2 = 1〉 ∗ 〈d; d5 = 1〉 in the form S(c, d) = cdu1 . . . cdus , where

ui =

{
vi, if vi < 5,

vi − 5, if vi > 5.
Let U =

∑s
i=1 ui. Since (V, 10) = 1, we have (U, 5) = 1.

By Lemma 13

hS(z) = KS(z2 − 1)a2(z2 − (2 cos
2π

5
)2)a4 . (30)

70



Let ρ2 be a representation defined by (10). Then

p(x) = hS(x− 2 cos
3π

10
) = trR(A,B2). (31)

The coefficient b2 of the polynomial p(x) is equal to

b2 = KS(a4 + a2(2 cos
2π

5
)2 + 4(2s2

1 − s1)(2 cos
3π

10
)2).

On the other hand, we can apply Lemma 9 to compute b2. Let

l′1 = l1, l′2 = l7 + 1, l′3 = l3, l′4 = l9,

f ′
11 = f11, f ′

12 = f17 + f12, f ′
13 = f13, f ′

14 = f14,

f ′
21 = f71 + f11, f ′

22 = f77 + f72 + f27, f ′
23 = f23 + f73, f ′

24 = f24 + f74, (32)

f ′
31 = f31, f ′

32 = f37 + f32, f ′
33 = f33, f ′

34 = f34,

f ′
41 = f91, f ′

42 = f97 + f92, f ′
43 = f93, f ′

44 = f99.

Then we have an equation

a4 + a2(2 cos
2π

5
)2 + 4(2s2

1 − s1)(2 cos
3π

10
)2 =

l−1∑
j=1

f ′
ii

hi

(
l′i − 2

hi

+
∑
j �=i

l′jε
4i−4j

hj

)
+

∑
i�=j

f ′
ij

hi

(
l′i − 1

hi

+
(l′j − 1)ε4i−4j

hj

+
∑

k �=i,k �=j

l′kε
4i−4k

hk

)
−

l−1∑
i=1

l′i(l
′
i − 1)

2h2
i

(ε8i + ε−8i) +
∑
i�=j

l′il
′
j

hihj

(ε4i+4j + ε−4i−4j).

(33)

The equation (33) can be written in the form

Y0 + Y1ε
4 + Y2ε

8 + Y3ε
12 = 0, (34)

where Y0, Y1, Y2, Y3 are polynomial with integer coefficients of li, fij, t and s1. One

obtains a system

Y0 = Y1 = Y2 = Y3 = 0. (35)
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Thus, we have the equations (26), (29), (35). Solving this system by computer

with Maple, one obtains, in particular, that

h37 = h13 − h17 − h39 + h79 + h73 + 1/2,

which is a contradiction, because hij is an integer. Therefore, Theorem 1 is proved

in the case when l = 10 and s = 4s1.

If s = 4s1 + 2 then analogously we obtain h77 < 0, which is a contradiction. If

s is odd then analogously we obtain h77 = −h79 − h79 + l9 − h99 ± 1/2, which is a

contradiction. Thus, the case l = 10 is proved.

3.2. The case l = 20.

Lemma 14. Let fR,20(z) = MR,20z
s. Then vi �= 10 for i = 1, . . . , s.

Proof. Let us assume the contrary. Let, for example, v1 = 10. Consider a represen-

tation ρ−1 defined by (10). Then

g(x) = fR,20(x + 2 sin
π

20
) = MR,20(x + 2 sin

π

20
) = trR(A,B−1). (36)

Comparing constant terms in (36), we obtain

s∏
i=1

2 sin
viπ

20
= 2

s∏
i=2

2 sin
viπ

20
= 2 cos

ls− 2V

40
π ∈ O∗ (37)

by Lemma 3. Hence 1/2 ∈ O∗ which is a contradiction.

Now, let

Γ1 = 〈c, d; c2 = d10 = R2(c, d)〉
be an epimorphic image of Γ , where R(c, d) = cdv1 . . . cdvs . Since vi �= 10 for all i,

we can write the word R(c, d) from the free product 〈c; c2 = 1〉 ∗ 〈d; d10 = 1〉 in the

form S(c, d) = cdu1 . . . cdus , where ui =

{
vi, if vi < 10,

vi − 10, if vi > 10.
. It was proved above

that Γ1 contains a non-abelian free subgroup. Hence Γ contains a non-abelian free

subgroup as well.

Theorem 1 is proved.
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EXPONENTIAL FITTING: GENERAL APPROACH
AND APPLICATIONS FOR ODE-SOLVERS

G. V. Berghe

Department of Applied Mathematics and Computer Science

Ghent University, Krijgslaan 281 (S9), B-9000 Gent, Belgium

Abstract

The idea of exponential fitting will be explained and applied to the construction of

ODE-solvers. In particular attention will be given to the extension of the Euler and

Numerov methods. A numerical experiment related to the Schrödinger equation will

show the merits of the exponential-fitted versions of the Numerov method.

1. SITUATION OF THE PROBLEM

In the field of the numerical solution of ODEs a series of methods have been devised

for the case when the solution is known to exhibit a specific oscillatory or exponential

behaviour. The idea of using a basis of functions other than polynomials has a long

history, going back to papers, where sets of exponential functions were used to derive

the coefficients of the methods for the first order ODE

y′ = f(x, y) . (1)

Methods using trigonometric polynomials have also been considered; for theo-

retical aspects see Gautschi [5]. Salzer [18] assumed that the solution is a linear

combination of trigonometric functions, of the form

y(x) =
J∑

j=0

[aj sin(jx) + bj cos(jx)] , (2)

with arbitrary constant coefficients aj and bj; expressions of the coefficients of these

methods are given in that paper for small values of J .

Sheffield [19] and Stiefel and Bettis [20] considered the second order ODE of the

form

y′′ = f(x, y) , (3)

for the orbit problem in celestial mechanics. They constructed multistep methods

which are exact if the solution is of the form

y(x) =
J∑

j=1

[f j
1 (x) sin(ωjx) + f j

2 (x) cos(ωjx)] , (4)
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where f j
1 and f j

2 are low degree polynomials. A simple two-step method which is

exact for the form (4) with J = 1 and constant f 1
1 and f 1

2 has been derived by Denk

[3] by means of a principle of coherence.

Coleman [1] considered a special family of methods, hybrid versions included,

by means of a technique based on rational approximations of the cosine.

Methods for the solution of

y(r) = f(x, y) , r = 1, 2, . . . (5)

were derived by Vanthournout et al. [28] and Vanden Berghe et al. [21] as an

application of the mixed interpolation technique; they are exact if y(x) is of the

form

y(x) = f1(x) sin(ω x) + f2(x) cos(ω x) + φ(x) ,

where f1 and f2 are constants and φ is a polynomial of low degree.

The existence of a large variety of techniques, which sometimes seem to have

distinct areas of applicability, though this is not always true, is rather discouraging

for a user who, without being directly implied in applied mathematics, is interested

in getting the pertinent information for his or her own problem. Such a user would

be better served if one and the same technique, hopefully transparent and simple

enough, would be available for as many cases of interest as possible.

The exponential fitting (EF) technique is the best suited in this context. It is

aimed at deriving linear approximation formulae for various operations on functions

of the form

y(x) =
I∑

i=1

fi(x) exp(µix) , (6)

where µi, called frequencies, are constants (complex in general) whose exact values,

or some reasonable approximations of these, are known; it is also assumed that the

functions fi(x) are smooth enough but only the numerical values of the whole y(x)

are available.

The idea of the approach consists in constructing the coefficients of the formula

by asking it be exact for each of the following M functions (we choose here two

µi-values, i.e. µ1 = −µ2 = µ):

xk exp(±µ x), k = 0, 1, 2, . . . ,M − 1 . (7)

76



The value of M depends on the number N of coefficients to be evaluated. As a rule

one has M = N but exceptions do also exist.

As for the theoretical background of the procedure, this is inspired from the

generalization of Lyche [16] of the approach of Henrici [7] on multistep methods

for ODEs. This perhaps explains why for a long period of time the EF procedure

was thought to cover only this field. As a matter of fact, the expression EF with

the stated meaning seems to have been first used also in the context of solving

ODEs, by Liniger and Willoughby [15]. However, as shown by Ixaru and the present

author [11, 14], the area of applicability of this procedure is much broader; it covers

operations as numerical differentiation, quadrature or interpolation, as well.

2. AN OUTLINE OF THE EF-PROCEDURE

In this section we describe the basic ingredients of the EF approach by treating

in detail a simple case. Consider a one-step ODE solver for the first-order ODE

y′ = f(x, y):

yn+1 = a1yn + a2hf(xn, yn) , (8)

where yn+1 ≈ y(xn+1) = y(xn + h). Notice that for the well-known Euler method

the occurring parameters a1 = a2 both have a value 1.

In the EF-procedure one introduces an operator L, acting on y(x) and depending

parametrically on h and on the parameters a = [a1, a2]:

L[h, a]y(x) := y(x + h)− a1y(x)− a2hy
′(x) ,

where a is the vector of coefficients a1, a2, a = [a1, a2]. One asks for the determi-

nation of a1, a2 upon the condition that L[h, a]y(x) is identically vanishing for some

prerequisite forms of y(x).

In first instance one considers as prerequisite form the set of power functions,

i.e.

1, x, x2, x3, . . .

The action of the operator L on these functions results in

L[h, a]1 = 1− a1

L[h, a]x = (1− a1)x + h(1− a2)

L[h, a]x2 = (1− a1)x
2 + 2xh(1− a2) + h2

etc.
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Related to these expressions one introduces the so-called moments, Lm(h, a), which

represent the expressions of L[h, a]xm, (m = 0, 1, 2, . . .) at x = 0, i.e

L0(h, a) = 1− a1 (9)

L1(h, a) = h(1− a2) (10)

L2(h, a) = h2 (11)

etc.

Since L is a linear operator it follows that, upon taking y(x) as a linear combi-

nation of power functions, y(x) = y0 + y1x + y2x
2 + y3x

3 + . . ., we have

L[h, a]y(x) =
∑
m=0

ymL[h, a]xm

= L0(h, a)(y0 + y1x + y2x
2 + y3x

3 + . . .) + L1(h, a)(y1 + 2y2x + 3y3x
2 + . . .)

+L2(h, a)(y2 + 3y3x + 6y4x
2 + . . .) + . . . =

∞∑
m=0

1

m!
Lm(h, a)Dmy(x).

We now address the problem of finding out the values of the coefficients a1 and

a2 such that the function L[h, a]y(x) is identically vanishing at any x and at any

h ∈ (0, H] for as many successive terms as possible in the classical power set, i.e

L[h, a]1 = 0 is equivalent to L0(h, a) = 0

L[h, a]1 = L[h, a]x = 0 is equivalent to L0(h, a) = L1(h, a) = 0 , etc...

In general, the set of conditions L[h, a]xm = 0, m = 0, 1, 2, . . . ,M − 1 is equiv-

alent to

Lm(h, a) = 0, m = 0, 1, 2, . . . ,M − 1 , (12)

which is a set of M linear equations in two unknowns. The stated problem is then

equivalent to that of finding the biggest M such that (12) is compatible. On using

the expressions under (9-11) we find out that M = 2 and that a1 = a2 = 1 and the

method obtained is the classical Euler method.

yn+1 = yn + hf(xx, yn) .

On the other hand L2(h, a) = h2 �= 0 showing that finally
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L[h, a]y(x) =
1

2
L2(h, a)y(2) +

1

3!
L3(h, a)y(3) + . . .

=
1

2
h2y(2) +

1

6
h3y(3) + . . .

To summarize, we have established the following result: on imposing the stated

conditions on the function L[h, a]y(x) on the power set, we obtained a1 = a2 = 1

and these are the classical coefficients. In addition we have found that the leading

term of the error of the classical formula is

lteclas =
1

2
h2y(2) ,

a well-known expression.

Our derivation has also shown that the maximal M is 2, which at its turn

indicates that approximation (8) is exact for two successive power functions 1 and

x and for any linear combination of them or, in other words, for any first degree

polynomial.

Let us now take some arbitrary real or imaginary µ and introduce the set of

pairs of exponentials

exp(±µx), x exp(±µx), x2 exp(±µx), . . . ,

which will be called the exponential fitting set. On applying the operator considered

on the members of the set we obtain:

L[h, a] exp(µx) = exp(µx)(exp(hµ)− a1 − a2hµ)

= exp(µx)(exp(z)− a1 − a2z)

= exp(µx)E0(z, a) ,

L[h, a] exp(−µx) = exp(−µx)E0(−z, a) ,

where z = µh. Notice that in general Em := L[h, a]xm exp(µx)|x=0 and in particular

L[h, a] exp(µx) = exp(µx)E0. It is easy to verify that Em =
∂Em−1

∂µ
,m = 1, 2, . . ..

Conditions L[h, a]xk exp(µx) = 0 imply for any x and any h �= 0 Ek(z, a) = 0, which

means that, upon introducing Z = µ2h2 and G±(Z, a) := 1
2
[E0(z, a)] ± E0(−z, a)],

we should equivalently have

G±(Z, a) = 0 .
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In general introducingG±(p)(Z, a) p-th derivative ofG±(Z, a) implies thatEp(±z, a) =

0 is equivalent with G±(p)(Z, a) = 0.

We are now ready to tackle the problem of extending formula (8) for the expo-

nential fitting forms of y(x). As the investigation just performed on the classical set

indicated that equation (8) is exact for two functions, it is appropriate to consider

here the functions exp(±µx) and the set of linear equations for the coefficients are:

E0(z, a) = E0(−z, a) = 0 .

or

{
exp(z)− a1 − a2z = 0

exp(−z)− a1 + a2z = 0 ,

which is equivalent with G±(Z, a) = 0, i.e.⎧⎨⎩ G+(Z, a) = cosh(z)− a1 = 0

G−(Z, a) =
sinh(z)

z
− a2 = 0 ,

resulting in

yn+1 = cosh(z)yn + h
sinh(z)

z
f(xn, yn) .

As, for the error, the differential equation y′′−µ2y = 0 is the one which has the

functions exp(±µx) as its linear independent solutions and then the leading term of

the error should be of the form

A(−µ2y + y′′) .

The factor A is fixed by considering the fact that the coefficient of y should be the

same in the classical (polynomial) expansion and in the above equation, i.e.

A = − 1

µ2
L0(h, a) = − 1

µ2
(1− cosh(z)) .

Notice that in the limit µ→ 0 the new formulae tends to the classical ones.

In general the frequency µ can be
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• real: µ = ω

• pure imaginary: µ = iλ

In the latter case all occurring hyperbolic functions transform into trigonometric

ones. To generalize the above results we introduce new functions, useful in all cases,

i.e. the η-functions. These functions were originally introduced in Section 3.4 of [8].

The η functions are real functions of the real variable Z. The functions η−1(Z) and

η0(Z) are introduced by the formulae:

η−1(Z) :=

{
cos(|Z|1/2) if Z < 0

cosh(Z1/2) if Z ≥ 0

and

η0(Z) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sin(|Z|1/2)

|Z|1/2
if Z < 0

1 if Z = 0

sinh(Z1/2)

Z1/2
if Z > 0

while ηs(Z) with s > 0 are subsequently generated by recurrence

ηs(Z) =
1

Z
[ηs−2(Z)− (2s− 1)ηs−1(Z)], s = 1, 2, 3, . . .

These functions satisfy several properties of which the following ones are of interest

for the present discussion

• Differentiation:

η′s(Z) =
1

2
ηs+1(Z), s = −1, 0, 1, 2, . . .

• Generating differential equation: ηs(Z) (s = 0, 1, . . . ) is the regular solution

of

Zw′′ +
1

2
(2s + 3)w′ − 1

4
w = 0.

• Relation with the spherical Bessel functions:

ηs(−x2) = x−sjs(x), s = 0, 1, 2, . . .

With the generalized notation the EF Euler method can be written as

yn+1 = η−1(Z)yn + hη0(Z)f(xn, yn) ,
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while the leading term of the corresponding error reads

− 1

µ2
(1− η−1(Z))(−µ2y + y′′) .

3. SIX-STEP FLOW CHART

For the construction of EF-methods when functions of the forms

f1(x) sin(ωx) + f2(x) cos(ωx) or f1(x) sinh(λx) + f2(x) cosh(λx), are present, the

following procedure to get tuned formulae can be followed in general:

Step i . Choose the appropriate form of L[h, a] and find its classical moments:

Lm(h, a), m = 0, 1, 2, . . . .

Step ii . Examine the algebraic system

Lm(h, a) = 0, m = 0, 1, 2, . . . ,M − 1 ,

to find out the maximal M for which it is compatible.

Step iii . Denote z := µh, construct the formal expression of E0(z, a) and, on this

basis, write the expressions of G±(Z, a) where Z := z2. Also write the expres-

sions of their derivatives G±(p)(Z, a), p = 1, 2, . . . with respect to Z.

Step iv . Choose the reference set of M functions which is appropriate for the given

form of y(x). This is in general a hybrid set:

1, x, x2 , . . . , xK ,

exp(±µx), x exp(±µx), x2 exp(±µx), . . . , xP exp(±µx),

with K + 2P = M − 3.

The reference set is thus characterized by two integer parameters, K and P .

The set in which there is no classical component is identified by K = −1

while the set in which there is no exponential fitting component is identified

by P = −1. Parameter P is the level of tuning.

Step v . Solve the algebraic system{
Lk(h, a) = 0, 0 ≤ k ≤ K

G±(p)(Z, a) = 0, 0 ≤ p ≤ P

for the Z dependent coefficients a(Z).
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Step vi . The leading term of the error of the formula is proportional with

LK+1(h, a)

(K + 1)!ZP+1
DK+1(D2 − µ2)P+1y(X),

where µ = i ω or µ = λ, according to the case.

4. THE EF-NUMEROV METHODS

4.1 The construction of the methods

As explained in the previous sections and in [11, 14] the six-step procedure is followed

for every construction of EF-methods; here we shall illustrate the technique for the

construction of EF versions of the Numerov method. This method is often used for

the derivation of the numerical solution of the initial value problem for second order

differential equations of the special form:

y′′ = f(x, y), x ∈ [a, b], y(a) = y0, y
′(a) = y′0 . (13)

The form of these algorithms is:

yn+1 + a1yn + yn−1 = h2[b0(fn+1 + fn−1) + b1fn], (14)

where xn±1 = xn ± h, yn is an approximation to y(xn) and fn = f(xn, yn). The

coefficients of the classical version are

a1 = −2, b0 =
1

12
, b1 =

5

6
. (15)

Following steps of the six-steps procedure [11, 14] can be applied:

Step i. Choose the appropriate form of L[h, a] and find the expressions of its classical

moments Lm(h, a), m = 0, 1, 2, . . .. With a := [a1, b0, b1] we define L[h, a] by

L[h, a]y(x) := y(x + h) + a1y(x) + y(x− h) (16)

− h2[b0(y
′′(x + h) + y′′(x− h)) + b1y

′′(x)].

The expressions of the classical moments (powers of h omitted) are:

L0(a) = 2 + a1, L2(a) = 2(1− 2b0 − b1),

L2k(a) = 2− 4k(2k − 1)b0, k = 2, 3, . . .

L2k+1(a) = 0, k = 0, 1, . . .
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Step ii. Examine the algebraic system

Lm(h, a) = 0, m = 0, 1, 2, . . . ,M − 1 (17)

to find out the maximal M for which it is compatible. System Lk(a) = 0, 0 ≤ k ≤ 5

is compatible by which M = 6 and it has solution (15), further denoted as S0.

Step iii. Let z = µh. We construct E0(z, a) by applying L on y(x) = exp(µx) to

obtain

E0(z, a) = exp(z) + exp(−z) + a1 − z2[b0(exp(z) + exp(−z)) + b1],

and then

G+(Z, a) = 2η−1(Z) + a1 − Z[2b0η−1(Z) + b1], G−(Z, a) = 0,

where Z = z2. It follows that

G+(1)(Z, a) = η0(Z)− (2η−1(Z) + Zη0(Z))b0 − b1,

G+(m)(Z, a) = 2−m+1[ηm−1(Z)− (3ηm−2(Z) + ηm−3(Z))b0], m = 2, 3, . . .

G−(m)(Z, a) = 0, m = 1, 2, . . .

Step iv. Choose the reference set of M functions which is appropriate for the given

form of y(x). This is in general a hybrid set:

y = 1, x, x2 , . . . , xK ,

exp(±µx), x exp(±µx), x2 exp(±µx), . . . , xP exp(±µx),
(18)

with

K + 2P = M − 3. (19)

Step v. Solve the algebraic system

Lk(a) = 0, 0 ≤ k ≤ K, G±(p)(Z, a) = 0, 0 ≤ p ≤ P (20)

for the Z dependent coefficients and let a(Z) = [a0(Z), b0(Z), b1(Z)] be its solution.

Three options for tuning are then available: (i) P = 0, K = 3, (ii) P = 1, K = 1,

and (iii) P = 2, K = −1 and these lead to the schemes S1, S2 and S3, respectively.

S1. The six functions to be integrated exactly by the algorithm are 1, x, x2, x3, and

the pair exp(±µx) and therefore the system to be solved is Lk(a) = 0, 0 ≤ k ≤ 3

and G±(Z, a) = 0. The system is compatible and its solution is

a1(Z) = −2, b0(Z) =
1

Z
− 1

2(η−1(Z)− 1)
, b1(Z) = 1− 2b0(Z). (21)
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S2. The functions to be integrated exactly are now 1, x, and the pairs exp(±µx)

and x exp(±µx). Since all classical moments with odd indices and all G functions

with a minus sign for the upper index are identically vanishing, the system to be

solved is simply L0(a) = G+(Z, a) = G+(1)(Z, a) = 0, with the solution

a1(Z) = −2, b0(Z) =
1

Z
− 2(η−1(Z)− 1)

Z2η0(Z)
=

η1(Z/4)

4η−1(Z/4)
,

b1(Z) = 2[
η−1(Z)− 1

Z
− b0(Z)η−1(Z)] = η2

0(Z/4)− 2b0(Z)η−1(Z).

(22)

S3. The reference set of six functions is exp(±µx), x exp(±µx), x2 exp(±µx) and

thus the system to be solved is

G+(Z, a) = G+(1)(Z, a) = G+(2)

(Z, a) = 0,

with the solution

a1(Z) = −(6η−1(Z)η0(Z)− 2η2
−1(Z) + 4)/D(Z), (23)

b0(Z) = η1(Z)/D(Z), b1(Z) = (4η2
0(Z)− 2η1(Z)η−1(Z))/D(Z),

where D(Z) = 3η0(Z) + η−1(Z).

Step vi. The leading term of the error of the formula can be obtained.

S0.

lteclas = − h6

240
y(6)(xn).

S1.

lteef = −h6 1− 12b0(Z)

12Z
(−µ2y(4)(xn) + y(6)(xn)).

S2.

lteef = h6Z
2η0(Z)− 4(η−1(Z)− 1)2

Z4η0(Z)
[µ4y′′(xn)− 2µ2y(4)(xn) + y(6)(xn)].

S3.

lteef = h6 N(Z)

F (Z)
× [−µ6y(xn) + 3µ4y(2))(xn)− 3µ2y(4)(xn) + y(6)(xn)]

where

N(Z) = 6η0(Z) + 2η−1(Z)− 6η−1(Z)η0(Z) + 2η2
−1(Z)− 4
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and

F (Z) = Z3(3η0(Z) + η−1(Z))

. 4.2 A typical application of the Numerov Method

The relative merits of each of the four versions Si, i = 0, 1, 2, 3 can be evaluated

by comparing the expressions of the lte. Notice that each lte has one and the same

h6-dependence.

• This means that the order of each version is 4.

• The factors in the middle are close to −1/240 when Z is not too large.

• The difference in accuracy is contained in the third factors.

To illustrate the differences in the third factors we consider the case of the

Schrödinger equation. The problem to be solved is

y′′ + (E − V (x))y = 0, x > 0

where limx→∞ V (x) = 0, with the conditions

y(0) = 0

and y(x) is finite for any x > 0. For each of the Si methods the expressions of the

lte for this particular problem can be evaluated.

For such an equation the knowledge of the potential function V (x) and of the

energy E is sufficient to get reasonable approximations for frequencies: the inte-

gration domain [a, b] is divided in subintervals and on each of them the function

V (x) is approximated by a constant V̄ . On all steps in such a subinterval one and

the same µ2 is used, µ2 = V̄ − E. If this is done the order of each version re-

mains four but the errors will be very different when big values of the energy are

involved. To see this let us denote ∆V (x) = V (x) − V̄ , express the higher order

derivatives of y in terms of y, y′, µ2, ∆V (x) and the derivatives of V (x), for example

y′′(x) = (V (x)−E)y(x) = (µ2+∆V (x))y(x), y(4)(x) = V ′(x)y(x)+(µ2+∆V (x))y′(x)

etc., and finally introduce them in the expressions of the last factors in the lte, which

will be denoted ∆i(xn), i = 0, 1, 2, 3. The expression of each ∆i(xn) resulting from

such a treatment will consist in a sum of y and y′ with coefficients which depend on

µ2, ∆V (x) and on the derivatives of V (x).
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If E >> V̄ , |µ2| has a big value and then the µ2 dependence of ∆i(xn) will

become dominating; the approximation µ2 ≈ −E will hold as well. To compare the

errors it is then sufficient to organize the coefficients of y and of y′ as polynomials

in E and to retain only the terms with the highest power. This gives:

∆0(xn) ≈ −E3y − 6EV ′y′ ,

∆1(xn) ≈ E2∆V y − 4EV ′y′ ,

∆2(xn) ≈ −E[5V (2) + (∆V )2]y − 2EV ′y′ ,

∆3(xn) ≈ −4EV (2)y + (4V (3) + 6V ′∆V )y′ .

Since in the discussed range of energies the solution is of oscillatory type with almost

constant coefficients, the amplitude of the first derivative is bigger by a factor E1/2

than that of the solution itself and then the error from the four schemes increases

with E as E3, E2, E3/2 and E, respectively.

For illustration we take as potential function the sum of the Woods–Saxon

potential and its first derivative, that is

V (x) = v0/(1 + t) + v1t/(1 + t)2, t = exp[(x− x0)/a],

where v0 = −50, x0 = 7, a = 0.6 and v1 = −v0/a. Its shape is such that only two

values for V̄ are sufficient: V̄ = −50 for 0 ≤ x ≤ 6.5 and V̄ = 0 for x ≥ 6.5.

We solve the resonance problem which consists in the determination of the

positive eigenvalues corresponding to the boundary conditions

y(0) = 0, y(x) = cos(E1/2x) for big x.

The physical interval x ≥ 0 is cut at b = 20 and the eigenvalues are obtained by

shooting at xc = 6.5. The error in the eigenvalues will then reflect directly the

quality of the solvers for the initial value problem used for the determination of the

solution y(x).

In table 1 we list the absolute errors for one particular eigenvalue for all four

schemes of the Numerov method for several step length h; reference values, which are

exact in the written figures, have been generated in a separate run with the method

CPM(2) from [8] at h = 1/16. It is seen that, as expected, all these versions are of

order four. In table 2 the absolute errors of four such eigenvalue for all schemes are

listed. From these data it is obvious that the way in which the error increases with
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h S0 S1 S2 S3

1/16 79579 9093 721

1/32 595230 4734 525 46

1/64 36661 292 32 2

1/128 2287 18 1 0

Table 1: E = 163.215298

h S0(E
3) S1(E

2) S2(E
(3/2)) S3(E)

E = 53.58

1/64 989 22 5 1

E = 163.21

1/64 36661 292 32 2

E = 341.49

1/64 560909 2215 126 7

E = 989.70

1/64 46269 975 28

Table 2: The behaviour of the absolute errors of the eigenvalues as a function of E

the energy differs from one version to another. The theoretical predictions of the

behaviour of these errors with respect to E is confirmed.

5. SOME GENERAL COMMENTS

In this review paper we have demonstrated some applications of the EF-technique

applied to ODE-solvers. Quite a lot of other research in that field have be done.

We give here a short survey of these results and some references where some of the

results have been presented:

• EF versions of the two-step bdf algorithm

a0yn + a1yn+1 + yn+2 = hb2f(xn+2, yn+2) ,

including stability theory, variable step form (see [12, 13]).

• Numerov method for second-order ODEs of the type y′′ = f(x, y)

yn+1 + a1yn + yn−1 = h2[b0(fn+1 + fn−1) + b1fn] ,
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(see previous section).

• Symmetric four-step methods

yn+2 + a1yn+1 + a2yn + a1yn−1 + yn−2

= h2(b0fn+2 + b1fn+1 + b2fn + b1fn−1 + b0fn−2) ,

(see [9, 10])

• Explicit Runge-Kutta EF methods including 2-,3- and 4-step methods, em-

bedded pairs, etc.. (see [4, 23, 24, 26]).

• Implicit 2-step Runge-Kutta EF methods of order 2, 3 and 4 (see [25, 27]).

• Runge-Kutta-Nyström EF methods (see [17]).

More general applications of these EF technique can be found in [14].
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Abstract:

Biomathematics use mathematics to quantitatively represent the dynamics of biolog-

ical or biomedical systems and thereby analyze and predict system behavior. As an

example, this work addresses an application of bioacoustic modeling and computa-

tions to a clinical imaging technique for breast cancer detection. The mathematical

model consists in a damped wave equation incorporating a frequency-dependent at-

tenuation, which describes ultrasound propagating in the human breast tissue. 3D

numerical simulations are presented to investigate the dectectability of breast tu-

mors. An extension to a more general model for the acoustic attenuation is also

discussed. For this, 2D numerical experiments are presented to illustrate the issue

in the case of the CARI technique.

1. INTRODUCTION - CLINICAL DESCRIPTION

Breast cancer became the most widespread female disease, in particular in western

countries. Lives can be saved and treatment can be more effective if the diagnosis

is made early. Ultrasonography is a common technique used in breast screening due

to its low cost and large availability. Moreover, it is a good adjunct to mammog-

raphy in differentiating cancerous from non-cancerous breast tumors. In this study,

we are interested in the CARI (clinical amplitude-velocity reconstruction imaging)

ultrasonic technique that was developed by Dr. K. Richter [1, 2].

The breast, in the CARI device, is fixed between two plates as schematically

illustrated in Figure 1. The stainless steel plate, opposite to the transducer, plays the

role of a reference structure producing a reflecting line (RL). The CARI modality

operates in such that the RL is straight if the sound velocity in the intervening

tissues is roughly homogeneous while it is elevated if the tissue contains a suspicious

92



tumor as shown from the CARI-ultrasonic image in Figure 2. The CARI technique

is characterized by two important acoustic components of breast evaluation, namely

the sound speed and the attenuation. Moreover, the CARI method is more sensitive

than the conventional ultrasound, especially in assessing cancer surrounded by the

breast fatty tissue.

In general, experimental study in living tissues is not practical, and acoustic

phantoms are useful but limited. Therefore, mathematical computer modeling of

ultrasound propagation and scattering complement to both approaches, although it

has its own limitations. Moreover, recent advances in high-performance computing

enable large-scale simulations such those occurring in high frequency acoustic wave

propagation.

Frontal  view Anterior  view

Transducer

Plexiglas Plate

Stainless Steel Plate

Gel Filling

Figure 1: Two frontal views of the ultrasonic CARI technique for breast tumor

detection taken from [2]

2. MATHEMATICAL AND GEOMETRICAL MODELING

To simulate ultrasound in breast models taking into account the two tissue pa-

rameters of the CARI technique, we solve the damped linear wave equation in an

inhomogeneous lossy acoustic medium representing the breast fatty tissue:

1

c2
∂2p

∂t2
+ γ

∂p

∂t
= ∇2p, (1)

where p is the pressure, c is the sound velocity, and γ is the damping or attenu-

ation parameter. Note that wave attenuation is an essential tissue characteristic.

There are various attenuation mechanisms where few of them can be isolated, and

commonly the attenuation follows a power law in frequency f expressed as

γ = αfy, (2)
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Elevation of the Reflecting Line (RL)

tissue
breast

breast
tumor

Figure 2: A CARI-ultrasound image showing the elevation of the reflecting line due

to the presence of a tumor in the breast tissue

where coefficients α and y depend on the tissue. For example, in water

α ≈ 0.0022dB/cm/MHzy, y= 2.0, and in muscle tissue α ≈ 0.7dB/cm/MHzy, y=

1.1. In our simulations, α = 2α0/c and the values of c, α0 and y are deduced from

clinical experiments and will be specified later. In the last section we introduce a

more general attenuation model using Laplacian fractional derivative.

The equation (1) is supplemented with initial and boundary conditions accord-

ing to the 3D configuration in Figure 3. The transducer is represented by a Dirichlet

condition

p(xtrsd, t) = ptrsd(x, t). (3)

The RL in the CARI setup is modeled by reflecting boundary (RB) conditions

∂p

∂n
(xRB, t) = 0, (4)

while the remaining boundaries are represented by first-order absorbing or non-

reflecting boundary (NRB) conditions:

∂p

∂n
(xNRB, t) = −1

c

∂p

∂t
. (5)

The system is initialized with the conditions:

p(x, t0) = patm and
∂p

∂t
(x, t0) = 0. (6)

The FETD (finite element time domain) approach used to discretize the equation

(1) and the corresponding boundary conditions consists of a finite element method
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yz
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Transducer

tumor

reflecting face  ( = face up)

Transducer  face ( = face down )

2a

2b
2c

Figure 3: 3D configuration of the CARI technique for ultrasound breast tumor

detection

in the spatial domain and a second order finite difference representation to evaluate

the time derivatives. A semi-discrete time scheme of (1) writes

pn+1 − 2pn + pn−1

∆t2
+ γc2

pn+1 − pn−1

2∆t
= c2∇2pn, (7)

where ∆t is the time step size and the superscript n denotes the nth time iter-

ate of the pressure field. Then, by decomposing pn in a finite element basis and

incorporating the boundary conditions, (7) leads to

A1p
n+1 = A2p

n + A3p
n−1, (8)

where the matrices Ai, (i = 1, 2, 3) result from the finite element matrices and de-

pend on the parameters c, γ, and ∆t. In summary, the problem is reduced to

the solution of a linear system at each time step. The numerical implementation

is carried out using Diffpack, a finite element library based on C++ and object-

oriented programming [3]. We refer to [7] for a detailed description of the FETD

discretization method as well as a review on the stability of the numerical scheme.

3. NUMERICAL RESULTS AND DISCUSSIONS

Geometrically, the breast tissue is assimilated to a 3D box of size 22mmx24mmx20mm

containing an ellipsoid-shaped tumor of axes 2a, 2b and 2c as shown in Figure 3.

The transducer is a 12mmx8mm-rectangle from which a 3.5MHz signal is transmit-

ted into the breast tissue. The sound speed in the breast tissue and the tumor are

extracted from clinical experiments [4] together with the attenuation parameters,

and are summarized in Table 1. Note that the transducer signal has a wavelength

of λ = f
c
≈ 0.4mm. Thus, for a better resolution of the spatial features, a grid
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Table 1: Sound velocity and coefficients of frequency-dependent power law attenu-

ation of the breast tissue and tumor.

breast fatty tissue breast cancer

c(m/s) 1475 1527

α0(dB/MHzy) 15.8 57.0

y(s/m2) 1.7 1.3

is chosen able to resolve 2 finite elements per wavelength which requires a grid of

approximately 1.5x106 nodes. The numerical scheme is then stable for a time step

∆t =26x10−9s, and two ways of the wave traveling along the 3D breast model is

achieved over 1125 time steps.

As shown in Figure 5, the waves are perturbed due to the presence of the tumor

in the abnormal tissue compared to the healthy (or homogeneous) one. Here, the

tumor is an ellipsoid of axes (12mm,8mm,8mm), and the views represent cross-

sections normal to the wave propagation direction.

Clinically, the ultrasound imaging techniques have some limitations and lesions as

small as 1cm-diameter can hardly be detected. The numerical experiments show

instead that smaller lesions can be readily recognized in the tissue, an observation

confirmed by 2D simulations in [7], which mimic cross-sections in 3D breast model.

Besides the disturbance of the echo pattern around the lesion, snapshots from Figure

6 show that the ultrasound pressure is attenuated as the wave propagates along the

tissue towards the RL and back to the transducer. Moreover, ultrasound pressure of

a layer traversing the tumor (z = 5mm) displayed at successive time steps on Figure

7 gives a quantative evaluation in detecting the tumor and recognizing its shape.

4. ON A FRACTIONAL DERIVATIVE ATTENUATION MODEL

Acoustic waves propagating in media exhibiting arbitrary frequency power law at-

tenuation can be modeled by time-domain partial differential equations given by (1).

However, for non-integer power exponent y of the attenuation parameter γ, these

models may not accurately describe more realistic media such as soft biological tis-

sues. Therefore, we introduce in this section a new model for the dissipative term

using a Laplacian fractional derivative developed by Chen and Holm [9, 10]:

1

c2
∂2p

∂t2
+ 2

α0

c1−y ∂
∂t

((−∆)y/2
) = ∇2p, (9)

where the coefficients are similar to those introduced earlier. Chen and Holm note
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Figure 4: 2D configuration used for the FEM simulations of the wave propagating

in attenuated medium

that the spatial fractional Laplacian models reflect the fractal microstructures of the

media and describe quite well the frequency power law attenuation.

We aim in this section to develop a finite element approach to the new wave equation.

Using a finite element approach to the equation (9) and the Green’s formula for the

right hand side term, we assume we obtain the pseudo-spatial approximation:

1

c2
∂2(Mp)

∂t2
+ 2

α0

c1−y

∂

∂t
(Ky/2p) = −Kp +Bp. (10)

The matrices M , K, and B are given, respectively, by

[Mij] =

∫
Ω

NiNjdx, [Kij] =

∫
Ω

∇Ni∇Njdx, [Bij] =

∫
∂ΩNR

NiNjdσ, (11)

where Ni are the finite element basis functions and ∇Ni their gradients. ΩNR refers

to as the non-reflecting boundaries of the computational domain as illustrated on

Figure 4.

Then, using a second-order finite difference approximation in time, we get the dis-

crete matrix form[
2M + 2α0c

1+y∆tKy/2 + c∆tB
]
pn+1 = −2c2∆t2Kpn + 4Mpn − 2Mpn−1

+ 2α0c
1+y∆tKy/2pn−1 + c∆tBpn−1.

The pressure is then calculated by a process solving a linear system at each time

step.
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Some 2D numerical results

To our knowledge, numerical simulations involving fractional derivative are not

widely treated in the literature. In this section, we investigate the feasibility of

the finite element approach to give quantitative results on the behavior of the wave

propagating in media presenting a fractional derivative attenuation model. We es-

pecially study the effect of the power exponent y on the presence or not of the

oscillations within or outside the tumor region.

The domain is a 10mmx10mm square meshed with a 26x26nodes-grid, the sound

speeds in the breast and the tumor respectively are cbreast = 1475ms−1, ctumor =

1527ms−1, and α0 = 1 is the first attenuation coefficient. The matrix Ky/2 is

computed using one of the matrix functionalities of matlab. The process is time

consuming and results, in particular, in a full matrix.

Two series of numerical experiments are carried out for different values of y when

the wave travels in the 2D breast model outside the tumor region: (1) for 5 values of

y close to 0, Figure 8 shows that the oscillations are very similar; (2) for 5 values of

y between 0.2 and 2, the results from Figure 9 show that the oscillations are present

for y=0.2 and y=0.5, but then disappear when y ≥ 1. It is also observed that the

amplitude is smaller than the above case.

In Figures 10 and 11, the same observations are made from the results when the

wave propagates across the tumor region. Other results are presented in [8].

5. CONCLUSIONS AND PERSPECTIVES

This paper addresses bioacoustic numerical modeling for the CARI ultrasonic breast

imaging technique. A finite element approach is presented and numerical experi-

ments for a 3D breast model illustrate the detectability of lesions in the breast fatty

tissue.

The attenuation model is extended by introducing a Laplacian fractional derivative.

The discretization of the wave equation incorporating the new attenuation model

is achieved by a finite element method. The numerical results, although limited to

bi-dimensional case and simple boundary conditions, give insights in the feasibil-

ity of the attenuation modeling in human soft tissues. However, further analysis

can be done to achieve a more accurate numerical approximation of the presented

attenuation model.
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(a)

(b)

Figure 5: Ultrasound pressure in a cross-section (z=7mm) normal to the z-axis

and traversing the tumor for two breast fatty tissues at t=23.9µs: (a) homogeneous

tissue; (b) containing a (12mm,8mm,8mm)-ellipsoid tumor. The shape of the section

is readily recongnized in the background medium.
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(a)

(b)

Figure 6: Ultrasound pressure in a cross-section normal to the y-axis and travers-

ing the tumor for two breast fatty tissues at t=23.9µs: (a) homogeneous tissue;

(b) containing a (12mm,8mm,8mm)-ellipsoid tumor. The wave travels back to the

transducer, and it is noted that it is disturbed around the tumor compared to the

tissue without tumor.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: History of the ultrasound pressure in the breast tissue containing an

ellipsoid tumor at 8 successive time steps:(a) t=26.6ns; (b) t=2.6µs; (c) t=7.9µs ;

(d) t=15.9µs; (e) t=18.6µs; (f) t=29.3µs. The color scale shows also the attenuation

of the pressure during the two-way travel of the wave along the tissue.
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Figure 8: Normalized ultrasound pressure in 5 different media presenting a fractional

Laplacian derivative attenuation model. The media are varying according to 5 values

(close to 0) of the power exponent parameter y. The plots represent the pressure

field as a function of the axial distance (z) when the lateral distance is fixed to

x=-3mm, i.e., the wave travels outside the tumor region.
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Figure 9: Normalized ultrasound pressure in 5 different media presenting a fractional

Laplacian derivative attenuation model. The media are varying according to 5 values

(between 0.2 and 2) of the power exponent parameter y. The plots represent the

pressure field as a function of the axial distance (z) when the lateral distance is fixed

to x=-3mm, i.e., the wave travels outside the tumor region.
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Figure 10: Normalized ultrasound pressure in 5 different media presenting a frac-

tional Laplacian derivative attenuation model. The media are varying according to

5 values (close to 0) of the power exponent parameter y. The plots represent the

pressure field as a function of the axial distance (z) when the lateral distance is fixed

to x=1mm, i.e., the wave travels through the tumor region.
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Figure 11: Normalized ultrasound pressure in 5 different media presenting a frac-

tional Laplacian derivative attenuation model. The media are varying according to

5 values (between 0.2 and 2) of the power exponent parameter y. The plots represent

the pressure field as a function of the axial distance (z) when the lateral distance is

fixed to x=1mm, i.e., the wave travels through the tumor region.
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1. INTRODUCTION

The method of integral transforms is used to solve the temperature field problem

in oil stratum described by a fractional heat equation. The case of the incomplete

lumped formulation of radial fluid injection in the stratum is considered. By using

the Riemann-Liouville differintegration operator of arbitrary order and the Laplace

transform, the solution containing special functions of Wright’s type in the integrand

is obtained.

A porous medium (sandstone) which is saturated with oil is called an oil stratum.

It is possible to consider the stratum depth as equal to infinity since the depth of

oil stratum usually varies from one to several kilometers. The rock surrounding

a stratum (cap and base rock) is considered impermeable to the fluid. A standard

method of oil extraction is to pump the oil out from a series of production wells which

are drilled in the center of the oil deposit. At particular time of the exploitation

period a water or steam is injected into injection wells drilled along the boundary of

the oil reservoir. There are two cases of fluid injection to be considered: linear and

radial injection. The problem of describing the temperature field u = u(x, y, z, t)

in a single or multiple layer oil stratum arises when a hot water (or steam) whose

temperature differs from that of the stratum, is injected into the injection wells. In

the so–called radial case, a hot fluid is forced into the stratum through an infinitely

thin well, which is considered as a linear source of incompressible fluid whose volume

rate is positive.

Beside the so–called exact formulation of the problem, the following three ap-

proximate formulations are treated (cf. Antimirov, Kolyshkin and Vaillancourt [1]):

1This paper has been partially supported by NSF, Bulgarian Ministry of Education and Science,
under Grant MM 1305. – It was prepared when the first author was a Visiting Professor at the
University of Karlsruhe.
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• the lumped formulation, where the thermal conductivity of the stratum is in-

finitely large in the vertical direction,

• the incomplete lumped formulation, where the horizontal heat transfer in the

cap and base rock is neglected,

• the formulation of Lauwerier, where the horizontal heat transfer is neglected

also in the stratum.

In the radial case of the incomplete lumped formulation, the temperature field u =

u(r, z, t) in cylindrical coordinates satisfies the equation

∂u

∂t
= a2 ∂2u

∂z2
, a > 0, 0 < r, z, t <∞ (1)

subject to the boundary condition

z = 0 :
∂u

∂t
=

∂2u

∂r2
+

1− 2ν

r

∂u

∂r
+ α

∂u

∂z
, 0 < r, t <∞, (2)

and the conditions

(a) r = 0, z = 0 : u = 1,

(b) u→ 0 as r2 + z2 →∞,

(c) t = 0 : u = 0.

(3)

We should make clear that: The constant a > 0 depends on the coefficient of

thermal diffusivity of the cap rock and the stratum; the constant α > 0 is a ratio of

the coefficients of thermal conductivity of the cap rock and the stratum; the constant

ν > 0 depends on the volume rate and the volumic heat capacity of the fluid as well

as the coefficient of the thermal conductivity of the stratum. For later consideration

we set b = α
a
.

By using the Laplace transform

f̄(p) = L[f(t)] =

∫ ∞

0

e−ptf(t)dt, (4)

the solution of the problem (1), (2), (3) is given in the form (cf. [1], 8.2.54)

u(r, z, t) =
1

Γ (ν)

∫ t

0

1

τ

(
r2

4τ

)ν

e−
r2

4τ erfc

(
bτ + z

a

2
√
t− τ

)
dτ, (5)

where Γ (ν) is Euler’s gamma function,

erfc(x) =
2√
π

∫ ∞

x

e−t2dt =
1√
π
Γ (

1

2
, x2)
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is the complementary error function and

Γ (a, x) =

∫ ∞

x

ta−1e−tdt, a > 0.

Formula (5) is the well–known formula (cf. Avdonin [2]) which was used in numerous

computations of oil stratum temperature fields in the radial case. Similar bound-

ary value problems are also studied by using the Laplace and the general Hankel

transforms (cf. Ben Nakhi and Kalla [3]).

The concept of a non–integer differentiation and integration of a function is

almost as old as calculus itself. Many famous mathematicians including Leibniz,

Euler, Lagrange, Laplace, Fourier and Abel made some contribution to it. But it was

before Liouville and Riemann made the idea more precisely formulated. Nowadays

there exist specialized treaties where mathematical aspects and applications of the

fractional calculus are extensively discussed (cf. Bride [4], Kiryakova [10], Miller

and Ross [13], Oldham and Spanier [14], Samko, Kilbas and Marichev [16]).

Fractional calculus became a significant topic in mathematical analysis as a

result of its increasing range of potential applications. Operators for fractional

differentiation and integration (differintegration operators) have been used in various

fields as: hydraulics of dams, potential fields, diffusion problems and waves in liquids

and gases (cf. Schneider and Wyss [17]). The use of half–order derivatives and

integrals leads to a formulation of certain electro–chemical problems which is more

economical and useful than the classical approach in terms of Fick’s law of diffusion

(cf. Crank [5]). Maybe the main advantage of the fractional calculus is that the

fractional derivatives provide an excellent instrument for the description of memory

and hereditary properties of various materials and processes.

Thus motivated, we extend the problem (1), (2), (3) by replacing the partial

time derivative of the field temperature by the fractional time derivative

∂2βu

∂t2β
of real order α = 2β, 0 < β ≤ 1/2.

Then the radial case of the fractional incomplete lumped formulation reads as

∂2βu

∂t2β
= a2∂

2u

∂z2
, a > 0, 0 < r, z, t <∞, 0 < β ≤ 1/2, (6)

subject to the boundary condition

z = 0 :
∂2βu

∂t2β
=

∂2u

∂r2
+

1− 2ν

r

∂u

∂r
+ α

∂u

∂z
, 0 < r, t <∞, (7)

107



and the conditions

(a) r = 0, z = 0 : u = 1,

(b) u→ 0 as r2 + z2 →∞,

(c) t = 0 : u = 0.

(8)

Using the Riemann–Liouville fractional derivative operator and the Laplace trans-

form, we get an integral form of the solution involving into the integrand special

functions of Wright’s type. The solution obtained contains (5) as particular cases

as β = 1
2
.

Publications of fractional calculus based on Laplace transform (cf. Gorenflo and

Rutman [9], Mainardi [12], Podlubny [15] and others) confirm the present interest

in using the potentialities of fractional calculus in mathematical physics.

2. THE RIEMANN–LIOUVILLE DIFFERINTEGRATION OPERA-

TOR

To present some essentials of the Riemann–Liouville fractional calculus we follow

in this section the Handbook of function and generalized function transformations

(Zayed [18]).

Definition 1: If α > 0, the Riemann–Liouville fractional integral of order α of a

function f(t) is defined by

Iα[f(t)](x) =
d−α

dx−α
f(x) =

1

Γ (α)

∫ x

a

(x− t)α−1f(t)dt .

By using Definition 1, it is possible to define the fractional derivative as follows.

Definition 2: If α ≥ 0, the Riemann–Liouville fractional derivative of order α of

a function f(t) is defined by

Dαf(x) =
dα

dxα
f(x) =

dm

dxm

d−(m−α)

dx−(m−α)
f(x) =

dm

dxm

1

Γ (m− α)

∫ x

a

(x− t)m−α−1f(t)dt,

where m is nonnegative integer such that m− 1 ≤ α < m.

It is convenient to introduce a notation that unifies fractional differentiation and

integration.
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Definition 3: The Riemann–Liouville differintegration operator of order α is de-

fined by

Rαf(x) =

{
Iα [f(t)] (x), if α < 0,

Dαf(x), if α ≥ 0.

In particular, if 0 < α < 1, then

Rαf(x) =
d

dx
I1−α [f(t)] (x).

For our further discussion in this paper, it is important to mention that using Defini-

tion 3 it is possible to be established that the relationship of the Riemann–Liouville

differintegration operator of order α with the Laplace transform (4) is given by the

equation

L [Rαf(t)] (p) = pαL[f(t)](p)−
n−1∑
k=0

pk dα−1−kf

dtα−1−k
(0), for all α, (9)

where n is an integer such that n− 1 < α ≤ n.

3. EFROS’ THEOREM

A key role in obtaining the solution (5) is given to the following generalized multi-

plication theorem proved by A.M. Efros (cf. Antimirov and Vaillancourt [1], p. 12,

Ditkin and Prudnikov [6], pp. 35–36). Because this result is very important and the

proof not popular, we will add it.

Theorem 1 [Efros’ Theorem] Let be given analytic functions G(p) and q(p) and

the relations

F (p) = L[f(t)], G(p) e−τq(p) = L[g(t, τ)],

then it holds

G(p) F (q(p)) = L

[∫ ∞

0

f(τ)g(t, τ)dτ

]
. (10)

Proof: The right–hand side of (10) is

L

[∫ ∞

0

f(τ)g(t, τ)dτ

]
=

∫ ∞

0

e−pt

∫ ∞

0

f(τ)g(t, τ)dτdt

=

∫ ∞

0

f(τ)

∫ ∞

0

g(t, τ)e−ptdtdτ,
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provided we can reverse the order of integration. But the inner integral in the last

one is the Laplace transform of g(t, τ) and hence by (9), we can write

L

[∫ ∞

0

f(τ)g(t, τ)dτ

]
= G(p)

∫ ∞

0

f(τ)e−q(p)τdτ = G(p)F [q(p)],

that completes the proof. �

If in particular, we take q(p) = p, then

L[g(t, τ)] = e−pτG(p)

and by the p–shift theorem, g(t, τ) = g(t− τ). Hence, formula (10) becomes

F (p)G(p) = L

[∫ ∞

0

f(τ)g(t− τ)dτ

]
= L

[∫ t

0

f(τ)g(t− τ)dτ

]
,

since for original functions we have g(t− τ) = 0 for τ > t. The last formula shows

that Efros’ theorem is a generalization of the convolutional theorem for the Laplace

transform.

4. A SPECIAL FUNCTION OF WRIGHT’S TYPE

In studying the time fractional diffusion equation (6), the fundamental solution of

the basic Cauchy problem can be expressed in term of an auxiliary function, defined

as (cf. Mainardi [12])

M(z; β) =
1

2πi

∫
Ha

eσ−zσβ dσ

σ1−β
, 0 < β < 1,

where Ha denotes the Hankel path of integration that begins at σ = −∞− ib1 (b1 >

0), encircles the branch cut that lies along the negative real axis, and ends up at

σ = −∞+ ib2 (b2 > 0). It is proved that

M(z; β) = W (−z;−β, 1− β),

where

W (z;λ, µ) =
∞∑

n=0

zn

n!Γ (λn + µ)
=

1

2πi

∫
Ha

eσ+zσ−λ dσ

σµ
, λ > −1, µ > 0,

is an entire function of z referred to as the Wright’s function (cf. Erdélyi [8], vol. III,

Chapter 18). In the particular case β = 1
2
, it holds

M(z;
1

2
) =

1√
π

∞∑
m=0

(−1)m

(
1

2

)m
z2m

(2m)!
=

1√
π
e−

z2

4 . (11)
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Further, we use the function

N(ξ; β) =
1

2πi

∫
Ha

eσ−ξσ2β dσ

σ
.

By adopting Mainardi’s approach [12], we obtain the following auxiliary result.

Lemma 2 If 0 < β ≤ 1
2
, and 0 < t, τ, z <∞, then we obtain

(i) e−(bτ+ z
a
)pβ

= L[g1(t, τ ; β)],

(ii) 1
p
e−τp2β

= L [g2(t, τ ; β)] ,

where

g1(t, τ ; β) =
(bτ + z

a
)β

tβ+1
M

(
bτ + z

a

tβ
; β

)
, (12)

and

g2(t, τ ; β) = N
( τ

t2β
; β
)
. (13)

Proof: Part (i) is a direct consequence of [12] (formula (3.4) and (3.6)).

To prove (ii) consider the Laplace transform

ḡ2(τ, p; β) = 1
p
e−τp2β

.

According to the inversion formula of the Laplace transform,

g2(τ, t; β) =
1

2πi

∫
Ha

ept−τp2β dp

p
,

putting σ = pt and introducing the variable ξ = τ
t2β , we obtain

g2(τ, t; β) = N(ξ; β) =
1

2πi

∫
Ha

eσ−ξσ2β dσ

σ
,

where N(ξ; β) is the auxiliary function. Using Taylor’s representation of the expo-

nential function and Hankel’s representation of the reciprocal of the Euler gamma

function, we arrive at the following series representation

N(ξ; β) =
∞∑

n=0

(−1)n ξn

n! Γ (−2βn + 1)
, 0 < β <

1

2
.
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Hence for 0 < β < 1
2
, the auxiliary function is Wright’s function, since

N(ξ; β) = W (−ξ;−2β, 1).

Therefore we can state that

1
p
e−τp2β

= L [g2(t, τ ; β)] ,

where

g2(t, τ ; β) = N
( τ

t2β
; β
)
,

that completes the proof of part (ii). �

5. FRACTIONAL INCOMPLETE LUMPED FORMULATION

In this section, we apply the Laplace transform to solve the fractional problem

stated in Section 2. Recall that ν > 0 and α > 0 are parameters as specified

in Section 1. By using essentially the relationship (9) of the Riemann–Liouville

differintegration operator of arbitrary order α with the Laplace transform, we prove

the main statement given by the following theorem.

Theorem 3 If 0 < β ≤ 1
2
, the solution of the radial case of the fractional incomplete

formulation (6), (7), (8) is given by the integral

u(r, z, t) =
2

Γ (ν)

∫ ∞

0

1

τ

(
r2

4τ

)ν

e−
r2

4τ g(t, τ ; β) dτ, (14)

where

g(t, τ ; β) = g1(t, τ ; β) ∗ g2(t, τ ; β), (15)

and g1(t, τ ; β) and g2(t, τ ; β) are the functions defined by (12) and (13), respectively.

Proof: Let ū(r, z, p) = L[u(r, z, t)], where L again denotes the Laplace trans-

form operator. Applying the Laplace transform to (6), (7), (8), we obtain according

(8)(c) and (9):

p2βū = a2∂
2ū

∂z2
, 0 < r, z <∞, (16)

z = 0 : p2βū =
∂2ū

∂r2
+

1− 2ν

r

∂ū

∂r
+ α

∂ū

∂z
, 0 < r <∞, (17)
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(a) r = 0, z = 0 : ū = 1
p
,

(b) ū→ 0 as r2 + z2 →∞.
. (18)

The solution of (16), which remains bounded as z →∞, reads

ū(r, z, p) = c(r, p)e−
pβ

a
z, (19)

where the function c(r, p) has to be determined. Substituting (19) into (17) leads

to the following ordinary differential equation for c(r, p),

d2c

dr2
+

1− 2ν

r

dc

dr
− [p2β + bpβ

]
c = 0. (20)

It follows from (18) and (19) that

r = 0 : c(r, p) = 1
p
, lim

r→∞
c(r, p) = 0. (21)

Let us abbreviate µ =
√
p2β + bpβ. Then the solution of (20), which remains bounded

as r →∞ (cf. Lebedev [11], p. 106, formula (5.4.11)), is given by

c(r, p) = c1(p)
(µr

2

)ν

Kν(µr), (22)

where Kν(z) is the modified Bessel function of the second kind of order ν, and c1(p)

is a constant that must conform with (21). To apply conditions (21), we consider

limr→0 c(r, p) by refering to the following formula (cf. [16], p. 111)

Kν(z) ∼ 1
2
Γ (ν)

(
2

z

)ν

as z → 0.

Then it follows from (21) and (22) that

c1(p) =
2

p Γ (ν)
. (23)

Substituting (23) and (22) into (19), gives the Laplace transform of the solution

ū(r, z, p) =
2

pΓ (ν)

(µr
2

)ν

Kν(µr)e
− pβ

a
z. (24)

To make use of Theorem 1, let us represent (24) in the form

ū(r, z, p) = G(p; β)F [q(p; β)], (25)

where

G(p; β) =
2

pΓ (ν)
e−

pβ

a
z and q(p; β) = p2β + bpβ.
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It is well-known (cf. Ditkin and Prudnikov [7], p. 345, formula 2.10.128) that

p
ν
2Kν(α

√
p) = L

[
αν

(2t)ν+1
e−

α2

4t

]
.

It then follows from (24) and (25) that

F (p) =

(
r
√
p

2

)ν

Kν(r
√
p) = L[f(t; β)],

where

f(t; β) =
(r

2

)ν rν

(2t)ν+1
e−

r2

4t . (26)

Furthermore, we obviously have

G(p; β)e−τq(p;β) =
2

Γ (ν)

1

p
e−τp2β

e−(bτ+ z
a
)pβ

.

Then Lemma 2 and the convolution theorem yield

G(p; β) e−τq(p;β) =
2

Γ (ν)
L[g(t, τ ; β)],

where

g(t, τ ; β) = g1(t, τ ; β) ∗ g2(t, τ ; β), (27)

and g1(t, τ ; β) and g2(t, τ ; β) are defined by (12) and (13), respectively. Taking into

account (26) and (27), by Theorem 1 we obtain the solution of the radial case of the

fractional incomplete lumped formulation in the form (14) that proves the theorem.

�

Corollary 4 For the particular case β = 1
2
, the result (14) in Theorem 3 yields the

representation (5) of Avdonin.

Proof: In the particular case β = 1
2
, we have

N(ξ;
1

2
) =

1

2πi

∫
Ha

ept

(
1

p
e−τp

)
dp = H(t− τ), (28)

where H(t− τ) is the Heaviside function. To make sure that the solution (5) occurs

as a particular case of the solution obtained, let us consider the convolution (15)

g1(t, τ ; β) ∗ g2(t, τ ; β) =

∫ t

0

g1(t− s, τ ; β) g2(s, τ ; β) ds

=

∫ t

0

(bτ + z
a
)β

(t− s)β+1
M

(
bτ + z

a

(t− s)β
; β

)
N
( τ

s2β
; β
)
ds.
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For the case β = 1
2
, according to (11) and (28) the convolution becomes

g1(t, τ ;
1

2
) ∗ g2(t, τ ;

1

2
) =

1

2
√
π
H(t− τ)

∫ t

τ

bτ + z
a

(t− s)
3
2

e
−
(

bτ+ z
a

2
√

t−s

)2

ds =

=
2√
π
H(t− τ)

∫ ∞

bτ+ z
a

2
√

t−τ

e−w2

dw =
2√
π
H(t− τ) erfc

(
bτ + z

a

2
√
t− τ

)
.

Hence if β = 1
2
, the solution (14) yields the formula (5). �
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Abstract

Partial Galois extensions were recently introduced by Dokuchaev, Ferrero and Paques.

We introduce partial Galois extensions for noncommutative rings, using the theory

of Galois corings. We associate a Morita context to a partial action on a ring.

INTRODUCTION

Partial actions of groups originate from the theory of operator algebras, see for

example [16]. Partial representations of groups on Hilbert spaces were introduced

independently in [17] and [19]. Several applications are given in the literature, we

refer to [14] for a more extensive bibliography. More recently, partial actions were

studied from a purely algebraic point of view, in [12, 13, 15].

In [14], the authors consider partial actions on commutative rings, with the addi-

tional assumption that the associated ideals are generated by idempotents. Then

they generalize Galois theory for commutative rings, as introduced in [10] for usual

group actions, to partial actions.

Corings were introduced by Sweedler in 1975 in [23]. There has been a revived in-

terest in corings since the beginning of the century, based on an observation made

by Takeuchi that various types of modules, such as Hopf modules, relative Hopf

modules, graded modules, entwined modules and Yetter-Drinfeld modules may be

viewed as comodules over a coring. Brzeziński [1] noticed the importance of this

observation: the language of corings can be applied successfully to give a unified

and more elegant treatment to properties related to all these kinds of modules. An

overview can be found in [4].

One of the nice applications is descent and Galois theory: Galois corings were in-

troduced in [1], and studied in [6] and [24].

———————————–

1991 Mathematics Subject Classification. 16W30.
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The corings approach provides a unified theory for various types of Galois theories,

including the classical Chase-Harrison-Rosenberg theory [10], Hopf-Galois theory

(see [11, 18, 20]), coalgebra Galois theory (see [3]) and weak Hopf-Galois theory (see

the forthcoming [7]).

The aim of this note is to develop partial Galois theory starting from Galois corings.

The strategy is basically the following: given a set of idempotents eσ indexed by

a finite group G in a ring A, we investigate when the direct sum of the Aeσ is a

coring; it turns out that this is the case if a partial action of G on A is given. Then

we investigate when this coring is a Galois coring, and apply the results in [6]. This

procedure still works in the case where the ring A is not commutative. In the case

where A is commutative, we recover some of the results in [14]. This is done in

Section 2. In Section 3, we associate a Morita context to a partial action on a ring

A, and show that the context is strict if A is a faithfully flat partial Galois extension

of the invariants ring AG.

1. PRELIMINARY RESULTS

1.1 Galois corings

Let A be a ring. An A-coring C is a coalgebra in the category AMA of A-

bimodules. Thus an A-coring is a triple C = (C, ∆C, εC), where C is an A-bimodule,

and ∆C : C → C ⊗A C and εC : C → A are A-bimodule maps such that

(∆C ⊗A C) ◦∆C = (C ⊗A ∆C) ◦∆C, (1)

and

(C ⊗A εC) ◦∆C = (εC ⊗A C) ◦∆C = C. (2)

We use the Sweedler-Heyneman notation for the comultiplication:

∆C(c) = c(1) ⊗A c(2).

A right C-comodule M = (M,ρ) consists of a right A-module M together with a

right A-linear map ρ : M →M ⊗A C such that:

(ρ⊗A C) ◦ ρ = (M ⊗A ∆C) ◦ ρ, (3)

and

(M ⊗A εC) ◦ ρ = M. (4)

We then say that C coacts from the right on M , and we denote

ρ(m) = m[0] ⊗A m[1].
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A right A-linear map f : M → N between two right C-comodules M and N is

called right C-colinear if ρ(f(m)) = f(m[0])⊗m[1], for all m ∈ M . The category of

right C-comodules and C-colinear maps is denoted byMC.
x ∈ C is called grouplike if ∆C(x) = x ⊗ x and εC(x) = 1. Grouplike elements of C
correspond bijectively to right C-coactions on A: if A is grouplike, then we have the

following right C-coaction ρ on A: ρ(a) = xa.

Let (C, x) be a coring with a fixed grouplike element. For M ∈MC, we call

M coC = {m ∈M | ρ(m) = m⊗A x}

the submodule of coinvariants of M . Observe that

AcoC = {b ∈ A | bx = xb}

is a subring of A. Let i : B → A be a ring morphism. i factorizes through AcoC if

and only if

x ∈ G(C)B = {x ∈ G(C) | xb = bx, for all b ∈ B}.
We then have a pair of adjoint functors (F,G), respectively between the categories

MB andMC and the categories BM and CM. For N ∈MB and M ∈MC,

F (N) = N ⊗B A and G(M) = M coC.

The unit and counit of the adjunction are

νN : N → (N ⊗B A)coC, νN(n) = n⊗B 1;

ζM : M coC ⊗B A→M, ζM(m⊗B a) = ma.

Let i : B → A be a morphism of rings. The associated canonical coring is D =

A⊗B A, with comultiplication and counit given by the formulas

∆D : D → D ⊗A D ∼= A⊗B A⊗B A, ∆D(a⊗B a′) = a⊗B 1⊗B a′

and

εD : D = A⊗B A→ A, εD(a⊗B a′) = aa′.

If i : B → A is pure as a morphism of left and right B-modules, then the categories

MB andMD are equivalent.

Let (C, x) be a coring with a fixed grouplike element, and i : B → AcoC a ring

morphism. We then have a morphism of corings

can : D = A⊗B A→ C, can(a⊗B a′) = axa′.
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If F is fully faithful, then B ∼= AcoC; if G is fully faithful, then can is an isomorphism.

(C, x) is called a Galois coring if can : A →AcoC A → C is bijective. From [6], we

recall the following results.

Theorem 1.1

Let (C, x) be an A-coring with fixed grouplike element, and B = AcoC. Then

the following statements are equivalent.

1. (C, x) is Galois and A is faithfully flat as a left B-module;

2. (F,G) is an equivalence and A is flat as a left B-module.

Let (C, x) be a coring with a fixed grouplike element, and take T = AcoC. Then
∗C = AHom(C, A) is a ring, with multiplication given by

(f#g)(c) = g(c(1)f(c(2))). (5)

We have a morphism of rings j : A→ ∗C, given by

j(a)(c) = εC(c)a.

This makes ∗C into an A-bimodule, via the formula

(afb)(c) = f(ca)b.

Consider the left dual of the canonical map:

∗can : ∗C → ∗D ∼= T End(A)op, ∗can(f)(a) = f(xa).

We then have the following result.

Proposition 1.2

If (C, x) is Galois, then ∗can is an isomorphism. The converse property holds if

C and A are finitely generated projective, respectively as a left A-module, and a left

T -module.

Let Q = {q ∈ ∗C | c(1)q(c(2)) = q(c)x, for all c ∈ C}. A straightforward com-

putation shows that Q is a (∗C, T )-bimodule. Also A is a left (T, ∗C)-bimodule; the
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right ∗C-action is induced by the right C-coaction: a · f = f(xa). Now consider the

maps

τ : A⊗∗C Q→ T, τ(a⊗∗C q) = q(xa); (6)

µ : Q⊗T A→ ∗C, µ(q ⊗T a) = q#i(a). (7)

With this notation, we have the following property (see [6]).

Proposition 1.3

(T, ∗C, A,Q, τ, µ) is a Morita context.

We also have (see [6]):

Theorem 1.4

Let (C, x) be a coring with fixed grouplike element, and assume that C is a left

A-progenerator. We take a subring B of T = AcoC, and consider the map

can : D = A⊗B A→ C, can(a⊗T a′) = axa′

Then the following statements are equivalent:

1. • can is an isomorphism;

• A is faithfully flat as a left B-module.

2. • ∗can is an isomorphism;

• A is a left B-progenerator.

3. • B = T ;

• the Morita context (B, ∗C, A,Q, τ, µ) is strict.

4. • B = T ;

• (F,G) is an equivalence of categories.

1.2 Partial group actions

Let G be a finite group, and R→ S a commutative ring extension. From [13], we

recall that a partial action α of G on S is a collection of ideals Sσ and isomorphisms

of ideals ασ : Sσ−1 → Sσ such that
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1. S1 = S, and α1 = S, the identity on S;

2. S(στ)−1 ⊃ α−1
τ (Sτ ∩ Sσ−1);

3. (ασ ◦ ατ )(x) = αστ (x), for all x ∈ α−1
τ (Sτ ∩ Sσ−1).

In [14], the following particular situation is considered: every Sσ is of the form

Sσ = Seσ, where eσ is an idempotent of S. In this case, we can show that

ασ(ατ (xeτ−1)eσ−1) = αστ (xeτ−1σ−1)eσ, (8)

for all σ, τ ∈ G and x ∈ S. We then have an associative ring with unit

A �α G =
⊕
σ∈G

Aeσuσ,

with multiplication

(aσuσ)(aτuτ ) = ασ(ασ−1(aσ)bτ )uστ . (9)

2. PARTIAL GALOIS THEORY FOR NONCOMMUTATIVE RINGS

Let A be a (noncommutative) ring, and G a finite group. For every σ ∈ G, we

assume that there is a central idempotent eσ ∈ A, and a ring automorphism

ασ : Aeσ−1 → Aeσ.

In particular, it follows that ασ(eσ−1) = eσ. We can extend ασ to A, by putting

ασ(a) = ασ(aeσ), for all a ∈ A.

Then we consider the direct sum C of all the Aeσ. Let vσ be the element of C with

eσ in the Aeσ-component, and 0 elsewhere. We then have

C =
⊕
σ∈G

Aeσvσ =
⊕
σ∈G

Avσ.

Obviously C is a left A-module.

Lemma 2.1

C is an A-bimodule. The right A-action is given by the formula

(a′vσ)a = a′ασ(aeσ−1)vσ (10)
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Proof. Let us show that (10) is an associative action: for all a, a′ ∈ A, we have

vσ(aa′) = ασ(aa′eσ−1)vσ = ασ(aeσ−1a′eσ−1)vσ

= ασ(aeσ−1)ασ(a′eσ−1)vσ = ασ(aeσ−1)vσa
′ = (vσa)a

′.

We now consider the left A-linear maps

∆C : C → C ⊗A C, ∆C(avσ) =
∑
τ∈G

avτ ⊗A vτ−1σ;

εC : C → A, εC(
∑
σ∈G

aσvσ) = a1.

Proposition 2.2

With notation as above, (C, ∆C, εC) is an A-coring if and only if e1 = A, α1 = A

and

ασ(ατ (aeτ−1)eσ−1) = αστ (aeτ−1σ−1)eσ, (11)

for all a ∈ A and σ, τ ∈ G.

Proof. We compute

∆C(vσa) = ∆C(ασ(aeσ−1)vσ

=
∑
τ∈G

ασ(aeσ−1)vτ ⊗A vτ−1σ;

∆C(vσ)a =
∑
τ∈G

vτ ⊗A vτ−1σa

=
∑
τ∈G

vτ ⊗A ατ−1σ(aeσ−1τ )vτ−1σ

=
∑
τ∈G

ατ (ατ−1σ(aeσ−1τ )eτ−1)vτ ⊗A vτ−1σ.

Hence ∆C is right A-linear if and only if

ασ(aeσ−1)eτ = ατ (ατ−1σ(aeσ−1τ )eτ−1),

for all σ, τ ∈ G and a ∈ A. Substituting λ = τ−1σ, we find that this is equivalent to

(11).

Let us now investigate when εC is right A-linear. We have

εC(
∑
σ∈G

aσvσ)a = a1a)
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and

εC(
∑
σ∈G

aσvσa) = εC(
∑
σ∈G

aσασ(aeσ−1)vσ) = a1α1(ae1)

If εC is right A-linear, then we find that α1(ae1) = a, for all a ∈ A. In particular,

e1 = α1(e1e1) = α1(1e1) = 1,

and then it follows that α1(a) = a, for all a ∈ A. Conversely, if e1 = 1 and α1 = A,

then it follows that εC is right A-linear.

Now assume that (11) holds, and that e1 = 1 and α1 = A. The coassociativity and

counit property then follow in a straightforward way.

From now on, we will assume that C =
⊕

σ∈G Avσ is an A-coring. The set of

data (eσ, ασ)σ∈G will be called an idempotent partial action of G on A. This is the

case for the partial actions discussed in [14], that we recalled in Section 1.2, in view

of (8).

Lemma 2.3

x =
∑

σ∈G vσ is a grouplike element of C.

Proof. εC(x) = 1, and

∆C(x) =
∑

σ,τ∈G

vτ ⊗A vτ−1σ =
∑

ρ,τ∈G

vτ ⊗A vρ = x⊗A x.

Consider the left A-linear maps

uσ : C → Aeσ, uσ(
∑
τ∈G

aτvτ ) = aσeσ. (12)

Then for all c ∈ C, we have

c =
∑
σ∈G

uσ(c)vσ,

hence {(uσ, vσ) | σ ∈ G} is a dual basis of C as a left A-module.

Now let (M,ρ) be a right C-comodule. We have a right A-linear map

ρ : M →
⊕
σ∈G

M ⊗A Avσ.
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Consider the maps

ρσ = (M ⊗A uσ) ◦ ρ : M →Meσ.

We then have

ρ(m) = m[0] ⊗A m[1] =
∑
σ∈G

ρσ(m)⊗A vσ,

for all m ∈M . From the fact ρ is right A-linear, it follows that

ρ(ma) =
∑
σ∈G

ρσ(ma)⊗A vσ = ρ(m)a =
∑
σ∈G

ρσ(m)⊗A ασ(aeσ−1)vσ,

hence

ρσ(ma) = ρσ(m)ασ(aeσ−1), (13)

for all m ∈M and σ ∈ G. It follows from (13) that

ρσ(meσ−1) = ρσ(m)ασ(eσ−1) = ρσ(m)eσ.

This means that ρσ : M →Meσ factors through the projection M →Meσ−1 , so we

obtain a map

ρσ : Meσ−1 →Meσ.

Since (M ⊗A εC) ◦ ρ = M , we have, for all m ∈M :

m =
∑
σ∈G

ρσ(m)⊗A εC(vσ) = ρ1(m)e1 = ρ1(m).

Hence ρ1 : Me1 = M → Me1 = M is the identity. From the coassociativity of ρ,

we deduce that∑
σ,τ∈G

ρτ (ρσ(m))⊗A vτ ⊗A vσ =
∑

σ,ρ∈G

ρσ(m)⊗A vµ ⊗A vµ−1σ

=
∑

κ,µ∈G

vµ◦κ ⊗A vµ ⊗A vκ =
∑

σ,τ∈G

vτ◦σ ⊗A vτ ⊗A vσ,

hence

ρτ (ρσ(m)) = ρτ◦σ(m), (14)

for all m ∈M and σ, τ ∈ G. In particular,

ρτ (ρσ(meσ−1eτ−1)) = ρτ◦σ(meσ−1τ−1)eτ . (15)

It follows from (15) that ρτ−1 : Meτ →Meτ−1 is the inverse of ρτ : Meτ−1 →Meτ .
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Definition 2.4

Let (eσ, ασ)σ∈G be an idempotent partial action of G on A, and M a right

A-module. A partial Galois descent datum consists of a set of maps

ρσ : M →Meτ

such that ρ1 = M , the identity on M , the restriction of ρσ to Meτ−1 is an isomor-

phism, and (13) and (15) hold for all m ∈M , a ∈ A and σ, τ ∈ G.

Proposition 2.5

Let (eσ, ασ)σ∈G be an idempotent partial action of G on A, and C the corre-

sponding A-coring. Then right C-coactions on M correspond bijectively to partial

Galois descent data.

Proof. We have already explained above how a right C-coaction ρ on M can be

transformed into a partial Galois descent datum. Conversely, let (ρσ)σ∈G be a partial

Galois descent datum, and define ρ : M →M ⊗A C by

ρ(m) =
∑
σ∈G

ρσ(m)⊗A vσ.

Straightforward computations show that ρ is a coaction, and that the two construc-

tions are inverse to each other.

Let M be a right C-comodule. Then m ∈M coC if and only if

ρ(m) =
∑
σ∈G

ρσ(m)⊗A vσ =
∑
σ∈G

m⊗A vσ =
∑
σ∈G

meσ ⊗A vσ

if and only if

ρσ(m) = ρσ(meσ−1) = meσ,

for all σ ∈ G. We define

MG = {m ∈M | ρσ(meσ−1) = meσ−1 , for all σ ∈ G} = MC.

The grouplike element x =
∑

σ∈G vσ makes A into a right C-comodule:

ρ(a) = 1⊗A xa =
∑
σ∈G

ασ(aeσ−1)⊗A vσ,
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and we have

T = AG = {a ∈ A | ασ(aeσ−1) = aeσ, for all σ ∈ G}.

Let i : B → T be a ring morphism. We have seen in Section 1.1 that we have a

pair of adjoint functors (F,G):

F : MB →MC, F (N) = N ⊗B A;

G : MC →MB, G(N) = NG.

F (N) = N ⊗B A is a right C-comodule in the following way:

ρσ(n⊗A a) = n⊗ ασ(a).

The canonical map is the following:

can : A⊗B A→
⊕
σ∈G

Aevσ, can(a⊗ b) =
∑
σ∈G

aασ(beσ−1)vσ.

⊕
σ∈G Aevσ is a Galois coring if can : A ⊗AG A → ⊕

σ∈G Aevσ is an isomorphism.

We will then say that A is a partial G-Galois extension of AG. From Theorem 1.1,

we immediately obtain the following result.

Theorem 2.6

Let (eσ, ασ)σ∈G be an idempotent partial action of G on A, and T = AG. Then

the following assertions are equivalent.

1. A is a partial G-Galois extension of T and T is faithfully flat as a left T -module;

2. (F,G) is a category equivalence and A is flat as a left T -module.

3. PARTIAL ACTIONS AND MORITA THEORY

Let us now compute the multiplication on

∗C = AHom(C, A) =
⊕
σ∈G

AHom(Aeσ, A).

We will use the maps uσ defined in (12). Also recall that ∗C is an A-bimodule, with

left and right A-action

(afb)(c) = f(ca)b.
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Take f ∈ AHom(C, A). For all c ∈ C, we have

f(c) =
∑
σ∈C

uσ(c)f(vσ).

Now f(vσ) = f(eσvσ) = eσf(vσ) ∈ Aeσ, so we can conclude that

∗C =
⊕
σ∈C

uσAeσ.

For b ∈ A, we compute

(buτ )(
∑
σ∈G

aσvσ) = uτ (
∑
σ∈G

aσvσb) = uτ (
∑
σ∈G

aσασ(beσ−1)vσ) = aτατ (beτ−1),

and we conclude that

buτ = uτατ (beτ−1). (16)

We next compute, using (11):

(uρ#uν)(
∑
σ∈G

aσvσ) = uν(
∑
σ,τ

aσvτuρ(vτ−1σ)) = uν(
∑
σ,τ

aσvτδτρ,σ)

= uν(
∑

τ

aτρvτ ) = aνρ = uνρ(
∑
σ∈G

aσvσ),

and we conclude that

uσ#uτ = uστ . (17)

We can summarize this as follows:

Proposition 3.1

Let C =
⊕

σ∈G Avσ. The left dual ring is

∗C =
⊕
σ∈G

uσAeσ,

with multiplication rule

uτbτ#uσaσ = uστασ(bτeσ−1)aσ. (18)

If A is commutative, then ∗C is isomorphic to (A �α G)op, as introduced in [14],

see (9). Indeed, for a ∈ Aeσ and b ∈ Aeτ , we compute that

ασ(ασ−1(aσ)bτ ) = ασ(ασ−1(aσ)bτeσ−1)

= aσασ(bτeσ−1)ασ(bτeσ−1)aσ
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Recall that a ring morphism A → R is called Frobenius if there exists an A-

bimodule map ν : R → A and e = e1 ⊗A e2 ∈ R ⊗A R (summation implicitly

understood) such that

re1 ⊗A e2 = e1 ⊗A e2r (19)

for all r ∈ R, and

ν(e1)e2 = e1ν(e2) = 1. (20)

This is equivalent to the restrictions of scalarsMR →MA being a Frobenius functor,

which means that its left and right adjoints are isomorphic (see [8, Sec. 3.1 and 3.2]).

(e, ν) is then called a Frobenius system.

Proposition 3.2

Suppose that we have an idempotent partial action of G on A. Then the ring

morphism A→ ∗C is Frobenius.

Proof. The Frobenius system is (e =
∑

σ∈G uσ−1 ⊗A uσ, ν), with

ν(
∑
σ∈G

uσaσ) = a1.

We compute that, for all a ∈ A,

a
∑
σ∈G

uσ−1 ⊗A uσ =
∑
σ∈G

uσ−1ασ−1(aeσ)⊗A uσ

=
∑
σ∈G

uσ−1 ⊗A uσασ(ασ−1(aeσ)) =
∑
σ∈G

uσ−1 ⊗A uσaeσ

=
∑
σ∈G

uσ−1 ⊗A uσa.

The rest is obvious.

Let i : B → T = AcoC be a ring morphism. We have the canonical morphism

can : D = A⊗B A→ C =
⊕
σ∈G

Avσ,

given by

can(a⊗ b) =
∑
σ∈G

avσb =
∑
σ∈G

aασ(beσ−1)vσ

We can also compute that

∗can : ∗C =
⊕
σ∈G

uσA→ ∗D ∼= BEnd(A)op
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is given by
∗can(uτbτ )(a) = ατ (aeτ−1)bτ .

Let us now compute the module Q ⊂ ∗C introduced in Section 1.1 Recall that q ∈ Q
if and only if

c(1)q(c(2)) = q(c)x, (21)

for all c ∈ C.

Proposition 3.3

Q = {∑σ∈G uσασ(aeσ−1) | a ∈ A}.

Proof. Take q =
∑

σ∈G uσaσ ∈ Q, with aσ ∈ Aeσ, and put c = vτ in (21). Recall

that ∆C(vσ) =
∑

ρ∈G vρ ⊗A vρ−1τ . Then we calculate that

c(1)q(c(2)) =
∑

ρ,σ∈G

vρδσ,ρ−1τaσ =
∑
ρ∈G

vρaρ−1τ =
∑
ρ∈G

αρ(aρ−1τeρ−1)vρ,

q(c) = (
∑
σ∈G

uσaσ)(vτ ) = aτ

and

q(c)x =
∑
ρ∈G

aτvρ

Hence it follows that

aτeρ = αρ(aρ−1τeρ−1), (22)

for all τ, ρ ∈ G. Taking τ = ρ, we find that

aτ = aτeτ = ατ (a1eτ−1), (23)

and we find that

q =
∑
σ∈G

uσaσ =
∑
σ∈G

uσασ(a1eσ−1) (24)

is of the desired form. Conversely, take q of the form (24). Then (23) holds. Using

(11), we compute

αρ(aρ−1τeρ−1) = αρ(αρ−1τ (a1eτ−1ρ)eρ−1) = ατ (a1eτ−1)eρ = aτeρ,

and (22) follows, which means that (21) holds for c = vτ . Using the left A-linearity

of q and ∆C, it follows that (21) holds for arbitrary c ∈ C.

130



It follows from proposition 3.3 that we have an isomorphism of abelian groups

A→ Q, a �→
∑
σ∈G

uσασ(aeσ−1).

This can also be seen using Proposition 3.2 and [6, Theorem 2.7]. The (∗C, T )-

bimodule structure on Q (see Proposition 1.2) can be transported to A. The right

T -action on A is then given by right multiplication, and the left ∗C-action is the

following:

(uτaτ ) · a = ατ−1(aτaeτ ).

Recall also from Proposition 1.2 that A ∈ TM∗C. The left T -action is given by left

multiplication. The right ∗C-action is the following:

a · (uτaτ ) = (auτaτ )(x)

=
∑
σ∈G

uτατ (aeτ−1)aτ )(vσ) = ατ (aeτ−1)bτ .

We have seen in Proposition 1.2 that we have a Morita context (T, ∗C, A,Q, τ, µ).

Using the isomorphism between A and Q, we find a Morita context (T, ∗C, A,A, τ, µ).

Let us compute the connecting maps τ : A⊗∗C A→ T and µ : A⊗T A→ ∗C, using

(6-7).

τ(b⊗ a) = (
∑
σ∈G

uσασ(aeσ−1))(
∑
τ∈G

(vτb))

=
∑

σ,τ∈G

uσ(ατ (beτ−1)vτ )ασ(aeσ−1)

=
∑
σ∈G

ασ(beσ−1)ασ(aeσ−1)

=
∑
σ∈G

ασ(baeσ−1);

µ(a⊗ b) =
∑
σ∈G

uσασ(aeσ−1)b.

We summarize our results as follows.

Proposition 3.4

We have a Morita context (T, ∗C, A,Q, τ, µ). The connecting maps are given by

the formulas

τ(b⊗ a) =
∑
σ∈G

ασ(baeσ−1); (25)

µ(a⊗ b) =
∑
σ∈G

uσασ(aeσ−1)b. (26)

131



Proposition 3.5

The map τ in the Morita context from Proposition 3.4 is surjective if and only

if there exists a ∈ A such that ∑
σ∈G

ασ(aeσ−1) = 1.

Proof. According to [9, Theorem 3.3] τ is surjective if and only if there exists q ∈ Q
such that q(x) = 1. Let a ∈ A correspond to q ∈ Q. Then we compute that

q(x) = (
∑
σ∈G

uσασ(aeσ−1))(
∑
τ∈G

vτ ) =
∑
σ∈G

ασ(aeσ−1),

and the result follows.

From Theorem 1.4, we obtain:

Theorem 3.6

Let G be a finite group, and (eσ, ασ)σ∈G an idempotent partial action of G on

A. Let i : B → T = AcoC a ring morphism, and consider can : A⊗B A→ C. Then

the following assertions are equivalent.

1. • can is an isomorphism;

• A is faithfully flat as a left B-module.

2. • ∗can is an isomorphism;

• A is a left B-progenerator.

3. • B = T ;

• the Morita context (B, ∗C, A,A, τ, µ) is strict.

4. • B = T ;

• (F,G) is an equivalence of categories.

If we take A and B commutative, then Theorem 3.6 implies part of [14, Theorem

3.1], namely the equivalence of the conditions (i), (ii) and (iii).
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Abstract

We discuss when the Rat functor associated to a coring satisfying the left α-condition

is exact. We study the category of comodules over a semiperfect coring. We char-

acterize semiperfect corings over artinian rings and over qF-rings.

INTRODUCTION

The aim of this note is to generalize properties of semiperfect coalgebras over fields,

as discussed in [13], see also [8], to semiperfect corings. We also extend some results

given in [4].

Corings were introduced by Sweedler [14]. A coring over a (possibly noncom-

mutative) ring R is a coalgebra (or comonoid) in the category of R-bimodules. Since

the beginning of the 21st century, there has been a renewed interest in corings and

comodules over a coring, iniated by Brzeziński’s paper [3]. The key point is that

Hopf modules and most of their generalizations (relative Hopf modules, graded mod-

ules, Yetter-Drinfeld modules and many more) are comodules over a certain coring.

This observation appeared in MR 2000c 16047 written by Masuoka, who tributed

it to Takeuchi, but apparently it was already known by Sweedler, at least in the

case of Hopf modules. It has lead to a unified and simplified treatment of the above

mentioned modules, and new viewpoints on subjects like descent theory and Galois

theory. For an extensive treatment, we refer to [4].

————————————
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In this paper, we study semiperfect corings. A coring is called right semiperfect

if it satisfies the left α-condition, and the (abelian) category of right C-comodules is

semiperfect, which means that every simple object has a projective cover. It turns

out that this notion is closely related to rationality properties of modules over the

dual of the coring (which is a ring). Rationality properties have been studied in [1]

and [6]. The Rat functor sends a module over the dual of the coring to its largest

rational submodule. It can be described using the category σ[M ]. The category

σ[M ] is discussed briefly in Section 1, and the Rat functor is introduced in Section

2. General facts on the category σ[M ] show that the exactness of the Rat functor

is connected to some topological properties of the base ring R, more precisely the

M -adic topology on M . In the case of corings, the C-adic topology on ∗C coincides

with the finite topology, motivating a general study of the properties of the finite

topology. We then give some connections between density properties, direct sum

decompositions and the exactness of Rat. We show (see Corollary 2.7) that the

Rat functor is exact if the coring C can be decomposed as a direct sum of finitely

generated left C-comodules. Under certain conditions, which hold if R is a qF-

ring, we can prove the converse, namely if Rat is exact, then there is a direct sum

decomposition of C into finitely generated comodules. This is in fact an application

of the duality between left and right finitely generated modules over qF-rings.

In Section 3, we characterize semiperfect corings over artinian rings. The main result

is Theorem 3.1, stating that a coring over an artinian ring is right semiperfect if and

only if the category of right comodules has enough projectives, if and only if it has

a projective generator, if and only if every finitely generated comodule has a finitely

generated projective cover.

In Section 4, we discuss some applications and examples. First, we apply our results

to the case where R is a qF-ring. We recover a result of [10] telling that a left

and right (locally) projective coring over a qF-ring is right semiperfect if and only

if the Rat functor is exact. Also two-sided prefectness is equivalent to two-sided

semiperfectness for corings over qF-rings.

finally, we give some examples, focussing on the Sweedler coring associated to a ring

morphism. In particular, we can describe the Rat functor in this situation, and we

can discuss when the assumptions of the results in Section 3 and 4.1 are satisfied.

1. PRELIMINARY RESULTS

1.1 The category σ[M ]

Let R be a ring, and M ∈ RM. Recall from [15, Sec. 15] that σ[M ] is the full

subcategory of RM consisting of R-modules that are subgenerated by M , that is,
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submodules of an epimorphic image of M (I), for some index set I. σ[M ] is the small-

est closed subcategory of RM containing M . Since epimorphic images of objects of

σ[M ] belong to σ[M ] (see [15, Prop. 15.1]), we have for any N ∈ RM that

T M(N) =
∑
{f(X) | X ∈ σ[M ], f ∈ RHom(N,X)} ∈ σ[M ].

T M : RM → σ[M ] is called the trace functor, and it is straightforward to show

that T M is the right adjoint of the inclusion functor i : σ[M ] → RM. Therefore

T M is left exact; it is also not difficult to see that

T M(N) =
∑
{X | X ⊂ σ[M ], X ⊂M}.

For X,Y ∈ RHom(X,Y ), we consider the finite topology on RHom(X,Y ). A basis

of open sets consists of

O(f, x1, · · · , xn) = {g ∈ AHom(X,Y ) | g(xi) = f(xi), for all i = 1, · · · , n}

We have a natural map r : R → ZHom(M,M), ra(m) = am. The finite topology

on ZZHom(M,M) induces a topology on R, called the M -adic topology.

An ideal T of R is called M -dense in R if it is dense in the M -adic topology. This

means that for all a ∈ R and m1, · · · ,mn ∈ M , there exists a b ∈ T such that

ami = bmi, for all i. A left T -module N is called unital if for every n ∈ N , there

exists t ∈ T such that tn = n, or, equivalently, for every finite {n1, · · · , nk} ⊂ N ,

there exists t ∈ N such that tni = ni, for all i.

The proof of Proposition 1.1 is straightforward; we also refer to [4, Sec. 41].

Proposition 1.1 Let R be a ring, and M ∈ RM.

(a) For an ideal T of R, and a faithful R-module M , the following assertions are

equivalent.

(i) T is M -dense in R;

(ii) M is a unital T -module (with the induced structure from R);

(iii) TN = N for all N ∈ σ[M ];

(iv) the multiplication map T ⊗R N → N is an isomorphism.

(b) T = T M(A) is an ideal of A, and the following assertions are equivalent.

(i) T is M -dense in A;
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(ii) M is a T -unital module;

(iii) T M is exact;

(iv) T 2 = T and T is a generator in σ[M ].

Let K be an A-submodule of M . Recall (see e.g. [15, 19.1]) that K is called

superfluous or small, written K 
 M , if for every submodule L ⊂ M , K + L = M

implies that L = M . An epimorphism f : M → N is called superfluous if Ker f 

M . Note that this definition can be extended to abelian categories.

Proposition 1.2

Assume that T M is exact.

(i) The class σ[M ] is closed under small epimorphisms in AM;

(ii) the inclusion functor σ[M ]→ AM preserves projectives.

Proof (i) Take N ∈ σ[M ], and let

0→ K → X → N

be an exact sequence in AM such that K is small in X. then Y = X/(K +T M(X))

is a quotient of X/K = N ∈ σ[M ], so Y ∈ σ[M ], by [15, 15.1], and T M(Y ) = Y .

Consider the exact sequence

0→ T M(X)→ X → X/T M(X)→ 0.

Since T M is exact and idempotent, it follows that T M(X/T M(X)) = 0. Now Y is

a quotient of X/T M(X), and it follows from the exactness of T M that T M(Y ) = 0.

Thus Y = 0, and K + T M(X) = X. Since K 
 X, we have that T M(X) = X, so

X ∈ σ[M ], as needed.

1.2. Properties of the finite topology

Proposition 1.3 Let R be a ring, and fix a right R-module T . Density will mean

density in the finite topology.

(i) Let M = M1 ⊕M2 in MR, and X1 ⊂ HomR(M1, T ), X2 ⊂ HomR(M2, T ) If

X1 ⊕X2 is dense in HomR(M,T ) = HomR(M1, T )⊕HomR(M1, T ), then each

Xi is dense in HomR(Mi, T ).
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(ii) Let (Mi)i∈I be a family of R-modules, and Xi ⊂ HomR(Mi, T ) such that each

Xi is dense in HomR(Mi, T ). Let M =
⊕

i∈I Mi. Then
⊕

i∈I Xi is dense in

HomR(M,T ) =
∏

i∈I HomR(Mi, T ).

Proof (i) Take f ∈ HomR(M1, T ) and F is a finite subset of M1. Viewing f as

the pair (f, 0) ∈ HomR(M1, T ) ⊕ HomR(M2, T ) and F ⊂ M1 ⊂ M1 ⊕M2, we find

a pair (g, h) ∈ X1 ⊕X2 ⊂ HomR(M,T ) = HomR(M1, T )⊕ HomR(M2, T ) such that

(g, h) = (f, 0) on F , so g = f on all m ∈ F , with g ∈ X1 ⊂ HomR(M1, T ).

(ii) Take (fi)i∈I ∈ HomR(M,T ) =
∏

i∈I HomR(Mi, T ) and a finite subset F ⊂⊕
i∈I Mi. Then there is a finite subset J ⊂ I such that F ⊂ ⊕i∈J Mi. Fi =

{mi | m ∈ F} is finite, and, using the density of Xi in HomR(Mi, T ), we find gi ∈ Xi

such that gi = fi on Fi. Now let g ∈ ∏i∈I HomR(Mi, T ) = HomR(M,T ) be defined

as follows: the i-th component of g is gi if i ∈ J , and it is zero otherwise. Then

g ∈⊕i∈I Xi and g = f on all Fi, and a fortiori on F , by linearity.

Corollary 1.4

If (Mi)i∈I is a family of R-modules and Xi ⊂ HomR(Mi, T ) then
⊕

i∈I Xi is

dense in
∏

i∈I HomR(Mi, T ) = HomR(
⊕

i∈I Mi, T ) if and only if all Xi are dense

in HomR(Mi, T ). Consequently, the direct sum
⊕

i∈I HomR(Mi, T ) is dense in the

direct product
∏

i∈I HomR(Mi, T ).

Proposition 1.5

Let T ∈MR be an injective module, and u : X → Y a monomorphism inMR.

If V is dense in HomR(Y, T ), then HomR(u, T )(V ) is dense in HomR(X,T ).

Proof

Take f ∈ HomR(X,T ), and a finite subset F ⊂ X. As T is an injective module,

we can find g ∈ HomR(Y, T ) such that g ◦ u = f . As u(F ) is a finite subset of

Y we can find h ∈ V such that h equals g on u(F ). Now we obviously have that

HomR(u, T )(h) = h ◦ u equals g ◦ u = f on F , hence HomR(u, T )(V ) is dense in

HomR(X,T ).

2. CORINGS AND THE RAT FUNCTOR

2.1 Corings Let R be a ring. An R-coring is a coalgebra in the monoidal category

RMR. It consists of a triple C = (C, ∆, ε), where C is an R-bimodule, and ∆ : C →
C⊗R C and ε : Cc→ R are R-bimodule maps satisfying appropriate coassociativity
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and counit properties. We refer to [3] and [4] for more detail about corings. We use

the Sweedler-Heyneman notation

∆(c) = c(1) ⊗R c(2),

where the summation is implicitely understood. If C is an R-coring, then ∗C =

RHom(C, R) is a ring with multiplication given by the formula

(f#g)(c) = g(c(1)f(c(2))).

The unit of the multiplication is ε. We have a ring morphism

ι : R→ ∗C, ι(r)(c) = ε(c)r.

A right C-comodule consists of a pair (M,ρr), where M ∈MR and ρr : M →M⊗RC
is a right A-linear map satisfying the conditions

(ρr ⊗R C) ◦ ρr = (M ⊗R ∆) ◦ ρr and (M ⊗R ε) ◦ ρr = M.

Left C-comodules are defined in a similar way, and the categories of left and right C-
comodules are respectively denoted byMC and CM. We use the Sweedler-Heyneman

notation

ρr(m) = m[0] ⊗R m[1] and ρl(m) = m[−1] ⊗R m[0]

for right and left C-coactions. We have a functor F : MC →M∗C, with F (M) = M

as an R-module, equipped with the right ∗C-action m·f = m[0]f(m[1]). In particular,

C is a right and left ∗C-module. If M and N are right C-comodules, then the set of

R-linear maps preserving the C-coaction is denoted by HomC(M,N).

2.2 The α-condition M ∈ RM satisfies the (left) α-condition if the canonical map

αN,M : N ⊗R M → HomR(∗M,N), α(n⊗R m)(f) = nf(m)

is injective, for all N ∈ MR. Otherwise stated: if n ⊗R m ∈ N ⊗R M is such that

nf(m) = 0 for all f ∈ ∗M , then n⊗m = 0. M satisfies the α-condition if and only

if M is locally projective in RM. An R-coring C satisfies the left α-condition if and

only ifMC is a full subcategory ofM∗C, and the natural functorMC → σ[C∗C] is an

isomorphism. In this case, C is flat as a left R-module, henceMC is a Grothendieck

category in such a way that the forgetful functor MC →MA is exact (see [4, Sec.

19]).

If C ∈ RM is locally projective, then for all M ∈ MC, the lattices consisting

respectively of all C-subcomodules and of all ∗C-submodules of M coincide, so it
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makes sense to talk about the subcomodule generated by a subset of M . ¿From the

proof of [4, 19.12], we deduce the following result.

Theorem 2.1

(Finiteness Theorem) If C ∈ RM is locally projective, then a right C-
comodule M is finitely generated as a right C-comodule if and only if it is finitely

generated as a right R-module.

Let C be locally projective as a left R-module, and M a right ∗C-module.

RatC(M) is by definition the largest ∗C-submodule N of M , on which there exists a

right C-coaction ρ such that F (N, ρ) = N . Otherwise stated, RatC is the preradical

functor T C, with C considered as a right ∗C-module. We also have that RatC(M)

consists of the elements m ∈ M such that there exists m[0] ⊗R m[1] ∈ M ⊗R C with

m · f = m[0]f(m[1]), for all f ∈ ∗C. In a similar way, we define the left Rat functor
CRat. The proof of Proposition 2.2 is straightforward, and left to the reader.

Proposition 2.2

Let C be an R-coring, and M ∈ CM.

(i) The R-modules CHom(M, C) and ∗M = RHom(M,R) are isomorphic;

(ii) CHom(M, C) is a right ∗C-module, via

(ϕ · f)(m) = f(ϕ(m));

(iii) we have isomorphic functors CHom(−, C) and RHom(−, R) from CM toM∗C;
these functors are left exact if C is locally projective inMR, and exact if R is

injective as a left R-module;

(iv) the isomorphism from (i) defines a ring isomorphism CEnd(C) ∼= ∗C, where the

multiplication on CEnd(C) is the oppositie composition;

(v) CHom(M, C) is a right CEnd(C)-module, via

(ϕ · f)(m) = f(ϕ(m)).

Observe that the right coactions defined in (ii) and (v) are the same after we

identify CEnd(C) and ∗C using (iv).
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Let fgCM be the category of finitely generated left C-comodules. If R is left noethe-

rian, then the kernel of a morphism in fgCM is still finitely generated, hence fgCM
has kernels (and cokernels), and is an abelian category.

Proposition 2.3

Let R be a left noetherian ring, and C a locally projective R-coring.

(i) For any finitely generated M ∈ RM, the evaluation map

ψM : RHom(M,R)⊗ C → RHom(M, C), ψM(f ⊗ c)(m) = f(m)c

is an isomorphism.

(ii) Let (M,ρM) ∈ fgCM and consider the map

φM : ∗M → ∗M ⊗R C, φM(f) = ψ−1
M ((C ⊗ f) ◦ ρM)

Then (∗M,φM) ∈ MC, and the associated ∗C-module structure is as defined

in Proposition 2.2

Proof

(i) It is straightforward to prove the statement for free modules. Then we can

easily show it for finitely presented modules, using the flatness of C over R. Since

R is noetherian, every finitely presented module is finitely generated.

(ii) Take f ∈ ∗M , and write

φM(f) = f[0] ⊗ f[1] ∈ ∗M ⊗R C.

Then m[−1]f(m[0]) = f[0](m)f[1], and for very ∗c ∈ ∗C, we find that

(f · ∗c)(m) = ∗c(m[−1]f(m[0])) = ∗c(f[0](m)f[1])

= f[0](m)∗c(f[1]) = (f[0] · ∗c(f[1])(m)

This shows that ∗M is a rational ∗C-module, and that φM is a right C-coaction.

2.3 The Rat functor

Assume that C is a coring satisfying the left α-condition. Then the functor RatC

is additive and left exact.
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Proposition 2.4

The following assertions are equivalent.

(i) RatC(∗C) is dense in ∗C in the C-adic topology;

(ii) RatC(∗C) is dense in ∗C in the finite topology;

(iii) RatC is an exact functor.

Proof

The equivalence of (i) and (iii) follows from Proposition 1.1, invoking the fact

that C is faithful as a right ∗C-module.

Note that the sets

Oa(F ) = {∗c | c · ∗c = 0, for all c ∈ F},

with F ⊂ C finite, form a basis of open neighborhoods of 0 ∈ C in the C-adic

topology, which is a linear topology. Also

Of (F ) = {∗c | ∗c(c) = 0, for all c ∈ F},

with F ⊂ C finite, form a basis of open neighborhoods of 0 for the finite topology,

which is also linear.

Let F ⊂ C be finite. For each c ∈ F , we fix a tensor representation of ∆(c), and

then consider the finite set F ′ of all second tensor components. Then we easily see

that

Of (F
′) ⊆ Oa(F ) ⊆ Of (F )

and it follows that the two linear topologies on ∗C coincide, so it follows that (i) is

equivalent to (ii).

Proposition 2.5

Suppose we have a decomposition C =
⊕

i∈I Ci as left C-comodules. Then

RatC(∗Ci) is dense in ∗Ci for all i ∈ I if and only if RatC(∗C) is dense in ∗C.

Proof

Assume that each RatC(∗Ci) is dense in ∗Ci. It follows from Proposition 1.3 that⊕
i∈I RatC(∗Ci) is dense in ∗C, and then RatC(∗C) ⊃⊕i∈I RatC(∗Ci) is also dense.
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Conversely, let M =
⊕

j∈I,j �=i Cj, for each i ∈ I. Then C = Ci ⊕ M and ∗C =
∗Ci⊕ ∗M , hence RatC(∗C) = RatC(∗Ci)⊕RatC(∗M) is dense in ∗C = ∗Ci⊕ ∗M (RatC

is an aditive functor). The result then follows from Proposition 1.3 (ii).

Lemma 2.6

(i) Assume that M ∈ CM is finitely generated and projective as a left R-module.

Then ∗M is a rational right ∗C-module.

(ii) Suppose that C = M ⊕ N in CM. Then ∗M is rational if and only if M is

finitely generated as a left R-module.

Proof

(i) We take a finite dual basis {(xi, fi) | i = 1, · · · , n} of M ∈ RM. For all

h ∈ ∗M and α ∈ ∗C, we have

h · α =
∑

i

fi · (h · α)(xi) =
∑

i

fiα(xi
[−1]h(xi

[0]))

This shows that h[0]⊗h[1] = fi⊗xi
[−1]h(xi

[0]) ∈ ∗M⊗C is such that h ·α = h[0]α(h[1]),

and this proves that ∗M is rational.

(ii) One direction follows from (i). Conversely, assume that ∗M is rational. Take

e = ε|M ∈ ∗M . We can identify ∗C = ∗M ⊕ ∗N as right ∗C modules. For h ∈ ∗M and

c ∈ C, (e ·h)(c) = h(c(1)e(c(2))) = h(c(1)ε(c(2))) = h(c) if c ∈M (c(1)⊗ c(2) ∈ C ⊗M)

and (e · h)(c) = h(c(1)e(c(2))) = 0 if c ∈ N (c(1) ⊗ c(2) ∈ C ⊗ N) showing that

e · h = h (the h in the e · h is regarded as belonging to ∗C). As ∗M is rational

there is
∑

i fi ⊗ xi ∈ ∗M ⊗ C such that e · α =
∑

i fiα(xi), for all α ∈ ∗C. Then

for any h ∈ ∗M , h = e · h =
∑

i fih(xi), and, for all m ∈ M , we have h(m) =∑
i fi(m)h(xi) = h(

∑
i fi(m)xi) = h(

∑
i fi(m)mi), where xi = mi + ni ∈ M ⊕N is

the unique representation of xi in the direct sum C = M ⊕N and the last equality

holds as h|N = 0. As this last equality holds for all h ∈ ∗M , we can easily see that

it actually holds for all α = (h, g) ∈ ∗C = ∗M ⊕ ∗N because m ∈ M , and so we

now obtain, using the left α-condition on ∗C, that m = fi(m)mi, where m ∈ M is

arbitrary and mi ∈M are fixed. Thus M is finitely generated.

Corollary 2.7

Assume that C =
⊕

i∈I Ci as left C-comodules, and that each Ci is finitely

generated. Then RatC(∗C) is dense in ∗C, and, equivalently, RatC is an exact functor.
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Proof

This is a direct consequence of Proposition 1.3 (ii) and Lemma 2.6.

Example 2.8

We now present an example of a coring for which we can explicitly construct the

Rat functor. Let G be a group, k a commutative ring, and R a G-graded k-algebra.

It is well-known that C = R⊗ kG is an R-coring. The structure maps are given by

the formulas

r(s⊗ σ)t =
∑
ρ∈G

rstρ ⊗ σρ;

∆C(s⊗ σ) = (s⊗ σ)⊗R (1⊗ σ) ; ε(s⊗ σ) = s.

Here tρ is the homogeneous part of degree ρ of t. Clearly C =
⊕

σ∈G R⊗σ decomposes

as the direct sum of finitely generated (free of rank one) left C-comodules, hence it

follows from Corollary 2.7 that Rat is exact. We will illustrate this, computing Rat.

First observe that

∗C = RHom(R⊗ kG,R) ∼= Hom(kG,R) ∼= Map(G,R).

The multiplication on ∗C can be transported into a multiplication on Map(G,R).

This multiplication is the following. For f, g : G→ R and τ ∈ G:

(f#g)(τ) =
∑

ρ

f(τ)ρg(τρ) (1)

Let (kG)∗ be the dual of the group algebra kG, with free basis {vσ | σ ∈ G}, such

that vσ(τ) = δσ,τ . then vσ can also be viewed as a map G→ R, and this gives us an

algebra embedding (kG)∗ ⊂ Map(G,R). Indeed, using (1), we easily compute that

vσ#vτ = δσ,τvσ.

We also have an algebra embedding

ι : R→ Map(G,R), ιr(σ) = r.

Indeed, using (1), we find

(ιr#ιs)(τ) =
∑

ρ

ιr(τ)ριs(τρ) =
∑

ρ

rρs = rs = ιrs(τ).

Let r ∈ R be homogeneous of degree ρ, and f : G→ R. Using (1), we compute

vσ#ιr = ιr#vσρ and vσ#f = vσ#ιf(σ). (2)
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Now take M ∈ M∗C ∼= MMap(G,R). By restriction of scalars, M is also a right R-

module and a right (kG)∗-module. Now put Mσ = M · vσ.

1) If σ �= τ , then Mσ ∩Mτ = 0. Indeed, if m · vσ = n · vτ , then

m · vσ = m · (vσ#vσ) = (m · vσ) · vσ = (n · vτ ) · vσ = n · (vτ#vσ) = 0.

2) MσRρ ⊂Mσρ. Take m · vσ ∈Mσ and r ∈ Rρ. Using (2), we find

(m · vσ)r = m · (vσ#ιr) = m · (ιr#vσρ) = (mr) · vσρ ∈Mσρ.

This shows that
⊕

σ∈G Mσ is a G-graded R-module; we will show that it is the

rational part of M .

3) Mσ ⊂ Rat(M). Take m · vσ ∈Mσ and f ∈ Map(G,R). Using (2), we find

(m · vσ) · f = m · (vσ#f) = m · (vσ#ιf(σ)) = (m · vσ)f(σ),

so m · vσ is rational.

4) It follows from 3) that
⊕

σ∈G Mσ ⊆ Rat(M).

5) Let m ∈ Rat(M). Then there exist m1, · · · ,mn ∈ M , r1, · · · , rn ∈ R and

σ1, · · · , σn ∈ G such that, for all ϕ ∈ ∗C:

m · ϕ =
∑

i

miϕ(ri ⊗ σi).

Making the identification ∗C ∼= Map(G,R), we find for all f : G→ R:

m · f =
∑

i

mirif(σi).

Replacing mi by miri, it is no restriction to take ri = 1. We can also take the σi

pairwise different. Taking f = vσ, we find that

mσ =
∑

i

miδσ,σi

so mσ �= 0 for only a finite number of σ, and mσi
= mi. Finally

m = m · ι1 =
∑

i

miι1(σi) =
∑

i

mi =
∑

i

mσi
∈
⊕
σ∈G

Mσ.

We conclude that

Rat(M) =
⊕
σ∈G

M · vσ,

and it is clear that Rat is exact.
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In some situations, the converse of Corollary 2.7 also holds. If R is left artinian,

then any left comodule contains a simple comodule. The same holds for comod-

ules that are locally artinian, in the sense that any finitely generated submodule

is artinian. If this is the case for C, then the left socle of C is essential in C. If

moreover C is injective in CM, then a decomposition C =
⊕

i∈I E(Si) holds with

usual arguments, where
⊕

i∈I Si = Cs(C) is a decomposition of the left socle Cs(C)
of C and E(Si) is the injective hull of Si contained in C. We will assume that C is

locally projective as a right R-module, which implies that CM is abelian, so that we

have a categorical definition of injective hulls.

Proposition 2.9

Assume that C also satisfies the right α-condition, and that the two following

conditions hold:

1. C is an injective object of CM;

2. R is left artinian or C is locally artinian in RM (equivalently in CM).

Let
⊕

i∈I Si be the decomposition of the left socle of C ∈ CM into simple left C-
comodules, and E(Si) an injective envelope of Si contained in C. Then RatC is exact

if and only if each E(Si) is finitely generated.

Proof

We have that C =
⊕

i∈I E(Si), so one direction follows from Corollary 2.7.

Conversely, assume that RatC is exact, and let S be a simple subcomodule of C, and

E(S) an injective envelope of S contained in C. Then there is a left subcomodule

X of C such that E(S) ⊕ X = C in CM. The functor CHom(−, C) is exact since

C ∈ MC is injective, and the composition of CHom(−, C) with the natural functor

MC →M∗C is also exact. Thus we obtain an epimorphism π : ∗E(S) → ∗S, with

kernel ⊥S = {f ∈ ∗E(S) | f|S = 0}.
We will first show that ⊥S 
 ∗E(S). Using the isomorphisms in Proposition 2.2, we

can regard π as a left CEnd(C)-module morphism CHom(E(S), C)→ CHom(S, C).
Take f ∈ CHom(E(S), C) \ ⊥S, i.e. f : E(S) → C such that f|S �= 0. Then

Ker f ∩S = 0 since S is simple, and therefore Ker f = 0, since S is essential in E(S).

So E(S) ∼= f(E(S)), and there exists a left C-subcomodule M of C such that C ∼=
f(E(S))⊕M . We can extend f to a left C-comodule isomorphism f : C → C, since

X ∼= M . Let h be the inverse of f . Take an arbitrary g ∈ CHom(E(S), C) ,and extend
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g to g : C = E(S)⊕X → C by putting g|X = 0. Then g = g ◦ h ◦ f , which means

that CHom(E(S), C) is generated by f as a left CEnd(C)-module. Consequently
⊥S 
 ∗E(S).

The Finiteness Theorem 2.1 shows that S is finitely generated and then it follows

from Proposition 2.3 (ii) that ∗S is a rational ∗C-comodule, so RatC(∗S) = ∗S. RatC

is exact, so we have an exact sequence

0 −→ RatC(⊥S) −→ RatC(∗E(S))
π−→ RatC(∗S) = ∗S −→ 0.

We obtain π(RatC(∗E(S))) = ∗S, so ⊥S + RatC(∗E(S)) = ∗E(S). It then follows

that ∗E(S) is rational. This last part can also be seen as follows. We have an exact

sequence

0 −→ ⊥S −→ ∗E(S) −→ ∗S −→ 0,

with ⊥S 
 ∗E(S) and ∗S rational, so ∗E(S) is rational by Proposition 1.2 (i). Using

Lemma 2.6, we find that RE(S) is finitely generated.

3. SEMIPERFECT CORINGS

Let C be an abelian category. A projective object P ∈ C together with a superfluous

epimorphism P → M is called a projective cover of M . C is called semiperfect

if every simple object has a projective cover. If a coring C satisfies the left α-

condition, then MC is an abelian category, and C is called right semiperfect if MC

is semiperfect. Semiperfect corings were introduced first in [10].

Theorem 3.1

Let R be a right artinian ring, and C an R-coring satisfying the left α-condition.

The following statements are equivalent.

(i) C is right semiperfect;

(ii) Every finitely generated right comodule has a projective cover;

(iii) every finitely generated right comodule has a finitely generated projective

cover;

(iv) the categoryMC has enough projectives;

(v) every simple right comodule has a finitely generated projective cover;

(vi) the categoryMC has a progenerator (=projective generator).
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Proof

(i)⇒(ii). First notice that an R-module is finitely generated if and only if it has

finite length. Every finitely generated comodule M has a maximal subcomodule, so

its Jacobson radical J(M) inMC is different from the comodule itself. J(M)
M ,

and M/J(M) is a semisimple finitely generated comodule. Every simple component

of M/J(M) has a projective cover, and the direct sum of all these projective covers

is a projective cover f : P → M/J(M) of M/J(M). Since P is projective, there

exists g : P → M such that u ◦ g = f , with u : M → M/J(M) the canonical

projection. Then a usual argument shows that g : P → M is a projective cover:

u(g(P )) = f(P ) = M/J(M), hence u(J(M) + g(P )) = M/J(M) and it follows

that J(M) + g(P ) = M . From the fact that J(M) is small in M , it follows that

g(P ) = M and g is surjective. Finally Ker g ⊂ Ker f 
 P , so Ker g 
 P , and

g : P →M is a projective cover of M .

(iv)⇒(iii). Let M be a finitely generated comodule. We know that there exists

a projective object P ∈ MC and a C-colinear epimorphism f : P → M . Let

(Mi)i∈I be a family of finitely generated comodules such that we have a C-colinear

epimorphism f :
⊕

i∈I Mi → P . As P is projective, we have that
⊕

i∈I Mi
∼= P ⊕X

as comodules. Since R is artinian, we can assume that the Mi are indecomposable.

As they have finite length in MR, they also have finite length in MC and M∗C,
so their ∗C-endomorphism rings are local, by the Krull-Schmidt Theorem (see [2,

12.8]). It then follows from the Crawley-Jønsson-Warfield Theorem (see [2, 26.5])

that P ∼=⊕i∈J Mi, with J ⊂ I. The Mi are finitely generated (rational) ∗C-modules,

and are projective objects of MC, since they are direct summands of P . Since M

is finitely generated, we can find a finite F ⊂ J and a projection
⊕

i∈F Mi → M ,

induced by f . Thus we have found a finitely generated projective object P ∈ CM
and a C-colinear epimorphism f : P → M . Dualizing the proof of the Eckmann-

Schopf Theorem on the existence of the injective envelope of a module, see e.g. [2,

18.10], we can show that M has a projective cover. This works as follows.

• Let K = Ker f , and consider the set V consisting of subcomodules H ⊂ K such

that K/H 
 P/H, which is equivalent to

H ⊂ T ⊂ P,K + T = P =⇒ T = P

V �= ∅ since K ∈ V . V contains a minimal element K ′ since R is artinian.

• Then consider the set W consisting of subcomodules Y ⊂ P such that K ′+Y = P .

This set is nonempty, since P belongs to it. Then take an element in this set such

that K ′ ∩ Y is minimal. Let p : P → P ′ = P/K ′ be the projection. Since P is
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projective, there exists a comodule morphism h : P → Y such that p|Y ◦ h = p,

that is, the following diagram commutes:

We will now show that p|Y is an isomorphism.

• h is surjective. Take y ∈ Y . Then

p(y − h(y)) = p(y)− p(h(y)) = p(y)− p(y) = 0

so y − h(y) ∈ K ′ and

y = (y − h(y)) + h(y) ∈ (Y ∩K ′) + Imh.

It follows that Y ⊂ (Y ∩K ′) + Imh. The converse implication is obvious, so

Y = (Y ∩K ′) + Imh

It then follows that

P = Y +K ′ = (Y ∩K ′) + Imh+K ′ = Imh+K ′

The minimality condition on Y then yields that Y = Imh, so h is surjective.

• Y ∩K ′ 
 Y . If H ⊂ Y and H+(Y ∩K ′) = Y , then H+K ′ = H+(Y ∩K ′)+K ′ =

Y + K ′ = P . This means that H ∈ W , and the minimality condition on Y gives

us that H ∩K ′ ⊃ Y ∩K ′, and H ∩K ′ ⊂ Y ∩K ′ since H ⊂ Y . Then we find that

Y = H + (Y ∩K ′) = H + (H ∩K ′) = H, as needed.

• From the fact that 0 = p(K ′) = (p ◦ h)(K ′), it follows that h(K ′) ⊂ Ker (p|Y ) =

Y ∩K ′.
• Kerh = K ′. It is clear that Kerh ⊂ K ′. It follows that K ′ ⊂ Kerh if we can show

that Kerh ∈ V , or

Kerh ⊂ T ⊂ P,K + T = P ⇒ T = P

Assume Kerh ⊂ T ⊂ P and K+T = P . Since K ′ ⊂ P , we find that K+K ′+T = P .

Also K ′ ⊂ T+K ′ ⊂ P , so it follows from the fact that K ′ ∈ V that K ′+T = P .Then

h(K ′)+h(T ) = h(P ) = Y , since K is surjective. Since h(K ′) ⊂ Y ∩K ′, this implies
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that Y ∩K ′ + h(T ) = Y , hence h(T ) = Y , since Y ∩K ′ 
 Y , and finally T = P

because T ⊂ Kerh.

• p|Y is surjective, as p = p|Y ◦ h and p is an epimorphism.

• p|Y is injective. Take y ∈ Y such that p(y) = 0. h is surjective, so y = h(z). Then

0 = p(y) = p(h(z)) = p(z), so z ∈ K ′ = kerh, and y = h(z) = 0.

• It now follows that Y ∩K ′ = 0. We know from the definition of Y that Y +K ′ = P .

Hence Y ⊕K ′ = P , and P ′ ∼= Y is finitely generated projective, being a direct factor

of P . Now look at the commutative diagram

It follows that we have an epimorphism P ′ → M in MC, with kernel K/K ′. This

is a projective cover, since K/K ′ 
 P ′ = P/K ′. Moreover, P ′ is finitely generated

as a quotient of P .

(ii)⇒(vi). Take a family (Mi)i∈I consisting of finitely generated comodules that

generateMC. Let Pi →Mi be a projective cover of Mi. Then
⊕

i∈I Pi is a projective

generator ofMC.

(vi)⇒(iv), (iii)⇒(ii)⇒(i) and (iii)⇒(v)⇒(i) are obvious.

Proposition 3.2 Let R be a right artinian ring, and C an R-coring satisfying the

left α-condition.

(i) MfgC is an abelian category;

(ii) Q ∈MfgC is injective if and only if Q is an injective object inMC;

(iii) P ∈MfgC is projective if and only if P is a projective object inMC.

Proof (i) The fact that MfgC has kernels follows from the assumption that R is

right artinian and the Finiteness Theorem.

(ii) This is a straightforward adaptation of the corresponding result on comod-

ules over a coalgebra. Let u : N →M be a monomorphism inMC and f : N → Q.
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Consider the set

X = {(N ′, f ′) | N ⊂ N ′ ⊂M, f ′ : N ′ → Q, f ′
|N = f}

ordered by the relation (N ′, f ′) < (N ′′, f ′′) if N ′ ⊂ N ′′ and f ′′
N ′ = f ′. Take a maximal

element (N0, f0) in X, and assume that N0 �= M . Take m ∈ M \ N0 and X the

subcomodule of M generated by M . By the Finiteness Theorem for comodules, X

is finitely generated, so there exists g : X → Q such that the following diagram

commutes:

Then consider the map f ′ : N ′ = N0 + X → Q, defined by f ′(n0 + x) =

f0(n0) + g(x). The usual computation shows that f ′ is well-defined, and (N ′, f ′) is

an element in X that is strictly greater than (N0, f0), a contradiction.

(3)

(iii) Let π : Y → X and f : P → X be morphisms in MC, with π surjective.

Let {p1, · · · , pn} be a set of generators of P as an R-module (and a fortiori as a

C-comodule). Then X ′ = Im f is generated by {x1, · · · , xn}, with xi = f(pi). Take

yi ∈ Yi such that π(yi) = xi, and let Y ′ be the C-submodule (or ∗C-submodule) of Y

generated by {y1, · · · , yn}. Let f ′ : P → X ′ be the corestriction of f . Since X ′ and

Y ′ are finitely generated and π|Y ′ is still an epimorphism, there exists g : P → X ′

such that f ′ = π◦g, and the projectivity of P inMC follows from the commutativity

of the diagram (3).
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4. APPLICATIONS AND EXAMPLES

4.1 Application to qF-rings In Theorem 3.1, we gave equivalent conditions for

the semiperfectness of a left locally projective coring C over a right artinian ring R.

In the case where R is a qF-ring, more characterizations are possible. This has been

studied recently by El Kaoutit and Gómex-Torrecillas (see [10, Theorems 3.5, 3.8,

4.2]. Using the results of the previous Sections, we find a different proof of these

results.

First recall that a qF ring, or quasi-Frobenius ring, is a ring which is right artinian

and injective as a right R-module, or, equivalently, left artinian and injective as a

left R-module (in [15], these rings are called noetherian QF rings). In this situation,

R is a cogenerator of MR and RM, see [15, 48.15]. Since a qF-ring is a left and

right perfect ring, local projectivity is equivalent to projectivity. Also recall that flat

modules over qF-rings are projective. Let R be a qF-ring, and assume that C ∈ RM
is flat (or, equivalently, (locally) projective). Then CM is a Grothendieck category,

and the forgetful functor CM → RM is exact and has a right adjoint C ⊗R −.

Since RM has enough injectives and the forgetful functor is exact, C ⊗R− preserves

injectives. Now R ∈ RM is injective because R is a qF-ring, so C = C ⊗R R

is an injective object of CM, and we can apply Proposition 2.9. We find that

C =
⊕

i∈I E(Si), with
⊕

i∈I Si the decomposition of the left socle of C ∈ CM.

If R is a qF-ring, then the contravariant functors

(−)∗ = HomR(−, R) : MR → RM, ∗(−) = RHom(−, R) : RM→MR,

define an equivalence duality between the categories of finitely generated left R-

modules and finitely generated right R-modules. More explicitely, every finitely

generated left R-module M is reflexive, that is, the map

ΦM : M → (∗M)∗, ΦM(m)(f) = f(m)

is an isomorphism. This result follows, for example, after we take U = M = R in

[15, 47.13(2)].

If M is not finitely generated, then we still have the following result.

Lemma 4.1

Let R be a qF ring and M ∈ RM-module. Then Im (ΦM) is dense in (∗M)∗

with respect to the finite topology on HomR(∗M,R).

Proof Take T ∈ (∗M)∗ and F = {f1, . . . , fn} ⊂ ∗M . We have to prove that there

exists an m ∈ M such that T (fi) = ΦM(fi) = fi(m). Let ⊥F =
⋂n

i=1 Ker fi ⊂ M
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and N = M/⊥F . Then we have a natural inclusion

M⋂
i=1,n Ker fi

↪→
n⊕

i=1

M

Ker fi

�
n⊕

i=1

Im fi ↪→ Rn

and this shows that N = M/⊥F has finite length. Let π : M −→M/⊥F = N be the

canonical projection and consider its dual π∗ : ∗N −→ ∗M . By the construction

of N as a factor module, there are left R-linear maps fi : N −→ R such that

fi ◦ π = fi. Consider t = T ◦ π∗ ∈ (∗N)∗. As N is finitely generated, ΦN is an

isomorphism (it gives the above stated duality between RM and MR), so there is

n = m̂ = π(m) ∈ N such that t = ΦN(n). Then T (fi) = T (fi ◦ π) = (T ◦ π∗)(fi) =

t(fi) = ΦN(n)(fi) = fi(π(m)) = fi(m), as needed.

If C is a left and right projective R-coring, then the duality is kept after we pass

to the categories of finitely generated C-comodules: he functors ∗(−) = RHom(−, R)

and (−)∗ = HomR(−, R) define an equivalence between the categories fgCM and

MfgC. To prove this, it suffices to show that ΦM is left C-colinear, or, equivalently,

right C∗-linear, for every finitely generated left C-comodule M , and this is a standard

computation. From this duality and Proposition 3.2, we obtain the following result.

Corollary 4.2

Let R be a qF-ring, and C an R-coring that is projective as a left and right

R-module. A finitely generated right C-comodule M is injective (resp. projective)

inMC if and only if M∗ is projective (resp. injective) in CM.

Theorem 4.3

Let R be a qF-ring, and C an R-coring that is (locally) projective as a left and

right R-module. The following assertions are equivalent.

(i) RatC is exact;

(ii) RatC(∗C) is dense in ∗C;

(iii) RatC(∗M) is dense in ∗M for every left C-comodule M ;

(iv) RatC(∗Q) is dense in ∗Q for every left injective C-comodule Q;

(v) RatC(∗Q) is dense in ∗Q for every left injective indecomposable C-comodule Q;

(vi) ∗Q is ∗C-rational for every left injective indecomposable C-comodule Q;
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(vii) E(S) is finitely generated for every simple left comodule S;

(viii) every simple right C-comodule has a finitely generated projective cover;

(ix) C is right semiperfect.

Proof (i)⇐⇒(ii) follows from Proposition 2.4.

(ii)⇐⇒(v). As we have seen, C =
⊕

i∈I E(Si), and each injective indecomposable

left C-comodule is isomorphic to one of the E(Si)’s, because every comodule contains

a simple comodule. The equivalence of (ii) and (v) then follows from Proposition

2.5.

(v)=⇒(iv). Every left injective comodule Q is a direct sum of injective indecompos-

able left C-comodules (because its socle is essential), Q =
⊕

i∈I Qi. Then we have
∗Q =

∏
i∈I

∗Qi in M∗C and
⊕

i∈I RatC(∗Qi) ⊆ RatC(∗Q) ⊂ ∏i∈I
∗Qi and then it all

follows from Proposition 1.3.

(iv)=⇒(iii). Take M ∈ CM and an injective envelope f : M → Q in CM. We

know that RatC(∗Q) is dense in ∗Q = RHom(Q,R). Proposition 1.5 then yields that
∗f(RatC(∗Q)) is dense in RHom(M,R) = ∗M . But ∗f(RatC(∗Q)) ⊂ RatC(∗M), so

RatC(∗M) is dense in ∗M .

(iii)=⇒(iv)=⇒(v): trivial.

(i)⇐⇒(vii) follows from Proposition 2.9.

(vi)⇐⇒(vii) follows from Lemma 2.6 and the fact that every injective indecompos-

able is isomorphic to one of the E(Si)’s.

(vii)⇐⇒(viii). Let T be a simple right C-comodule. Then T is finitely generated,

and therefore a simple object in MfgC. By the duality between fgCM and MfgC,
T ∗ ∈ fgCM is simple, and E(T ∗) is finitely generated by assumption. The monomor-

phism T ∗ → E(T ∗) is essential, so, using the duality, the dual map is a superfluous

epimorphism ∗E(T ∗) → ∗(T ∗) � T . It follows from Corollory 4.2 that ∗E(T ∗) is

projective, and, using again the duality, that it is finitely generated. Hence ∗E(T ∗)
is a finitely generated projective cover of T .

A coring C is called left (resp. right) perfect if every object in CM (resp. MC)
has a projective cover. We will now see that, over a qF-ring, perfectness on both

sides is equivalent to semiperfectness on both sides. First we need a Lemma.

Lemma 4.4

Let R be a qF-ring, and C a right semiperfect coring that is both left and right

profective over R. Then every 0 �= M ∈ CM contains a maximal subcomodule.

Consequently the Jacobson radical J(M) is small in M .
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Proof

∗M ∈M∗C, and RatC(∗M) is dense in ∗M , by Theorem 4.3. Thus, if RatC(∗M) =

0, then ∗M = 0, which is impossible since R is a cogenerator in RM. So RatC(∗M) �=
0, and we can take a nonzero simple right subcomodule S of RatC(∗M). Let

u : S → RatC(∗M) and v : RatC(∗M)→ ∗M be the inclusion maps. Then u is right

C-colinear, and v is right ∗C-linear. Now consider the composition f = u∗ ◦ v∗ ◦ φ.

M
φ−→ (∗M)∗ v∗−→ (Rat
(∗M))∗ u∗−→ S∗.

A straightforward computation shows that v∗ ◦ φ is left C∗-linear, and therefore

f = u∗ ◦ v∗ ◦ φ is also left C∗-linear. Now u∗ ◦ v∗ is surjective, Imφ is dense in

(∗M)∗, by Lemma 4.1, so Im f = (u∗ ◦ v∗)(Imφ) is dense in S∗, by Proposition 1.5.

Since S is simple, and therefore finitely generated, the only dense submodule of S∗

is S∗ itself. So f : M → S∗ is a surjective C∗-linear morphism between the left

C-comodules M and S∗, hence it is a left C-colinear surjection. Since S∗ is simple

in ∗M, Ker f is a maximal subcomodule of M .

Proposition 4.5

Let R be a qF-ring, and C an R-coring which is left and right (locally) projective

over R. Then the following assertions are equivalent.

(i) C is left and right perfect;

(ii) C is left and right semiperfect.

Proof

The implication (i)⇒(ii) is trivial. Conversely, we will first show that M/J(M)

is a semisimple object in MC, for any M ∈ MC. Take x ∈ M/J(M), and let N be

the subcomodule of M/J(M) generated by x. Then N ⊂ M/J(M), hence J(N) ⊂
J(M/J(M)) = 0. N is finitely generated, and therefore artinian. Let N1, · · · , Nn

be maximal subcomodules of N such that
⋂n

i=1 Ni = 0. Then N =
⊕n

i=1 N/Ni is

semisimple. This shows that every x ∈ M/J(M) belongs to a semisimple subco-

module, so M/J(M) is semisimple.

Since C is right semiperfect, there exists a projective cover f : P →M/J(M). Since

P is projective, there exists g ∈MC making the following diagram commutative (π
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is the canonical projection):

Now π(J(M) + g(P )) = π(g(P )) = f(P ) = M/J(M), so J(M) + g(P ) = M ,

since π is surjective. C is left semiperfect, hence, by Lemma 4.4, J(M) 
 M , and

we conclude that g(P ) = M . So g is surjective. Ker f 
 P and Ker g ⊂ Ker f ,

hence Ker g 
 P , and we conclude that g : P →M is a projective cover of M .

4.2. Examples

Example 4.6 Let C be a coring, and assume that C is finitely generated and projec-

tive as a left R-module. ThenMC is isomorphic toM∗C, and RatC is an isomorphism

of categories. Hence RatC is exact. MC has enough projectives, but not necessarily

projective covers. As an example, let R be a non-semiperfect ring, and C = R, the

trivial R-coring. ThenMC =MR is not semiperfect.

Example 4.7 Let C be a cosemisimple coring. Then C is left and right semiperfect,

since the categories of left and right C-comodules are semisimple, see [4, 19.14], [9]

and [11]. In this case, C is projective in RM and MR, so C satisfies the left and

right α-condition. C can then be written as a direct sum of finitely generated left (or

right) C-comodules, and the functors RatC and CRat are exact. So all the equivalent

statements of Theorem 4.3 hold, without the assumption that the base ring R is a

qF-ring.

Example 4.8 To a ring morphism ι : R→ S, we can associate the Sweedler coring

C. As an S-bimodule, C = S ⊗R S, and the comultiplication and counit are given

by the formulas

∆(s⊗R s′) = (s⊗R 1)⊗S (1⊗R s′) ; ε(s⊗R s′) = ss′

The Sweedler coring is important in descent theory: the comodules over C are exactly

the descent data from [12] (in the commutative case) and [7] (in the noncommutative
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case). If M ∈MC, then M descends to an R-module

M coC = {m ∈M | ρ(m) = m⊗R 1}

For a detailed discussion, we refer to [5]. It is also easy to see that we have an

isomorphism of R-algebras

∗C = SHom(S ⊗R S, S) ∼= REnd(S)

(again, REnd(S) is a ring with the opposite composition as multiplication). Also

notice that S ⊂ REnd(S) as algebras, by right multiplication.

If we assume that S ∈ RM is locally projective, then C ∈ SM is locally projective,

and we can consider the functor

RatC : M
REnd(S) →MC

Let M be a right REnd(S)-module, and take m ∈ M . Then m ∈ RatC(M) if and

only if there exists m[0] ⊗R m[1] ∈ M ⊗R S such that m · f = m[0]f(m[1]), for all

f ∈ REnd(S). In particular,

RatC(M)coC = {m ∈ RatC(M) | ρ(m) = m⊗R 1}
= {m ∈M | m · f = mf(1), for all f ∈ REnd(S)}

RatC(M) is a right C-comodule, and therefore a right REnd(S)-module, and, by

restriction of scalars, a right S-module. Therefore

RatC(M)coC · S ⊂ RatC(M) (4)

If we take M = REnd(S), then we see that

RatC(M)coC = {g ∈ REnd(S) | (f ◦ g)(s) = g(s)f(1), for all f ∈ REnd(S)}

Take h ∈ ∗S = RHom(S,R). Then h = h ◦ ι ∈ RHom(S, S), and it follows easily

that h ∈ RatC(REnd(S))coC. We will use this to show that RatC(End(S)) is dense

in REnd(S).

Take f ∈ REnd(S), and F ⊂ S finite. Since S is locally projective, there are

h1, · · · , hn ∈ ∗S and x1, · · · , xn ∈ S such that

x =
n∑

k=1

hk(x)xk

for x ∈ F and then a simple computation shows that

f(x) =
n∑

k=1

hk(x)f(xk) =
( n∑

k=1

hk · f(xk)
)
(x)
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By (4) and the the fact the above argument,
∑n

k=1 hk · f(xk) ∈ RatC(End(S)). So

we have shown that f coincides on F to an element in RatC(End(S)). We conclude

that RatC(∗C) lies dense in ∗C, and, by Proposition 2.4, RatC is exact.

If S is pure as a left and right R-module, in particular if S ∈ RM is faithfully flat,

then the categories MR and MC are equivalent (see [5, 7, 12]). In this case, MC

has enough projectives.

If S ∈ RM is faithfully flat and locally projective, then we have an explicit descrip-

tion of RatC(M), namely

RatC(M) = RatC(M)coC ⊗R S,

with RatC(M)coC given by (4).
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Abstract

We explain the essence of our method to solve systems of nonlinear partial differen-

tial equations using a kind of continuation of the Fourier analysis for the linearized

system. An illustration shows how to determine the convergence limit. A brief

survey of previous results is given. We study the equilibrium and stability of an

inhomogeneous universe in a Newtonian approximation supplemented with a cos-

mological constant in view to explain the formation of galaxies, clusters of galaxies

and the tessellation of the universe. Some qualitative results are obtained.

Key words: Waves and wave propagation; Perturbation theory; Fourier analysis;

Cosmology; Gravitation.

1. INTRODUCTION

The theoretical, experimental and computational investigations of oscillations and

instabilities of physical systems in plasma- and astrophysics, in hydro- and magne-

todynamics, in transport systems, etc. are very intriguing and complicated. They

flourished in the second half of the 20th century. Several causes contributed to

this blossoming: the goal of providing a quasi unlimited amount of energy by nu-

clear fusion; the radio- and radarwaves and the investigation of the ionosphere; the

magnetic phenomena related to the sun and to astrophysics in general; a lot of

physical, chemical and engineering problems with all sort of boundary conditions

and practical applications. The linearized perturbation methods (Chandrasekhar

[1]) yield the dispersion relation: very useful but often not sufficient. Since around

1970 various nonlinear methods were conceived (Malfliet and Hereman [2]; Verheest

[3]; Pillay, Rao and Bharuthram [4]). One of those is a nonlinear Fourier analysis
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due to Callebaut [5]. It will be sketched below (section 2).

The problems are usually expressed in mathematical form by a system of par-

tial differential equations (PDEs) (and boundary and/or initial conditions) including

in general the continuity equation, the equation of motion, the Poisson equation,

some “closing” assumption (an equation of state, e.g., the polytropic equation for

the pressure or some equation(s) concerning the heat transport) and, if electromag-

netism is involved, completed by Maxwell equations (in full or with simplifications).

Clearly such a system of PDEs was and still is usually impossible or very difficult

to solve straightforwardly. Plateau [6] had done a lot of work experimentally and

theoretically concerning the investigation of the stability of liquid cylinders and tori

(oil and mercury). Lord Rayleigh [7], extending the work of Plateau, developed his

method and completed the treatment of Plateau and developed his theory of sound

waves. Following Lord Rayleigh one (a) applies an “infinitely small” perturbation

to an equilibrium (or steady state), (b) linearizes the set of equations and applies a

Fourier analysis, allowing to work with a single term, and (c) obtains the (linear)

dispersion relation, i.e., a relation between the frequency of oscillation or the growth

rate of the instability and the wavenumber and the equilibrium quantities. This is

a most valuable information, but often it is not enough and one needs a nonlin-

ear approach. However, in strong contrast to the linear cases, there is no unique

systematic method for nonlinear problems but a variety of approaches each more

or less suited for specific situations. Roughly speaking there are two methods: (a)

methods yielding exact solutions and (b) methods yielding approximations. In the

class (a) one has e.g. the Bäcklund transformations (Khater et al.[8]-[12]) to obtain

new solutions from a known one. There is the Ablowitz, Kaup, Newell and Segur

(AKNS) systems (Khater et al. [13]) which may lead to a solution in some cases. For

solitary waves the tanh method of Malfliet (Malfliet and Hereman [2]; Malfliet[14],

Malfliet and Wieërs [15]) and some extensions (Hereman et al. [16]-[18]; Verheest

[19]) are very adequate. For approximate solutions, class (b), the time scale method

working with a hierarchy of orders is often used. Callebaut [5] developed a kind of

nonlinear Fourier analysis, and the present work is addressed to this method.

2. THE “NONLINEAR FOURIER ANALYSIS”

In the footsteps of Lord Rayleigh and his followers - as stated above - the way to

obtain the (linear) dispersion relation is to linearize the system of equations and

next to apply a Fourier analysis. This has the result that at least part of the PDEs

(partial differential equations) may become algebraic and that one may work with

one single Fourier term, say Aei(ωt+k·r), in which A is the (arbitrary) amplitude,
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ω the angular frequency, k the wave vector, r the space vector and t the time.

In view of the (linearized) boundary conditions it is often the case that one or

two dimensions do not allow a Fourier analysis and that a differential equation has

still to be solved, e.g., in the cylindrical case this leads to the inclusion of Bessel

functions combined with the Fourier terms for the other directions. Of course the

full linearized solution is then a sum/integral over such terms, still with arbitrary

(but very small) amplitudes. Let us call this Fourier analysis the horizontal Fourier

integral/sum. However, having derived the dispersion relation and sticking to one

specific Fourier term with a specific amplitude A, specific ω and specific k, one may

look at the higher order terms generated by this specific term by iteration on the

nonlinear system which leads to a series of terms of the type anA
neni(ωt+k·r) as

solution. Here an are the coefficients fixed by substitution in the nonlinear basic

system of equations. We may call this the vertical Fourier series. In fact it is the

normal Fourier series of the function defined by the nonlinear system and by its

first term Aei(ωt+k·r). Actually, this function (supposing that it exists, satisfies the

very broad conditions required for a Fourier series which means essentially that it is

periodic) is fully fixed as a solution of the system of equations and its first Fourier

term which in a sense acts as a kind of initial condition, or rather as the “linear

approximation condition”.

Clearly the horizontal Fourier integral and the vertical Fourier series have dis-

tinct characters.

The horizontal Fourier integral/sum has the following features:

(a) The value of ω is fixed by k according to the linear dispersion relation.

(b) The components of k are arbitrary except for the (linearized) boundary condi-

tions which may discretize them or limit their domain. Consequently the full

horizontal solution is a trifold integral or sum or mixture of both.

(c) All amplitudes are arbitrary (supposed “small”).

(d) All terms are approximate solutions, satisfying only the linearized equations

(plus boundary conditions).

(e) There is no nonlinearity involved at all.

On the other hand the vertical Fourier series has the following features:
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(a) As above the value of ω is fixed by k according to the linear dispersion relation.

(b) It consists of terms in which all arguments are multiples of ωt+ k · r.

(c) All the amplitudes stand in a well defined relationship to each other. The

choice of one of their amplitudes (usually the one corresponding to ωt + k · r
itself) fixes them all through the basic equations and the boundary conditions.

(d) All terms together constitute a special but exact solution of the system of

partial differential equations and boundary conditions.

(e) The nonlinearity is in the equations, not in the Fourier series itself, which is

still a “traditional Fourier series” although the way to determine it is not. The

real nonlinearity appears if several “initial terms” are used.

Involving more “initial terms”

Suppose now that we consider two “initial terms”, taken from the horizontal so-

lutions A1e
i(ω1t+k1·r) and A2e

i(ω2t+k2·r), where the pairs (ω1,k,) and (ω2,k2) are

incommensurable (meaning that χ1 ≡ ω1t + k1 · r and χ2 ≡ ω2t + k2 · r do not

satisfy a relation of the type nχ1 = mχ2 with n and m integers, otherwise the ap-

proach is somewhat different). Substituting their sum in the system of equations

leads to three parts: a vertical Fourier series corresponding to A1e
iχ1 , a similar ver-

tical Fourier series corresponding to A2e
iχ2 and a mixed series. In particular for the

mixed series one has just to use combinatorial coefficients for each order.

The same is true when considering several “initial terms”. Clearly once we

consider mixing (interference) of initial terms we are working with an authentic

nonlinear solution and this method may justly be called a kind of nonlinear Fourier

analysis. We shall not deal here with the more general situation in which the solution

is not quite periodic, so that the frequency in higher order terms depends on the

amplitude as well as on k.

3. ILLUSTRATION BY THE ELECTRON PLASMA

As an illustration we consider the fairly simple case called the electron plasma: a

uniform plasma consisting of electrons and ions, infinite in all directions. We neglect

gravity, viscosity, resistivity and the magnetic contributions. The basic equations

are then respectively the equation of continuity, motion, Poisson, and polytropics:

∂tn + div(nv) = 0, (1)
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nm (∂tv + v ·∇v) = −∇p + e n∇ϕ, (2)

∆ϕ = e (n− n0) /ε, (3)

p = K (mn)Γ + pi, (4)

where n is the number density of the electrons, n0 their equilibrium density, v their

velocity, ϕ is the electrical potential, p the total pressure with pressure pi of ions

which is supposed to be constant, e and m are the electron charge and mass, ε is

the permittivity (in vacuum 8.85 × 10−12 C/Vm), K and Γ (polytropic exponent)

are constants.

The linear perturbation is expressed as a Fourier series. We fix one term say

A exp[iχ] as mentioned above. We thus develop only one family of higher order terms

corresponding to a single Fourier term of the linearized analysis. The nonlinear terms

then generate a2A
2 exp[2iχ], a3A

3 exp[3iχ], etc., with coefficients a2, a3, · · · to be

determined.

Using χ = ωt+k·r as a single variable reduces the system to ordinary differential

equations:

ωn′
− + k · (n−v−)′ = 0, (5)

m− (ω + v− · k) v′
− = ekϕ′ − kp′, (6)

k2ϕ′′ =
e

ε
(n− − n0) , (7)

p = K (mn)Γ + pi ⇒ p′ = ΓK− nΓ−1n′, (8)

where the accent means the derivative with respect to χ, K− = KmΓ and pi =

constant (ions are assumed to be massive and hence immobile). Integrating the

continuity equation (5) we obtain, with ∈− the constant of integration,

(ω + k · v−)n− =∈−= ωn0, (9)

which is used to reduce the system of equations (5) - (8) to a differential equation

of second order[
(Γ − 2) k2 v2

s− n
Γ+1

nΓ+1
0

+ 3ω2

]
n′2 +

(
k2 v2

s− n
Γ+1

nΓ+1
0

− ω2

)
nn′′ =

ω2
en

4(n− n0)

n3
0

,

(10)

where n0 is the equilibrium density, v2
s− = K− Γ nΓ−1

0 /m is the sound velocity of

electrons and ω2
e = (e2n0)/(mε) is the square of the electron plasma frequency. We
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calculated a number of coefficients numerically using mathematica and then inferred

the analytic expression. E.g., in case of the cold plasma we obtained

n = n0

(
1 +

N∑
j=1

jj

j!
Ajeijχ

)
, v =

k ω

k2

N∑
j=1

jj−1

j!
Ajeijχ, ϕ =

en0

k2ε

N∑
j=1

jj−2

j!
Ajeijχ.

(11)

We integrated as well equation (10) to obtain a differential equation of first order

and even to obtain a fully integrated equation. Insertion of the Fourier series led to

the same coefficients as given in (11), but the time needed for the three procedures to

calculate the coefficients was different and strongly dependent on any simplification

or additional effect taken into account (e.g., when the ions are mobile as well). The

series (11) is convergent provided A < e−1 (e ≈ 2.71828 · · · ); but if the linearized

perturbed density has an amplitude larger than 37% of the equilibrium density n0,

the series is no more convergent.

A graphical method confirmed the convergence obtained analytically. Summing

up N terms of density n and plotting the result for χ in the interval 0, 2π (or even

0, π), yields an oscillating graph. If there was any value in this interval for n less than

zero the series has to be rejected since the electron number density may not become

negative. It turns out that this graphical method confirms the radius of convergence

found analytically rather well; we performed the summation in some cases up to

N = 7000 to verify the result accurately. Actually when we exceeded the limit of

convergence for A slightly the number of terms might be rather limited (say ten

or twenty), except very close to the limit of convergence. This numerical/graphical

method turned out a powerful tool in all cases where we did not have a systematic

analytical expression for the coefficients.

We developed as well the theory using cosines instead of exponentials. It turned

out that the radius of convergence was doubled: now the series converges for A <

2e−1, i.e. the linearized perturbed density amplitude may reach nearly 74% of the

equilibrium density and still not lead to breakdown. In fact the result had to be

expected: an exponential eiχ corresponds to a sine and a cosine, thus two waves

instead of one, thus leading to halving the convergence limit.

Even if only the second order term is calculated it yields valuable information

above the linearized theory. We suggested to verify the results experimentally e.g.

by applying a (strong) external perturbation (electric field) in a Q-machine (Quies-

cent Plasma Machine) having a magnetized alkaline plasma or unmagnetized argon

plasma of a DP-Machine (Double Plasma Machine).

166



4. BRIEF SURVEY OF RESULTS

The preceding results have been generalized to a multiple species plasma, by includ-

ing the motion of ions as well, by including their pressure (even applying different

approaches) (Callebaut and Karugila [20]; [21]) and by including the magnetic ef-

fects involved in motion, too. The method can be generalized to instabilities when

a growth rate occurs instead of ω. This was elaborated for a liquid jet involving

surface tension and the result agreed very well with experiments (Callebaut [5]; [22];

[23]). Similarly it was applied to various plasma columns and extended to involve

magnetic fields internally (i.e. in the plasma column) and externally (around the

column).

The method was applied to gravitational problems, too. E.g., an infinitely long

gravitational cylinder of homogeneous density was studied to higher order (Calle-

baut [5]). The linear theory was performed by Chandrasekhar and Fermi [24] and

Chandrasekhar [1]; they considered it as a model to investigate the stability of arms

of spiral galaxies. The nonlinear theory was further extended to include a magnetic

field in the gravitational cylinder and outside it. Similarly the case of a plane-

parallel homogeneous gravitating medium (cf. a flat galaxy) was studied (Callebaut

[5]), including magnetic fields inside and outside. The results of the linear theory

confirmed Jeans’ criterion, which was derived on an inappropriate basis but was

made plausible on various grounds and explaining some observational data (Calle-

baut [25]). Again convergence and influence of various effects are calculated and

discussed.

5. INHOMOGENEOUS UNIVERSE

We consider the medium infinite in all space dimensions and obeying the Newtonian

law of gravitation to which a cosmological term is added. Here we analyze the

equilibria involving an inhomogeneous density and a varying gravitational potential.

The basic equations are the continuity equation, the equation of motion, the Poisson

equation (i.e. the field equation for Newtonian gravitation with a cosmological

constant and the polytropic equation). Thus, the basic system of equations is written

as (Callebaut [5])

∂tρ + div(ρv) = 0, (12)

ρ
dv

dt
= −∇p− ρ∇ϕ, (13)

∆ϕ + Λϕ = 4πGρ, (14)
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p = KρΓ , (15)

where ρ(r, t) is the mass density, v(r, t) is the velocity, ϕ(r, t) is the gravita-

tional potential, Λ is the cosmological constant, G is the gravitational constant

(≈ (6.6726 ± 0.0005) × 10−11m3/kg s2), p(r, t) is the pressure, K and Γ are con-

stants, r is the space and t is the time.

Equation (14) is an approximation like the one leading to the Newtonian theory

from Einstein’s gravitational field equation of 1917, where he introduced the cosmo-

logical term. It may be noted that the interest in the cosmological term has been

revived in recent years in particular due to the recent findings of the supernovae of

type 1a acting as standard candles to look back into the distant past of the universe.

Equilibrium

The basic system of equations to be considered here for equilibrium are to be inferred

from the equations (12) - (15). Putting zero order quantities, with v0 = 0, into these

equations we have

∂tρ0 = 0, (16)

∇p0 = −ρ0∇ϕ0, (17)

∆ϕ0 + Λϕ0 = 4πGρ0, (18)

p0 = KρΓ
0 . (19)

Here we note that ρ0 and hence p0 and ϕ0 are independent of time t but dependent

on space, r. In order to differentiate them from the previously seen quantities, we

denote them by ρ0(r), p0(r) and ϕ0(r), respectively.

Substituting (19) into (17) we get

∇KρΓ
0 (r) = KΓρΓ−1

0 (r)∇ρ0(r) = −ρ0(r)∇ϕ0(r)

and further

KΓ

Γ − 1
∇ρΓ−1

0 (r) = −∇ϕ0(r) and ϕ0(r) = − KΓ

Γ− 1
ρΓ−1

0 (r) + ϕ00,

where ϕ00 is a kind of cosmological background potential. (This is arbitrary in the

Newtonian physics, but no more when the cosmological term is added.) Substituting

this into the field equation (18), we get

− KΓ

Γ − 1
∆ρΓ−1

0 (r)− KΓΛ

Γ − 1
ρΓ−1

0 (r) + Λϕ00 = 4πGρ0(r). (20)
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This constitutes to a generalization of the Lane-Emden equation, famous in the early

days of stellar structure (cf. Chandrasekhar [26]), for which Λ = 0.

It is a nonlinear partial differential equation. In the case of spherical symmetry

with Λ = 0 (stellar case), one has simple closed solutions for the following values

of Γ : ∞ (incompressible), 2 and 6/5. Moreover, for Λ = 0, there is, for any Γ

(�= 1) and for spherical, cylindrical or Cartesian coordinates, the so-called singular

solution of the type Arp, with A and p fixed in terms of Γ (if p < 0 the solution

is rejected because it is singular at the center of the star, if p > 0 the solution is

rejected as it yields zero density in its center).

6. AN IMPORTANT EXAMPLE

If Γ = 2 then equation (20) becomes linear

∆ρ0(r) +

(
Λ+

2πG

K

)
ρ0(r) =

Λϕ00

2K
. (21)

Replacing ρ0(r) by

ρ0(r) = a0 +
N∑

j=1

(aj cos jkg · r + bj sin jkg · r), (22)

and comparing the coefficients implies

a0 =
Λϕ00

2(KΛ+ 2πG)
, (23)

[2K(k2
gj

2 − Λ)− 4πG]aj = 0 (24)

and

[2K(k2
gj

2 − Λ)− 4πG]bj = 0. (25)

Hence it follows

(kgj)
2 = (2πG +KΛ) /K or aj = 0

and similarly the same for bj in (25). With a suitable choice of the origin

ρ0(r) = B + a cos k0(r), (26)
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where

B =
Λϕ00

2(KΛ+ 2πG)
, k0 =

√
2πG

K
+ Λ, (27)

and as ρ0(r) ≥ 0, it follows

ϕ00 Λ ≥ 2 (KΛ+ 2πG) |a|. (28)

Note that this implies ϕ00 Λ > 0: if Λ is zero then B = 0 and a = 0, which reduces

the situation to an empty universe. It is remarkable that even in an inhomogeneous

universe the cosmological constant is required. Similarly ϕ00, although arbitrary,

may not simply be put equal to zero if we want a varying density. Notice that (26)

implies as well a more general form with a sum of cosines

ρ0(r) = B + a cos k0x + b cos k0y + c cos k0z, (29)

where a, b and c are arbitrary but restricted by the condition ρ0(r) ≥ 0 or

B ≥ |a|+ |b|+ |c|. (30)

The other equilibrium quantities are given by

p0(r) = Kρ2
0(r), ϕ0(r) = −2Kρ0(r) + ϕ00. (31)

Remarks

If KΛ + 2πG = 0 (or B = ∞), which seems physically unrealistic in view of the

supposed extreme smallness of Λ, then equation (21) has a solution of the type

ρ0(r) = ax2 + by2 + cz2 + dx+ ey + fz + g, (32)

where a, b, c, · · · , g are arbitrary constants, except for the condition ρ0(r) ≥ 0. As

x, y and z may have arbitrary positive and negative values in an infinite universe

this condition requires d = e = f = 0 and a, b, c, ≥ 0. However, this would still

yield infinite density for |x|, |y| or |z| → ∞ requiring a = b = c = 0 which leads

back to a homogeneous density.

Discussion of equation (29)

It is remarkable that the amplitudes in (29) are not fixed. An equilibrium is allowed

whatever the coefficients B, a, b or c are, provided that the condition (30) is satisfied.

This suggests the idea that a certain equilibrium may evolve smoothly to another

equilibrium through a continuous series of equilibria, not really by instability, but

170



rather like a ball which is in a horizontal gutter or on a horizontal plane at any

place. However, in the gutter there are still transversal oscillations possible, and if

the gutter is inversed to be a ridge there are transversal instabilities. For the ball

on the horizontal plane we speak of an indifferent equilibrium in all directions, for

all perturbations.

The kind of equilibrium of the form (29) is quite interesting in view of the so-

called tessellation of the universe. Indeed during the last decennium it was observed

that there were a kind of accumulating “walls” in the universe, where the density

of the galaxies is higher than inside the regions surrounded by those ‘walls’ forming

irregular polyhedra (of several hundred million light-years across).

The physical interpretation of the tessellation is based on the interpretation of

Jeans’ instability. In the customary view of it an accumulation of matter in a gravi-

tating medium will increase provided it is sufficiently large (depending on pressure,

etc.). However, if the medium has a depletion of matter at a certain place and

of sufficient magnitude, this depletion will be enhanced by the same mechanism of

Jeans’ instability and its surroundings, its sides, (its “walls”), will increase their

density. Hence the tessellation of the universe seems a natural phenomenon and

the strengthening of this tessellation a quite natural evolution. Actually equation

(29) indicates such a kind of tessellation and the fact that the amplitudes are arbi-

trary suggests the possibility of a (not too difficult) enhancement of the tessellation

structure. This makes the investigation of the stability of the inhomogeneous uni-

verse corresponding to (29) very interesting. However, the numerical value of the

wavelength corresponding to equation (27) is about 30,000 lightyears or 3 · 1020km

which rather corresponds to the dimensions of galaxies. Using the radiation pressure

may raise this with a factor 104 (i.e. the tessellation scale) but then the analysis

has to be redone including the radiation, which is appropriate when the medium is

optically thick (i.e., before matter and radiation became disentangled, that is when

the universe had a temperature of about 5000 K).

7. STABILITY ANALYSIS

Perturbing and linearizing the relevant equations (12) - (15) yields

∂tρ1 + div(ρ0v1) = 0, (33)

ρ0∂tv1 = −∇p1 − ρ0∇ϕ1 − ρ1∇ϕ0(r), (34)

∆ϕ1 + Λϕ1 = 4πGρ1, (35)

p1 = 2Kρ0ρ1, (36)
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where we recall that ρ0, p0 and ϕ0 are not constants but given by the equations (27),

(29) - (31). Eliminating v1 and p1 yields

∂2
ttρ1 = 2K∆(ρ0ρ1) + ρ0∆ϕ1 + ρ1∆ϕ0(r) + ∇ρ0 ·∇ϕ1 + ∇ρ1 ·∇ϕ0(r)

= 2K (ρ0∆ρ1 + ρ1∆ρ0 + 2∇ρ0 ·∇ρ1)+ρ0∆ϕ1+ρ1∆ϕ0(r)+∇ρ0·∇ϕ1+∇ρ1·∇ϕ0(r).

Using the expressions for ρ0 and ϕ0 we may simplify this to

∂2
ttρ1 = 2Kρ0∆ρ1 + 2K∇ρ0 ·∇ρ1 + ρ0∆ϕ1 + ∇ρ0 ·∇ϕ1. (37)

The elimination of ϕ1 using (35) is not simple especially in view of the cosmological

term. It is simple to eliminate ρ1, yielding a linear partial differential equation of

fourth order in ϕ, however with non-constant coefficients. Hence, we rather try first

to handle (35) by taking a Fourier series or integral for ρ1 and restricting ourselves to

the x-dependence only for the sake of convenience. Actually the problem is linear in

the perturbed quantities, however, bilinear in equilibrium and perturbed quantities.

Thus we consider the sum or integral

ρ1 =
∞∑

j=0

aje
σjt cos(jx + ψj), (38)

where we have included the time dependence explicitly; we have taken it as expo-

nential in view of equation (37). Equations (35) and (38) yield,

ϕ1 = 4πG
∞∑

j=0

aj e
σjt

Λ− j2
cos(jx + ψj) + b eσt cos(

√
Λx+ ψ).

Here aj, ψj, σj, b, ψ and σ are still arbitrary constants, σj and σ may still be

complex. Note that if
√
Λ coincides with a particular j we have ‘absorption’ in

equation (35) and the corresponding solution is bxeσt cos(
√
Λx + ψ). However, we

do not expect it as an appropriate perturbation in an infinite universe. As equation

(37) is linear in ρ1 and ϕ1 we may work with a single term of ρ1:

σ2
j aj cos(jx + ψj) = −

(
2K +

4πG

Λ− j2

)
j2 aj ρ0(r) cos(jx + ψj) +

(
2K +

4πG

Λ− j2

)
×k0 j a aj sin k0x sin(jx+ψj)− bΛρ0 cos(

√
Λx+ψ)+a b k0

√
Λ sin k0x sin(

√
Λx+ψ),

where we have dropped the time factor. Replacing 2K by 4πG/(k2
0 − Λ) and elimi-

nating ρ0 yields

σ2
j aj cos(jx + ψj) = −4πG j aj a

(
1

k2
0 − Λ

+
1

Λ− j2

)[
j cos k0 x cos(jx + ψj)
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−k0 sin k0 x sin(jx + ψj) + jB cos(jx + ψj)

]
− a b

√
Λ

[√
Λ cos k0 x cos(

√
Λx+ ψ)

−k0 sin k0 x sin(
√
Λx+ ψ) +

√
ΛB cos(

√
Λx + ψ)

]
. (39)

As j �= ±
√
Λ there is no match between terms on the right-hand side. The terms

with products of (co)sines can not match the left-hand side and have to vanish.

1. Take b �= 0. For k0 = ±
√
Λ and a suitable choice of ψ the term

√
Λ cos k0 x cos(

√
Λx + ψ)− k0 sin k0 x sin(

√
Λx+ ψ)

becomes a constant which cannot cancel with another term (k0 = ±
√
Λ �= j).

However, with another choice of ψ the expression vanishes. However, the last

term in (39) cannot match another term as j �= ±
√
Λ. Hence B = 0, which

kills the similar term on the right-hand side, too, and there is no match left

for the left-hand side.

2. Take b = 0. Then the term

j cos k0 x cos(jx + ψj)− k0 sin k0 x sin(jx + ψj)

still has to disappear. This expression may vanish if k0 = ±j but then its

coefficient vanishes, too, reducing the right hand side to zero. If the previous

expression does not vanish, its coefficient has to vanish (i.e., aj = 0 or j2 = k2)

and this requires the left-hand side to vanish, i.e., σj = 0 or aj = 0.

Finally, only aj = ak0 with σj = σk0 = 0 remains and we obtain with adapted

notation

ρ1 = ak0 cos(k0x + ψk0), ϕ1 =
4πGak0

Λ− k2
0

cos(k0x + ψk0). (40)

Hence we have marginal stability and moreover, in view of the arbitrariness of ak0

and ψk0 the inhomogeneity of ρ may be enhanced or diminished by this perturbation.

All this suits very well with the conjecture of indifferent equilibrium above.

8. THE NONLINEAR FOURIER ANALYSIS METHOD USING THE

COMBINED ARGUMENT

Now we analyze the case Γ = 2 using χ as the combined argument. From equations

(12) - (15) it follows

ωρ′ + k · (ρv)′ = 0, (41)
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ρ (ω + v · k) v′ = −ρkϕ′ − kp′, (42)

k2ϕ′′ + Λϕ = 4πGρ, (43)

p = Kρ2. (44)

Integrating equation (41) with respect to χ we obtain

(ω + k · v) ρ =∈g= ωρ0. (45)

However, putting now v = 0 (more general k ·v = 0) to fix the constant ∈g, leads to

a surprise as ρ0 is not a constant in a nonuniform medium. Thus ∈g and ω have to be

zero. It follows that the left hand side of (42) vanishes too and the system is reduced

at once to its equilibrium equations. This confirms our previous analysis. Starting

from an equilibrium (or more generally from a situation with k · v = 0) leads to

neither an oscillation nor an instability. The equilibrium (or motion) is indifferent

to motions based on a Fourier analysis. This result of the preceding section is now

generalized to cases with motion for which k·v = 0. Further generalization considers

ω+k ·v = 0. But this requires the velocity parallel to k, v‖ = −ω/k, to be constant

which is just an irrelevant parallel displacement and then the situation is the same

for ω = 0.

The only motion which is allowed is then with k · v = 0, restricting v to be

one-dimensional (but of varying magnitude and sign) or possibly two dimensional.

If the medium has a density varying like cos kx the amplitude of this may increase

or decrease as this involves only motions perpendicular to x as exemplified in the

previous section.

This cuts short at once the further analysis when starting from an inhomoge-

neous equilibrium. Further investigations should not use the hypothesis concerning

χ, but rather a nonperiodic consideration, maybe just using a series development in

t or an analysis in which ω depends on the amplitude in the higher order terms.

Note:

(a) The above situation applies to most inhomogeneous media as the continuity

equation is of general validity and similarly are the inertia terms in the equation

of motion.

(b) One may further generalize the above by considering (ω + k · v)ρ =∈. Then

the nonlinear Fourier analysis using χ is still fully applicable, e.g., in studying

a dynamic inhomogeneous universe (Callebaut and Karugila [27]).
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9. CONCLUSION

Usually one (including us) considers a uniform equilibrium as a model of the universe.

Here we obtained a non-uniform solution: a specific cosinusoidal equilibrium for

the polytropic exponent Γ = 2. Moreover this has another remarkable feature:

its amplitude is arbitrary. This suggests that along the equilibria with varying

amplitudes the stability is neutral or indifferent. A detailed linearized perturbation

analysis confirmed this view. Using the method of nonlinear Fourier analysis with

a combined variable confirmed this easily.

This non-uniform equilibrium may be a first step towards the so-called tessel-

lation of the universe: observations indicate that the galaxies accumulate at certain

(irregular) polyhedric walls and desert the interior of those polyhedra (cf. Jeans’

criterion). However, the numerical values rather indicate dimensions of the order

of magnitude of galaxies, which is a good result in itself, but far too small for the

tessellation. Extending the calculation to include the radiation pressure (for the

situation when radiation and matter were still entangled, i.e. when the temperature

of the universe was still above 5000 K) allows to reach the scale of the tessellation:

however in that case the analysis has to be repeated including the radiation.
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1. INTRODUCTION

The notion of quasi Einstein manifold was introduced by Chaki and Maity [1]. A

non-flat Riemannian manifold (Mn, g)(n > 2) is defined to be a quasi Einstein

manifold if its Ricci tensor S of type (0, 2) is not identically zero and satisfies the

condition

S(X,Y ) = a g(X,Y ) + bA(X)A(Y ) (1)

where a, b are scalars of which b �= 0 and A is a non-zero 1-form such that

g(X,U) = A(X) (2)

for all vector fields X; U being a unit vector field. If b = 0,then the manifold

reduces to an Einstein manifold. In such a case a, b are called associated scalars. A

is called the associated 1-form and U is called the generator of the manifold. An

n-dimensional manifold of this kind is denoted by the symbol (QE)n.

A Riemannian manifold of quasi-constant curvature was given by Chen and

Yano [2] as a conformally flat manifold with the curvature tensor ′R of type (0, 4)

satisfies the condition

′R(X,Y, Z,W ) = a[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )]

+b[g(X,W )T (Y )T (Z)− g(X,Z)T (Y )T (W )

+g(Y, Z)T (X)T (W )− g(Y,W )T (X)T (Z)]

(3)

where ′R(X,Y, Z,W ) = g(R(X,Y )Z,W ), R is the curvature tensor of type (1, 3),

a, b are scalar functions and ρ is a unit vector field defined by

g(X, ρ) = T (X). (4)

It can be easily seen that if the curvature tensor ′R is of the form (3), then the

manifold is conformally flat. On the otherhand, Vranceanu [3] defined the notion of
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almost constant curvature by the same expression as (3) without assuming confor-

mally flat manifold. Later Mocanu [4] shows that the manifold introduced by Chen

and Yano [2] are manifolds of the same type introduced by Vranceanu [3]. Hence

a Riemannian manifold is said to be of quasi-constant curvature if the curvature

tensor ′R satisfies the relation (3). If b = 0, then the manifold reduces to a manifold

of constant curvature.

A quasi Einstein manifold is said to be a special quasi Einstein manifold if the

associated scalar a is constant and such a manifold is denoted by S(QE)n.

In the present paper at first we state some examples of a quasi Einstein manifold

(QE)n. Next we prove a theorem for the existence of a (QE)n. Section 4 deals

with the hypersurfaces of a Euclidean space. In section 5 we give the physical

interpretation of a (QE)n. In the next section we construct a metric of special quasi

Einstein manifold S(QE)n. Then we study conformally flat S(QE)n. We prove that

a conformally flat S(QE)n can be expressed as a Warped Product I ×eq M∗ where

M∗ is an Einstein manifold. As an application we prove that a conformally flat

special quasi Einstein manifold is the Robertson-Walker space time.

2. EXAMPLES OF A QUASI EINSTEIN MANIFOLD

Example 2.1. A manifold of quasi-constant curvature defined by (3) is a quasi

Einstein manifold.

Putting X = W = ei in (3) where {ei} is an orthonormal basis of the tangent

space at each point of the manifold and taking summation over i, 1 ≤ i ≤ n, we get

S(Y, Z) = [a(n− 1) + b]g(Y, Z) + b(n− 2)T (Y )T (Z) (5)

Hence the manifold is a quasi Einstein manifold.

Example 2.2. De and Ghosh [5] studied conformally flat weakly Ricci symmetric

manifold and prove that such a manifold is a manifold of quasi-constant curvature.

Hence a conformally flat weakly Ricci symmetric manifold is a quasi Einstein man-

ifold.

Example 2.3. A special para-sasakian manifold with vanishing D-concircular cur-

vature tensor V in the sense of Chuman [6] is a quasi Einstein manifold.

Example 2.4. A semi-Riemannian manifold (M, g) is said to be Pseudo symmetric

in the sence of Deszcz [7] if the Riemannian curvature tensor R satisfies the equality
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R.R = fQ(g,R)

where f is some function and the tensors R.R and Q(g,R) are defined by

(R(X,Y ).R)(U, V )W = R(X,Y )R(U, V )W −R(R(X,Y )U, V )W

−R(U,R(X,Y )V )W −R(U, V )R(X,Y )W
(6)

and
Q(g,R) = (X ∧ Y )R(U, V )W −R((X ∧ Y )U, V )W

−R(U, (X ∧ Y )V )W −R(U, V )(X ∧ Y )W
(7)

for all X,Y, U, V,W∈χ(M). Here the endomorphism is defined by

(X ∧ Y )Z = g(Y, Z)X − g(X,Z)Y.

It is known Deszcz [7 ] that the Ricci tensor S of a 3-dimensional pseudosymmtric

semi-Riemanian manifold satisfies at every point x ∈M the relation

S(X,Y ) = αg(X,Y ) + βu(X)u(Y ), α, β∈R

and u is a non-zero 1-form, i.e., (M, g) is a quasi Einstein manifold. Hence a 3-

dimensional pseudo symmetric semi-Riemannian manifold in the sense of Deszcz [7]

is a quasi Einstein manifold.

3. EXISTENCE THEOREM OF (QE)n

In this section we prove the following:

Theorem 3.1. If the Ricci tensor S of a Riemannian manifold satisfies the relation

S(Y, Z)S(X,W ) − S(X,Z)S(Y,W ) = ρ[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )], (8)

then the manifold is a quasi Einstein manifold.

Proof : If the rank of the Ricci tensor is equal to 1, then the relation (8) satisfies

trivially. Hence we assume that the rank of the Ricci tensor is > 1, so ρ is non-zero.

Let U be a vector field defined by

g(X,U) = A(X) ∀ X.

Putting X = W = U in the above relation we have

S(U,U)S(Y, Z)− S(U,Z)S(Y, U) = ρ(g(U,U)g(Y, Z)− g(U,Z)g(Y, U))

or, γS(Y, Z)− A(QY )A(QZ) = ρ(|U |2g(Y, Z)− A(Z)A(Y ))

where S(U,U) = γand A(QY ) = g(QY,U) = S(Y, U)
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or, S(Y, Z) = γA(QY )A(QZ) + ργ(|U |2g(Y, Z)− A(Y )A(Z))

where γ = 1
γ

or, S(Y, Z) = γB(Y )B(Z) + ργ(|U |2g(Y, Z)− A(Y )A(Z))

where B(Y ) = A(QY )
(9)

Again putting X = U in (8) we have

S(U,W )S(Y, Z)− S(U,Z)S(Y,W ) = ρ(A(W )g(Y, Z)− A(Z)g(Y,W ))

i.e., B(W )S(Y, Z)−B(Z)S(Y,W ) = ρ(A(W )g(Y, Z)− A(Z)g(Y,W )). (10)

Similarly we can write

B(X)S(Y, Z)−B(Z)S(Y,X) = ρ(A(X)g(Y, Z)− A(Z)g(Y,X)). (11)

Using (9) in (11) we get

ργ (|U |2B(X)g(Y, Z)− |U |2B(Z)g(Y,X)−B(X)A(Y )A(Z)

+B(Z)A(Y )A(X)) = ρ (A(X)g(Y, Z)− A(Z)g(Y,X)) .
(12)

Putting Y = Z = ei in (12) and taking g(U,U) = |U |2 = 1 we obtain

B(X) = γA(X). (13)

Putting the value of B(X) in (9) we have

S(Y, Z) = ργg(Y, Z) + (γ − ργ)A(Y )A(Z)

i.e., S(Y, Z) = ag(Y, Z) + bA(Y )A(Z) where a = ργ and b = γ − ργ

which shows that the manifold is a quasi Einstein manifold.

4. HYPERSURFACES OF A EUCLIDEAN SPACE

LetMn be a hypersurface of a Euclidean space En+1, such that the tensor induced

by the metric of En+1 is the metric tensor ofMn. The Gauss equation ofMn in En+1

can be written as follows

g̃(R̃(X,Y )Z,W ) = g̃(H(X,W ), H(Y, Z))− g̃(H(Y,W ), H(X,Z)) (14)

where R̃ is the Riemannian curvature tensor corresponding to the induced metric g̃,

H is the second fundamental tensor ofMn and X, Y, Z, W are vector fields tangent

to Mn.

If A is the (1,1) tensor corresponding to the normal valued second fundamental

tensor H, then we have Chen [8].

g̃(Aξ(X), Y ) = g(H(X,Y ), ξ) (15)
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where ξ is the unit normal vector field and X, Y are tangent vector field.

Let Hξ be the symmetric (0,2) tensor associated with Aξ in the hypersurface

defined by

g̃(Aξ(X), Y ) = Hξ(X,Y ). (16)

A hypersurface of a Riemannian manifold (Mn, g) is called quasi-umbilical (Chen

[8]) if its second fundamental tensor has the form

Hξ(X,Y ) = αg̃(X,Y ) + βω(X)ω(Y ) (17)

where ω is a 1-form, the vector field corresponding to the 1-form ω is a unit

vector field, and α, β are scalars. Ifα = 0 (res. β = 0 or α = β = 0) holds then it is

called cylindrical (res. umbilical or geodesic).

Now from (15), (16) and(17) we obtain

g(H(X,Y ), ξ) = αg(X,Y )g(ξ, ξ) + βω(X)ω(Y )g(ξ, ξ)

which implies that

H(X,Y ) = αg(X,Y )ξ + βω(X)ω(Y )ξ, (18)

since ξ is the only unit normal vector field.

Let us suppose that the hypersurface is a quasi-umbilical. Then from (18) and

(14) it follows that

g̃(R̃(X,Y )Z,W ) = α2 (g(X,W )g(Y, Z)− g(Y,W )g(X,Z))

+αβ (g(X,W )ω(Y )ω(Z) + g(Y, Z)ω(X)ω(W )

−g(Y,W )ω(X)ω(Z)− g(X,Z)ω(Y )ω(W )) .

(19)

From (19) we get on contraction

S̃(Y, Z) =
(
α2(n− 1) + αβ)g(Y, Z) + αβ(n− 2)ω(Y )ω(Z)

)
Thus we can state the following :

Theorem 4.1. A quasi-umbilical hypersurface of a Euclidean space is a quasi Ein-

stein manifold.

Let us consider a conformally flat hypersurface of a Euclidean space. It is known

Schouten [9] that if a hypersurface of a conformally flat space is conformally flat,then
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the hypersurface is quasi-umbilical.

Hence from the above theorem we get the following:

Corollary 4.1. A conformally flat hypersurface of a Euclidean space En is quasi

Einstein.

5. PHYSICAL INTERPRETATION OF (QE)n

It is known O’Neill [10] that for a perfect fluid spacetime of general relativity, the

Einstein field equation without cosmological constant is of the form

S(X,Y )− r

2
g(X,Y ) = (ρ + p)U(X)U(Y ) + pg(X,Y ) (20)

where U is a non-zero 1-form, ρ and p are the energy density and the isotropic

pressure of the fluid respectively.

The above equation (20) can be written in the form

S(X,Y ) = αg(X,Y ) + βU(X)U(Y )

where α = ( r
2

+ p) and β = ρ + p , α, β are scalars and β = ρ + p �=0.

So we conclude that a perfect fluid spacetime of general relativity is a four

dimensional semi-Riemannian quasi Einstein manifold of Lorentz signature (− +

+ +) and whose associated scalars are r
2

+ p and ρ + p respectively.

6. METRIC OF A SPECIAL QUASI EINSTEIN MANIFOLD

A quasi Einstein manifold (QE)n is said to be a special quasi Einstien manifold

S(QE)n if the associated scalar a is constant. In this section we construct a metric

of the special quasi Einstein manifold.

Let E5 be a Euclidean space with cartesian coordinates (x1, x2, y1, y2, z) or

(xα, yα, z) (α = 1, 2).

Let us consider

A =

√
3

2b
(dz −

∑2

α=1

yαdxα), (where b is a scalar) (21)

If we put

xα∗≡x2+α = yα, x� = z, ! = 5 (22)

183



we have from (21) that

Ai =

(
−
√

3

2b
yα, 0,

√
3

2b

)
(23)

Now, we consider a symmetric tensor field in E5 defined by

gij =

⎛⎜⎜⎜⎜⎜⎝
1
4
(1 + (y1)2) y1y2

4
0 0 −1

4
y1

1
4
y1y2 1

4
(1 + (y2)2) 0 0 −1

4
y2

0 0 1
4

0 0

0 0 0 1
4

0

−1
4
y1 −1

4
y2 0 0 1

4

⎞⎟⎟⎟⎟⎟⎠ . (24)

Then (gij) defines a positive definite Riemannian metric. The contravariant

components of the tensor (gij) are given by

gij =

⎛⎜⎜⎜⎜⎜⎝
4 0 0 0 4y1

0 4 0 0 4y2

0 0 4 0 0

0 0 0 4 0

4y1 4y2 0 0 4(1 + (y1) + (y2))

⎞⎟⎟⎟⎟⎟⎠ . (25)

We find out the Christoffel symbols, by means of (24) and

[ij, r] =
1

2
[
∂gjr

∂xi
+
∂gir

∂xj
− ∂gij

∂xr
].

We can varify that

[α β∗, γ] = 1
8
(δγβy

α + δαβy
γ)

[αβ, γ∗] = −1
8
(δγαy

β + δβγy
α)

[α β∗, !] = − δαγ

8
, [α !, γ∗] = δαγ

8
,

[α∗ !, γ] = − δαγ

8
,

the other components are zero.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(26)
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Equations (25) and (26) with

{
h

j i

}
= ghr[j i, r] implies that

{
µ

α β∗

}
= 1

2
δµβy

α,

{
µ∗

α β

}
= −1

2

(
δαµy

β + δµβy
α
)
,

{
µ∗

α !

}
= 1

2
δαµ,

{
!

α β∗

}
= 1

2

(
yαyβ − δαβ

)
{

!
! β∗

}
= −1

2
yβ,

{
µ

α∗ !

}
= −1

2
δαµ,

the other components are zero.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(27)

After straightforward calculations, we obtain the independent components of

the curvature tensor Rkjih as follows

Rδγβα = 1
16

(
δαβy

βyγ + δβγy
αyδ − δαγy

βδ − δβδy
αyγ
)
,

Rδ∗γ∗βα = 1
16

(δαγδβδ − δαδδβγ) ,

Rδγ�α =
(
δαγy

δ − δαδy
γ
)

Rδγ∗β∗α = 1
16

(
δβγy

αyδ − 2δαβδγδ − δαγδβγ

)
Rδ��α = 1

16
δαδ,

R�γ∗�α∗ = − 1
16
δαγ,

Rδ∗�β∗α = 1
16
δβδy

α,

the other independent components are zero.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(28)

According to (25) and (28), the Ricci tensor has the following components.

Rδα = −1
2

(
δαδ − 2yαyδ

)
, Rδ∗α = 0,

Rδ∗α∗ = − δαδ

2
, R�� = 1, Rγ∗� = 0,

Rγ� = −yγ.

⎫⎬⎭ (29)

Substituting (24) and (23) into (29), we have

Rij = −2gij + bAiAj. (30)

Hence E5 with the metric (24) is a special quasi Einstein manifold.
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7. CONFORMALLY FLAT S(QE)n

In this section we assume that the manifold S(QE)n is conformally flat. Then

div C = 0 where C denotes the Weyl’s conformal curvature tensor and ′div′ denotes

divergence.

Hence we have

(∇XS)(Y, Z)− (∇ZS)(Y,X) =
1

2(n− 1)
[g(Y, Z)dr(X)− g(X,Y )dr(Z)]. (31)

Contracting (1) we get

r = an + b. (32)

From (32) it follows that

dr(X) = db(X), since a is a constant. (33)

(1) implies that

(∇ZS)(X,Y ) = db(Z)A(X)A(Y ) + b[(∇ZA)(X)A(Y ) + A(X)(∇ZA)(Y )]. (34)

Substituting (34) in (31) and using (33) we get

dr(X)A(Z)A(Y ) + b[(∇XA)(Z)A(Y ) + A(Z)(∇XA)(Y )]

−dr(Z)A(Y )A(X)− b[(∇ZA)(Y )A(X) + A(Y )(∇ZA)(X)]

= 1
2(n−1)

[g(Y, Z)dr(X)− g(X,Y )dr(Z)].

(35)

Puttint Y = Z = ei in the above expression where {ei} is an orthonormal basis

of the tangent space at each point of the manifold and taking summation over i,

1≤i≤n, we get

1

2
dr(X) = dr(ρ)A(X) + b(∇ρA)(X) + b(∇ei

A)(ei)A(X). (36)

Again putting Y = Z = ρ in (35) yields

b(∇ρA)(X) =
2n− 3

2(n− 1)
[dr(X)− dr(ρ)A(X)]. (37)

Substituting (37) in (36) we get

(n− 2)

2(n− 1)
dr(X) +

1

2(n− 1)
dr(ρ)A(X) + b(∇ei

A)(ei)A(X) = 0. (38)

Now puttingX = ρ in (36) yields

b(∇ei
A)(ei) = −1

2
dr(ρ). (39)
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From (38) and (39) it follows that

dr(X) = dr(ρ)A(X). (40)

Putting Y = ρ in (35) and using (40) we obtain

(∇ZA)(X)− (∇XA)(Z) = 0 (41)

which implies that the 1-form A is closed. From (37) we get by virtue of (40)

(∇ρA)(Z) = 0, since b �=0. (42)

Now we consider the scalar function

f =
1

2(n− 1)

dr(ρ)

b
.

We have

∇Xf =
1

2(n− 1)

dr(ρ)

b2
dr(X) +

1

2(n− 1)b
d2r(ρ,X). (43)

On the otherhand, (40) implies

d2r(Y,X) = d2r(ρ, Y )A(X) + dr(ρ)(∇XA)(Y )

from which we get

d2r(ρ, Y )A(X) = d2r(ρ,X)A(Y ). (44)

Putting X = ρ in (44) it follows that

d2(ρ, Y ) = d2r(ρ, ρ)A(Y )

= hA(Y ), where h is a scalar function.

Thus

∇Xf = µA(X) (45)

where µ = 1
2(n−1)b

[h+ dr(ρ)
b
dr(ρ)], using (40).

Using (45) it is easy to show that ω(X) = 1
2(n−1)

dr(ρ)
b
A(X) = fA(X) is closed.

In fact,

dω(X,Y ) = 0.

Using (40) and (41) in (37) we get

b[A(Z)(∇XA)(Y )− A(X)(∇ZA)(Y )]

= dr(ρ)
2(n−1)

[g(Y, Z)A(X)− g(X,Y )A(Z)]
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Now putting Z = ρ in the above expression yields

(∇XA)(Y ) =
1

2(n− 1)

dr(ρ)

b
[A(X)A(Y )− g(X,Y )]. (46)

Thus (46) can be written as follows:

(∇XA)(Y ) = −fg(X,Y ) + ω(X)A(Y ) (47)

where ω is closed. But this means that the vector field ρ corresponding to the 1-

form A defined by g(X, ρ) = A(X) is a proper concircular vector field (Schouten

[11], Yano [12]). Hence we can state the following :

Theorem 7.1. In a conformally flat S(QE)n (n > 3), the vector field ρ defined by

g(X, ρ) = A(X) is a proper concircular vector field.

It is known Adati [13] that if a conformally flat manifold (Mn,g) (n > 3) admits

a proper concircular vector field, then the manifold is a subprojective manifold in

the sense of Kagan. Since a conformally flat S(QE)n admits a proper concircular

vector field, namely the vector field ρ, we can state as follows:

Theorem 7.2. A conformally flat S(QE)n is a subprojective manifold in the sense

of Kagan.

Yano [14] proved that in order that a Riemannian space admits a concircular

vector field, it is necessary and sufficient that there exists a coordinate system with

respect to which the fundamental quadratic differential form may be written in the

form

ds2 = (dx1)2 + eqg∗αβdx
αdxβ

where g∗αβ = g∗αβ(xγ) are the functions of xγ only (α, β. γ, δ = 2, 3, ..., n) and

q = q(x1)�=constant is a function of x1 only. Thus if a S(QE)n is conformally flat

i.e., if is satisfies (31), it is a warped product IXeqM∗, where (M∗, g∗) is an (n-

1)-dimensional Riemannian manifold. Gebarowski [15] proved that warped product

IXeqM∗ satisfies (2.1) if and only ifM∗ is an Einstein manifold. Thus if S(QE)n sat-

isfies (2.1), it must be a warped product IXeqM∗ where M∗ is an Einstein manifold.

Thus we can state the following result:

Theorem 7.3. A conformally flat S(QE)n (n > 3) can be expressed as a warped

product IXeqM∗ where M∗ is an Einstein manifold.
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8. SPECIAL CONFORMALLY FLAT S(QE)n (n > 3)

The notion of a special conformally flat manifold which generalizes the notion of

subprojective manifold was introduced by Chen and Yano [16]. According to them

a conformally flat manifold is said to be a special conformally flat manifold if the

tensor H of type (0,2) defined by

H(X,Y ) = − 1

(n− 2)
S(X,Y ) +

r

2(n− 1)(n− 2)
g(X,Y ) (48)

is expressible in the form

H(X,Y ) = −α
2

2
g(X,Y ) + β(Xα)(Y α) (49)

where α and β are two scalars such that α is positive. In virtue of (1) we can express

(48) as

H(X,Y ) = [ − a

n− 2
+

r

2(n− 1)(n− 2)
]g(X,Y )− b

n− 2
A(X)A(Y ). (50)

We now put
α2 = 2a

n−2
− r

(n−1)(n−2)

= a(n−2)−b
(n−1)(n−2)

(51)

Then

2α(Xα) = − dr(ρ)

(n− 1)(n− 2)
A(X), using (40). (52)

Hence (50) can be expressed as

H(X,Y ) = −α
2

2
g(X,Y ) + βA(X)A(Y ) (53)

where β = 4b(r−2an+2a)(n−1)
λ2 , λ = dr(ρ).

Suppose that a(n − 2) − b > 0, then α is not zero. Hence from (51) it follows

that α may be taken as positive. From (53) we conclude that the manifold under

consideration is a special conformally flat manifold.

It is known from a theorem of Chen and Yano [5] that every simply connected

special conformally flat manifold can be isometrically immersed in a Euclidean space

En+1 as a hypersurface.

We can therefore state the following :

Theorem 8.1. Every simply connected conformally flat S(QE)n (n > 3) satisfying

a(n − 2) − b > 0 can be isometrically immersed in a Euclidean space En+1 as a

hypersurface.

189



9. PHYSICAL INTERPRETATION OF S(QE)n

In this section we consider conformally flat S(QE)n (n > 3) spacetime. By a

spacetime, we will mean a 4-dimensional semi-Riemannian manifold endowed with

Lorentz metric of signature (− + + +) . By the similar proof as in Theorem

7.3 we get a conformally flat S(QE)n (n > 3) spacetime can be expressed as a

warped product IXeqM∗ where M∗ is an Einstein manifold. Since we consider a

4-dimensional manifold, M∗ is a 3-dimensional Einstein manifold. It is known that

a 3-dimensional Einstein manifold is a manifold of constant curvature. Hence a

conformally flat S(QE)n spacetime is the warped product IXeqM∗, where M∗ is a

manifold of constant curvature. But such a warped product is the Robertson-Walker

spacetime O’Neill [10]

Thus we have the following

Theorem 9.1. A conformally flat special quasi Einstein manifold is the Robertson-

Walker spacetime.
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“... the progress of physics will to a large extent depend on the progress of nonlinear

mathematics, of method to solve nonlinear equations ... and therefore we can learn

by comparing different nonlinear problems.”

WERNER HEISENBERG

“... as Sir Cyril Hinshelwood has observed ... fluid dynamicists were divided

into hydraulic engineers who observed things that could not be explained and math-

ematicians who explained things that could not be observed.”

JAMES LIGHTHILL

Abstract

In the 1960s, the soliton, (Zabusky and Kruskal [1]), interaction of solitons and the

Inverse Scattering Transform (Gardner et al. [2]) were discovered. These discoveries

have led to an extensive study of solitons and the mathematical theory of nonlinear

waves and their applications. In the 1970s, fractals and fractal dimensions were

first introduced by Mandelbrot [3, 4] in order study the geometry of irregular curves

and surfaces. His book [5] on The Fractal Geometry of Nature contains both the

elementary ideas and an unusually wide range of new and advanced topics including

multifractals, dynamical systems and chaotic attractors. Many beautiful fractals

have been drawn with the aid of a computer or graphical analysis. Mandelbrot also

constructed self similar fractals by an iteractive process using an initial and standard

polygon. Henri Poincaré (1856-1912) discovered the theory of what is now called

dynamical systems. As far as fractals are concerned, iterative mappings in the plane

– so called the Poincaré mappings – are of special importance. Recent developments

in complex dynamics produced many totally unexpected results. It turns out that
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computational experiments on the quadratic complex transformation generate new

geometric structures that are very complex and extremely beautiful. In the 1980s,

wavelets and wavelet transforms were discovered by Morlet et al. [6, 7] in order to

provide a new mathematical tool for seismic wave analysis. Following this discovery,

considerable attention has been given to the mathematical theory of wavelets and

wavelet transforms with applications to signal processing, image processing and

biomedical engineering. A new and remarkable idea of multiresolution analysis

(MRA) was first formulated by Mallat [8] in the context of wavelet analysis. This

idea is related to the study of signals or images at different levels of resolution –

almost like a pyramid, and deals with a general formalism for construction of an

orthogonal basis of wavelets. Mallat’s remarkable work has been the major source

of many new developments in wavelet analysis and its wide variety of applications.

In the 1990s, the compacton (the soliton with compact support) and interaction of

compactons were discovered by Rosenau and Hyman [9]. As an application, new

intrinsic localized modes in anharmonic crystals were discovered by Sievers and

Takeno [10] and Page [11]. It was shown that anharmonicity is fully responsible for

the existence of the new intrinsic localized modes in an harmonic quantum crystals at

finite temperature. The general compacton solution can describe these new intrinsic

localized modes in crystals.

The major objectives of this article is to present the recent developments of

the above discoveries and their applications. Special attention is given to open

questions and unsolved problems in these areas. A new class of strongly dispersive

and nonlinear equations K (m,n) will be discussed with applications to science and

engineering. All major discoveries in applied mathematics during the second half

of the twentieth century are essentially based on the mathematical theories, phys-

ical experiments and mathematical computations. An updated list of references is

provided to stimulate new interest in future study and research.

1. THE SOLITON AND THE INVERSE SCATTERING TRANSFORM

Historically, John Scott Russell (1808-1882), a Scotish engineer and naval ar-

chitect, first experimentally observed the solitary wave, a long water wave without

change in shape, on the Edinburgh-Glasgow Canal in 1834. He called it the “great

wave of translation” and then reported his experimental observations at the British

Association in his 1844 paper “Report on Waves”. Thus, the solitary wave rep-

resents, not a periodic wave, but the propagation of a single isolated symmetrical

hump of unchanged form. His discovery of this remarkable phenomenon inspired him

further to conduct a series of extensive experiments on the generation and propa-
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gation of waves in natural environments – on canals, lakes and rivers – as well as

in his laboratory which was a specially designed small reservoir in his own garden.

Based on his numerous experimental findings, Russell discovered empirically several

major properties of the solitary wave.

(i) An isolated solitary wave propagates without change of shape and with a

constant velocity.

(ii) The velocity U of the solitary wave and its maximum amplitude a above

the free surface of water of depth h are related by the formula

U2 = g (a + h) , (a < h) , (1)

where g is the acceleration due to gravity.

(iii) A solitary wave of very high amplitude breaks into two or more smaller

solitary waves.

Russell once made a comment that “the great primary waves of translation cross

each other without change of any kind in the same manner as the small oscillations

produced on the surface of a pool by a falling stone.”

Russell’s Report on Waves was received considerable attention by two distin-

guished British scientists – G.B. Airy (1801-1892) and G.G. Stokes (1819-1903).

Both Airy and Stokes raised serious questions on the existence of the solitary wave

and predicted that such waves cannot propagate in a liquid medium without change

of form. In fact, Airy strongly criticized the existence of the solitary wave and

published a paper on “Tides and Waves” in 1845. In the paper, Airy stated that

Russell’s formula for the velocity of the solitary wave was in contradiction with his

theory of long waves on shallow water. Furthermore, he argued vigorously against

Russell’s observations and stated that “We are not disposed to recognize this wave

as deserving of the epithets “great” or “primary”....” At the same time, Stokes

investigated Russell’s observations and emphirical results more carefully than Airy

in his 1847 paper “On the Theory of Oscillating Waves” and concluded that the

solitary wave cannot exist even in liquids with vanishing viscosity.

It was not until 1870s that Russell’s prediction was finally and independently

confirmed by both J. Boussinesq (1842-1929) and Lord Rayleigh (1842-1919). Based

on the Euler equation of motion and the continuity equation in an invisid and

incompressible liquid, they derived the formula and showed the solitary wave profile
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z = η (x, t) (see Figure 1) is given by

η (x, t) = a sech2 [β (x− Ut)] , (2)

where β2 = 3a÷ {4h2 (a + h)} for any a > 0.

Figure 1: A solitary wave.

More than 60 years later, in 1895, two Dutch mathematicians, D.J. Korteweg

and G. de Vries [12] derived a nonlinear mathematical model equation which is

known as the Korteweg-de Vries (KdV) equation, to provide an explanation of the

remarkable observation by Scott Russell. Thus, the KdV equation has the form

ηx + c

(
1 +

3

2h
η

)
ηx +

ch2

6
ηxxx = 0, (3)

where η (x, t) is the free surface displacement of water of depth h and c =
√
gh is

the shallow water speed and g is the acceleration due to gravity. So the 1895 paper

by Korteweg and de Vries finally resolved the famous controversy on the existence

of the solitary wave and its various aspects. On the other hand, modern research on

soliton dynamics during the last 40 years reveals that the KdV equations played a

new and significant role on modern pure and applied mathematics. Its importance

for physical sciences lies in its ability to describe not only nonlinear shallow water

waves, but also many other nonlinear waves. In pure mathematics, the KdV equation

was a starting point for developing a deep and beautiful mathematical theory.

Modern developments in the theory and applications of the KdV solitary waves

began with the seminal work published as a Los Alamos Scientific Laboratory Report

in 1955 by Fermi, Pasta and Ulam on a numerical model of a discrete nonlinear mass-

spring system. In 1914, Debye suggested that the finite thermal conductivity of an

anharmonic lattice is due to the nonlinear forces in the springs. This suggestion led

Fermi, Pasta and Ulam to believe that a smooth initial state would eventually relax

to an equipartition of energy among all modes because of nonlinearity. But their
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study led to the striking conclusion that there is no equipartition of energy among

the modes. Although all the energy was initially in the lowest modes, after flowing

back and forth among various low-order modes, it eventually returns to the lowest

mode, and the end state is a series of recurring states. This remarkable fact has

become known as the Fermi-Pasta-Ulam (FPU) recurrence phenomenon.

This curious result of the FPU experiment inspired Norman Zabusky and Martin

Kruskal [1] to formulate a continuum model for the nonlinear mass-spring system

to understand why recurrence occurred. In fact, they considered the initial-value

problem for the KdV equation,

ut + uux + δ uxxx = 0, (4)

where δ =
(

h
�

)2
, � is a typical horizontal length scale, with the initial condition

u (x, 0) = cosπx, 0 ≤ x ≤ 2, (5)

and the periodic boundary conditions with period 2, so that u (x, t) = u (x + 2, t)

for all t. Their numerical study with
√
δ = 0.022 produced a lot of new interesting

results, which are shown in Figure 2.

Figure 2: Development of solitary waves: (a) initial profile at t = 0, (b) profile at

t = π−1, and (c) wave profile at t = (3.6)π−1 (From Zabusky and Kruskal [1]).

They observed that, initially, the wave steepened in regions where it had a neg-

ative slope, a consequence of the dominant effects of nonlinearity over the dispersive

term, δuxxx. As the wave steepens, the dispersive effect, then, becomes signifi-

cant and balances the nonlinearity. At later times, the solution develops a series

of eight well-defined waves, each like sech2 functions with the taller (faster) waves
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ever catching up and overtaking the shorter (slower) waves. These waves undergo

nonlinear interaction according to the KdV equation and, then, emerge from the

interaction without change of form and amplitude, but with only a small change in

their phases. So the most remarkable feature is that these waves retain their iden-

tities after the nonlinear interaction. And another surprising fact is that the initial

profile reappears, that is, very close to the FPU recurrence phenomenon. In view

of their preservation of shape and their resemblance to the particlelike character of

these waves, Zabusky and Kruskal called these solitary waves, solitons like photon,

proton, electron, and other elementary particles.

Historically, the famous 1965 paper of Zabusky and Kruskal marked the birth

of the new concept of the soliton, a name intended to signify particlelike quantities.

Subsequently, Zabusky [13] confirmed, numerically, the actual physical interaction

of two solitons, and Lax [14] gave a rigorous analytical proof that the identities of

two distinct solitons are preserved through the nonlinear interaction governed by the

KdV equation. Physically, when two solitons of different amplitudes (and hence, of

different speeds) are placed far apart on the real line, the taller (faster) wave to the

left of the shorter (slower), the taller one eventually catches up to the shorter one

and, then, overtakes it. When this happens, they undergo a nonlinear interaction

according to the KdV equation and emerge from the interaction completely preserved

in form and speed with only a small phase shift. Thus, these two remarkable features,

(i) steady progressive pulselike solutions and (ii) the preservation of their shapes and

speeds, confirmed the particlelike property of the waves and, hence, the definition

of the soliton. Experimental confirmation of solitons and their interactions has been

provided successfully by many authors. Thus, these discoveries have led, in turn,

to extensive theoretical, experimental, and computational studies over the last 40

years. Many nonlinear model equations have now been found that possess similar

properties, and diverse branches of pure and applied mathematics have been required

to explain many of the novel features that have appeared.

The computational work of Zabusky and Kruskal [1] led to the discovery of the

remarkable stability of the soliton. Their computer experiment can be described as

follows. When two or more solitons travel in a dispersive medium, the taller (faster)

ones will overtake the shorter (slower) ones, and after nonlinear interaction, these

solitons separate from each other without change of their shapes and amplitude,

but only a small change in their phases. The end result is that the taller soliton

reappears in front and shorter one behind as they move to the right, except for a

slight delay. Indeed, the computational analysis reveals another remarkable result

that every solution of the KdV equation (4) with any prescribed initial condition
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η (x, 0) = f (x), decomposes as t → ∞ into a finite number of solitons of different

velocities and different amplitudes and a dispersive tails which gradually decay as

shown as in Figure 3.

Figure 3: Solitons with dispersive tails.

We seek a traveling wave solution of (1), that is stationary in the frame x so

that η = η (X), X = x − Ut with η → 0 as |X| → ∞. Substituting this solution

into (1) gives

(c− U) η′ +
(

3c

2h

)
ηη′ +

ch2

6
η′′′ = 0, (6)

where η′ = dη
dx

. Integrating this equation twice with respect to X yields a nonlinear

ordinary differential equation

(c− U) η2 +
( c

2h

)
η3 +

(
ch2

6

)
η′2 = 2Aη +B, (7)

where A and B are integrating constants.

Two special cases are of interest: (i) A = B = 0 and (ii) A �= 0 and B �= 0. For

the case (i) with η and η′ tend to zero at infinity, equation (7) becomes(
dη

dx

)2

=
3

h3
η2 (a− η) , (8)

where a = 2h
(

U
c
− 1
)
.

Substituting η = a sech2θ in (8) gives the exact solution

η (X) = a sech2 bX, b =

√
3a

4h3
. (9)
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Thus

η (x, t) = a sech2

[√
3a

4h3
(x− Ut)

]
, (10)

where the velocity of the traveling wave is

U = c
(
1 +

a

2h

)
> c. (11)

The solution (10) is called a solitary wave (see Figure 1) describing a single sym-

metric hump of amplitude a above the undisturbed water depth h and decaying to

zero exponentially as |x| → ∞. The solitary wave solution is an excellent agree-

ment with the observational result of Scott Russell. Thus, the solitary wave travels

to the right in the medium without change of shape. The velocity of the wave is

U (> c) which is directly proportional to the amplitude a. The width of the wave is

b−1 =
(

3a
4h3

)− 1
2 that is inversely proportional to the square root of the amplitude a.

In fact, the taller and thiner solitary wave travel faster, whereas shorter and fatter

one propagate slowly. This kind of behaivor is usually expected for linear differential

problems, since the solution can be described by the linear superpositionn of eigen-

functions (corresponding to eigenvalues) as each eigenfunction evolves separately.

The existence of the soliton for the nonlinear KdV equation was a total surprise at

the time of its discovery. The soliton solution is one of the good examples that can

be used to refute the 1948 interesting quotation of Sir James Lighthill as stated at

the beginning of this article.

For the case (ii) where A and B are non-zero, equation (7) can be rewritten as

h3

3
η2

X = −η3 + 2h

(
U

c
− 1

)
η2 +

2h

c
(2Aη +B) ≡ F (η) , (12)

where F (η) is a cubic with simple zeros. Following the detailed calculation (see

Debnath [15, 16]) the solution of (12) can be expressed in terms of Jacobi’s elliptic

functions

η (X) = a

[
1− sn2

{(
3b

4h3

) 1
2

X

}]
= a cn2

[(
3b

4h3

) 1
2

X

]
, (13)

where three zeros of F (η) are 0, a, − (b− a), (b > a > 0), sn (z,m) and cn (z,m) are

Jacobi’s elliptic functions with modulus m =
√(

a
b

)
. The solution η (X) represents

a train of periodic waves in shallow water. These waves are called cnoidal waves

with wavelength λ = 2
√(

4h3

3b

)
K (m) where K (m) is the complete elliptic integral

of the first kind. A typical cnoidal wave is shown in Figure 4.
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Figure 4: A Cnoidal Wave.

In the limit as m → 1 (a→ b) cnz → sechz, the cnoidal waves are in perfect

agreement with the classical KdV solitary wave where the wavelength λ → ∞ be-

cause K (a) = ∞ and K (0) = π
2
. On the other hand, in the limit as m →

0 (a→ 0), snz → sin z, cnz → cos z. The corresponding solution represents the

small-amplitude waves associated with the linearized KdV equation. The solution

is

η (x, t) =
1

2
a [1 + cos (kx− ωt)] , k =

(
3b

h3

) 1
2

, (14)

where the corresponding dispersion relation is given by

ω = Uk = ck

(
1− 1

6
k2h2

)
. (15)

This corresponds to the first two terms of the series expansion of
√
gk tanh (kh) = ω

which is the famous dispersion relation of water waves in water of depth h. Thus,

these results are in perfect agreement with the linearized water wave theory.

The experimental discovery of the solitary wave by Scott Russell, the mathe-

matical theory of KdV equation as well as the computer experiment of Zabusky and

Kruskal provided the conclusive evidence for the existence of the soliton and its re-

markable stability property. Thus, the computational work would play a major role

on many unexpected future discoveries in mathematics and physics. In 1946, John

Von Neumann raised the question. “What phases of the pure and applied mathe-

matics can be furthered by use of large-scale automatic computing instruments?”

His detailed and precise answer is given below:

“Our present analytical methods seem unsuitable for the solution of the im-

portant problems arising in connection with nonlinear partial differential equations

and, in fact, with virtually all types of nonlinear problems in pure mathematics.

The truth of this statement is particularly, striking in the field of fluid dynamics.

Only the most elementary problems have been solved analytically in this field...
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The advance of analysis is, at this moment, stagnant along the entire front of non-

linear problems.... Really efficient high-speed computing device may... provide us

with those heuristic hints which are needed in all parts of mathematics for genuine

progress....”

In connection with the discovery of the soliton, the usefulness of computer exper-

iments was quite clear from Norman Zabusky’s statement: “Almost everyone using

computers has experienced instances where computational results have sparked new

insights.”

1.1 The Inverse Scattering Transform (IST)

Historically, Gardner et al. [2] formulated an ingenious method for finding the

exact solution of the KdV equation. The main problem is to find the exact solution

of the general initial value problem for the canonical form of the KdV equation

ut − 6uux + uxxx = 0, x ∈ R, t > 0, (16)

with the initial condition

u (x, 0) = u0 (x) , x ∈ R, (17)

where u0 (x) satisfies certain fairly weak conditions so that u (x, t) exists for all x

and t.

To solve the initial value problem for the KdV equation means finding u (x, t)

for any given initial condition u (x, 0) = u0 (x). For nonlinear problems, this is an

extremely difficult problem because the linear superposition principle does not hold.

In fact, a systematic development of the mathematical theory of solitons began

in 1967 when Gardner et al. [2] proposed the method of solving (16)–(17) based on

the so-called the Inverse Scattering Transform (IST). The discovery of the Inverse

Scattering Transform (often called the nonlinear Fourier transform method) is one

of the most remarkable achievements of mathematics in the 20th century.

Making reference to Debnath [15, 16], we briefly outline the major steps in-

volved in the inverse scattering transform. The exact solution of the KdV equa-

tion is obtained by associating its solution with the potential of a time-dependent

Schrödinger equation. The next step is to find out the solution of the quantum me-

chanical problem with the initial value for the KdV equation taken as the potential.

This involves calculations of the discrete (bound) eigenfunctions, their normaliza-

tion constants and eigenvalues, and the reflection and transmission coefficients of the
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continuous (unbounded) states. These results are collectively called the scattering

data of the Schrödinger equation. The next step is to determine the evolution of the

scattering data for any potential that evolves, according to the KdV equation, from

a prescribed initial function. Both discrete and continuous eigenvalues are found

to be invariant under such changes, and normalization constants and the reflection

and transmission coefficients evolve according to simple exponential laws. The final

step of the method deals with the determination of the potential for any time t from

the inversion of scattering data. In summary, two distinct steps are involved in the

method: (i) the solution of the Schrödinger equation (the Sturm-Liouville problem)

for a given initial condition u (x, 0) = u0 (x), from which we determine the scatter-

ing data S (t), and (ii) the solution of the Gelfand-Levitan-Marchenko (GLM) linear

integral equation. Even though these two steps involved may not be technically easy

to handle, however, in principle, the problem is completely solved. The effectiveness

of the method can be best examplified by many simple but nontrivial examples (see

Debnath [15, 16]).

The power and success of the inverse scattering method for solving the KdV

equation can be attributed to several facts. First, the most remarkable result of

the method is the fact that the discrete eigenvalues of the Schrödinger equation for

ψ do not change as the potential evolves according to the KdV equation. Second,

the method has reduced solving a nonlinear PDE to solving two linear problems:

(i) a second-order ordinary differential equation; and (ii) a linear integral equation.

Third, the eigenvalues of the ODE are constants and this leads to major simplifi-

cation in the evolution equation for ψ. Fourth, the time evolution of the scattering

data is explicitly determined from the asymptotic form of ψ as |x| → ∞. So, this

information allows us to solve the inverse scattering problem and, hence, to obtain

the final solution of the KdV equation. The method is presented schematically in

Figure 9.7 of Debnath’s book [16].

In his seminal paper, Lax [14] developed an elegant formalism for finding isospec-

tral potentials as solutions of a nonlinear evolution equation with all of its integrals.

This work deals with some new and fundamental ideas and deeper results and their

application to the KdV equation. This study subsequently paved the way to gener-

alizations of the technique as a method for solving other nonlinear partial differential

equations. Lax also developed the method of inverse scattering based on abstract

formulation of evolution equations and certain properties of operators on a Hilbert

space, some of which are familiar in the context of quantum mechanics. His for-

mulation has the special feature of associating certain nonlinear evolution equations

with linear equations which are analogs of the Schrödinger equation for the KdV
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equation. Subsequently, Zakharov and Shabat [17, 18, 19], Zakharov and Faddeev

[20] showed that the KdV equation, which they treated as an infinite-dimensional

Hamiltonian system, is completely integrable. All these works can be used as a

rather complex mathematical treatment of the inverse scattering method, which al-

lows one to reduce integrable nonlinear problems to linear ones. For the first time,

they have extended the Lax formalism for equations with more than one spatial vari-

able. This extension is usually known as Zakharov and Shabat (ZS) scheme. Hirota

[21, 22, 23] developed an ingenious direct method for finding multisoliton solutions

of different integrable nonlinear evolution equations. Ablowitz, Kaup, Newell and

Segur (AKNS) [24] generalized the ZS scheme so that their method can be applied

to solve many other integrable nonlinear evolution equations. In particular, they

showed that the sine-Gordon (SG) equation is completely integrable. In 1974-1975,

Novikov et al. [25] and his associates formulated a fairly general approach to finding

exact periodic solutions of the KdV equation based on deep mathematical results

of Riemann, Abel and Jacobi. A further systematic development of these ideas and

methods led to deep relations between superstrings and solitons (and with general

integrable equations).

In recent years, many important ideas, methods and results in soliton theory are

found to be connected with quantum integrability and quantum theory of solitons.

Quantum solitons have many applications, especially, in condensed matter physics.

It is generally believed that the mathematical theory of solitons seems to be very

useful in studies of the fundamental features of nature.

2. FRACTALS, FRACTAL DIMENSION AND FRACTAL GEOME-

TRY

In the 1970s, Benoit Mandelbrot (1924- ) [3, 4, 5] first introduced the concept

of fractals, and the fractal dimension based on a definition of Hausdorff (1886-

1942) in 1919. He first recognized that many phenomena of nature are so irregular

and complex that they cannot be described by the Euclidean geometry. In this

context Mandelbrot’s [5] quotation seems to be most appropriate to mention: “Why

is geometry often described as “cold” and “dry”? One reason lies in its inability

to describe the shape of a cloud, a mountain, a coastline, or a tree. Clouds are

not spheres, mountains are not cones, coastlines are not circles, and bark is not

smooth, nor does lightning travel in a straight line.” Motivated by the Kolmogorov

(1903-1987) theory of turbulence and his 1958 definition of the “capacity” of a

geometrical figure, Mandelbrot [26] published a paper entitled, “How long is the

Coast of Britain? Statistical self-similarity and fractional dimension,” and made
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an attempt to explain the energy distribution in intermittent turbulence [27, 28].

His famous book on The Fractal Geometry of Nature is the standard reference and

contains both the elementary ideas and a wide range of new and advanced topics such

as multifractals, dynamical systems and chaotic attractors. He also made a serious

attempt to convince the reader that fractal geometry deals with the geometry of a

wide variety of irregular phenomena observed in nature. His 1982 book and another

new book [29] on fractals and chaos published in 2004 contain a large number of

examples of fractals, and many beautiful pictures of fractals which were drawn with

the help of computers or graphical analysis.

Mandelbrot [3, 4, 5] introduced the idea of a fractal as a geometrical curve that

consists of an identical shape repeating on an ever decreasing scale. He mentioned

many common examples of fractals including irregular coastal structures (degree

of meandering of coastlines) records of heart beat, Dow Jones industrial averages,

variations of traffic flow, electromagnetic fluctuations in galactic radiation noise,

textures in images of natural terrain, Weierstrass’ and Riemann’s everwhere contin-

uous and non-differentiable functions. Some of the curves involved in these examples

are highly irregular in shape. Other examples include tree with a trunk that sep-

arates into two branches which in turn two smaller side branches, and so on; how

to define the speed of the wind during a violent storm, and how to distinguish

proper music (good or bad) from noise. With the advent of modern computers and

power of simple graphical analysis, fractals and chaos have received widespread at-

tention in recent years. The alluring computer graphics have generated tremendous

new interest among mathematicians and scientists in these areas. In recent years,

considerable attention has been given to the fields of fractal geometry and chaotic

dynamical systems. Current research on fractals and chaos are associated with the

names including Cantor, Poincaré, Sierpinski, Julia, Fatou and Mandelbrot.

In mathematics, the topological dimension of a set is traditionally considered as

the natural dimension. It is defined by a natural number. Thus, point, straight line,

plane and volume have topological dimension 0, 1, 2, and 3 respectively. Topological

dimension is invariant under homeomorphisms, that is, if the topological dimension

of a set S is m, then the topological dimension of h (S) is also m provided h is a

homeomorphism. Mandelbrot [5] recognized that the definition of the topological

dimension cannot be used to define the dimension of some highly irregular sets (such

as natural coastlines). In 1919 Hausdorff pointed out that the topological definition

is not suitable for some sets and introduced a new definition of dimension based

on the size variations of sets when measured at different scales. Thus, Hausdorff’s

definitions of Hausdorff measure and dimension in 1919 provided the fundamental
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basis of the study of geometric measure theory. The Hausdorff dimension can be

defined for any subset (open or closed) of Rn (see Rogers [30]). Unlike the topo-

logical dimension, the Hausdorff dimension is not invariant under homeomorphism.

However, the topological dimension S is the infinum of the Hausdorff dimension of

its homeomorphic images h (S).

Mandelbrot [5] defined fractals as a set with Hausdorff dimension, D strictly

greater than its topological dimension, DT (D > DT ). For example, the set of points

on a straight line in ordinary Euclidean space has the topological dimension DT = 1,

and the Hausdorff dimension, D = 1. Obviously, the line is not a fractal according to

Mandelbrot’s definition. However, there are many examples where there exist fractal

sets for which the Hausdorff dimension is a noninteger. The familiar examples are

D = DT = 0 for points, D = DT = 1 for lines, D = DT = 2 for planes and surfaces,

and D = DT = 3 for spheres and other volumes.

The capacity dimension is a simplification of the Hausdorff dimension that is

relatively easy to compute numerically. We consider a bounded set S in Rn and

count the minimum number N (r) of balls of radius r required to cover the set S.

Based on the famous experimental diagrams for natural coastlines of West Great

Britian and Spanish-Portuguese land frontier of L.F. Richardson (1881-1953), the

scaling behaivor is described by the so-called fundamental relation of self-similar

fractal as

N (r) rD = 1, (18)

where N (r) is the number of segments which is plotted against their unitary length

r in a bilogarmithic diagram so that it gives straight line whose slope is −D. Thus,

it follows from (18) that

D = lim
r→0

logN (r)

log (1/r)
. (19)

The capacity dimension D of S generalizes this result and is defined by

D = lim
r→0

inf
logN (r)

log (1/r)
. (20)

The measure of N (r) is then

M = lim
r→0

N (r) rD. (21)

It may be finite or infinite. The Hausdorff dimension is a fractal measure that

includes all covers of S with balls of radius less than r. It is often equal to the

capacity dimension that is called the fractal dimension.
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It can be shown that the fractal dimension D is in excellent with the Hausdorff

dimension for self-similar sets. When the length � of the initiator is not equal to

one, the fundamental relation (18) becomes

N (r) rD = �D. (22)

Thus, the dimension of self-similar fractals is then given by

D = lim
r→0

logN (r)

log
(

�
r

) . (23)

This result governs the geometrical scaling law at all scales. The nominal length at

each iteration can be given by

�n = Nnrn. (24)

It then follows from (24) that

�n =

(
1

rn

)D

· rn = r1−D
n =

(
1

rn

)D−1

. (25)

For the case of a real fractal set, that is, as n → ∞ (attractor) with D > 1, it

turns out that

lim
n→∞

�n = lim
rn→0

�n =∞. (26)

This clearly implies that fractal sets are not measurable by means of integral

powers of the length. The Hausdorff dimension provided the clear possibility of

taking finite measures of these unusual sets, if the ordinary dimension is replaced by

the nonintegral value. It is noted that the above definition defines the Hausdorff (or

Hausdorff-Besicovitch) dimension D as a local property in the sense that it measures

properties of sets of points in the limit of radius r → 0 of the test function employed

to cover the set. The above definition can easily be generalized to higher-dimensional

spaces, and includes also the Euclidean sets as special cases.

In applications, the fractal dimension can be interpreted as the degree of me-

andering of a curve. In practice, the length r is used as small step size so that the

fraction logN (r) / log
(

1
r

)
tends to a fixed value D in the limit. In some cases, this

fraction has the same value at each step so that we can write formula (23) more

simply as

D =
logN (r)

log
(

1
r

) . (27)
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Or, equivalently,

N (r) =

(
1

r

)D

. (28)

Clearly, the total length 1 = Nr can be expressed as

L =

(
1

r

)D−1

. (29)

This once again clearly shows that the total length measured increases as the mea-

suring unit r decreases.

2.1 The Cantor Middle Third Set

A very simple construction due to Cantor generate fractals sets with a fractal

dimension in the range 0 < D < 1. As shown in Figure 5, we start with a line

segment of length � = 1, called the initiator. We then divide the line segment into

three equal parts, and delete the open middle part leaving its end points. We then

apply similar construction to each of the parts and so on. This procedure leads to

extremely small line segments as shown in Figure 5.

Figure 5: The Cantor Middle-Third Set

In the nth stage, � = 1
3n , and N = 2n. Clearly, as � → 0 as N → ∞. This

process generates a Cantor dust set whose topological dimension is DT = 0. We

calculate the fractal dimension of the Cantor middle-third set by (23) so that

D = lim
�→0

logN (r)

log
(

1
�

) = lim
n→0
− log 2n

log 3−n
=

log 2

log 3
= 0.6309.

This shows that the fractal dimension of the Cantor set is 0.6309 which is not

an positive integer, but a positive fraction less than one and 0 = DT < D = 0.6309.
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Also, the fractal dimension of this set is less than the topological dimension 1 of its

initiator.

2.2 The Koch Triadic Fractal Curve

This fractal curve can be constructed geometrically by successive iteractions.

The construction begin with a line segment of length 1 (L (1) = 1), called the ini-

tiator. We divide it into three equal line segments, and replace the middle segment

by an equilateral triangle without a base. This completes the first step (n = 1) of

the construction, giving a curve of four line segments, each of length � = 1
3
, and the

total length is L = 4
3
. This new shape of the curve is called the generator. The

second step (n = 2) is obtained by replacing each line segment by a scaled-down

version of the generator. Thus, the second-generation curve consists of N = 42 line

segments, each of length = � = 1
32 , with the total length of the curve L (�) =

(
4
3

)2
.

Continuing this iteration process successively leads to the famous Koch triadic curve

of total length L (�) =
(

4
3

)n
where � = 3−n as shown in Figure 6. The name tri-

adic is justified because individual line segments at each step decrease in length by

a factor of 3. Obviously, the Koch curve at the end of many iterations (n→∞)

would have a wide range of scales (see Debnath [31]). As the resolution increases

microscopically (n→∞), the length of the Koch curve also increases without limit.

This shows a striking contrast to an ordinary curve whose length remains the same

for all resolutions. The intrinsic parameter that measures this property is called the

fractal Haussdorff dimension D which is defined by

D = lim
�→0

logN (�)

log
(

1
�

) = lim
�→0

log
{

L(�)
�

}
log
(

1
�

) , (30)

where L (�) = �N (�) = �1−D for small number �.

For the triadic Koch curve, N (�) = 4n and � = 3−n, so that its fractal dimension

is given by

D =
log 4

log 3
≈ 1.2628 > 1, (31)

and is noninteger and greater than one. The reason for this conclusion is due to

the convolutedness of the Koch curve, which becomes more and more convoluted

as the resolution becomes finer and finer. When the curve is highly convoluted, it

effectively covers a two-dimensional area, that is, the one-dimensional curve fills up

a space of dimension two. In general, a fractal surface has a dimension greater than

two, and its dimension could become as large as three for a very highly convoluted
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surface, so that it can essentially cover a three-dimensional volume. This leads to

a general result that the fractal Hausdorff dimension of a set is a measure of its

space-filling ability.

In terms of the box-counting algorithm in fractal geometry, the minimumN (�) =

4 boxes of size
(

1
3

)
are needed to cover the line in the Koch curve in Figure 6(b).

Similarly, at least N (�) = 42 boxes of size � =
(

1
3

)2
are required to cover the line in

Figure 6(c). In general, a minimum of N (�) = 4n boxes of size � =
(

1
3

)n
are needed

to cover the Koch curve obtained at the nth step. On the other hand, the total

length L (3−n) =
(

4
3

)n
at the nth iteration is obtained at a finer resolution of 3−n.

Figure 6: The triadic Koch curve.

2.3 The Mandelbrot and Given Fractal

Mandelbrot and Given [32] recognized that the Koch fractal curve is a beautiful

example of fractal structure that is the prototype of a wide variety of fractals. In

order to describe percolation processes by fractal structures, they constructed a new

fractal curve from a generator which divides a line segment into pieces of length r = 1
3

and adds a loop consisting of three pieces in addition to new branches appended.

In each iteration of the process, from one generator of the prefractal to the next,
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the generator replaces each line segment in the prefractal by N = 8 segments, as

shown by the motif in Figure 7, that have been scaled down by the ratio r = 1
3
.

This process of iteration leads to a beautiful fractal structure – the so-called the

Mandelbrot and Given fractal as shown in Figure 2.13 of the book by Feder ([33],

page 21). Using the formula (19), the fractal dimension of the Mandelbrot and

Given fractal is D = log 8/ log 3 = 1.89 > 1.

Figure 7: Motif for the Mandelbrot and Given fractal.

In their pioneering work, Sapoval et al. [34] discovered that the diffusion front

resulting from the diffusion phenomenon has a fractal structure similar to that of

Mandelbrot and Given [32]. This structure is not only closely related to the fractal

geometry of percolation, but also creates a new interest in understanding of a wide

variety of miraculous geometrical shapes of nature. Indeed, the discovery of Sapoval

et al. [34] represents a significant contribution to the fractal nature of a diffusion

front and fractal model of percolation clusters.

2.4 The Minkowski Fractal

Based on a similar iteration process of the Koch fractal, this fractal can also

be easily be constructed by successive iterations. The construction begins with a

line segment of length L = 1, called the initiator which is divided into 4 equal line

segments. We then make two squares on the two middle parts so that this leads to

a motif of eight equal line segments
(
N = 8, r = 1

4

)
as shown in Figure 8.

Continuing the above iteration process successfully four times leads to a beauti-

ful fractal structure – the so called Minkowski fractal as shown in Figure 3.9 on page

38 in the book by Lauwerier [35]. Once again using the formula (19), the fractal
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Figure 8: The motif for the Minkowski fractal.

dimension of the Minkowski fractal in D = 1.5 > 1.

We close this subsection by adding a comment. There exists a wide variety of

beautiful fractal structures in nature including spirals, shells, trees and stars. Some

of them represents building blocks of the living world. The cell nucleus consists of a

long, spiral structure, the nucleic acid or DNA, carrier of the genetic code, a building

scheme for an organism yet to be formed. Spiral like fractal structures can still be

found in countless species of shellfish alive now. For more examples and beautiful

photographs, the reader is referred to Lauwerier [35] and Peitgen and Richter [36].

2.5 Fractals In Fracture Mechanics

Fractals have recently been used to describe irregular phenomena in many scien-

tific areas. In addition to their use for measuring the length of irregular coastlines,

the concept of fractals can be used to study complex shapes of fracture surfaces

of materials. In general, fractures, which originate and grow in rocks, metals and

concrete, present a ramified and self-similar structure. This means that certain ge-

ometrical properties appear at any scale. Mandelbrot et al. [37] introduced fractal

character of fracture surfaces of solid materials. In almost all aspects of fracture

mechanics of disordered materials, fractal dimensions of fracture surfaces play an

important role. So, the fractal geometry is found to be an effective tool in solid me-

chanics to describe mechanical damage and crack growth phenomena with statistical

characteristics. For example, in many disordered materials including concrete, rocks,

and ceramics, there are several random parameters, such as the position, size and

orientation of the preexisting microcracks. At the beginning of the loading process,
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the microcracks can be considered as two-dimensional surfaces and they propagate

during the loading process. As the load is increased, these microcracks grow, coa-

lesce and form a fractal set with a dimension between two and three. The fractals

dimension measuring the microcrack size distribution increases with propagation of

cracks. It turns out that the materials become progressively more disordered with

the development crack net, from the initial loading up to the failure state.

In nature there are no ideal geometrical fractals, natural morphologics are gen-

erally random multifractals due to the limited size of the heterogenetics. Although

ideal fractals have no characterisitics length scale, for random multifractals, it is

possible to identify small scales at which disorder occurs, and large scales at which

order prevails. For fracture surfaces, the microscopic disorder is that of Brownian

surfaces with fractal dimension equal to 2.5, whereas the macroscopic order is that

of Euclidean surfaces with integral dimension equal to 2. It is possible to examine

the evolution of the fractal parameter corresponding to different degrees of disorder

in sizes of the crack distribution during microcrack propagation.

In order to study the fractal dimension of microcrack net in disordered mate-

rials, we assume the probability density function associated with the existence of

microcracks of length greater than x is of the form

p (x) = C N x−(N+1), (32)

where C is a constant and N is a measure of the degree of order in crack size

distribution. The corresponding cummulative probability distribution is

p (x) =

∫ ∞

x

p (x) dx = C x−N , (33)

so that the crack size distribution can be considered as a kind of fractal with expo-

nent N which can be obtained from (33) as

N =
(logP (x)− logC)

log
(

1
x

) . (34)

The fractal dimension D of the crack size distribution in disordered materials

is defined by Carpinteri and Yang [38] as

D =

(
N + 2

N + 1

)
, (35)

where the range of D is in between 1 and 2 provided N assumes positive values based

on experimental findings. This parameter N is called the order parameter as larger
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values of N correspond to more order. In fact, (35) gives D = 1 as N → ∞ that

corresponds to the perfect order, and D = 1.5 as N → 1 leads to the self-similarity

due to Carpinteri [39].

Usually, fractal geometry is concerned with highly disordered self-similar mor-

phologies similar to rough interfaces or microcraked structures with statistical char-

acteristics. The common underlying principle involves random self-similarity which

implies that statistically similar morphology appears in a wide range of problems in

fracture mechanics. From a physical point of view, a scaling behaivor of physical

quantities is observed during the experiments on a system. The major assumption of

a scaling theory is that these quantities are self-similar functions of the independent

variables of physical phenomena. From a mathematical point of view, self-similar

scaling implies a power law satisfied by independent variables. The generic form of

many power laws has the form y = a xα which is characterized by two parameters a

(the amplitude) and α (the exponent) where the former depends on the choice for the

physical quantities involved, and the latter is characterized by the physical process

itself, that is, the self-similar property which governs the scaling. In general, any

power-law distribution is mathematically equivalent to a fractal distribution, where

the exponent involved has non-integer values. The upshot of this discussion is how

to determine the fractal dimension of microcrack structures and fracture surfaces.

In recent years, considerable attention has been given to use fractal geometry in

many problems in fracture mechanics and contact mechanics.

Fractal analysis has become a useful tool for investigating scaling behaivor of

microscopic inhomogeneous properties in various disordered materials including ce-

ramics, colloids, organic polymer alloys, aerogals, granial and cement metal films,

and porous media. Several authors including Muller [40], and Avnir [41] have studied

the morphology of disordered materials by multifractal analysis. The fundamental

idea behind the multifractal scaling analysis is based on experimental observations

that a certain statistical quantity called generating function scales as powers of x

associated with heterogeneous fractal objects can be expressed as

X (q, x) ∼ xτ(q)
n , (36)

where xn is the nth generation scale, the exponent τ depends on an arbitrary real

parameter q. The main difference between the exponent in (36) and the scaling

exponent in the conventional fractal analysis is that, the exponent τ (q) in (36) is a

function of q, whereas the Hausdorff dimension is a number.
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2.6 Fractals In Turbulence

While Mandelbrot [27, 28] introduced fractals to study of turbulence in the

1970s, he first recognized the fact that fractals are geometrical curves which look

the same from nearby and far away. The phrase “look the same from nearby and far

away” means self-similar. In other words, fractals are self-similar sets that are built

from parts similar to the entire set but on a finer and finer scale. More precisely, a set

S < Rn is called self-similar if it is the union of disjoint subsets S1, S2, . . ., Sn that

can be obtained from S with a scaling, translation, and rotation. The self-similarity

often implies infinite multiplication of details which generate irregular structures.

Mandelbrot [4] constructed such sets by an iterative process using an initial and

standard polygon. Subsequently, Hutchinson [42] generalized this process such that

fractals can be considered as the fixed points of certain set maps. They are generated

by the application of simple transformations such as translations, scalings, rotation

and congruences in simple spaces.

Several reliable numerical and experimental results predicted that the Richard-

son cascade of eddy motions produces a self-similar cascade of wrinkles on the in-

terface of turbulent flows on a wide range of length scales. Since many fractals

display some form of self-similarity, Vassillicos [43] introduced fractals to study tur-

bulent flows. It was shown that both locally or globally self-similar interfaces have

a power spectrum of the form Γ (k) ∼ k−p at large wavenumbers k where nonin-

teger p is related to the Kolmogorov capacity DK of the interface. The value of

DK is in agreement with experimental results. Several fractal models of turbulence

have received considerable attention from Vassillicos [43], Sreenivasan and Meneveau

[44]. Their analysis revealed some complicated geometric features of turbulent flows.

They showed that several features of turbulence can be described approximately by

fractals and that fractal dimensions can be calculated. However, these studies can

hardly prove that turbulence can be described fully by fractals. Indeed, these mod-

els now constitute a problem in themselves. So fractal models of turbulence have

not yet been fully successful.

In view of several difficulties with fractal models of turbulence, multifractal

approach with a continuous spectrum of fractal dimension D has been developed

by several authors including Meneveau and Sreenivasan [45] and Benzi et al. [46].

These models produced scale exponents which are in agreement with experimental

results with a single free parameter. However, it is important to point out that both

the multifractal models and log-normal models lack true dynamical motivation.
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We close this section by adding some comments on the possible development of

singularities in turbulence. Mandelbrot [47] has remarked that “the turbulent solu-

tions of the basic equations involve singularities or near-singularities’ (approximate

singularities valid down to local viscous length scales where the flow is regular) of

an entirely new kind.” He also stated that “the singularities of the solutions of the

Navier-Stokes equations can only be fractals.” In his authoritative review, Sreeni-

vasan [48] described the major influence of the fractal and multifractal formalisms

in understanding some aspects of turbulence, but he pointed out some inherent

problems in these formalisms with the following comment, “However, the outlook

for certain other aspects is not so optimistic, unless magical inspiration or break-

through in analytical tools occur.”

Indeed, several theoretical works and experimental observations revealed that

turbulence possesses some sort of singularities in the velocity field or vorticity field.

Sarkar’s [49] analytical treatment confirmed that finite-time cusp singularities always

exist for essentially any arbitrary set of initial data, and are shown to be generic.

New experimental methods (Hunt and Vassilicos, [50]) also provide evidence of spi-

raling streamlines and streaklines within eddies, and thin layers of large vorticity

grouped together (Schwarz [51]); both of these features are associated with accumu-

lation points in the velocity field. It also follows from solutions of the Navier-Stokes

equations (Vincent and Meneguzzi [52] and She et al. [53]), that very large deviations

exist in isolated eddies with complicated internal structure. These studies identify

regions of intense vorticity so that streamlines form spirals. The Kolmogorov inertial

energy spectrum k−5/3 also implies that there must be singularities in the deriva-

tives of the velocity field on scales where the rate of energy dissipation is locally

very large. It has been suggested by Moffatt [54] that the accumulation points of

discontinuities associated with spiral structures could give rise to fractional power

laws k−2p with 1 < 2p < 2. The question also arises whether the self-similarity

leading to the Kolmogorov spectrum is local or global. Moffatt’s analysis (see Vas-

silicos [55]) has shown that spiral singularities are responsible for non-integer power

of self-similar spectra k−2p. It is also known now that locally self-similar structures

have a self-similar high wavenumber spectrum with a non-integer power 2p. Thus

the general conclusion is that functions with the Kolmogorov spectrum have some

kind of singularities and accumulation points, unless they are fractal functions with

singularites everywhere, since they are everywhere continuous but nowhere differ-

entiable. Thus the upshot of this discussion is that the statistical structure of the

small-scale turbulent flows is determined by local regions where the velocity and any

other associated scalar functions have very large derivatives or have rapid variations

in their magnitude or that of their derivatives. These are regions surrounding points

215



that are singular. It remains an open question whether the nature of this singularity

is due to random fluctuations of the turbulent motions resulting from their chaotic

dynamics or to the presence of localized singular structures originating from an in-

ternal organization of the turbulent flows. In spite of a lot of progress made in the

last two decades, there are still many open questions than answers. Indeed, the

problem of turbulence remain unsolved due to many complexities involved in the

problem. It would be a challenging problem for the 21st century (see Debnath [56]).

2.7 Fractals, Dynamical Systems And Iterative Mappings

Based on his pioneering work on celestial mechanics, Henri Poincaré (1854-1912)

laid the foundation of what is now called dynamical systems and iterative mappings.

He pointed out that even though Newtonian mechanics is determinitstic, the motion

of celestial bodies attracting one another are very complex in the sense that in the

long run this behaivor is unpredictable and even chaotic. Both chaos and fractals

have received widespread attention in recent years. There are two major features of

fractals. First, in many cases, a small number of parameters or invariants can be

used to describe a complex fractal structure. Second, many fractals are naturally

generated by underlying dynamical system. Such a system can often describe the

relationships between different parts or more importantly different scales of fractals.

As far as fractals are concerned, iterative mappings in the plane - the so called

Poincaré mappings - are of special significance. The fact that this is a dynamical

system means that these mappings are conservative (or area-conserving) in the sense

that an arbitrary circle can be transformed into a closed curve of the same area.

More importantly, iterative mappings can, in general, be used to serve as a model

for a wide variety of geometrical and physical phenomena.

Two French mathematicians, Gaston Julia (1893-1978) and Pierre Fatou (1878-

1929) considered an elementary quadratic transformation x → x2 + c by replacing

real x by a complex number z = x + iy and real c by a complex c = a + ib. Such a

replacement seems to be a minor change and gives

z → z2 + c = (x + iy)2 + (a + ib) , (37)

where a and b are arbitrary real numbers. This is an important example of a

conformal transformation that leaves angles unchanged. For every value of a and b,

fractals are generated by this transformation, and they are called the Julia fractals

that are visible as beautiful color pictures on the screen of a computer. Fractals,

chaos, bifurcations, and Hausdorff dimension have been essential elements in the

sturdy of Julia sets as described by many authors including Keen [58] with many
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open questions and unsolved problems. Several books by Mandelbrot [5], Lauwerier

[35], Peitgen and Richter [36] contain a large number of beautiful color photographs

of fractals and many examples of computer graphics.

It is amazing that the computational iteration process of the transformation (37)

produces a totally unexpected result. It turns out that computational experiments

on this complex quadratic transformation generate a new geometric structure that is

very complex and very widely known to be extremely beautiful. These Julia fractals

(or Julia sets) bear a remarkable resemblance to a shape called snowflake curve that

is very similar to the Koch curve discovered by Von Koch in 1904.

It was shown that many more Julia fractals can be obtained easily using complex

numbers. The question was raised about the nature and type of Julia fractals J (a, b)

of the model (37). It turned out that they can be either totally disconnected or

totally connected. Based on a study of Mandelbrot, it turns out that all points

for which the Julia fractals J (a, b) is connected constitute the so called Mandelbrot

fractal whose beautiful photograph is shown in many papers and books including

Lauwerier ([35] Figure 7.11, page 150-154), Peitgen and Ritcher [36], and Mandelbrot

[57]. The pioneering research work of Douady and Hubbard [59] provided major

results and understanding of many aspects of the Mandelbrot set. On the other

hand, Branner [60] described many mathematical properties of this set with many

beautiful pictures. It turns out that the Mandelbrot set is not only compact in

a plane, but also a connected and cellular as it is equal to the intersections of a

nested sequence of sets homeomorphic to solid balls. Indeed, the Mandelbrot set

was proved to be a self-similar and universal in nature.

On the other hand, in 1969, a French mathematician and astronomer M. Hénon

investigated a new iterative mapping defined by

x′ = x, y′ = −x + 2ay + y2. (38)

This mapping serves a model for a wide range of physical phenomena, from

celestial mechanics to particle physics. A wide variety of computer experiments

has been performed on this model which reveals different aspects of chaos and self-

similarity - indeed fractal-like structures. Poincaré had predicted their existence,

and they are now visible with the aid of modern computer technology.
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Another Hénon model deals with iterative transformations

xn+1 = a xn − b (yn − x2
n)

yn+1 = b xn + a (yn − x2
n)

⎫⎬⎭ , (39)

where a = cos θ and b = sin θ. This model was studied for different values of θ

which reveals a closed island structure with the origin as a point of stable equi-

librium. This study also shows an irregular external orbit - the so called chaotic

orbit. The structure generated by (39) consists of periodic cycles that are either

stable or unstable as stable orbits which fill up a closed curve and unstable chaotic

orbits. So this structure is universal and, in general, applies to every area-conserving

transformation.

All of the above discussion reveal that the iteration process of different simple

mathematical transformations with the aid of modern computer technology has the

tremendous ability and power to produce a totally new and unexpected complex

fractal structure that is surprisingly very beautiful. In this connection, the reader

is referred to an interesting survey article by Blanchard [61] on complex iteration

process and complex analytic dynamics on the Riemann sphere.

3. WAVELETS, WAVELET TRANSFORMS AND MULTIRESOLU-

TION ANALYSIS

The Fourier transform analysis has also been very useful in many areas, includ-

ing quantum mechanics, wave motion, and turbulence. In these areas, the Fourier

transform f̂ (k) (see Debnath [31]) of a function f (x) is defined by the space and

wavenumber domains, where x represents the space variable and k is the wavenum-

ber. One of the important features is that the trigonometric kernel exp (−ikx) in

the Fourier transform oscillates indefinitely, and hence, the localized information

contained in the signal f (x) in the x-space is widely distributed among f̂ (k) in the

Fourier transform space. Although f̂ (k) does not lose any information of the signal

f (x), it spreads out in the k-space. If there are computational or observational

errors involved in the signal f (x), it is almost impossible to study its properties

from those of f̂ (k).

The Fourier transform theory has been very useful for analyzing harmonic sig-

nals or signals for which there is no need for local information. In spite of great

success, Fourier transform analysis seems to be inadequate for studying the above

physical problems for at least two reasons. First, the Fourier transform of a sig-

nal does not contain any local information in the sense that it does not reflect the
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change of wavenumber with space or of frequency with time. Second, the Fourier

transform method enables us to investigate problems either in the time (space) do-

main or in the frequency (wavenumber) domain, but not simultaneously in both

domains. These are probably the major weaknesses of the Fourier transform analy-

sis. It is often necessary to define a single transform of time and frequency (or space

and wavenumber) in both time and frequency domains. Such a single transform

would give complete time and frequency (or space and wavenumber) information of

a signal.

In 1982, Jean Morlet et al. [6, 7] a French geophysical engineer, discovered

the idea of the wavelet transform, providing a new mathematical tool for seismic

wave analysis. In Morlet’s analysis, signals consist of different features in time and

frequency, but their high-frequency components would have a shorter time duration

than their low-frequency components. In order to achieve good time resolution for

the high-frequency transients and good frequency resolution for the low-frequency

components, Morlet et al. [6, 7] first introduced the idea of wavelets as a family of

functions constructed from translations and dilations of a single function called the

“mother wavelet” ψ (t). They are defined by

ψa,b (t) =
1√
|a| ψ

(
t− b

a

)
, a, b ∈ R, a �= 0, (40)

where a is called a scaling parameter which measures the degree of compression

or scale, and b a translation parameter which determines the time location of the

wavelet. If |a| < 1, the wavelet (40) is the compressed version (smaller support in

time-domain) of the mother wavelet and corresponds mainly to higher frequencies.

On the other hand, when |a| > 1, ψa,b (t) has a larger time-width than ψ (t) and

corresponds to lower frequencies. Thus, wavelets have time-widths adapted to their

frequencies. This is the main reason for the success of the Morlet wavelets in signal

processing and time-frequency signal analysis. It may be noted that the resolution

of wavelets at different scales varies in the time and frequency domains as governed

by the Heisenberg uncertainty principle. At large scale, the solution is coarse in

the time domain and fine in the frequency domain. As the scale a decreases, the

resolution in the time domain becomes finer while that in the frequency domain

becomes coarser.

Morlet first developed a new time-frequency signal analysis using what he called

“wavelets of constant shape” in order to contrast them with the analyzing functions

in the short-time Fourier transform which do not have a constant shape. It was Alex

Grossman, a French theoretical physicist, who quickly recognized the importance

of the Morlet wavelet transforms which are somewhat similar to the formalism for
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coherent states in quantum mechanics, and developed an exact inversion formula for

this wavelet transform. Unlike the Weyl-Heisenberg coherent states, these coherent

states arise from translations and dilations of a single function. They are often called

affine coherent states because they are associated with an affine group (or “ax+ b”

group). From a group-theoretic point of view, the wavelets ψa,b (x) are in fact the

result of the action of the operators U (a, b) on the function ψ so that

[U (a, b)ψ] (x) =
1√
|a| ψ

(
x− b

a

)
. (41)

These operators are all unitary on the Hilbert space L2 (R) and constitute a repre-

sentation of the “ax + b” group:

U (a, b)U (c, d) = U (ac, b + ad) . (42)

This group representation is irreducible, that is, for any non-zero f ∈ L2 (R), there

exists no nontrivial g orthogonal to all the U (a, b) f . The success of Morlet’s numer-

ical algorithms prompted Grossmann to make a more extensive study of the Morlet

wavelet transform which led to the recognition that wavelets ψa,b (t) correspond to

a square integrable representation of the affine group. Grossmann was concerned

with the wavelet transform of f ∈ L2 (R) defined by (see Debnath [31])

Wψ [f ] (a, b) = 〈f, ψa,b〉 =

∫ ∞

−∞
f (t)ψa,b (t) dt, (43)

where ψa,b (t) plays the same role as the kernel exp (iωt) in the Fourier transform

and 〈f, g〉 represents an inner product in the Hilbert space L2 (R). This is called

a continuous wavelet transform of f (t). Like the Fourier transform, the continu-

ous wavelet transformation Wψ is linear. However, unlike the Fourier transform,

the continuous wavelet transform is not a single transform, but any transform ob-

tained in this way. The inverse wavelet transform can be defined so that f can be

reconstructed by means of the formula

f (t) = C−1
ψ

∫ ∞

−∞

∫ ∞

−∞
Wψ [f ] (a, b)ψa,b (t)

(
a−2da

)
db, (44)

provided Cψ satisfies the so called admissibility condition

Cψ = 2π

∫ ∞

−∞

∣∣∣ψ̂ (ω)
∣∣∣2

|ω| dω <∞, (45)

where ψ̂ (ω) is the Fourier transform of the mother wavelet ψ (t).

220



Grossmann’s ingenious work also revealed that certain algorithms that decom-

pose a signal on the whole family of scales, can be utilized as an efficient tool for

multiscale analysis. In practical applications involving fast numerical algorithms, the

continuous wavelet can be computed at discrete grid points. To do this a general

wavelet ψ can be defined by replacing a with am
0 (a0 �= 0, 1), b with nb0a

m
0 (b0 �= 0),

where m and n are integers, and making

ψm,n (t) = a
−m/2
0 ψ

(
a−m

0 t− nb0
)
. (46)

The discrete wavelet transform of f is defined as the doubly indexed sequence

f̃ (m,n) = W [f ] (m,n) = 〈f, ψm,n〉 =

∫ ∞

−∞
f (t) ψm,n (t) dt, (47)

where ψm,n (t) is given by (46). The double series

f (t) =
∞∑

m,n=−∞
f̃ (m,n)ψm,n (t) =

∞∑
m,n=−∞

〈f, ψm,n〉ψm,n (t) , (48)

is called the wavelet series of f , and the functions {ψm,n (t)} are called the discrete

wavelets, or simply wavelets. However, there is no guarantee that the original func-

tion f can be reconstructed from its discrete wavelet coefficients in general. The

reconstruction of f is still possible if the discrete lattice has a very fine mesh. For

very coarse meshes, the coefficients may not contain sufficient information for de-

termination of f from these coefficients. However, for certain values of the lattice

parameter (m,n), a numerically stable reconstruction formula can be obtained.

If the set {ψm,n (t)} defined by (46) is complete in L2 (R) for some choice of ψ,

a and b, then the set is called an affine wavelet. Then any f (t) ∈ L2 (R) can be

completely determined by (48). Such a complete set {ψm,n (t)} in L2 (R) is called a

frame. A frame does not satisfy the Parseval theorem for the Fourier series, and the

expansion in terms of a frame is not unique. In fact, it can be shown that

A ‖f‖2 ≤
∞∑

m,n=−∞
|〈f, ψm,n〉|2 ≤ B ‖f‖2 , (49)

where A and B are two constants and ‖f‖ =
√
〈f, f〉 is the norm of f . The

set {ψm,n (t)} constitutes a frame if ψ (t) satisfies the admissibility condition and

0 < A < B <∞. Considerable attention has been given to find some necessary and

sufficient conditions for a system of wavelets to form a frame or orthonormal basis

(see Debnath [31]).
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For computational efficiency, a0 = 2 and b0 = 1 are commonly used so that

results lead to a binary dilation 2−m and a dyadic translation of n 2m. Therefore, a

practical lattice is a0 = 2m and b0 = n 2m in (46) so that

ψm,n (t) = 2−
m
2 ψ
(
2−mt− n

)
. (50)

We sketch a typical mother wavelet with a compact support [−T, T ] in Figure

9(a). Different values of the parameter b represent the time localization center, and

each ψa,b (t) is localized around the center t = b. As scale parameter a varies, wavelet

ψa,b (t) covers different frequency ranges. Small values of |a| (0 < |a| 
 1) result in

very narrow windows and correspond to high frequencies or very fine scales ψa,b, as

shown in Figure 9(b), whereas very large values of |a| (|a| � 1) result in very wide

windows and correspond to small frequencies or very coarse scales ψa,b as shown

in Figure 9(c). The wavelet transform (43) gives a time-frequency description of a

signal f . Different shapes of the wavelets are plotted in Figure 9(b) and 9(c).

Figure 9(a): Typical mother wavelet.

It follows from the preceding discussion that a typical mother wavelet physically

appears as a local oscillation (or wave) in which most of the energy is localized to a

narrow region in the physical space. This can be shown that the time resolution σt

and the frequency resolution σω are proportional to the scale a and a−1, respectively,

and σtσω ≥ 2−1. When a decreases or increases, the frequency support of the wavelet

atom is shifted toward higher or lower frequencies, respectively. Therefore, at higher

frequencies, the time resolution becomes finer (better) and the frequency resolution

becomes coarser (worse). On the other hand, the time resolution becomes coarser

but the frequency resolution becomes finer at lower frequencies. As a function of
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Figure 9(b): Compressed and translated wavelet ψa,b (t) with 0 < |a| 
 1, b > 0;

9(c) Magnified and translated wavelet ψa,b (t) with |a| � 1, b > 0.

b for a fixed scaling parameter a, Wψ [f ] (a, b) represents the detailed information

contained in the signal f (t) at the scale a. In fact, this interpretation motivated

Morlet et al. [6, 7] to introduce the translated and scaled versions of a single function

for the analysis of seismic waves.

We next give a formal definition (see Debnath [31]) of a wavelet.

Definition 1 (Wavelet). A wavelet is a function ψ ∈ L2 (R) which satisfies

the condition

Cψ =

∫ ∞

−∞

∣∣∣ψ̂ (ω)
∣∣∣2

|ω| dω <∞, (51)

where ψ̂ (ω) is the Fourier transform of ψ (t).

If ψ ∈ L2 (R), then, a family of wavelets defined by (40), ψa,b (t) ∈ L2 (R) for

all a, b. For

‖ψa,b (t)‖2 = |a|−1

∫ ∞

−∞

∣∣∣∣ψ(t− b

a

)∣∣∣∣2 dt =

∫ ∞

−∞
|ψ (x)|2 dx = ‖ψ‖2 . (52)

The Fourier transform of ψa,b (t) is given by

ψ̂a,b (ω) = |a|− 1
2

∫ ∞

−∞
e−iωt ψ

(
t− b

a

)
dt = |a| 12 e−ibωψ̂ (aω) , (53)

where ψ̂ (ω) = F {ψ (t)} is the Fourier transform of ψ (t).
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Using the Parseval relation of the Fourier transform (see Debnath [31]), it also

follows from (43) that

Wψ [f ] (a, b) = 〈f, ψa,b〉 =
1

2π

〈
f̂ , ψ̂a,b

〉
=

1

2π

∫ ∞

−∞

{√
|a| f̂ (ω) ψ̂ (aω)

}
eibωdω, by (53) .

This means that

F {Wψ [f ] (a, b)} =

∫ ∞

−∞
e−ibωWψ [f ] (a, b) db =

√
|a| f̂ (ω) ψ̂ (aω) . (54)

Example 1 (The Haar Wavelet). The Haar wavelet is one of the classic

examples of wavelets. It is defined by

ψ (t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, 0 ≤ t < 1
2

−1, 1
2
≤ t < 1

0, otherwise

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (55)

The Haar wavelet has a compact support. It is obvious that∫ ∞

−∞
ψ (t) dt = 0,

∫ ∞

−∞
|ψ (t)|2 dt = 1. (56)

This wavelet is very well-localized in the time domain, but it is not continuous. Its

Fourier transform ψ̂ (ω) is given by

ψ̂ (ω) = i exp

(
−iω

2

)
sin2

(
ω
4

)(
ω
4

) , (57)

and

∫ ∞

−∞

∣∣∣ψ̂ (ω)
∣∣∣2

|ω| dω = 16

∫ ∞

−∞
|ω|−3

∣∣∣sin ω

4

∣∣∣4 dω <∞. (58)

Both ψ (t) and ψ̂ (ω) are plotted in Figure 10. These figures indicate that the Haar

wavelet has good time localization but poor frequency localization. The function∣∣∣ψ̂ (ω)
∣∣∣ is even, attains its maximum at the frequency ω0 ∼ 4.662, and decays slowly

as ω−1 as ω → ∞, which means that it does not have compact support in the
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Figure 10: The Haar wavelet and its Fourier transform.

frequency domain. Indeed, the discontinuity of ψ causes a slow decay of ψ̂ as ω →∞.

Its discontinuous nature is a serious weakness in many applications. However, the

Haar wavelet is one of the most fundamental examples that illustrate major features

of the general wavelet theory.

Theorem 1. If ψ is a wavelet and φ is a bounded integrable function, then the

convolution function ψ ∗ φ is a wavelet.

The proof of this theorem is fairly easy and the reader is referred to Debnath

[31].

Example 2. This example illustrate how to generate other wavelets by using

Theorem 1. For example, if we take the Haar wavelet and convolute it with the

following function

φ (t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, t < 0

1, 0 ≤ t ≤ 1

0, t ≥ 1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (59)

we obtain a simple wavelet, as shown in Figure 11.

Example 3. The convolution of the Haar wavelet with φ (t) = exp (−t2) gen-

erates a smooth wavelet, as shown in Figure 12.

In order for the wavelets to be useful analyzing functions, the mother wavelet

must have certain properties. One such property is defined by the condition (51)

which guarantees the existence of the inversion formula for the continuous wavelet
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Figure 11: The wavelet (ψ ∗ φ) (t).

Figure 12: The wavelet (ψ ∗ φ) (t).

transform. Condition (51) is usually referred to as the admissibility condition for

the mother wavelet. If ψ ∈ L1 (R), then its Fourier transform ψ̂ is continuous. Since

ψ̂ is continuous, Cψ can be finite only if ψ̂ (0) = 0 or, equivalently,
∫∞
−∞ ψ (t) dt = 0.

This means that ψ must be an oscillatory function with zero mean. Condition (51)

also imposes a restriction on the rate of decay of
∣∣∣ψ̂ (ω)

∣∣∣2 and is required in finding

the inverse of the continuous wavelet transform.

In addition to the admissibility condition, there are other properties that may

be useful in particular applications. For example, we may want to require that ψ be

n times continuously differentiable or infinitely differentiable. If the Haar wavelet is

convoluted (n + 1) times with the function φ given in Example 2, then the resulting
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function ψ ∗ φ ∗ . . . ∗ φ is an n times differentiable wavelet. The function in Figure

12 is an infinitely differentiable wavelet. The so-called “Mexican hat wavelet” is

another example of an infinitely differentiable (or smooth) wavelet as stated below.

Example 4 (The Mexican Hat Wavelet). The Mexican hat wavelet is

defined by the second derivative of a Gaussian function as

ψ (t) =
(
1− t2

)
exp

(
−t

2

2

)
= − d2

dt2
exp

(
−t

2

2

)
= ψ1,0 (t) , (60)

ψ̂ (ω) = ψ̂1,0 (ω) =
√

2π ω2 exp

(
−ω

2

2

)
. (61)

In contrast to the Haar wavelet, the Mexican hat wavelet is C∞-function. It has two

vanishing moments. The Mexican hat wavelet ψ1,0 (t) and its Fourier transform are

shown in Figures 13(a) and 13(b). This wavelet has excellent localization in time

and frequency domains and clearly satisfies the admissibility condition.

Figure 13: (a) The Mexican hat waveletwavelet ψ1,0 (t) and (b) its Fourier transform

ψ̂1,0 (ω).

Two other wavelets, ψ 3
2
,−2 (t) and ψ 1

4
,
√

2 (t), from the mother wavelet (60) can

be obtained. These three wavelets, ψ1,0 (t), ψ 3
2
,−2 (t) and ψ 1

4
,
√

2 (t), are shown in

Figure 14 (i), (ii), and (iii), respectively.

Example 5 (The Morlet Wavelet). The Morlet wavelet is defined by

ψ (t) = exp

(
iω0t− t2

2

)
, (62)

ψ̂ (ω) =
√

2π exp

[
−1

2
(ω − ω0)

2

]
. (63)

227



Figure 14: Three wavelets ψ1,0 (t), ψ 3
2
,−2 (t), and ψ 1

4
,
√

2 (t).

Figure 15: The Morlet wavelet and its Fourier transform

The Morlet wavelet and its Fourier transform are plotted in Figures 15.

3.1 Some Basic Properties of Wavelet Transforms

The following theorem gives several properties of continuous wavelet transforms.

Theorem 2. If ψ and φ are wavelets and f , g are functions which belong to

L2 (R), then

(i) (Linearity)

Wψ (αf + βg) (a, b) = α (Wψf) (a, b) + β (Wψg) (a, b) , (64)
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where α and β are any two scalars.

(ii) (Translation)

(Wψ (Tcf)) (a, b) = (Wψf) (a, b− c) , (65)

where Tc is the translation operator defined by Tcf (t) = f (t− c).

(iii) (Dilation)

Wψ (Dcf) (a, b) =
1√
c

(Wψf)

(
a

c
,
b

c

)
, c > 0, (66)

where Dc is a dilation operator defined by and Dcf (t) = 1
c
f
(

t
c

)
, c > 0.

(iv) (Symmetry)

(Wψf) (a, b) =
(
Wf̂ ψ

)(1

a
,− b

a

)
, a �= 0. (67)

(v) (Parity)

(WPψPf) (a, b) = (Wψf) (a,−b) , (68)

where P is the parity operator defined by P f (t) = f (−t).
(vi) (Antilinearity)

(Wαψ+βφf) (a, b) = α (Wψf) (a, b) + β (Wφf) (a, b) , (69)

for any scalars α, β.

(vii) (WTcψf) (a, b) = (Wψf) (a, b + ca) . (70)

(viii) (WDcψf) (a, b) =
1√
c

(Wψf) (ac, b) , c > 0. (71)

Proofs of the above properties are straightforward and are left as exercises.

Theorem 3 (Parseval’s Formula for Wavelet Transforms). If ψ ∈
L2 (R) and (Wψf) (a, b) is the wavelet transform of f defined by (43), then, for any

functions f , g ∈ L2 (R), we obtain∫ ∞

−∞

∫ ∞

−∞
(Wψf) (a, b) (Wψg) (a, b)

dbda

a2
= Cψ (f, g) , (72)

where Cψ is given by (51).

We refer to Debnath [31] for a detailed proof of this theorem.

229



Theorem 4 (Inversion Formula). If f ∈ L2 (R), then f can be recon-

structed by the formula

f (t) =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞
(Wψf) (a, b)ψa,b (t)

dbda

a2
, (73)

where the equality holds almost everywhere.

Proof. For any g ∈ L2 (R), we have, from Theorem 3.

Cψ 〈f, g〉 = 〈Wψf,Wψg〉
=

∫ ∞

−∞

∫ ∞

−∞
(Wψf) (a, b) (Wψg) (a, b)

dbda

a2
,

=

∫ ∞

−∞

∫ ∞

−∞
(Wψf) (a, b)

∫ ∞

−∞
g (t)ψa,b (t)dt

dbda

a2
,

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(Wψf) (a, b)ψa,b (t)

dbda

a2
g (t) dt,

=

〈∫ ∞

−∞

∫ ∞

−∞
(Wψf) (a, b)ψa,b (t)

dbda

a2
, g

〉
. (74)

Since g is an arbitrary element of L2 (R), the inversion formula (73) follows.

If f = g in (73), then∫ ∞

−∞

∫ ∞

−∞
|(Wψf) (a, b)|2 da db

a2
= Cψ ‖f‖2 = Cψ

∫ ∞

−∞
|f (t)|2 dt. (75)

This shows that, except for the factor Cψ, the wavelet transform is an isometry from

L2 (R) to L2 (R2).

3.2 Multiresolution Analysis

The concept of multiresolution (MRA) analysis of a Hilbert space of functions

is related to the study of signals or images at different levels of resolution – almost

like a pyramid. This is a new and remarkable idea which deals with a general

mathematical formalism for construction of an orthogonal basis of wavelets. Indeed,

it is central to all constructions of wavelet bases. Mallat’s brilliant work [8] has

been the major source of many new developments in wavelet analysis and its wide

variety of applications. As Ingrid Dubechics said: “The history of the formalism of

multiresolution analysis is a beautiful example of applications stimulating theoretical

development.”
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Mathematically, the fundamental idea of multiresolution analysis is to represent

a function (or signal) f as a limit of successive approximations, each of which is

a finer version of the function f . These successive approximations correspond to

different levels of resolutions. Thus, multiresolution analysis is a formal approach to

constructing orthogonal wavelet bases using a definite set of rules and procedures.

The key feature of this analysis is to describe mathematically the process of studying

signals or images at different scales. The basic principle of the MRA deals with the

decomposition of the whole function space into individual subspaces Vn ⊂ Vn+1 so

that the space Vn+1 consists of all rescaled functions in Vn. This essentially means

a decomposition of each function (or signal) into components of different scales (or

frequencies) so that an individual component of the original function f occurs in

each subspace. These components can describe finer and finer versions of the original

function f . For example, a function is resolved at scales !t = 20, 2−1, . . ., 2−n. In

audio signals, these scales are basically octaves which represent higher and higher

frequency components. For images and, indeed, for all signals, the simultaneous

existence of a multiscale may also be referred to as multiresolution. From the point

of view of practical applications, MRA is really an effective mathematical framework

for hierarchical decomposition of an image (or signal) into components of different

scales (or frequencies).

In general, frames have many of the properties of bases, but they lack a very

important property of orthogonality. If the condition of orthogonality

〈φk.�, φm,n〉 = 0 for all (k, �) �= (m,n) , (76)

is satisfied, the reconstruction of the function f from 〈f, φm,n〉 is much simpler and,

for any f ∈ L2 (R), we have the following representation

f =
∞∑

m,n=−∞
〈f, φm,n〉φm,n, (77)

where

φm,n (x) = 2−m/2φ
(
2−mx− n

)
, (78)

is an orthonormal basis of Vm.

Definition 3.2.1 (Multiresolution Analysis). A multiresolution analysis

(MRA) consists of a sequence {Vm : m ∈ Z} of embedded closed subspaces of L2 (R)

that satisfy the following conditions:

(i) . . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . Vm ⊂ Vm+1 . . .,
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(ii)
⋃∞

m=−∞ Vm is dense in L2 (R), that is,
⋃∞

m=−∞ Vm = L2 (R),

(iii)
⋂∞

m=−∞ Vm = {0},
(iv) f (x) ∈ Vm if and only if f (2x) ∈ Vm+1 for all m ∈ Z,

(v) there exists a function φ ∈ V0 such that {φ0,n = φ (x− n) , n ∈ Z} is an or-

thonormal basis for V0, that is,

‖f‖2 =

∫ ∞

−∞
|f (x)|2 dx =

∞∑
n=−∞

|〈f, φ0,n〉|2 for all f ∈ V0.

The function φ is called the scaling function or father wavelet. If {Vm} is an

multiresolution of L2 (R) and if V0 is the closed subspace generated by the integer

translates of a single function φ, then we say that φ generates the multiresolution

analysis.

Sometimes, condition (v) is relaxed by assuming that {φ (x− n) , n ∈ Z} is

a Riesz basis for V0, that is, for every f ∈ V0, there exists a unique sequence

{cn}∞n=−∞ ∈ �2 (Z) such that

f (x) =
∞∑

n=−∞
cn φ (x− n) ,

with convergence in L2 (R) and there exist two positive constants A and B indepen-

dent of f ∈ V0 such that

A

∞∑
n=−∞

|cn|2 ≤ ‖f‖2 ≤ B

∞∑
n=−∞

|cn|2 ,

where 0 < A < B < ∞. In this case, we have a multiresolution analysis with a

Riesz basis.

Note that condition (v) implies that {φ (x− n) , n ∈ Z} is a Riesz basis for

V0 with A = B = 1.

Since φ0,n (x) ∈ V0 for all n ∈ Z, further, if n ∈ Z, it follows from (iv) that

φm,n (x) = 2m/2φ (2mx− n) , m ∈ Z, (79)

is an orthonormal basis for Vm.
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Consequences of Definition 3.2.1.

1. A repeated application of condition (iv) implies that f ∈ Vm if and only if

f
(
2kx
) ∈ Vm+k for all m, k ∈ Z. In other words, f ∈ Vm if and only if

f (2−mx) ∈ V0 for all m ∈ Z.

This shows that functions in Vm are obtained from those in V0 through a

scaling 2−m. If the scale m = 0 is associated with V0, then the scale 2−m is

associated with Vm. Thus, subspaces Vm are just scaled versions of the central

space V0, which is invariant under translation by integers, that is, TnV0 = V0

for all n ∈ Z.

2. It follows from Definition 3.2.1 that a multiresolution analysis is completely

determined by the scaling function φ but not conversely. For a given φ ∈ V0,

we first define

V0 =

{
f (x) =

∞∑
n=−∞

cn φ0,n =
∞∑

n=−∞
cn φ (x− n) : {cn} ∈ �2 (Z)

}
.

Condition (iv) implies that V0 has an orthonormal basis {φ0,n} = {φ (x− n)}.
Then, V0 consists of all functions f (x) =

∑∞
n=−∞ cn φ (x− n) with finite en-

ergy ‖f‖2 =
∑∞

n=−∞ |cn|2 < ∞. Similarly, the space Vm has the orthonormal

basis φm,n given by (79) so that fm (x) is given by

fm (x) =
∞∑

n=−∞
cmn φm,n (x) , (80)

with the finite energy

‖fm‖2 =
∞∑

n=−∞
|cmn|2 <∞.

Thus, fm represents a typical function in the space Vm. It builds in self-

invariance and scale invariance through the basis {φm,n}.

3. Conditions (ii) and (iii) can be expressed in terms of the orthogonal projections

Pm onto Vm, that is, for all f ∈ L2 (R),

lim
m→−∞

Pmf = 0 and lim
m→+∞

Pmf = f. (81ab)
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The projection Pmf can be considered as an approximation of f at the scale

2−m. Therefore, the successive approximations of a given function f are defined

as the orthogonal projections Pm onto the space Vm:

Pmf =
∞∑

n=−∞
〈f, φm,n〉φm,n, (82)

where φm,n (x) given by (79) is an orthonormal basis for Vm.

4. Since V0 ⊂ V1, the scaling function φ that leads to a basis for V0 is also V1.

Since φ ∈ V1 and φ1,n (x) =
√

2 φ (2x− n) is an orthonormal basis for V1, φ

can be expressed in the form

φ (x) =
∞∑

n=−∞
cn φ1,n (x) =

√
2

∞∑
n=−∞

cn φ (2x− n) , (83)

where

cn = 〈φ, φ1,n〉 and
∞∑

n=−∞
|cn|2 = 1.

Equation (83) is called the dilation equation. It involves both x and 2x and is often

referred to as the two-scale equation or refinement equation because it displays φ (x)

in the refined space V1. The space V1 has the finer scale 2−1 and it contains φ (x)

which has scale 1.

All of the preceding facts reveal that multiresolution analysis can be described

at least three ways so that we can specify

(a) the subspaces Vm,

(b) the scaling function φ,

(c) the coefficients cn in the dilation equation (83).

The real importance of a multiresolution analysis lies in the simple fact that

it enables us to construct an orthonormal basis for L2 (R). In order to prove this

statement, we first assume that {Vm} is a multiresolution analysis. Since Vm ⊂ Vm+1,

we define Wm as the orthogonal complement of Vm in Vm+1 for every m ∈ Z so that
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we have

Vm+1 = Vm

⊕
Wm

=
(
Vm−1

⊕
Wm−1

)⊕
Wm

= . . .

= V0

⊕
W0

⊕
W1

⊕
. . .
⊕

Wm

= V0

⊕(
m⊕

m=0

Wm

)
(84)

and Vn ⊥ Wm for n �= m.

Since
⋃∞

m=−∞ Vm is dense in L2 (R), we may take the limit as m→∞ to obtain

V0

⊕( ∞⊕
m=0

Wm

)
= L2 (R) .

Similarly, we may go in the other direction to write

V0 = V−1

⊕
W−1

=
(
V−2

⊕
W−2

)⊕
W−1

= . . .

= V−m

⊕
W−m

⊕
. . .
⊕

W−1.

We may again take the limit as m→∞. Since
⋂

m∈Z Vm = {0}, it follows that

V−m = {0}. Consequently, it turns out that

∞⊕
m=−∞

Wm = L2 (R) . (85)

Example 3.2.1 (Characteristic Function). If φ = χ[0,1] is the characteristic

function of the interval [0, 1], the spaces Vm defined by

Vm =

{ ∞∑
k=−∞

ck φm,k : {ck} ∈ �2 (Z)

}
, (86)

where

φm,n (x) = 2−m/2φ
(
2−mx− n

)
, (87)
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satisfy all conditions of Definition 3.2.1. So, {Vm} is a multiresolution analysis.

Example 3.2.2 (Piecewise Constant Function). Consider the space Vm

of all functions L2 (R) which are constant on intervals [2−mn, 2−m (n + 1)], where

n ∈ Z. This space Vm constitutes a multiresolution analysis with the scaling function

φ = χ[0,1]. Moreover, φ satisfies the dilation equation

φ (x) = φ (2x) + φ (2x− 1) . (88)

This means that φ (x) is a linear combination of the even and odd translates of φ

as shown in Figure 7.4 on page 432 of Debnath [31].

It can be shown that the Haar mother wavelet (55) can be obtained as a simple

two-scale relation

ψ (x) = φ (2x)− φ (2x− 1) = χ[0,.5] (x)− χ[.5,1] (x) . (89)

Example 3.2.3 (Cardinal B-Splines and Spline Wavelets). The cardinal

B-splines (basic splines) consists of functions in Cn−1 (R) with equally spaced integer

knots that coincide with polynomials of degree n on the interval [2−mk, 2−m (k + 1)].

These B-splines of order n with compact support generate a linear space V0 in L2 (R).

This leads to a multiresolution analysis {Vm,m ∈ Z} by f (x) ∈ Vm if and only if

f (2x) ∈ Vm+1.

The cardinal B-splines Bn (x) of order n are defined by the following convolution

product

B1 (x) = χ[0,1] (x) , (90)

Bn (x) = B1 (x) ∗B1 (x) ∗ . . . ∗B1 (x) = B1 (x) ∗Bn−1 (x) , (n ≥ 2) , (91)

where n factors are involved in the convolution product.

We state a fundamental result in the following:

Theorem 5. If {Vn}, n ∈ Z is a multiresolution analysis with the scaling

funtion φ, then there is a mother wavelet ψ given by

ψ (x) =
√

2
∞∑

n=−∞
(−1)n−1 c−n−1φ (2x− n) , (92)

where the coefficients cn are given by

cn = 〈φ, φ1,n〉 =
√

2

∫ ∞

−∞
φ (x)φ (2x− n) dx. (93)
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That is, the system {ψm,n (x) : m, n ∈ Z} is an orthonormal basis of L2 (R).

The reader is referred to Debnath [31] for the detailed proof.

Example 3.2.4 (Daubechies’ Orthonormal Wavelet). This example il-

lustrates one of the compactly supported orthonormal wavelets first discovered by

Daubechies [62]. Making reference to Daubechies [63] or Debnath [31], we outline

the construction of this wavelet using the dilation equation for the scaling function

φ as

φ (x) =
√

2
∞∑

n=−∞
cn φ (2x− n) , (94)

where cn = 〈φ, φ1,n〉 and
∑∞

n=−∞ |cn|2 ≤ ∞.

If the scaling function φ has compact support, then only a finite number of cn

have nonzero values. The associated generating function m̂ (ω) is

m̂ (ω) =
1√
2

∞∑
n=−∞

cn exp (−i ω n) , (95)

is a trigonometric polynomial which satisfies the orthogonality condition

|m̂ (ω)|2 + |m̂ (ω + π)|2 = 1 a.e. (96)

with special values m̂ (0) = 1 and m̂ (π) = 0. If coefficients cn are real, then the

corresponding scaling function as well as the mother wavelet ψ will also be real-

valued. The Fourier transform ψ̂ (ω) of ψ (x) corresponding to φ is given by the

formula

ψ̂ (ω) = exp

(
iω

2

)
m̂
(ω

2
+ π
)
φ̂
(ω

2

)
, (97)

with
∣∣∣φ̂ (0)

∣∣∣ = 1.

The Fourier transform ψ̂ (ω) of order N is N -times continuously differentiable,

and it satisfies the moment condition[
ψ(k) (ω)

]
ω=0

= 0 for k = 1, 2, . . . ,m. (98)

It follows that ψ ∈ Cm implies that m̂0 (ω) has a zero at ω = π of order (m+ 1). In

other words,

m̂0 (ω) =

(
1 + e−iω

2

)m+1

L̂ (ω) , (99)
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where L̂ (ω) is a trigonometric polynomial.

In addition to the orthogonality condition (96), we assume

m̂0 (ω) =

(
1 + e−iω

2

)N

L̂ (ω) , (100)

where L̂ (ω) is 2π-periodic and L̂ ∈ CN−1. It turns out that

|m̂0 (ω)|2 =
(
cos2 ω

2

)N ∣∣∣L̂0 (ω)
∣∣∣2 , (101)

where
∣∣∣L̂0 (ω)

∣∣∣2 = Q (cosω) is a polynomial in cosω so that Q (cosω) = Q (1− 2x)

with x = sin2 ω
2
. Consequently, (101) becomes

|m̂0 (ω)|2 = (1− x)N P (x) , (102)

where P (x) is a polynomial in x.

Using the orthogonality condition (96) and argument of Daubechies [63], it turns

out that there exists a unique polynomial PN (x) of degree ≤ N − 1

PN (x) =
N−1∑
k=0

(
N + k − 1

k

)
xk, (103)

which is positive in 0 < x < 1 so that PN (x) is at least a possible candidate for∣∣∣L̂ (ω)
∣∣∣2.

Finally, it turns out for N = 2 that

m̂0 (ω) =
1

8

[(
1 +
√

3
)

+
(
3 +
√

3
)
e−iω +

(
3−
√

3
)
e−2iω +

(
1−
√

3
)
e−3iω

]
,(104)

where m̂0 (0) = 1.

Comparing the coefficients of (104)with (94) gives cn as

c0 =
1

4
√

2

(
1 +
√

3
)
, c1 =

1

4
√

2

(
3 +
√

3
)
, c2 =

1

4
√

2

(
3−
√

3
)

and c3 =
1

4
√

2

(
1−
√

3
)
.

Consequently, the Daubechies scaling function 2φ (x) takes the form, dropping

the subscript and deleting the factor 1√
2
,

φ (x) = c0 φ (2x) + c1 φ (2x− 1) + c2 φ (2x− 2) + c3 φ (2x− 3) . (105)
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In view of the Theorem 5 with the factor 1√
2

deleted, it turns out that the

corresponding mother wavelet is given by

ψ (ω) = [−c3 φ (2x) + c2 φ (2x− 1)− c1 φ (2x− 2) + c0 φ (2x− 3)] , (106)

where the coefficients in (106) are the same as for the scaling function φ (x) and

with alternate terms having their signs changed from plus to minus.

It is often referred to as the Daubechies D4 wavelet as it is generated by four

coefficients. The reader is referred to Daubechies [62] or Debnath [31] for the Figures

of both Daubechies’ wavelet ψ (x) and Daubechies’ scaling function φ (x).

4. COMPACTONS AND INTRINSIC LOCALIZED MODES

Rosenau and Hyman [9] first discovered a new class of solitary waves with com-

pact support which are called compactons. This new class of solutions is governed

by a two-parameter family of strongly dispersive nonlinear equations, denoted by

K (m,n),

ut + a (um)x + b (un)xxx = 0, m > 0, 1 < n ≤ 3, (107ab)

for certain values of m and n, where a and b are positive real constants. Thus,

compactons are defined as solitons with a compact support. In other words, they

are solitons with finite wavelength or solitons that are free from exponential trails

or wings. Unlike the standard KdV soliton which narrows as the amplitude (speed)

increases, the width of a compacton is independent of the amplitude, but its speed

depends on its height. Since dispersion increases with amplitude, at high ampli-

tudes, dispersion is more dominant than that of the KdV equation, and hence, it

can more effectively counterbalance the effect of nonlinear steepening. Numerous

numerical experiments of Rosenau and Hyman [9] confirmed that, when two or more

compactons collide, they undergo a nonlinear elastic interaction according to (107ab)

and emerge from the interaction with the original form unchanged.

Equation (107a) with (+a) is called the focusing branch and admits traveling

solitary wave solutions. On the other hand, equation (107b) with (−a) is referred

to as the defocusing branch and admits solitary wave solutions with cusps or infi-

nite slopes. Thus, equations (107ab) represent two nonlinear models with entirely

different physical structures.

We follow Rosenau and Hyman [9] to find the solution of K (2, 2) with a = b = 1,

that is, the equation

ut +
(
u2
)

x
+
(
u2
)

xxx
= 0. (108)
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We seek a traveling wave solution u = u (ξ), ξ = x − ct of (108) and integrate

the resulting equation twice to obtain the following nonlinear ordinary differential

equation (
∂u

∂ξ

)2

+
1

4
u2 − 1

3
c u +

c1
u2

= c2, (109)

where c1 and c2 are integrating constants. Putting c1 = c2 = 0 leads to the solution

u (x, t) =

⎧⎨⎩
(

4c
3

)
cos2

[
1
4
(x− ct)

]
, |x− ct| ≤ 2π

0, otherwise

⎫⎬⎭ . (110)

This solution is referred to as compacton and is shown in Figure 16.

Figure 16: A Compacton.

Although the second derivative of the compacton solution is discontinuous at its

edges, it represents a solitary wave with compact support because the third deriva-

tive acts on u2, which has smooth derivatives everywhere including the edges. It has

already been indicated that dispersion increases with amplitude, and is more domi-

nant at higher amplitude than the KdV soliton, and hence, it can more effectively

counterbalance the steepening effects of nonlinearity so the result is a solitary wave

with compact support or compacton.

In general, there are three distinct traveling wave solutions of (109). When

c1 �= 0, the solutions represent waves that can be described by elliptic functions.

When c1 = 0, there exists a singular trajectory that describes trigonometric wave

solution with period 4π and its amplitude depends on the constant c2. For c2 = 0,

the solution u (x, t) is non-negative and represents a series of compactons. In view of
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degeneracy of K (2, 2) at u = 0, these compactons do not interact with each other,

and therefore, can be separated.

It was also shown by Rosenau and Hyman [9] that, for a class of general K (m,n)

equations, the compacton solution exists only for 1 < n ≤ 3, and the singular

dispersion at u = 0 plays a major role on the compactification. The upper limit

(n ≤ 3) is necessary for the existence of compacton solutions in the classical sense.

Based on hundreds of numerical experiments, Rosenau and Hyman [9] have

confirmed that, like solitons, two or more compactons physically interact with each

other, and they always remain unchanged after collision except for a slight phase

shift. Figure 17 exhibits the interaction of three compactons with speeds c = 2, 1.5,

and 1 and their identities before and after collision.

Figure 17: The interaction of three K (2, 2) compactons with speeds c = 2, 1.5, and

1 starting with centers at x = 10, 15, and 40. (Rosenau and Hyman [9]).

It was shown by Oron and Rosenau [64] that K (m,n) type equations arise in the

study of nonlinear dispersion in the formation of localized patterns in liquid drops. In

their study of a nonlinear model describing new modes of motion of the free surface

of a liquid, Ludu and Draayer [65] demonstrated the existence of localized multiple

patterns and nonlinear oscillations which include compactons, solitons and cnoidal

waves as traveling non-axially symmetric shapes. Subsequently, Ludu et al. [66]

proposed a generalized similarity analysis of nonlinear dispersive equations to find a

qualitative description of localized solutions. Their study reveals that compactons

fulfill both characteristics of solitons and wavelets with possible new applications

to the physics of droplets, bubbles, traveling patterns, fragmentation, fission and

inertial fusions. Dusuel et al. [67] made an interesting analytical, numerical and ex-

perimental study of physical systems modeled by a nonlinear Klein-Gordon equation
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with anharmonic coupling, and showed the existence of compactons. In a real phys-

ical system, they have also investigated the existence and stability of compactons

and kinks consisting of a chain of identical pendulums that are nonlinearly coupled

and experience a double-well on site potential.

In general, compacton solutions of K (m,n) equations for any m �= n are not

yet known. We closely follow the method of solution due to Rosenau and Hyman

[9] and assume the general solution of K (n, n) equation given by (107a) in the form

u (x, t) = A [sin {k (x− ct)}] 2
n−1 (111)

or, of the form

u (x, t) = A [cos {k (x− ct)}] 2
n−1 , (112)

where A and k are constants to be determined.

Substituting these solutions into (107a) and solving the resulting equations for

A and k yields

A =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

2nc
a(n+1)

) 1
n−1

, n is even

+
(

2nc
a(n+1)

) 1
n−1

, n is odd

(113ab)

and

k = +
(n− 1)

2n

√
a

b
. (114)

Consequently, the general compacton solutions are:

(i) For even n

u (x, t) =
[√

A sin {k (x− ct)}
] 2

n−1
H (k |x− ct| − 2nπ) , (115)

and

u (x, t) =
[√

A cos {k (x− ct)}
] 2

n−1
H (k |x− ct| − nπ) , (116)

where H (|x| − a) = 1, for |x| ≤ a, and zero, for |x| > a.

(ii) For odd n

u (x, t) = +
[√

A sin {k (x− ct)}
] 2

n−1
H (k |x− ct| − 2nπ) , (117)
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and

u (x, t) = +
[√

A cos {k (x− ct)}
] 2

n−1
H (k |x− ct| − nπ) , (118)

Similarly, we seek a solution of the one-dimensional defocusing branch ofK (n, n)

equation (107b) in the form

u (x, t) = A [sinh {k (x− ct)}] 2
n−1 , (119)

or

u (x, t) = A [cosh {k (x− ct)}] 2
n−1 , (120)

where A and k constants to be determined.

Substituting these solutions in (107b) and solving the resulting equations for A

and k gives the solutions for the sinh-profile where A and k are given by

A =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

2nc
a(n+1)

) 1
n−1

, where n is even,

+
(

2nc
a(n+1)

) 1
n−1

, where n is odd,

(121ab)

and

k = +
(n− 1)

2n

√
a

b
. (122)

For the cosh-profile, we obtain

A =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
(

2nc
a(n+1)

) 1
n−1

, n is even,

+
(

−2nc
a(n+1)

) 1
n−1

, n is odd.

(123ab)

Consequently, the general solutions are given as follows:

(i) For even n

u (x, t) =
[√
|A| sinh {|k| (x− ct)}

] 2
n−1

, (124)

and

u (x, t) = −
[√
|A| cosh {|k| (x− ct)}

] 2
n−1

. (125)
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(ii) For odd n

u (x, t) = +
[√
|A| sinh {|k| (x− ct)}

] 2
n−1

, c > 0, (126)

and

u (x, t) = +
[√
− |A| cosh {|k| (x− ct)}

] 2
n−1

, c < 0. (127)

With regard to the compactons, it has been shown by Rosenau and Hyman [9]

and Rosenau [68] that equations K (m,n) for m,n = 2, 3 admit a finite number of

local conservation laws. Extensive numerical experiments for m = n = 2, 3 reveal

that many of these compactons have a remarkable particle-like robustness that goes

far beyond that could be expected from four local conservation laws. Probably,

there exists nonlocal conservation laws which play an important role in compacton

dynamics.

From a physical point of view, it is evident that nonlinearity produces the

steepening effects which are counterbalanced by the smoothing effects of dispersion.

These effects play a major role in wave peaking and breaking, and other physical

features of wave phenomena including a variety of weakly singular patterns. In

order to understand the major role of these effects, several strongly nonlinear and

dispersive models have been developed without a full resolution of the problems, in

spite over 150 years of progress.

As an example of application of compactons, we consider a vibration of an

anharmonic mass-spring system consisting of N initially equally spaced (h
 1)

mass points m. The potential part of the associated Hamiltonian is

H =
N∑

n=1

1

h
(yn+1 − yn)Pn (y) , (128)

where Pn (y) = 1
N
αN yN , αN is an anharmonic parameter. For a mixed potential

P (y) = 1
2
α2 y

2 + 1
3
α3 y

3, where α2 and α3 are anharmonic parameters with small

α3. For the purely quartic potential, Rosenau [69] obtained the nonlinear Boussinesq

equation of motion in the continuum limit with yx = u, ε = 1
12
h2,

utt =
(
α3 u + α3 u

2
)

xx
+ ε α2 uxxxx + 2 ε α3

[
q

(
1

2

)]
xx

, (129)

where

q (ω) = u1−ω (uω ux)x . (130)
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Rosenau [64] showed that equation (129) admits both compacton and usual

soliton solutions. For the purely quartic potential in normalized units, the equation

of motion becomes

utt =
(
u3
)

xx
+
[
u
(
u2
)

xx

]
xx
. (131)

This is clearly a purely cubic nonlinear dispersion equation and fundamentally

different from the weakly nonlinear models, in that it is nonlinear in the highest

order derivatives, 2u2 uxxxx. Among other features, this equation also admits com-

pacton solutions in the form
√

2 c cos (x− ct). In addition, it also supports compact

breathers of the form u = Q (t)Z (x), where Q (t) satisfies the nonlinear ordinary

differential equation in the form

Q′′ (t) + κ2 Q3 (t) = 0, (132)

where κ is a separation constant. This equation gives the periodic Jacobi elliptic

function solution

Q (t) = cn

(
κt,

1√
2

)
. (133)

The function Z (x) satisfies the equation[
Z
(
Z2
)

xx

]
xx

+
(
Z3
)

xx
+ κ2Z = 0, (134)

which admits the following compacton solution

Z (x) =

⎧⎨⎩
√

8κ cos
(

1
2
x
)
, |x| ≤ π

0, otherwise

⎫⎬⎭ . (135)

While similar to this particular solution is not known, extensive numerical studies

indicate that compacton’s smoothness at the edge is not informative of their stability.

These numerical experiments also show that the low order dispersion is unable to

stabilize the compacton which decomposes immediately into a series of waves.

The nonlinear model equation

ut +

[
δ u +

3

2
γ u2 + q (ω)

]
x

+ ν utxx = 0, (136)

where δ, γ, ω and ν are constants, admits compacton solutions, and, for 2ω = νγ =

1, it has a bi-Hamiltonian structure. Rosenau [64] also proved that the infinite se-

quence of commuting flows generates an integrable, compacton’s supporting variant
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of the Harry Dym equation. In summary, the equation governing the motion of a

mass-spring system is a prototype of compacton generating equations. With appro-

priate scalings, the resulting nonlinear model can be applied to study the motion

of ion-acoustic waves, and a flow of a two-layer liquid. This model also admits

compacton solutions.

We next discuss physical solid models that are inherently discrete where the

lattice spacing represents a fundamental physical parameter. Such descrete models

admit compacton solutions, that is, soliton solutions with finite wavelength. Soliton-

type equations can be derived from such discrete models in which expansions of

the wave amplitude and the inverse pulse width that normally require a scaling

procedure. In other words, the continuum limit approach produces the condition

of the slowly varying wave envelope which is consistent with the effect of weak

dispersion balanced by a weak nonlinearly. As soon as we deal with compactons

instead of typical solitons, the continuum limit approximation can hardly be justified

because higher-order derivative terms are numerically small.

4.1 Intrinsic Localized Modes in Anharmonic Crystals

We closely follow Kivshar [70] to consider a one-dimensional lattice model in

which each atom interacts with the nearest neighbors by purely anharmonic forces.

If un (t) is the nondimensional displacement function of the nth atom from its equi-

librium position, and the atoms interact through quartic anharmonic potentials, the

equation of motion for the nth atom is given by

d2un

dt2
=
[
(un+1 − un)3 + (un−1 − un)3] , (137)

where nondimensional units are employed.

In the continuum limit, the particle number is treated as a continuous variable,

the long wavelength excitation of the nonlinear model equation (137) can be written

as

vtt =
(
v3
)

xx
+ . . . , (138)

where x = av, a (= 1) is the space of the lattice, and v = (un+1 − un) is assumed to

be a slowly varying function. For short wavelength excitations, the continuum limit

approximation can be used to the wave envelope φn (x, t) defined by the relation

un = (−1)n φn (x, t) so that equation (137) takes the form

φtt + 16φ3 + 6φ
(
φ2
)

xx
+ . . . = 0. (139)
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Using the method of solution due to Rosenau and Hyman [9], equations (138)

and (139) can be solved to describe compacton solution properties. However, these

nonlinear evolution equation have higher order dispersive terms that can be ne-

glected because these terms are numerically small for constant-width solutions.

Thus, this nonlinear discrete models seem to be natural models for description of

compacton solutions. We assume that φn is independent of time t and then seek for

standing oscillatory solutions of (137) in the form

un (t) = (−1)n φn F (t) . (140)

Substituting (140) into (137) gives two separable nonlinear equations in the

form

d2F

dt2
+ a F 3 = 0, (141)

(φn+1 + φn)3 + (φn−1 + φn)3 = a φn, (142)

where a is a separation constant. Clearly, equation (141) admits the Jacobi elliptic

function solution in the form

F (t) = A cn (ωt, k) , (143)

where ω =
√
a A, A is the amplitude, and k = 1√

2
.

Assuming a quasilinear solution with finite wavelength, the method of Rosenau

and Hyman [9] can be used to seek a solution of (142) in the form

φn =

⎧⎨⎩
cos {θ (n− n0)} , |(n− n0) θ| < π

2
,

0, otherwise.

(144)

Substituting (144) into (143) gives two relations

tan2

(
θ

2

)
=

1

3
, that is, θ =

π

3
, and a =

27

4
. (145)

Consequently, the general compacton solution of the lattice equation (137) is

given by

un (t) =

⎧⎪⎨⎪⎩
(−1)n A cos {θ (n− n0)} cn

(
ωt, 1√

2

)
, |n− n0| < 3

2
,

0, otherwise.

(146)
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If the amplitude of the compacton is taken as an independent parameter, the

frequency ω of the compacton can be defined in terms of amplitude A by

ω2 = a A2. (147)

This is identified as the nonlinear dispersion relation.

It is evident that the arbitrary parameter n0 represents the center of the com-

pacton (146) so the n0 = 0 corresponds to the compacton center at the particle site

(n = 0) and the corresponding compacton pattern is shown in Fig. 1(b) given by

Kivshar [70]. With only three lattice spacings, the compacton mode involves only

three neighboring particles oscillating with the opposite phases. At n0 = 0, the

solution (146) can be rewritten as

un (t) = A

(
. . . , 0,−1

2
, 1,−1

2
, 0, . . .

)
cn

(
ωt,

1√
2

)
. (148)

This describes the mode pattern through the amplitude of the oscillating particles.

On the other hand, when the compacton is centered just between the neighboring

particle sites, that is, at n0 = 1
2
, only two neighboring particles oscillate and the

other remains at rest as shown in Figure 1(b) by Kivshar [70]. The mode pattern

solution is obtained in the form

un (t) =

√
3

2
A (. . . , 0,−1, 1, 0, . . .) cn

(
ωt,

1√
2

)
, (149)

where
√

3
2
A is used as a renormalized amplitude of this mode in order to conserve the

total energy. Indeed, solution (146) describes an infinite family of different localized

modes that are characterized by a particular value of n0 ∈
(
0, 1

2

)
. Such a compacton

solution has been discovered for a chain of particles with quartic interatomic poten-

tials, and can naturally be used to explain the existence of new intrinsic localized

modes in anharmonic crystals. Indeed, in their pioneering work, Sievers and Takeno

[10] and Page [11] discovered these new modes based on the rotating-wave approxi-

mation (RWA) in which only a single frequency component was included in the time

dependence. More precisely, the model is described by the equation

m ẅn = k2 (wn+1 + wn−1 − 2wn) + k4

[
(wn+1 − wn)3 + (wn−1 − wn)3] , (150)

where k2 and k4 are the nearest neighbor harmonic and anharmonic force constants.

Using the RWA approximation with only the first harmonic contribution, Sievers

and Takeno [10] obtained the so-called odd-parity s mode with the displacement

function

wn (t) = A

(
. . . , 0,−1

2
, 1,−1

2
, 0, . . .

)
cosΩt, (151)
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where A is the amplitude and Ω is the frequency of the mode above the cutoff

frequency Ω2
m = (4k2/m) of the linear spectrum band. The solution (151) is, indeed,

the approximate solution of (150) in the limit as (k4A
2/k2) → ∞. Subsequently,

Page [11] discovered another type intrinsic localized mode, the so-called even-parity

p mode with the displacement function

wn (t) = A (. . . , 0,−1, 1, 0, . . .) cosΩt. (152)

In above limiting case k4A
2 � k2, the contribution of the nonlinear interaction

between particles in the model (150) is much more significant than that of a linear

coupling term so that this model can be treated as model (137) for the displacement

function un = wn

√
k4/m which is perturbed by small linear coupling term. That is

why the approximate solutions (151) and (152) are very close to the exact solutions

(148) and (149) respectively. It is pertinent to point out another striking feature of

the localized modes in the model (150) compared to the compacton solution (146) for

purely anharmonic lattice model described by (137). Based on a perturbation theory,

Sandusky et al. [71] have demonstrated that the odd-parity s-mode is unstable

against certain velocity and displacement perturbations, whereas even-parity p mode

is absolutely stable against similar perturbations. For positive anharmonicity, both

of these modes have amplitude - dependent frequencies above the maximum phonon

frequency. Furthermore, the unstable odd-parity mode is observed to evolve into

several different kinds of moving localized modes. For certain perturbations the

odd-parity mode evolves into a mode which smoothly travels from site to site with a

constant speed. These traveling modes exist over a wide range of anharmonicity and

can become trapped as the anharmonicity increases. As they travel, these modes

have a nonconstant phase difference between adjacent relative displacements. Based

on the phenomenon of the so-called Peierls-Nabarro potential to the localized mode,

Chaude et al. [72] explained this instability of the s-mode. On the other hand,

the existence of the exact compacton solution (146) with arbitrary n0 suggests that

the Peierls-Nabarro potential is absent for the compactons and they, therefore, move

freely in the lattice provided the interatomic coupling is purely anharmonic in nature.

As has been demonstrated by Sievers and Takeno [10], for sufficiently strong

anharmonicity, stable odd-parity localized excitations are possible at any lattice site

with a frequency given by

ω2 ≈ 3

m

(
k2 +

27

16
k4A

2

)
, (153)

where m is the mass of the each atom and A is the amplitude of oscillations of

the central atom in the mode pattern (151). The above analysis also reveals that
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anharmonicity is fully responsible for the existence of the new intrinsic localized

modes in anharmonic quantum crystals at finite temperature. Furthermore, the

general compacton solution can describe well two new intrinsic localized modes

obtained in the framework of the RWA approximation. Indeed, the compacton (146)

gives the s-mode pattern when it is centered at the particle site, and it reproduces

the p-mode pattern when the compacton (146) is centered in between the nearest

particle sites.

We close this section by stating higher dimensional focusing branches (+a) and

defocusing branches (−a) of K (n, n) equations:

ut + a (un)x + b (un)xxx + c (un)yyy = 0, a > 0, (154)

ut + a (un)x + b (un)xxx + c (un)yyy + d (un)zzz = 0, a > 0, (155)

ut − a (un)x + b (un)xxx + c (un)yyy = 0, a > 0, (156)

ut − a (un)x + b (un)xxx + c (un)yyy + d (un)zzz = 0, a > 0, (157)

where n > 1.

Some of these equations have not yet completely solved and their solutions may

provide new information about the properties of higher dimensional compactons.
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THE GENERALISED COUPLED ALTERNATING
GROUP EXPLICIT (CAGE) METHOD

D. J. Evans

Parallel Algorithms Research Centre

University of Technology, Loughborough, Leics., U.K.

Abstract

In this paper generalizations of the Coupled Alternating Group Explicit (CAGE)

method (1990) are presented and compared with the AGE methods for solving

tridiagonal linear systems.

KEYWORDS: ADI and AGE methods, CAGE method, SMAGE method.

1. THE AGE METHOD

Here we summarize briefly the AGE method (Evans, 1985), in Peaceman-Rachford

form (1956) and introduce the forms introduced by Douglas-Rachford (1956), Dou-

glas (1962) and Guittet (1967).

Consider the linear system

Au = b, (1)

where u and b are N-dimensional vectors and A is given as

A =

⎡⎢⎢⎢⎢⎢⎣
2g1 c1
a2 2g2 c2 O
. . . . . . . . .

aN−1 2gN−1 cN−1

O aN 2gN

⎤⎥⎥⎥⎥⎥⎦ (2)

The basic principle of the AGE iterative method consists of splitting the matrix A

into the form,

A = G1 +G2, (3)

where,

for N is even. Let us assume that all the eigenvalues of G1 and G2 are real and

positive, i.e., g1 >
1
2
(a1 + c1), i = 1, 2, ..., N.
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(4)

(5)

By applying the Peaceman Rachford form to (3), then for any iteration param-

eter r > 0, the AGE-PR(1) iterative method can be written as

(rI +G1)u
(k+1/2) = b + (rI −G2)u

(k), (6)

(rI +G2)u
(k+1) = b + (rI −G1)u

(k+1/2), (7)

or explicitly as

u(k+1/2) = (rI +G1)
−1[b + (rI −G2)u

(k)], (8)

uk+1 = (rI +G2)
−1[b + (rI −G1)u

(k+1/2)]. (9)

It has been shown earlier that the AGE-PR(1) is convergent (1985). Now let

us consider the modification of equation (7) of the AGE-PR(1) method. Then, for

any r > 0, the AGE-PR(2) scheme can be written as
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(rI +G1)u
(k+1/2) = b + (rI −G2)u

(k), (10)

(rI +G2)u
(k+1) = 2ru(k+1/2) − (rI −G2)u

(k), (11)

after using equation (6) to express G1u
(k+1/2) in terms of G2u

(k), thereby saving on

the evaluation of the right hand side sectors. The matrices G1 and G2 are as given

in (4) - (5). In explicit form the AGE-PR(2) scheme can be written as

u(k+1/2) = (rI +G1)
−1[b + (rI −G2)u

(k)], (12)

u(k+1) = (rI +G2)
−1[2ru(k+1/2) − (rI −G2)u

(k)], (13)

where the iteration matrix Tr is given by

Tr = (rI +G2)
−1[2r(rI +G1)

−1 − I](rI −G2). (14)

It is obvious that, after dropping all the superscripts, the AGE-PR(2) scheme is

consistent.

Now let us introduce a parameter ω into equation (10). Then, the new set of

equations become

(rI +G1)u
(k+1/2) = b + (rI −G2)u

(k), (15)

(rI +G2)u
(k+1) = (2− ω)ru(k+1/2) − [r(1− ω)I −G2]u

(k), (16)

or in explicit form,

u(k+1/2) = (rI +G1)
−1[b + (rI −G2)u

(k)], (17)

u(k+1) = (rI +G2)
−1[(2− ω)ru(k+1/2) − [r(1− ω)I −G2]u

(k)], (18)

resulting in the generalized AGE scheme (GAGE).

Putting ω = 0, we then have the AGE scheme (10) - (11). For ω = 1, the scheme

is analogous to the one given by Douglas and Rachford (1956). We call this scheme

as the AGE method in Douglas-Rachford form (AGE-Dr(1)). This AGE-DR(1) can

be written as

u(k+1/2) = (rI +G1)
−1[b + (rI −G2)u

(k)], (19)

u(k+1) = (rI +G2)
−1[ru(k+1/2) +G2u

(k)]. (20)

The important feature for the new generalized scheme, ω �= 1, is that it can be

applied to solve the boundary value problems with two or more variables, i.e., the

two and three dimensional problems.
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Another modification of equation (19) of the AGE-DR(1) scheme is as follows.

Then, for any r > 0, the new scheme can be written in explicit form as

u(k+1/2) = (rI +G1)
−1[b− Au(k) + (rI +G1)u

(k)], (21)

u(k+1) = (rI +G2)
−1[ru(k+1/2) +G2u

(k)], (22)

or

u(k+1/2) = (rI +G1)
−1[b + {(rI +G1)− A}u(k)], (23)

u(k+1) = (rI +G2)
−1[ru(k+1/2) +G2u

(k)], (24)

with the iteration matrix given by,

Tr = (rI +G2)
−1[r{I − (rI +G1)

−1A}+G2],

= I − r(rI +G2)
−1(rI +G1)

−1A,

which simplifies to,

Tr = I − r
1∏

i=2

(rI +Gi)
−1A, (25)

and it is obvious that the scheme (23)-(24) is consistent.

We now introduce a parameter ω in equation (23). The new set of equations

then becomes

u(k+1/2) = (rI +G1)
−1[ωb+ {(rI +G1)− ωA}u(k)], (26)

u(k+1) = (rI +G2)
−1[ru(k+1/2) +G2u

(k)]. (27)

This is another important feature, since the generalized AGE method (26)-(27)

is applicable to solve problems with higher dimensions. Putting ω = 1, we have the

scheme which is similar to AGE-DR(1) and denote this scheme as AGE-DR(2). For

ω = 2, the scheme is analogous to one given by Douglas (1956). We denote this

scheme as the AGE method in Douglas for (AGE-DG). Hence, the AGE-DG scheme

is given by

u(k+1/2) = (rI +G1)
−1[2b + {(rI +G1)− 2A}u(k)], (28)

u(k+1/2) = (rI +G1)
−1[ru(k+1/2) +G2u

(k)], (29)

with the iteration matrix given by,

Tr = I − 2r
1∏

i=2

(rI +Gi)
−1A, (30)
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and obviously, the AGE-DG scheme is consistent

In general, the generalized AGE scheme (26)-(27) with the values if ω in [1,2]

will have the iteration matrix as

Tr = I − ωr
1∏

i=2

(rI +G1)
−1A, (31)

and the scheme is convergent.

It is clear that the generalized AGE scheme (26)-(27) will give the AGE-DG

scheme when ω = 2 and the AGE-DR(2) when ω = 1. The AGE-DG scheme has

also been shown to achieve a similar rate of convergence as the AGE-PR(2) scheme.

Now we present the algorithm for the AGE-DG scheme in computational form

by using equations (28)-(29).

Algorithm 1.1 The computational form of the AGE-DG scheme.

Set: u
(k)
1 = 0, i = 0, ..., N + 1, a1 = 0, cN = 0.

Step 1: To compute u(k+1/2). Set i = 1. while i ≤ N − 1, compute

d = 1/(α1αi+1 − ai+1ci),

A = −2da1αi+1, D = 2dcici+1

B = 1 + 2d(ai+1ci − 2giαi+1), P = 2daiai+1,

C = 2dci(2gi+1 − αi+1),

E = 2d(αi+1bi − cibi+1),

Q = 2dai+1(2gi − αi),

T = 2d(αibi+1 − ai+1bi),

R = 1 + 2d(ai+1ci − 2gi+1αi), S = −2dci+1αi,

u
(k+1/2)
i = Au

(k)
i−1 +Bu

(k)
i + Cu

(k)
i+1 +Du

(k)
i+1 + E,

u
(k+1/2)
i+1 = Pu

(k)
i−1 +Qu

(k)
i +Ru

(k)
i+1 + Su

(k)
i+1 + T,

i = i + 2.

Step 2: To compute uk+1. Set i = 2.

u
(k+1)
1 = (ru

(k+1/2)
1 + g1u

(k)
1 )/α1
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while i ≤ N − 2, compute

d = 1/(α1αi+1 − ai+1ci), A = drαi+1, B = −drci,

C = d(αi+1gi − ai+1ci), D = dci(αi+1 − gi+1),

P = −drai+1, Q = drαi, R = dai+1(αi − gi),

S = d(αigi+1, Q = drαi, R = dai+1(αi − gi),

S = d(αigi+1 − ai+1ci),

u
(k+1)
i = Au

(k+1/2)
i +Bu

(k+1/2)
i+1 + Cu

(k)
i +Du

(k)
i+1,

u
(k+1)
i+1 = Pu

(k+1/2)
i +Qu

(k+1/2)
i+1 +Ru

(k)
i + Su

(k)
i+1,

i = i + 2

u
(k+1)
N = (ru

(k+1/2)
N + gNu

(k)
N )αN .

Step 3: Repeat Step 1 and Step 2 until convergence is achieved.

The computational molecules for the evaluation of u
(k+1/2)
i , i = 1, 3, .., N − 1,

are given by Figure 1.

Figure 1: The computational molecule for u(k+1/2), AGE-DG

For the evaluation of u
(k+1)
i , i = 2, , ..., N , the computational molecules can be

presented in Figure 2.

Guittet (1967) has considered another generalized form to solve the PDE prob-

lems with higher dimensions. Analogous to the one dimensional problem, the AGE

method in Guittet’s form (AGE-GT) may be written as

(rI +G1)u
(k+1/2) = ωr[b− Au(k)] +

i=1∏
2

(rI +Gi)u
(k), (32)

(rI +G2)u
(k+1) = uk+1/2), (33)

where the iteration matrix can be shown to have the form

Tr = I − ωr
i=2∏
1

(rI +Gi)
−1A. (34)
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Figure 2: The computational molecules for u(k+1), AGE-DG

Thus the scheme is also convergent and can be shown to be consistent.

2. COUPLED AGE (CAGE) FORM OF PR, DOUGLAS AND GUIT-

TET (ADI) METHODS

The Alternating Group Explicit (AGE) schemes have previously used two stages,

i.e., the first to solve for u(k+1/2) followed by the solution for u(k+1). In this section,

we will show that the two stage schemes can be combined into a single layer coupled

AGE(CAGE) method (1990).

Let us recall the four schemes that have been discussed in Section 1. The

respective CAGE formulation for these schemes can be written as follows. Let µ

and ν be the respective eigenvalues of G1 and G2.

The CAGE-PR(2) Scheme

u(k+1) = (rI +G2)
−[2r(rI +G1)

−1 − I](rI −G2)u
(k)

+ 2r(rI +G2)
−1(rI +G1)

−1b. (35)

The iteration matrix, Tr is given by,

Tr = (rI +G2)
−1[2r(rI +G1)

−1 − I](rI −G2).

We now show that the scheme is convergent. Since,

‖ Tr ‖2 = ‖ (rI +G2)
−1[2r(rI +G1)

−1 − I](rI −G2) ‖2
= | 1

r + ν

[
2

r + µ
− 1

]
(r − ν) |

= | r − ν

r + ν
| | r − µ

r + µ
|< 1.

Hence the scheme is convergent
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The CAGE-DG Scheme

uk+1 = (rI −G2)
−1[r{I − 2(rI +G1)

−1A}+G2]u
(k)

+ 2r(rI +G2)
−1(rI +G1)

−1b

= (rI +G2)
−1[(rI +G2)− 2r(rI +G1)

−1A]u(k)

+ 2r(rI +G2)
−1(rI +G1)

−1b

= [I − 2r(rI +G2)
−1(rI +G1)

−1A]u(k)

+ 2r(rI +G2)
−1(rI +G1)

−1b. (36)

The iteration matrix, Tr is given by,

Tr = I − 2r(rI +G2)
−1(rI +G1)

−1A.

For convergence, we need ‖ Tr ‖2< 1. Since,

‖ Tr ‖2 = ‖ I − 2r(rI +G2)
−1(rI +G1)

−1A ‖2
= | 1− 2r

(r + µ)(r + ν)
(µ + ν) |

= | r
2 − r(µ + ν) + µν

(r + µ)(r + ν)
|

= | r − ν

r + ν
|| r − µ

r + µ
|< 1.

Hence the scheme is convergent.

The CAGE-GT Scheme

uk+1 = [I − 2r(rI +G2)
−1(rI +G1)

−1A]u(k)

+ 2r(rI +G2)
−1(rI +G1)

−1b. (37)

The iteration matrix, Tr is given by,

Tr = I − 2r(rI +G2)
−1(rI +G1)

−1A.

Since the iteration matrix of the CAGE-GT scheme is similar to the iteration matrix

of the CAGE-DG scheme, thus the scheme converges.

THE CAGE-PR(1) Scheme

uk+1 = (rI +G2)
−1(rI −G1)(rI +G1)

−1(rI −G2)u
(k)

+ (rI +G2)
−1[I + (rI −G1)(rI +G1)

−1]b. (38)
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The iteration matrix, Tr is given by,

Tr = (rI +G2)
−1(rI −G1)(rI +G1)

−1(rI −G2).

We now show that the scheme converges. Since

‖ Tr ‖2 = ‖ (rI +G2)
−1(rI −G1)(rI +G1)

−1(rI −G2) ‖2
= | 1

r + ν
(r − µ)

1

r + µ
(r − v) |

= | r − ν

r + ν
|| r − µ

r + µ
|< 1.

hence the scheme is convergent.

In general, the CAGE method is of the form,

u(k+1) = Tru
(k) + Cb, (39)

with Tr, a matrix of the form given by,

Tr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X X

X X X X X

X X X X X O

X X X X X X

X X X X X X
. . . . . . . . . . . . . . . . . .

X X X X X X

X X X X X X

X X X X X

O X X X X X

X X X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(40)

and C is given as

265



C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X

X X X X

X X X X O

X X X X

X X X X
. . . . . . . . . . . .

X X X X

X X X X

X X X X

O X X X X

X X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (41)

where X represents a non-zero element.

3. THE CAGE ALGORITHM

The coefficient for each non-zero element X can be determined by solving the itera-

tion matrix, Tr, and matrix C from each scheme of the CAGE method.

From (26) and (27) we now present the algorithm for the CAGE method to

compute u
(k+1)
i .

The following algorithm is for the CAGE-DG and CAGE-GT schemes, since

both schemes have similar iteration matrix Tr and matrix C.

Algorithm 3.1: The CAGE-DG scheme, equation (22) and the CAGE-GT scheme,

equation (23)

Set uk
i = 0, i = 0, ..., N + 1.

Step 1: To compute uk+1. Set i = 2

d = 1/(α1α)2 − a2c1), w = 2rd/α1, E = −wc1, C = −Ec2,
A = 1 + w(a2c1 − 2g1α2), B = −E(2g2 − α2), D = wα2,

u
(k+1)
1 = Au

(k)
1 +Bu

(k)
2 + Cu

(k)
3 +Db1 + Eb2
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while i ≤ N − 2, compute

d1 = 1/(αi−1αi − aici−1), d2 = 1/(αiαi+1 − ai+1ci),

d3 = 1/(αi+1αi+2 − ai+2ci+1), w1 = 2rd1d2,

w2 = 2rd2d3, A1 = w1aiαi+1, K = w2cici+1,

A = Aiai−1, B = A1(2gi−1 − αi−1),

C = 1 + w2ai+1ciαi+2 + w1αi+1(aici−1 − 2αi−1gi),

D = ci[w2(2αi+2gi+1 = ai+2ci+1)− w1αi−1αi+1],

E = K(αi+2 − 2gi+2), F = −Kci+2, G = −w1aiαi+1,

H = w1αi−1αi+1, J = −w2ciαi+2, P1 = w1aiαi+1,

P = −Piai−1, Q = P1(αi−1 − 2gi−1),

R = ai+1[w1(2αi−1gi − aici−1)− w2αiai+2],

S = 1 + w1ciai+1αi−1 + w2α1(ai+2ci+1 − 2gi+1αi+2),

Y = −w2ci+1αi, T = −Y (2gi+2 − αi+2), U = −Y ci+2,

V = w1aiai+1,W = −w1ai+1αi−1, X = w2αiαi+2,

u
(k+1)
i = Au

(k)
i−2 +Bu

(k)
i−1 + Cu

(k)
i +Du

(k)
i+1 + Eu

(k)
i+2 + Fu

(k)
i+3

+ Gbi−1 +Hbi + Jbi+1Kbi+2,

u
(k+1)
i+1 = Pu

(k)
i−2 +Qu

(k)
i−1 +Ru

(k)
i + Su

(k)
i+1 + Tu

(k)
i+2 + Uu

(k)
i+3

+ V bi−1 +Wbi +Xbi+1Y bi+2,

i = i + 2.

d1 = 1/(αN−1αN − aNcN−1), w = 2rd1/αN , D = −waN ,

A = −DaN−1, B = −D(2gN−1 − αN−1),

C = 1 + w(aNcN−1 − 2gNαN−1), E = wαN−1,

u
(k+1)
N = Au

(k)
N−2 +Bu

(k)
N−1 + Cu

(k)
N +DbN−1 + EbN .

Step 2: Repeat Step 1 until convergence is achieved.

The presented algorithms for the CAGE-DG and CAGE-GT schemes show that

in order to determine the coefficient for each node and element bi, we need to compute

many intermediate values. Also extra work is needed in each iteration if gi (for a

given problem) depends on the solution vector ui. However, in the case where gi

is independent of ui, all the intermediate values can be computed outside the loop

and thereby save time in each iteration. Moreover, from these algorithms, it can

be deduced that the computational molecule for the CAGE method for large N , is

given by the 6 nodal formulae, i.e.,
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Figure 3: Computational molecule for the one step CAGE method.

Table 1 below shows the number of nodes for each scheme presented in Section

2 compared to the scheme derived in the form of the CAGE method above

Comp.Molec. Scheme No. of Nodes The CAGE method No. of Nodes

AGE-PR(2) 8 CAGE-PR(2) 6

AGE-DG 8 CAGE-DG 6

AGE-GT 6 CAGE-GT 6

AGE-PR(1) 8 CAGE-PR(1) 6

TABLE 1: The number of nodes in the computational molecules.

Table 1 indicates that there is a 25% saving in computation work in the CAGE

method over the AGE schemes, except the case of the CAGE-GT scheme. Although,

many intermediate values are needed prior to calculating the coefficients for the

solution vector u, these gains make the CAGE method better than the two step

AGE schemes.

Finally, it can be seen that in the CAGE-PR(2) scheme, the evaluation of the

coefficients A, B, C,... etc. of the matrix Tr is more difficult than in the CAGE-DG

scheme. Thus, at this stage, we may consider the CAGE-DG or CAGE-GT schemes

to be the best choice.
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4. THE SMART AGE (SMAGE) METHOD

Finally an alternative approach of evaluating the AGE method based on the AGE-

PR(2) scheme is considered. This new scheme is called Smart AGE (SMAGE), and

is predicted to save time as the idea involved is to eliminate evaluating two similar

terms on the right hand sides of the AGE-PR(2) scheme.

If we recall the AGE-PR(2) scheme in explicit form, we have

u(k+1/2 = (rI +G1)
−1[b + (rI −G2)u

(k)], (42)

u(k+1) = (rI +G2)
−1[2ru(k+1/2) − (rI −G2)u

(k)]. (43)

The two similar terms in these equations is (rI−G2)u
(k) and we let this term be

φ. The evaluation and saving of φ depends upon the problems, i.e., either linear or

nonlinear. The matrix A derived from the linear problems give either a constant or

variable diagonal element, where is for nonlinear problems this element is variable.

The SMAGE scheme for linear problems is envisaged to save 2 multiplications

and 1 addition for every iteration whilst, for nonlinear problems, it is expected to

save 1 multiplication and 1 addition for every iteration.

The algorithm for the linear schemes is presented as follows.

Algorithm 4.1: The SMAGE scheme

Set: u
(k)
i = 0, i = 0, ...N + 1, a1 = 0, cN = 0,

αi = r + gi, βi − r − gi, i = 1, 2, ..., N.

Step 1: To compute φ = (rI −G2)u
(0). Set i = 1

while i ≤ N − 1, compute

φi = −ciu
(0)
i−1 + βiu

(0)
i

φi = βi+1u
(0)
i+1 − ai+1u

(0)
i+2

Step 2: To compute u(k+1/2). Set i = 1

while i ≤ N − 1, compute

r1 = b1 + φi, r2 = bi+1 + φi+1

d = /(αiαi+1 − ai+1ci)

u
(k+1/2)
i = (αi+1r1 − cir2)d

u
(k+1/2)
i+1 = (−ai+1r1 + αir2)d

i = i + 2.
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Step 3: For i=1,2,...,N, compute φi = −φi + 2ru
(k+1/2)
i .

Step 4: To compute u(k+1)

u
(k+1)
1 = φ1/α1

i ≤ N − 2, compute

d = 1/(αiαi+1 − ai+1ci

u
(k+1)
i = (αi+1φi − ciφi+1)d

u
(k+1)
i+1 = (−ai+1φi + αiφi+1)d

i = i + 2.

u
(k+1)
N = φN/αN .

Step 5: For i = 1, 2, ..., N , compute φi = −φi + 2ru
(k+1)
i .

Step 6: Repeat Step 2 to Step 5 until convergence is achieved.

5. EXPERIMENTAL RESULTS

The AGE, CAGE and SMAGE schemes of sections 1, 2 and 3 were investigated

experimentally on the following linear problem and the computational complexity

and the speed (CPU time) for each of the schemes presented in Tables 2 and 3. The

time is measured initially from the initialization of u(0) until the solution converges

to u(k), where k is the number of iterations.

Problem 1- A linear problem

−U ′′ + ρU = (ρ + 1)(sinx + cosx), 0 ≤ x ≤ π

2
,

U(0) = 1, U(
π

2
) = 1, h = π/2(N + 1).

The exact solution is

U(x) = sinx + cosx.

The matrix A is given by

A =

⎡⎢⎢⎢⎢⎢⎣
2g −1

−1 2g −1 O
. . . . . . . . .

O −1 2g −1

−1 2g

⎤⎥⎥⎥⎥⎥⎦ ,

where g = 1 + 0.5ρh2.
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1) The computational complexity

Since g is independent of the solution vector u and is a constant, all interme-

diate calculations may be computed outside the iteration loop. The evaluation

of vector b, at each point, can be assigned as an array so that it will save 1

addition and 2 multiplication per iteration, Thus, the work involves only one

addition and multiplication for each node and the addition of an element of

an array.

It should be noticed that for the three CAGE schemes, the amount of

computational work is the same, i.e., 6 multiplications and 6 additions. Thus,

it is sufficient to tabulate the amount of work for the CAGE-PR(2) scheme

only in Table 2. The total operations for the other schemes may be derived in

the same way.

The results for large N are tabulated in Table 2.

The Scheme Multiplication Addition Total

AGE-PR(2) 8N 7N 15N

AGE-DG 8N 7N 15N

AGE-GT 6N 5N 11N

AGE-PR(1) 8N 8N 16N

CAGE-PR(2) 6N 6N 12N

SMAGE 7N 6N 13N

TABLE 2: Problem 1: the amount of work per iteration.

2) The CPU time

Table 3 shows the times taken for each prescribed scheme for solving Problem 1.

ρ = 70 The Schemes with times taken in sec.

N r iter. [1] [2] [3] [4] [5] [6]

20 0.60 10 0.04 0.04 0.03 0.04 0.03 0.04

40 0.30 19 0.15 0.15 0.11 0.16 0.12 0.14

80 0.11 37 0.59 0.57 0.44 0.61 0.45 0.56

160 0.05 73 2.30 2.24 1.75 2.43 1.78 2.15

320 0.02 140 8.74 8.63 6.69 9.21 6.80 8.30

TABLE 3: Problem 1: the CPU time taken for each scheme.
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Notation: [1]: AGE-PR(2), [2]:AGE-DG, [3]: AGE-GT,

[4]: AGE-PR(1), [5]: CAGE-PR(2), [6]: SMAGE.

5. CONCLUSIONS

The standard form of PR, i.e., the AGE-PR(1) scheme is known to be limited as it

will only serve to solve the one dimensional problem. This equation, when rewritten

in generalised form results in the AGE-PR(2) scheme.

This approach, together with the strategy suggested by Douglas and Guittet,

present new schemes which were analyzed theoretically and tested for convergence.

The results show that all the schemes give a similar rate of convergence when ω = 2,

i.e., all the schemes are identical.

By comparing the computational complexity for each scheme, the AGE-PR(1)

scheme has less computations but is limited in application. The AGE-DG scheme

however can be extended to solve the two and three dimensional problems. The

scheme has been shown to have slightly less computational work over the AGE-GT

scheme and is easier to implement. Thus, we might consider the AGE-DG scheme

is the best choice.

The formulae above, when rewritten in a single stage or coupled form, produce

the CAGE formula. Based on the fact that the CAGE method for the schemes

give a similar matrix, one would expect that the CPU times would be the same.

Experimentally, this is not true and the CAGE-PR(2) scheme is shown to give a

better time because it uses less intermediate variables.

The results conclude the CAGE method is not competitive to solve the one

dimensional problem, by a single parameter. However, the CAGE-DG and CAGE-

GT schemes can easily be combined with other methods such as the Richardson

method to form a good second order method.

Although the SMAGE scheme shows a significant improved CPU time, it can

only be considered for solving the one dimensional problem. The scheme which is

based on the AGE-PR(2) scheme cannot be extended to solve problems with higher

dimensions and is not suitable to be used with a second order method.

Hence, in conclusion, we may consider the AGE-DG or SMAGE scheme for

solving the one dimensional problem with a single parameter, while for the solution
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of higher dimensional problems using multiparameters the CAGE-DG or CAGE-GT

schemes are recommended to be used with the second order methods.

REFERENCES

[1] Douglas J. Alternating Direction Methods for Three Space Variables Numer.

Math., Vol. 4, (1962) pp. 41-63.

[2] Douglas J. and Rachford, H. H., On the Numerical Solution of Heat Conduc-

tion Problems in Two and Three Space Variables, Trans. Amer. Maths. Soc.,

Vol. 82, (1956) pp. 421-439.

[3] Evans D. J. Group Explicit Iterative Methods for Solving Large Linear Sys-

tems, Int. J. Comp. Maths., Vol. 17, (1985) pp. 81-108.

[4] Evans D. J. The Solution of Periodic Parabolic Equations by the Coupled

Alternating Group Explicit (CAGE) Iterative Method, Int. J. Comp. Maths.,

Vol. 34, (1990) pp. 227-235.

[5] Guittet J. Une Nouvelle Methode De Directions Alternees a q Variables, Journ.

Math. Anal. and App., Vol. 17, (1967) pp. 199-213.

[6] Peaceman D. W. and Rachford, H. H., The Numerical Solution of Parabolic

and Elliptic Differential Equations, J. Soc. Indus. Appl. Math., Vol. 3, (1955)

pp. 28-41.

273



DYADIC FRACTIONAL DIFFERENTIATION AND
INTEGRATION OF WALSH TRANSFORM

B. I. Golubov

Department of Higher Mathematics,

Moscow Engineering Physics Institute (State University)

115409, Moscow, Kashirskoe shosse, 31

e-mail: golubov@mail.mipt.ru

INTRODUCTION

Following the concept of J. E. Gibbs [1] P.L. Butzer and H.J. Wagner [2] defined

the notion of a dyadic strong derivative D. After that they introduced the dyadic

strong integral I and dyadic pointwise derivative d (see [3]–[5]). Their definitions

concerns functions defined on dyadic group G or dyadic field K. The dyadic group G

and dyadic field K are isomorphic to modified segment [0, 1]∗ and modified positive

half-line R∗
+ = [0,+∞)∗ respectively. The characters of dyadic group G and dyadic

field K are Walsh-Paley functions wn(o), n ∈ Z+ = {0, 1, 2, . . . } and generalized

Walsh functions ψy(o), y ∈ R+ respectively. P.L. Butzer and H.J. Wagner proved

the equalities Dwn = nwn and dwn(x) = nwn(x) for n ∈ Z+, x ∈ G and dψy(x) =

|y|ψy(x) for x, y ∈ K. In [3] for the functions f ∈ L(R+) the equality (D(f))̃(x) =

xf̃(x) is proved, where f̃ is the Walsh transform of the function f .

C.W. Onneweer [6] introduced modified pointwise and strong dyadic derivatives

for functions defined on dyadic group G or dyadic field K. He proved that the

characters of dyadic group G or dyadic field K are differentiable in his sense and

they are eigenfunctions of modified differential operator δ. He proved the equalities

δ(w0)(x) ≡ 0, δ(wn)(x) = 2kwn(x), 2k ≤ n < 2k+1, k ∈ Z+, x ∈ D. In another article

[7] C.W. Onneweer introduced modified fractional differentiation and integration on

compact Vilenkin groups Gp of order p ≥ 2.

Some results on modified dyadic derivatives and integrals were proved in our

papers [8] - [13]. J. Pal [14] proved that if f ∈ L(R+) and xf(x) ∈ L(R+), then

Walsh transform f̃ has dyadic pointwise derivative in the sense of Butzer-Wagner

and d(f̃)(x) = (tf(t))̃(x) at each point x ∈ R+.

In this paper we define modified dyadic strong and pointwise integral and deriva-

tive of fractional order on R+ and prove dyadic analogues of the following classical
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formulas

d

dx
f̃(x) = (−itf(t))̂(x),

∫ x

0

f̂(t)dt =

∫
R

f(t)
exp(−itx)− 1

−it dt for x ∈ R,

where

f̂(x) =

∫
R

f(t) exp(−itx)dt

is the Fourier transform of the function f ∈ L(R).

1. NOTATIONS AND DEFINITIONS

For a number x ∈ R+ ≡ [0,+∞) we consider dyadic expansion x =
+∞∑

n=−∞
2−n−1xn,

where xn equals to 0 or 1. Note that xn = 0 for n ≤ n(x), where n(x) ∈ Z =

{0, ±1, ±2, . . . }. If x is dyadic rational, then we take its finite expansion, i.e.

xn = 0 for n ≥ n0(x) > −∞. We define dyadic sum of two numbers x, y ∈ R+

by the operation ⊕ as follows: x ⊕ y = z, where zn = xn + yn (mod 2) for all

n ∈ Z. Let us set t(x, y) =
+∞∑

n=−∞
xny−n−1 and define the generalized Walsh functions

ψ(x, y) ≡ ψy(x) = (−1)t(x,y) for (x, y) ∈ R+ × R+. These were introduced by N. J.

Fine [15]. It is evident that ψ(x, y) = ψ(y, x), ψ(x, y) = ±1 for x, y ∈ R+. Let us

note that the equality

ψ(x⊕ y, t) = ψ(x, t)ψ(y, t), (1)

holds, if t, x, y ∈ R+ and x ⊕ y is not dyadic rational. Hence for fixed t and x the

equality (1.1) for all y ∈ R+ excepting the countable set is valid.

The function wn(x) ≡ ψ(x, n), n ∈ Z+, are called the Walsh-Paley functions.

They are 1-periodic on R+.

For the function f ∈ L(R+) N.J. Fine [15] (see also [16], chapter 1 or [17],

chapter 9) introduced its Walsh transform by the equality

f̃(x) =

∫
R+

ψ(x, y)f(y) dy. (2)

For a function f ∈ Lp(R+), 1 < p ≤ 2, then its Walsh transform is defined as

the limit as n → +∞ of the sequence
∫ 2n

0
f(y)ψ(x, y) dy in the norm of the space

Lq(R+), where 1
p

+ 1
q

= 1.
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For f ∈ L(R+), g ∈ Lp(R+), 1 ≤ p ≤ +∞, we set (f ∗ g)(x) =
∫

R+
f(x ⊕

y)g(y) dy, x ∈ R+,

i.e. f ∗ g is dyadic convolution of f and g. Let us note that f ∗ g ∈ Lp(R+),

(f ∗ g) (f ∗ g)̃ = f̃ g̃, if 1 ≤ p ≤ 2.

2. LEMMAS

For x > 0 we set

h(x) = 2−n, 2n ≤ x < 2n+1, n ∈ Z. (3)

It is evident that x−1 ≤ h(x) < 2x−1.

Lemma 1. If α > 0 and n ∈ Z, then for each x > 0 the following limit

W α
n (x) = lim

m→+∞

∫ 2m

2−n

(h(t))αψ(x, t) dt (4)

exists and is finite. More precisely, W α
n (x) = −2(α−1)n for 2n−1 ≤ x < 2n,

W α
n (x) = −2(α−1)n

+ 2(1 − 2−α)
k∑

i=0

2(n−i)(α−1) for 2n−k−2 ≤ x < 2n−k−1, k = 0, 1, ...

and W α
n (x) = 0 for x ≥ 2n.

Proof. From (3) and (4) we have

W α
n (x) =

+∞∑
k=−n

2−kα

(∫ 2k+1

0

ψ(x, y)dy −
∫ 2k

0

ψ(x, y)dy

)

=
+∞∑

k=−n

2−kα(D2k+1(x)−D2k(x)), (5)

where

Dy(x) =

∫ y

0

ψ(x, t)dt, x, y ∈ R+

It is known that the equality

D2k
(x) = 2kX[0,2−k)(x) (6)

holds (see [17], p. 428). From (5) and (6) it follows that W α
n (x) = 0 for x ≥ 2n. for

each x > 0 the series in the right-hand side of the equality (5) is actually a finite

sum, because only a finite number of its members are not equal to zero. Using Abel
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transform we have from (5)

W α
n (x) = −2nαD2−n(x) +

+∞∑
i=0

(
2(n−i)α − 2(n−i−1)α

)
D2−n+i+1(x).

= −2n(α−1)X[0,2n)(x) + 2(1− 2−α)
+∞∑
i=0

2(n−i)(α−1)X[0,2n−i−1)(x). (7)

From (7) for 2n−1 ≤ x < 2n we have W α
n (x) = −2(α−1)n. If 2n−k−2 ≤ x < 2n−k−1, k =

0, 1, ..., then

W α
n (x) = −2(α−1)n + 2(1− 2−α)

k∑
i=0

2(n−i)(α−1).�

We shall write below f(x) ≈ g(x), x → a, if f(x) = O(g(x)), x → a and simul-

taneously g(x) = O(f(x)), x → a. Then from the Lemma 1 we have the following

corollary.

Corollary 1.

1) If 0 < α < 1, n ∈ Z, then W α
n (x) ≈ xα−1, x→ +0;

2) W 1
n(x) ≈ log2(x

−1), x→ +0;

3) if α > 1, then W α
n (x) is bounded on R+

From the Corollary 1 and the equality W α
n (x) = 0, x ≥ 2n we obtain

Corollary 2. For α > 0 and n ∈ Z the inclusion W α
n ∈ L(R+) is valid.

Remark 1. Let us note that the Corollary 2 can be also obtained from the equality

(5). Indeed by using (5) and (6), we obtain easily the inequality ‖ W α
n ‖L(R+)≤ 2nα+1.

Lemma 2. If α > 0 and n ∈ Z then W̃ α
n (x) = ϕα

n(x) for all x ∈ R+, where

ϕα
n(x) = (h(x))αX[2−n+∞(x). (8)

Proof. According to (5) we have

W̃ α
n (x) =

+∞∑
k=−n

2−ka
[
D̃2k+1(x)− D̃2k(x)

]
. (9)
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Using the equality D̃2k = X[0,2k), k ∈ Z (see [17], p. 435), (9) and (8) we obtain

W̃ α
n (x) =

+∞∑
k=−n

2−ka
[
X[0,2k+1)(x)−X[0,2k)(x)

]
=

+∞∑
k=−n

2−kαX[2k,2k+1)(x) = ϕα
n(x), x ∈ R+.�

Corollary 3. For α > 0 and n ∈ Z the equality W̃α
n (0) = 0 is valid.

For α > 0 we set

Λα
n(x) =

∫ 2n

0

(h(t))−αψ(x, t)dt, x ∈ R+. (10)

Lemma 3. If α > 0 and n ∈ Z, then we have

a) Λα
n(x) = 2n(α+1)

2α+1−1
for 0 ≤ x < 2−n;

b) Λα
n(x) = Cα

n 2−i(α+1) for 2−n+1 ≤ x, 2−n+i+1, i ∈ Z+, where

Cα
n = − 1− 2−α

1− 2−α−1
2(n−1)(α+1). (11)

Proof. Taking into account the definition (3) of the function h(x), similarly to (5)

we obtain from (10)

Λα
n(x) =

+∞∑
k=−n

2−(k+1)α [D2−k(x)−D2−k−1(x)] , (12)

where D2k(x) is defined by the equality (6). Therefore

Λα
n(x) =

+∞∑
k=−n

2−(k+1)α
[
2−kX[0,2k)(x)− 2−k−1X[0,2k+1)(x)

]
. (13)

Using Abel transform, from (13) we obtain

Λα
n(x) = 2(n−1)α2nX[0,2−n)(x) + (2−α − 1)

+∞∑
k=−n+1

2−k(α+1)X[0,2k)(x). (14)

Hence

Λα
n(x) = 2(n−1)α2n + (2−α − 1)

+∞∑
k=−n+1

2−k(α+1) =
2n(α+1)

2α+1 − 1
for x ∈ [0, 2−n)

278



and the assertion a) of the lemma is proved

If 2−n+1 ≤ x < 2−n+i+1, i ∈ Z+, then from (14) we obtain

Λα
n(x) = (2−α − 1)

+∞∑
k=−n+1+i

2−k(α+1) = Cα
n 2−i(α+1),

where Cα
n is defined by the equality (11). �

Corollary 4. For α > 0, n ∈ Z the function Λα
n is bounded on R+ and Λα

n(x) ≈
x−α−1, x→ +∞.

Corollary 5. For α > 0, n ∈ Z the inclusion Λα
n ∈ L(R+) is valid.

Remark 2. Let us note that the Corollary 5 can be obtained also from the equality

(12). Indeed,

|Λα
n(x)| ≤

+∞∑
k=−n

2−(k+1)α[D2−k(x) +D2−k−1(x)].

From this inequality we easily deduce that ‖ Λα
n ‖L(R+)≤ 2.2(n−1)α/(1− 2−α).

Lemma 4. If α > 0 and n ∈ Z, then Λ̃α
n(x) = ψα

n(x) for all x ∈ R+, where

ψα
n(x) = (h(x))−αX[0,2n)(x) for x > 0 and ψα

n(0) = 0.

Proof. From (12) using Corollary 5 we have

Λ̃α
n(x) =

+∞∑
k=−n

2−(k+1)α[D̃2−k(x)− D̃2−k−1(x)]. (15)

As we mentioned above D̃2k = X[0,2k), k ∈ Z. Hence from (15) it follows

Λ̃α
n(x) =

+∞∑
k=−n

2−(k+1)α
[
X[0,2−k)(x)−X[0,2−k−1)(x)

]
=

+∞∑
k=−n

2−(k+1)αX[2−k−1,2−k)(x) = ψα
n(x), x ∈ R+.�

3. MAIN RESULTS

Definition 1. If α > 0 and for the function f ∈ L∞(R+) ∪ L(R+) the following

limit d(α)(f)(x) = lim
n→∞

(f ∗ Λα
n)(x) exists and is finite at the point x ∈ R+, then the
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number d(α)(f)(x) is called the dyadic derivative of order α of the function f at the

point x.

Theorem 1. Let us assume that α > 0 and f, hαf ∈ L(R+). Then the Walsh

transform f̃ of the function f has a dyadic derivation of order α at each point

x ∈ R+ and the equality d(α)(f̃)(x) = (hαf̃)(x) holds.

Proof. For each x ∈ R+ and n ∈ Z+, by definition of the Walsh transform we have

(f̃ ∗ Λα
n(x) =

∫
R+

f̃(u)Λα
n(x⊕ u)du

=

∫
R+

{∫
R+

f(t)ψ(u, t)dt

}
Λα

n(x⊕ u)du. (16)

Taking into account that |ψ(u, t)| ≡ 1, f ∈ L(R+), Λα
n ∈ L(R+) (see the Corollary 5)

and applying Fubini’s theorem, we can interchange the order of integration in the

right-hand side of (16). After that we have

(f̃ ∗ Λα
n(x) =

∫
R+

{∫
R+

Λα
n(x⊕ u)ψ(u, t)du

}
f(t)dt

=

∫
R+

{∫
R+

Λα
n(u)ψ(x⊕ u, t)du

}
f(t)dt.

Hence using the equality (1) we obtain

(f̃ ∗ Λα
n)(x) =

{∫
R+

Λα
n(u)ψ(u, t)du

}
f(t)ψ(x, t)dt

=

∫
R+

Λ̃α
n(t)f(t)ψ(x, t)dt. (17)

By the Lemma 4, the equality Λ̃α
n(x) = ψα

n(x). holds. Hence we can write the

equality (17)in the form

(f̃ ∗ Λα
n)(x) =

∫ 2n

0

(h(t))−αf(t)ψ(x, t)dt. (18)

Since h−αf ∈ L(R+), then the right-hand side of the equality (18) has a finite limit

(h−αf )̃(x) as n → +∞. But the limit of the left-hand side of (18) by definition is

equal to dα(f̃)(x).�

Lemma 5. The generalized Walsh function ψ(o, y) ≡ ψy(o) has modified dyadic

derivative of any order α > 0 at each point x ∈ R+. More precisely d(α)(ψ0)(x) ≡ 0

on R+ and d(α)(ψy)(x) = (h(y))−αψy(x) for y > 0, x ∈ R+.
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Proof. Since ψ0(x) ≡ 1 on R+ then by the Lemma 4 we have

(Λα
n ∗ ψ0) (x) =

∫
R+

Λα
n(t)dt = Λ̃α

n(0) = 0, x ∈ R+.

From this equality as n → +∞ it follows d(α)(ψ0)(x) ≡ 0 on R+. For y > 0 using

equality (1) and Lemma 4 we obtain

(Λα
n ∗ ψy)(x) = ∫

R+

Λα
n(t)ψy(x⊕ t)dt

= ψy(x)

∫
R+

Λα
n(t)ψy(t)dt = ψα

n(y)ψy(x).

Taking the limit as n→ +∞ we have d(α)(ψy)(x) = (h(y))−αψy(x) for x ∈ R+.�

Remark 3. Let us note that the relation d(α)(f̃)(x) = (h−αf )̃(x) can be formally

obtained from the equation (2) by dyadic differentiation of order α > 0 if we take

into account the Lemma 5.

Definition 2. If α > 0 and for a function f ∈ L∞(R+) the limit jα(f)(x) =

lim
n→+∞

(f ∗W α
n )(x) exists and is finite at the point x ∈ R+, then the number jα(f)(x)

is called the modified dyadic integral of order α of the function f at the point x.

Theorem 2. If α > 0, f ∈ R(R+) and hαf ∈ L(R+), then the Walsh transform of

the function f has a modified dyadic integral of order α at each point x ∈ R+ and

the equality jα(f̃)(x) = (hαf )̃(x) holds.

Proof. For each x ∈ R+ and n ∈ Z+ we have

(f̃ ∗W α
n )(x) =

∫
R+

f̃(u)W α
n (x⊕ u)du

=

∫
R+

{∫
R+

f(t)ψ(u, t)dt

}
W α

n (x⊕ u)du. (19)

Taking into account that |ψ(u, t)| ≡ 1, f ∈ L(R+),W α
n ∈ L(R+) (see the Corollary

2) and applying Fubini’s theorem, we can interchange the order of integration in the

right-hand side of (19). After that we have

(f̃ ∗W α
n )(x) =

∫
R+

{∫
R+

W α
n (x⊕ u)ψ(u, t)du

}
f(t)dt

=

∫
R+

{∫
R+

W α
n (u)ψ(x⊕ u, t)du

}
f(t)dt.
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Hence using the equality (1) we obtain

(f̃ ∗W α
n )(x) =

∫
R+

{∫
R+

W α
n (u)ψ(u, t)du

}
f(t)ψ(x, t)dt∫

R+

W̃ α
n (t)f(t)ψ(x, t)dt. (20)

By the Lemma 2 the equality W̃ α
n = ϕα

n holds. Hence we can write the equality (20)

in the form

(f̃ ∗W α
n )(x) =

∫ +∞

2−n

(h(t))αf(t)ψ(x, t)dt. (21)

Since hαf ∈ L(R+), then the right-hand side of the equality (21) has finite limit

(hαf )̃(x) as n → +∞. But the limit of the left-hand side of (21) by definition is

equal to jα(f̃)(x).�

Lemma 6. The generalized Walsh function ψ(o, y) ≡ ψy(o) has a modified dyadic

integral of any order α > 0 at each point x ∈ R+. More precisely jα(ψ0(x) = 0 on

R+ and jα(ψy)(x) = (h(y))αψy(x) for y > 0, x ∈ R+.

Proof. Since ψ0(x) ≡ 1 on R+ then the Lemma 2 and Corollary 3 we have (W α
n ∗

ψ0)(x) = W̃ α
n (0) = 0. From this equality as n→ +∞ it follows jα(ψ0(x) = 0 on R+.

For y > 0 using the equality (1) and Lemma 2 we obtain

(W α
n ∗ ψy)(x) =

∫
R+

W α
n (t)ψy(x⊕ T )dt

= ψy(x)

∫
R+

W α
n (t)ψy(t)dt = ϕα

n(y)ψy(x).

Taking the limit as n→ +∞, we deduce that jα(ψy)(x) = (h(y))αψy(x) for x ∈ R+.�

Remark 4. Let us note that the equality jα(f̃)(x) = (hαf )̃(x) can be formally

obtained from the relation (2) by dyadic integration of order α > 0 if we take into

account the Lemma 6.

Example 1. For the function ϕ = X[0,1) and α > 0 we have

a) If x ∈ [0, 1), then d(α)(ϕ)(x) = (2α+1 − 1)−1

b) if x ≥ 1, then d(α)(ϕ)(x) = −(1− 2−α)
+∞∑
k=1

2−k(α+1)X[0,2k)(x).

Example 2. For the function ϕ = X[0,1) we have:
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a) if α ∈ (0, 1) then the function ϕ has a modified dyadic integral of order α at

each point x ∈ R+;

b) for α ≥ 1 the function ϕ does not have a modified dyadic integral of order α

at any given point x ∈ R+.
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1. INTRODUCTION

This paper is a comprehensive account of the authors’ work on so called split al-

gorithms for solving Toeplitz and Toeplitz-plus-Hankel systems of equations during

the last two years. The main aim of this work was to remove additional constraints

which are contained in the classical versions of the algorithms, so that the algorithms

are applicable to any nonsingular matrix in the given class.

To begin with let us give a brief introduction into the subject. The solution of a

linear system Ax = b with a nonsingular n×n coefficient matrix A using a standard

direct algorithm requires O(n3) operations. In case that A has a certain structure

this amount can be reduced to O(n2) or less for some important classes (see [17],

[32], [14] and references therein). For example, if A = Tn is a Toeplitz matrix Tn =

[ ai−j ]ni,j=1, then two well known algorithms do this job: the Levinson (also called

Levinson-Durbin) algorithm and the Schur (also called Schur-Bareiss) algorithm.

Fast algorithms of these two types also exist for Toeplitz-plus-Hankel (briefly T+H)

matrices C = [ ai−j +si+j−1 ] (see [37], [36], [16] and [26] and references in [26]). The

problem with all these algorithms is that they are applicable in their original form

only under some conditions. For example, both the classical Levinson and the Schur

algorithms require that the leading principal submatrices are nonsingular. A matrix

with this property is called strongly nonsingular. In order to avoid breakdowns in

computer programmes it is desirable to have modifications of the algorithms that

are applicable without any restriction. A modification of the Levinson algorithm

working for Toeplitz matrices with any rank profile was first described in [10]. Schur-

type algorithms and algorithms for block Toeplitz matrices were presented in [17],

[6], [38], [40], [11], [15], and other papers. Fast algorithms that are applicable to any

T+H matrix were presented in the recent paper [14].
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It was observed in [4] and [5] that in the case of a symmetric Toeplitz ma-

trix the number of multiplications in the Levinson and Schur algorithms can be

reduced by 50% while keeping the number of additions if symmetry properties are

exploited. The decisive feature that allows the computational reduction for a sym-

metric Toeplitz matrix is not its symmetry but rather its centrosymmetry. A matrix

[ aij ]ni,j=1 is called centrosymmetric if an+1−i,n+1−j = aij. The subspaces of symmetric

and skewsymmetric vectors are invariant subspaces of any centrosymmetric matrix.

Thus linear systems can be “splitted” – therefore the name “split” algorithm – into

a symmetric and a skewsymmetric part, so that most of the calculations in the al-

gorithm include operations on symmetric and skewsymmetric vectors. This leads

to the complexity reduction. The split Levinson algorithm for symmetric Toeplitz

matrices was slightly improved in [35] (see also references therein) and [13]. The lat-

ter paper also contains the corresponding Schur counterpart and generalizations to

centrosymmetric Toeplitz-plus-Hankel matrices. Split algorithm for skewsymmetric

Toeplitz matrices were designed in [23]. Note that the classical Levinson and Schur

algorithms do not work for skewsymmetric Toeplitz matrices. Analogous algorithms

for hermitian Toeplitz matrices were presented in [33], [34], [3]. We call them also

“split algorithms” despite they are not “split” in the original sense. Split algorithms

for centrosymmetric T+H matrices can be found in [13] and [25]. In the latter paper

also centro-skewsymmetric T+H matrices were considered. In our paper [26] it was

shown that the approach for the construction of split algorithms can be generalized

to general T+H matrices. That leads to methods which are more efficient than pre-

vious ones, but the gain is less than in the pure Toeplitz or centrosymmetric T+H

case.

All split algorithms designed in the papers mentioned above work only under

some conditions. In most cases it is required that the central submatrices are non-

singular. A matrix with this property is called centrononsingular. The authors took

the challenge to design split algorithms without extra conditions. In this paper we

present such algorithms for symmetric, skewsymmetric and hermitian Toeplitz ma-

trices, and for centrosymmetric T+H matrices. Note that it is an open question

how to overcome the restriction of centrononsingularity in the split algorithms for

general T+H matrices that are presented in [26].

The classical Levinson-type and Schur-type algorithms are related to triangu-

lar factorization. The Schur algorithm produces an LU-factorization of the matrix

whereas the Levinson-type algorithms produce a UL-factorization of its inverse. It

was observed in [2] that the split Levinson algorithm for symmetric Toeplitz matrices

produces a WZ-factorization of the inverse matrix (for the definition of this concept
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see Section 5). Likewise, the split Schur algorithm provides a ZW-factorization of

the matrix itself. Originally the concept of WZ-factorization was introduced and

studied by D.J. Evans and his coworkers [8] in connection with parallel solution of

tridiagonal systems. The ZW- and WZ-factorizations for skewsymmetric Toeplitz,

hermitian Toeplitz, centrosymmetric T+H, and general T+H matrices and their

inverses were investigated in [23], [29], [25], and [26], respectively.

Let us explain the methodology of our approach to design algorithms for ma-

trices with any rank profile. There are, in principle, two possibilities to deal with

singular principal submatrices. The first one is based on a look-ahead strategy, which

results in jumping from one nonsingular principal submatrix to the next one. This

approach, however, is not applicable to block Toeplitz matrices and general T+H

matrices. The second approach is based on the concept of a fundamental system of

the matrix, which is a system of a few vectors (in the Toeplitz case 2, in the T+H

case 4) containing all information about the matrix, no matter whether the matrix

is nonsingular or singular. In the present paper we focus our attention to the look-

ahead approach. Note that the fundamental system approach for skewsymmetric

Toeplitz matrices is discussed in the Thesis [2].

Throughout the paper we consider matrices with entries from a field F with a

characteristic different from 2. Only in the sections concerning hermitian matrices

the underlying field will be the field of complex numbers C. By ek we denote the

kth vector in the standard basis of F n .

2. INVERSION FORMULAS

A common tool for solving a structured system of equations is to use special matrix

representations for the inverse matrix. The system is solved then by fast matrix-

vector multiplication. In this section we discuss inversion formulas for special classes

that are adapted to the algorithms which will be presented in the forthcoming sec-

tions.

2.1. General Toeplitz Matrices

To begin with we recall some facts concerning inverses of Toeplitz matrices. It is

well known that inverses of Toeplitz matrices are, in general, not Toeplitz matrices

again but so-called Toeplitz Bezoutians. We give the definition in terms of the

generating function of a matrix.

If A = [ aij ]ni,j=1 is a matrix, then the generating function is, by definition, the
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bivariate polynomial A(t, s) =
∑n

i,j=1 aijt
i−1sj−1 . In the same spirit the polynomial

x(t) is defined for a vector x. Let p,q ∈ F n+1 and let

Jn =

⎡⎣ 0 1

. .
.

1 0

⎤⎦
be the n× n matrix of the counteridentity. Then the (Toeplitz) Bezoutian of p and

q is defined as the n× n matrix B = Bez (p,q) with the generating function

B(t, s) =
p(t)q̂(s)− q(t)p̂(s)

1− ts
,

where p̂ = Jn+1p . Originally, Bezoutians were introduced in connection with root

separation problems (see [17] and references therein). The entries of the matrix

B can be constructed recursively from p and q in O(n2) operations (see [17]).

More important are “global” matrix representations of Bezoutians like the Gohberg-

Semencul formula

Bez (p,q) =

⎡⎢⎣ p0

...
. . .

pn−1 . . . p0

⎤⎥⎦
⎡⎢⎣ qn . . . q1

. . .
...

qn

⎤⎥⎦−
⎡⎢⎣ q0

...
. . .

qn−1 . . . q0

⎤⎥⎦
⎡⎢⎣ pn . . . p1

. . .
...

pn

⎤⎥⎦ ,
where p = (pi)

n
i=0, q = (qi)

n
i=0.

In the case where F = C or F = R this and other representations allow matrix-

vector multiplication by Bezoutians with a computational complexity of O(n log n)

if FFT or fast real trigonometric transformations are used. Note that more efficient

formulas than the Gohberg-Semencul formula involving circulant and skewcirculant

matrices were presented in [8], [9], [12], and other papers. Representations that

involve only diagonal matrices and discrete Fourier or real trigonometric transfor-

mations can be found in [18], [20], [21], and [41]. The following fact is well known

(see [17]).

Proposition 2.1 The inverse of a nonsingular n×n Toeplitz matrix Tn admits the

representation

T−1
n = Bez (p,q) ,

where

p =

[
p′

0

]
, p′ = T−1

n e1, q =

[
q′

1

]
, q′ = T−1

n g, g = (−ai−n)n−1
i=0 ,

and a−n ∈ F is arbitrary.
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A disadvantage of this formula is that if Tn has a symmetry property, then

this is not reflected in the formula. But this is desirable in order to design efficient

algorithms exploiting the symmetry. Next we discuss formulas that reflect symmetry

properties of the Toeplitz matrix.

2.2. Symmetric Toeplitz Matrices

In the case of a symmetric Toeplitz matrix Tn = [ a|i−j| ]ni,j=1 the classical

Gohberg-Semencul formula reflects the symmetry of the matrix (see [17]). The

parameters in the formula are the components of the first column of the inverse of

an (n+ 1)× (n+ 1) Toeplitz extension Tn+1 of Tn. It can be shown that almost all

extensions Tn+1 are nonsingular. In connection with split algorithms it is convenient

to consider a formula that involves the symmetric and skewsymmetric part of this

vector. Let x±
n+1 be the solution of

Tn+1x
±
n+1 = e1 ± en+1.

Note that x+
n+1 is symmetric and x−

n+1 is skewsymmetric. Then Proposition 2.1 leads

to the following (see [19]).

Theorem 2.2 The inverse of a nonsingular symmetric n× n Toeplitz matrix Tn =

[ a|i−j| ]ni,j=1 is given by

T−1
n (t, s) =

1

γ

x+
n+1(t)x

−
n+1(s) + x−

n+1(t)x
+
n+1(s)

1− ts
,

where γ = x+
n+1(0) + x−

n+1(0).

The algorithms described below compute the (symmetric) solutions of the equa-

tions Tkxk = e1 ± ek for k = n and k = n + 2, where Tn+2 is an (n + 2) × (n + 2)

nonsingular symmetric Toeplitz extension of Tn+1. We show now how x±
n+1 can be

computed from xn and xn+2 (see [28]).

Proposition 2.3 The polynomials x±
n+1(t) are given by

x±
n+1(t) =

txn(t)− c±xn+2(t)

t± 1
,

where xn+2(1) �= 0 and c− = xn(1)
xn+2(1)

. If n is odd, then xn+2(−1) �= 0 and c+ =

− xn(−1)
xn+2(−1)

. If n is even, then xn+2(−1) = 0 and c+ is not determined by xn and xn+2

alone.
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If n is even, then the constant c+ can be obtained by applying a test functional,

which could be the multiplication by any row of Tn+1.

2.3. Skewsymmetric Toeplitz Matrices

Let Tn = [ ai−j ]ni,j=1 be a nonsingular skewsymmetric Toeplitz matrix, i.e. a−i =

−ai. Since any skewsymmetric matrix of odd order is singular, n must be even. We

extend Tn to a skewsymmetric Toeplitz matrix Tn+1. Clearly, the kernel of this matrix

as well as the kernel of Tn−1 have dimension one. Moreover, it can be shown (see [23])

that these kernels consist only of symmetric vectors. Let u,u′ be vectors spanning

kerTn+1 and kerTn−1, respectively, that are normalized according to eT
1 u = 1 and

[ an−1 . . . a1 ]u′ = 1. The following consequence of Proposition 2.1 was proved in

[23].

Theorem 2.4 The inverse of a nonsingular skewsymmetric Toeplitz matrix Tn is

given by

T−1
n (t, s) =

u(t)x(s)− x(t)u(s)

1− ts
.

where x(t) = tu′(t).

Note that in the formula for the inverse of a skewsymmetric Toeplitz matrix

only symmetric vectors are involved, whereas in the corresponding formula for the

symmetric case we have one symmetric and one skewsymmetric vector. Some expla-

nation of this surprising fact is given in [22]. As a consequence of this, the compu-

tation for skewsymmetric Toeplitz matrices is somehow simpler than for symmetric

matrices. There is no need for after processing calculations like in Proposition 2.3.

2.4. Hermitian Toeplitz Matrices

Let F = C and Tn = [ ai−j ]ni,j=1 be an hermitian Toeplitz matrix, i.e. a−i = ai.

Since the splitting of hermitian Toeplitz matrices is different to that of symmetric

Toeplitz matrices, we have a different kind of algorithms. As a consequence of this

we need an inversion formula that does not involve the vectors x±
n+1 but the solutions

of equations

Tkqk = 1 (k = n, n + 1) .

Here Tn+1 is a nonsingular (n+ 1)× (n+ 1) hermitian Toeplitz extension of Tn and

1 denotes the vector all components of which are equal to 1. The following formula

can be found in [30].
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Theorem 2.5 The inverse T−1
n is given by

T−1
n (t, s) =

i

c

w(t)qn+1(s) + qn+1(t)w(s)

1− ts
− 1

c
qn(t)qn(s) , (1)

where w(t) = i(t− 1)qn(t), c = qn+1(1)− qn(1) and i =
√−1.

Note that the vectors qk and w are conjugate-symmetric, which means that

Jkqk = qk and Jn+1w = w. It is important to mention that Tn+1w = ρen+1 + ρe1

for some ρ ∈ C and w(1) = 0. The vector w is characterized by these two properties

up to a real, nonzero factor.

We give another interpretation of this fact which is convenient for our purposes.

For this we introduce the matrices

∂Tk = [ ai−j ]k−1, k
i=1, j=0 (k = n, n + 1)

obtained from Tk by deleting its first row and adding a column to the right com-

patible with its Toeplitz structure. Let Ck denote the subspace over the reals of all

conjugate-symmetric vectors u in the kernel of ∂Tk satisfying u(1) = 0. It can be

shown that Ck is one-dimensional (over the reals) if Tk is nonsingular. In particular,

the vector w spans Cn. Furthermore, the polynomial qn+1(t) can be obtained, up to

a real factor, from a vector wn+1 spanning Cn+1 by dividing wn+1(t) by i(t− 1).

2.5. Centrosymmetric Toeplitz-plus-Hankel Matrices

We consider now T+H matrices Cn = [ ai−j + si+j−1 ]ni,j=1 that are centrosym-

metric, which means that JnCnJn = Cn. As it was shown in [24], these matrices have

some remarkable representation. To present it we introduce some notation. Let F n
+,

F n
− be the subspaces of F n consisting of all symmetric or skewsymmetric vectors,

respectively. Then P±
n = 1

2
(In±Jn) are the projections onto F n

±, respectively. Since

Cn is assumed to be centrosymmetric, the subspaces F n
± are invariant under Cn.

A centrosymmetric T+H matrix Cn can be represented in the form

Cn = T+
n P

+
n + T−

n P
−
n ,

where T±
n are the symmetric Toeplitz matrices T±

n = [ c±|i−j| ]
n
i,j=1, c

±
i = ai ± si+n.

Conversely, each matrix of this form is a centrosymmetric T+H matrix. For details

we refer to [24]. Thus a linear system Cnf = b is equivalent to the two symmetric

Toeplitz systems

T±
n f± = P±b,
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where f = f+ + f−. Furthermore, in case that the matrices T±
n are nonsingular,

the Toeplitz inversion formula provides an inversion formula for Cn. However, the

matrices T±
n in the representation of Cn might be singular (see [24]), so that some

specific considerations are necessary.

It turned out that the inverse of Cn can be represented in terms of another kind

of Bezoutians, which will be called T+H Bezoutians and defined next. Let u,v ∈
F n+2 be both either symmetric or skewsymmetric vectors. The T+H Bezoutian of

u and v is, by definition, the n×n matrix B̃ = B̃(u,v) with the generating function

B̃(t, s) =
u(t)v(s)− v(t)u(s)

(t− s)(1− ts)
.

Besides Cn we consider a nonsingular (n+2)× (n+2) extension Cn+2 obtained from

Cn by extending the Toeplitz matrices T±
n to symmetric (n + 2)× (n + 2) Toeplitz

matrices. The following theorem is presented in [25] as a modification of a result in

[24]. The superscript + at a vector indicates that the vector is symmetric and −
that the vector is skewsymmetric.

Theorem 2.6 The equations

T+
n x+

n = P+
n en , T+

n+2x
+
n+2 = P+

n+2en+2 ,

T−
n x−

n = P−
n en , T−

n+2x
−
n+2 = P−

n+2en+2

(2)

have unique symmetric or skewsymmetric solutions x±
n and x±

n+2, respectively,

and

C−1
n =

1

r+

B̃(x+
n+2, x̃

+
n ) +

1

r−
B̃(x−

n+2, x̃
−
n ),

where r± is the last component of x±
n+2, and x̃±

n ∈ F n+2 is the vector obtained from

x±
n ∈ F n

± by adding a zero at the top and the bottom.

3. SPLIT LEVINSON ALGORITHMS

We show in this section how the data in the inversion formulas can be computed in

an efficient way.

3.1. Symmetric Toeplitz and Centrosymmetric T+H Matrices

To begin with we introduce some notations. For a vector u = (ui)
l
i=1, let Mk(u)
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denote the (k + l − 1)× k matrix

Mk(u) =

⎡⎢⎢⎢⎢⎢⎢⎣
u1 0
...

. . .

ul u1

. . .
...

0 ul

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
k + l − 1 .

It is easily checked that, for x ∈ Ck, (Mk(u)x)(t) = u(t)x(t), i.e. Mk(u) is the

matrix of the operator of multiplication by u(t). For a given symmetric Toeplitz

matrix Tn = [ ai−j ]ni,j=1, we denote by Tk the kth leading principal submatrix of Tn.

Note that Tk is also a central submatrix of Tn if n − k is even. We denote by T+
k

the restriction of Tk (as linear operator) to the subspace of symmetric vectors. Let

n1 < . . . < n� = n be the integers j ∈ { 1, 2, . . . , n } for which T+
j is invertible and

n − j is even, n�+1 = n + 2 . We set dk = 1
2
(nk − nk−1). Let x(k) ∈ F

nk
+ be the

solution of T+
nk

x(k) = e+
1 . Then it can be shown (see [28]) that x(k) has the form

x(k) =
1

ρk

⎡⎣ 0dk−1

u(k)

0dk−1

⎤⎦ (3)

for some ρk ∈ F and monic u(k) ∈ F
nk−1+2
+ . We define the residuals r

(k)
i by

r
(k)
i = [ ai+nk−1

. . . ai−1 ]u(k) (4)

for i = 1, . . . , n− nk−1 + 1 and consider the (dk + 1)× (dk + 1) triangular Toeplitz

matrices

R(k) =

⎡⎢⎣ r
(k)
dk

0
...

. . .

r
(k)
2dk

. . . r
(k)
dk

⎤⎥⎦ . (5)

The split Levinson algorithm computes the monic vectors u(k+1) and the integers

dk from u(k) and u(k−1). This will give us also x(k) via (3), where ρk = r
(k)
dk

. We start

with

u(1) =

[
1

1

]
, n0 = 0 or u(1) = [ 1 ] , n0 = −1 ,

depending on whether n is even or odd. We trace the residuals r
(1)
i for i = 1, 2, . . .

until we get a nonzero number. Let r
(1)
d �= 0 and r

(1)
i = 0 for 1 ≤ i < d. Then

d1 = d and x(1) is given by (3) for k = 1, where ρ1 = r
(1)
d . Furthermore, n1 = 2d

if N is even and n1 = 2d − 1 if N is odd. We show how to find u(2). For this we
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form R(1) and solve the system R(1)c = e1 − e2 if N is even or R(1)c = e1 − e3 if

N is odd and d > 1. If N is odd and d = 1, then c is a solution of [ 2a1 a0 ] c = 0.

Now we form the symmetric vector p(1) = 1
γ

[
c

∗
]
∈ F 2d+1, where γ is the first

component of c and the asterisk indicates the symmetric extension. Now u(2) is

given by u(2) = M2d+1(u
(1))p(1).

Now we assume that u(k) and u(k−1) are given. We compute r
(k)
i for i = 1, 2, . . .

by (4) until we get a nonzero number. Suppose that r
(k)
d �= 0 and r

(k)
i = 0 for

1 ≤ i < d. Then dk = d and x(k) is given by (3), where ρk = r
(k)
d . Next we

compute r
(k)
i for i = dk + 1, . . . , d2dk

and, in case that dk > dk−1, also r
(k−1)
i for

i = 2dk−1 + 1, . . . , dk + dk−1. We form the matrix R(k) according to (5), the vector

s(k) = [ r
(k−1)
dk−1+i−1 ]dk+1

i=1 , and solve the triangular Toeplitz system R(k)c = s(k). From

its solution c we form the symmetric vector

p(k) =
ρk

ρk−1

[
c

∗
]
∈ F

2dk+1
+ ,

where the asterisk denotes the symmetric extension. Then p(k) is monic and

u(k+1) = M2dk+1(u
(k))p(k) −

⎡⎣ 0dk−1+dk

u(k−1)

0dk−1+dk

⎤⎦ ∈ F
nk+2
+ . (6)

Relation (6) describes one step of the recursive algorithm to find u(�) and u(�+1).

The solutions x(�) = xn and x(�+1) = xn+2 that are involved in the inversion formula

in Subsection 2.2 are given now by (3). In the special case dk = 1 for all k this

algorithm is closely related to the algorithms described in [35] and [13]. Relation

(6) can also be described in polynomial language as follows.

Theorem 3.1 The polynomials u(k)(t) satisfy the recursion

u(k+1)(t) = p(k)(t)u(k)(t)− q(k) tdk−1+dk u(k−1)(t),

the polynomials x(k)(t) the recursion

x(k+1)(t) = tdk+1−dkp(k)(t)x(k)(t)− q(k) tdk+1+dk x(k−1)(t),

where k = 1, . . . , � and q(k) =
ρk

ρk−1

.

An analogue recursion holds for the solution of the equations Tjx
−
j = e−

1 , where

j runs over all numbers for which n − j is even and the restriction of Tj to the
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subspace of skewsymmetric polynomials is invertible. The split Levinson algorithm

for the centrosymmetric T+H matrix Cn = T+
n P

+
n +T−

n P
−
n is now a straightforward

generalization, since T+
n and T−

n are both symmetric Toeplitz matrices. To compute

the solutions of (2) one has to run the split Levinson algorithm described above for

T+
n and its skewsymmetric counterpart for T−

n .

3.2. Skewsymmetric Toeplitz Matrices

In the style of the previous subsection let n1 < . . . < n� = n be the integers

j ∈ { 1, 2, . . . , n } for which Tj is nonsingular, dk = 1
2
(nk − nk−1). But now u(k) is

the vector spanning the kernel of Tnk+1 with last component equal to 1 and x(k) is

a solution of

Tnk+1x
(k) = enk+1 − e1.

The residuals r
(k)
j and s

(k)
j of u(k) and x(k) are defined by

r
(k)
j = [ aj+nk

· · · aj ]u(k), s
(k)
j = [ aj+nk

· · · aj ]x(k) , (7)

respectively, for j = 0, . . . , n− nk. Clearly, r
(k)
0 = 0 and s

(k)
0 = 1.

Our aim is to find u = u(�) and x = x(�). As it was shown in [27], x(k) is of the

form

x(k) =
1

r
(k−1)
dk

⎡⎣ 0dk

u(k−1)

0dk

⎤⎦
and

s
(k)
j =

1

r
(k−1)
dk

r
(k−1)
j+dk

.

That means it is sufficient to compute the residuals r
(k)
j and to construct the vectors

u(k).

For initialization we set n0 = 0 and u(0) = 1. Then r
(0)
j = aj. If a1 = · · · =

ad−1 = 0 and ad �= 0, then n1 = 2d. The vector u(1) is the normalized solution of

the homogeneous system T2d+1v = 0. Let us show how this solution can be found.

We form the matrix

R̃(0) =

⎡⎢⎣ ad · · · a2d

. . .
...

0 ad

⎤⎥⎦ .
Let c be the solution of the triangular Toeplitz system (R̃(0))Tc = e1 and v =
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[
c

c′

]
∈ F 2d+1

+ its symmetric extension. Then T2d+1v = 0. Hence u(1) = 1
c
v, where

c is the first component of c.

We assume now that nk−1, nk, u(k−1) and u(k) are given. We also need some

of the values r
(k−1)
j (j = 1, . . . , 2dk) that are computed in the previous step. Now

nk+1 and u(k+1) are computed as follows. If r
(k)
1 = · · · = r

(k)
d−1 = 0 and r

(k)
d �= 0, then

dk+1 = d, i.e. nk+1 = nk +2d. We compute the numbers r
(k)
dk+1+1, . . . , r

(k)
2dk+1

and form

the matrix R̃(k) as

R̃(k) =

⎡⎢⎣ r
(k)
dk+1

· · · r
(k)
2dk+1

. . .
...

0 r
(k)
dk+1

⎤⎥⎦ .
If dk+1 > dk, then it will be necessary to compute also the numbers r

(k−1)
j for

j = 2dk + 1, . . . , dk + dk+1 to form the vector r′(k−1) = (r
(k−1)
j )

dk+dk+1

j=dk
.

Let c(k) be the solution of the triangular Toeplitz system (R̃(k))Tc(k) = r′(k−1),

q(k) = 1
c
, where c is the first component of c(k), and p(k) = q(k)

[
c(k)

c′(k)

]
∈ F

2dk+1+1
+

be the symmetric extension of q(k)c(k). Then

u(k+1) = M2dk+1+1(u
(k))p(k) − q(k)

⎡⎣ 0dk+dk+1

u(k−1)

0dk+dk+1

⎤⎦ .

In polynomial language the recursion can be written as follows.

Theorem 3.2 The polynomials u(k)(t) satisfy the three-term recursion

u(k+1)(t) = p(k)(t)u(k)(t)− tdk+dk+1 q(k)u(k−1)(t).

Example. Consider the skewsymmetric Toeplitz matrix T6 = [ ai−j ]6i,j=1, with

( ak )5
k=1 = (1, 2, 3, 5, 6). Since we need also an extension of T6 we set a6 = 0. The

standard setting for initialization is n0 = 0,u(0) = 1 and r
(0)
j = aj. Since r

(0)
1 = 1 �= 0

we have d1 = 1 and n1 = 2. We obtain x(1) = [ 0 1 0 ]T and u(1) = [ 1, −2, 1 ]T . With

u(0) and u(1) we can start the recursion.

We compute the residuals as r
(1)
1 = 0, r

(1)
2 = 1. Thus d2 = 2, n2 = n1 + 2d1 = 6,

and x(2) = [ 0, 0, 1,−2, 1, 0, 0 ]T . In order to form the matrix R̃(1) we find that

r
(1)
3 = −1 and r

(1)
4 = −7, and in order to form the vector r′(0) we observe that
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r
(0)
2 = a2 = 2, r

(0)
3 = a3 = 3. The solution of the system (R̃(1))Tc(1) = r′(0) is

c(1) = [ 1, 3, 13 ]T . Hence p(1) = [ 1, 3, 13, 3, 1 ]T , which gives

u(2) = [ 1, 1, 8, −21, 8, 1, 1 ]T .

The inverse of T6 is now given by Theorem 2.4 with x = x(2) and u = u(2). A check

shows that this really gives the inverse matrix.

3.3. Hermitian Toeplitz Matrices

In this section we have F = C. The algorithms described in the previous sections

cannot be generalized to hermitian Toeplitz matrices Tn = [ ai−j ]ni,j=1, a−i = ai.

The reason for this is that Tn is not the direct sum of T+
n and T−

n . Nevertheless

an algorithm exists that generalize, in principle, the algorithms in [33] and [34]. In

contrast to the previous cases, where the step size was even, the step size in this

algorithm will be always odd.

Besides Tn we consider its leading principal submatrices Tj and a nonsingular

hermitian Toeplitz extension Tn+1. We extend the definition of Cj given in Section

2.4 for j = n, n + 1 to all j and denote by κj the dimension (over the reals) of Cj.
Let n1 = 1 and n2 < · · · < n� = n + 1 all integers j > 1 for which κj = κj−1 = 1.

Let w(k) (k = 1, . . . , �) be a vector spanning the subspace Cnk
. Each of these vectors

is unique up to a real factor. The following observation is important for the design

of our algorithm (see [30]).

Proposition 3.3 The difference nk+1 − nk is always odd.

We set dk = 1
2
(nk+1 − nk + 1), i.e. nk+1 = nk + 2dk − 1. Suppose that w(k−1) ∈

Cnk−1
and w(k) ∈ Cnk

are given. We show how to find nk+1 and w(k+1). Let the

“residuals” rjk be defined by

rjk = [ ank+j−1 . . . aj−1 ]w(k) (j = 1, 2 . . . ) .

The recursion step starts with computing the residuals rjk for j = 1, 2, . . . until a

nonzero one appears. Assume that r1k = · · · = rd−1,k = 0 and rdk �= 0. We will see

that d = dk. Then we compute the residuals rd+1,k, . . . , r2d−1,k and form the lower

triangular d× d Toeplitz matrix

Rk =

⎡⎢⎣ rdk

...
. . .

r2d−1,k . . . rdk

⎤⎥⎦ . (8)
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If d > dk−1, then we also compute the residuals rj,k−1 for j = 2dk−1, . . . , dk−1 +d− 1

in order form the vector rk−1 = (rdk−1+j−1,k−1)
d
j=1. The other components of this

vector were computed in the previous step.

We have

∂Tnk+2d−1M2d(w
(k)) =

⎡⎣ O R∗
k

O O

Rk O

⎤⎦ ,

where R∗
k = R

T

k . From this representation we can see that if d = 1, i.e. r1k �= 0, then

κnk+1 = 0. Hence dk = d = 1. Furthermore, we see that if d > 1, then κnk+j > 0 for

j = 1, . . . , 2d−3 but κnk+2d−2 = 0. The vector

⎡⎣ 0

wk

0

⎤⎦ spans Cnk+2d−2. According to

Proposition 3.3 we have also κnk+2d−1 = 0. Hence nk+1 = nk + 2d− 1, i.e. d = dk+1.

Hereafter, for a vector u ∈ Cd we denote by u# the vector u# = Jdu.

Let ck be the solution of the triangular Toeplitz system

Rkck = rk−1 ,

and p(k) =

[
ck

c#
k

]
. Then we have

∂Tnk+2d−1

⎛⎝M2d(wk)p
(k) −

⎡⎣ 0

wk−1

0

⎤⎦⎞⎠ =

[
R∗

kc
#
k − r#

k−1

Rkck − rk−1

]
= 0 .

That means that the vector

w = M2d(wk)p
(k) −

⎡⎣ 0

wk−1

0

⎤⎦
belongs to the kernel of ∂Tnk+2d−1 and satisfies w(1) = 0. Hence wk+1 = w. In

polynomial language this can be expressed as follows.

Theorem 3.4 For k = 2, . . . , � − 1, the polynomials wk(t) satisfy the three-term

recursion

w(k+1)(t) = p(k)(t)w(k)(t)− tdk+dk−1−1w(k−1)(t) .

To complete the algorithm we have to find w(1) and w(2). We set n1 = 1 and

w(1)(t) = i(t − 1). The integer n2 and the vector w(2) are found in the following
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way. As in the case k > 1 we compute rj1 until the result is nonzero. Suppose that

r11 = · · · = rd−1,1 = 0, and rd1 �= 0. Then we compute rd1, . . . , r2d−1,1 and observe

that

∂T2dM2d(w
(1)) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 rd1 . . . r2d−1,1

. . .
...

rd1 rd1

...
. . .

r2d−1,1 . . . rd1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (9)

Note that the middle row of the matrix on the right-hand side has, in contrast

to the case k > 1, nonzero elements at the left and right ends, which makes the

construction different to the case k > 1. But as in the case k > 1 we can conclude

from (9) that d1 = d. We form the d× d lower triangular Toeplitz matrix R1 by (8)

for k = 1, find the solution of R1c = ie1 and set p(1) =

[
c

c#

]
. Then we have

∂T2dM2d(w
(1))p(1) =

[
0

R1c

]
+

[
R∗

1c
#

0

]
=

⎡⎣ 0

i

0

⎤⎦−
⎡⎣ 0

i

0

⎤⎦ = 0 .

Hence d1 = d and w(2) = M2d(w
(1))p(1) or, in polynomial language, w(2)(t) =

p(1)(t)w(1)(t).

The algorithm described above computes vectors w(�) ∈ Cn+2 and w(�−1) ∈
Cn	−1+1. We show how from these vectors the data in the inversion formula (1)

can be computed. For the inversion formula we need a nontrivial vector in Cn. If

n�−1 = n, then w(�−1) is the desired vector. If n�−1 < n, then we consider the

vector

⎡⎣ 0

w(�−1)

0

⎤⎦, where the zero vectors have length d�−1 − 1. The corresponding

polynomials have to be divided by i(t − 1) in order to get real multiples of qn and

qn+1. It remains to divide the two vectors by real numbers that are obtained by

applying a test functional.

Example 1. Let T4 = [ ai−j ]4i,j=1 with (ai)
3
i=0 = ( 1, 1, i, 0). Then r11 = 0 and

r21 = 1 + i. Hence d1 = 2 and n2 = 4. We find that

R1 =

[
1 + i 0

−1 1 + i

]
and c1 =

1

2

[
1 + i

1

]
.

Applying the recursion formula we obtain

w(2) =
1

2
[ 1− i, −1, 0, −1, 1 + i ]T .
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Example 2. Let T4 = [ ai−j ]4i,j=1 with (ai)
3
i=0 = ( 1, −1, i, 0). The matrix T2 is

singular but, nevertheless, d1 = 1, since r11 = 2i �= 0. Clearly, w2 = 1
2
[−i, 0, i ]T .

Applying the recursion formula we obtain d2 = 1,

w(3) = [ 1− i, −1, −1, 1 + i ]T

and d3 = 1,

w(4) =
1

4
[ 2, −1− i, −2, −1 + i, 2 ]T .

4. SPLIT SCHUR ALGORITHMS

The split Levinson algorithms include inner product calculations. To avoid these

one can precompute the residuals using a Schur-type algorithm. The Schur-type

algorithms follow immediately from the Levinson recursions. As we show in the

next section, the Schur-type algorithm produces a factorization of the matrix. This

factorization can be used to solve a system of equation without using an inversion

formula.

4.1. Symmetric Toeplitz and Centrosymmetric T+H Matrices

We consider the residuals r
(k)
i defined by (4) for i = 1, . . . , n− nk−1 + 1. From

Theorem 3.1 we obtain immediately the recursion

r
(k+1)
i =

2dk+1∑
j=1

p
(k)
j r

(k)
i+dk+1−dk+j−1 − q(k)r

(k−1)
i+dk+1+dk

,

where p
(k)
j are the coefficients of p(k)(t). Introducing the polynomials r(k)(t) =∑n−nk−1+1

i=1 r
(k)
i ti−1 this can be written in the following polynomial form.

Theorem 4.1 The polynomials r(k)(t) satisfy the recursion

r(k+1)(t) = Pn−nk
(p(k)(t−1)r(k)(t)t−dk+1+dk − q(k) r(k−1)(t)t−dk−dk+1).

Here and in all what follows we denote by Pj the projection that cuts off all

powers ti for i ≥ j and i < 0. Note that according to the construction in the recursion

of Theorem 4.1 no negative powers of t appear.

The theorem above provides a split Schur algorithm for computing the residuals.

It can replace the inner product calculations in the Levinson algorithm of Theorem
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3.1 for the computation of the vectors xn and xn+2, which are involved in the inver-

sion formula. This gives a slightly higher complexity in sequential computing but

might be convenient in parallel processing. As we will see in Section 5 Theorem 4.1

also provides, in principle, a factorization of the symmetric part T+
n of Tn, which can

be used to solve linear systems via factorization and back substitution, which is an

advisable method if Tn is ill-conditioned. The initializations for these algorithms are

obtained from the initializations of the corresponding vectors in the split Levinson

algorithms presented in Section 3.1. We can use the recursion of Theorem 4.1 and a

similar recursion for the residuals of skewsymmetric solutions to obtain a split Schur

algorithm for centrosymmetric T+H matrices.

4.2. Skewsymmetric Toeplitz Matrices

We consider again the full residual vectors r(k) = (r
(k)
j )n−nk

j=1 and the correspond-

ing polynomials r(k)(t), where r
(k)
j are defined in (7). By the definition of the integer

dk+1, r̃(k)(t) = t−dk+1+1 r(k)(t) is a polynomial. The monic, symmetric polynomial

p(k)(t) and q(k) ∈ F have been constructed in such way that the polynomial

r̃(k)(t)p(k)(t)− q(k)r̃(k−1)(t)

has a zero of order dk+1 + 1 at t = 0. According to Theorem 3.2 the remainder will

give us r(k+1)(t) and the following recursion formula for the residuals is immediately

deduced.

Theorem 4.2 The polynomials r(k)(t) satisfy the recursion

r(k+1)(t) = Pn−nk+1

(
t−2dk+1 p(k)(t)r(k)(t)− t−dk+1−dk q(k) r(k−1)(t)

)
.

To write this recursion in matrix form we introduce the matrix Q(k) by

Q(k) =
[
r
(k)
2dk+1+i−j+1

]µk 2dk+1+1

i=1 j=1
,

where µk = n− nk+1 = n− nk − 2dk+1. Now we have

r(k+1) = Q(k) p(k) − q(k)ř(k−1),

where ř(k−1) = [ r
(k−1)
dk+dk+1+i ]

µk
i=1. The recursion starts with ř(−1) = 0, r(0) = [ aj ]nj=1,

p(0) = u(1) , and

Q(0) = [an1+i−j+1]
n−n1 n1+1
i=1 j=1 .

The vector u(1) will be computed as described in the initialization of the Levinson

recursion of Subsection 3.2 Theorem 3.2 can be combined with Theorem 4.2 to

compute the parameters in the inversion formula of Theorem 2.4.
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4.3. Hermitian Toeplitz Matrices

Now we present the Schur-type counterpart of the split Levinson recursion in

Theorem 3.4. We introduce the (2n + 2− k)× k Toeplitz matrix

T̂k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an+1−k . . . an

...
...

a1 . . . ak

Tk

ak . . . a1

...
...

an . . . an+1−k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

and observe that

T̂nk+1wk =

⎡⎣ r#
k

0

rk

⎤⎦
for vectors rk ∈ Cn−nk+1, (k = 1, . . . , � − 1). In order to transform the Levinson

recursion in Theorem 3.4 into Schur recursions for the residual vectors rk we apply

the following lemma.

Lemma 4.3 Let T̂mw = b ∈ C2n+2−m and T̂m+rMr+1(w)c = b̃ ∈ C2n+2−m−r,

c ∈ Cr+1. Then

b̃(t) = P2n+2−m−rt
−rc(t)b(t) .

Proof. Let w(j) ∈ Cm+r (j = 0, . . . , r) be defined by w(j)(t) = tjw(t) and

b(j) = T̂m+rw
(j). Then it is immediately checked that b(j)(t) = P2n+2−m−rt

j−rb(0)(t).

The rest follows by linear combination.

Indeed, with the help of this lemma we conclude from Theorem 3.4 the following

result.

Theorem 4.4 The polynomials of the residual vectors rk(t) satisfy the three-term

recursion

rk+1(t) = Pn−nk+1+1(pk(t)rk(t)t
−2dk+1 − t−dk−dk−1+1rk−1(t)) .
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The recursion starts with r0(t) = 0 and r1(t) = i
∑n

i=1(ai−1 − ai)t
i−1. For

Example 1 considered in Subsection 3.3 the recursion for the residuals makes no

sense, because we have only one step. We check Example 2. We have in this case

r1 = [ 2i, 1− i, −1 ]T and r2 =
1

2
[ 1 + i, −i ]T .

The recursion of Theorem 4.4 gives r3 = 2, which can be verified directly.

5. BLOCK ZW-FACTORIZATION

We show that the algorithm described in the previous section can be used to compute

factorization of the matrix. First we recall some concepts.

5.1. General ZW-Factorization

A matrix A = [ aij ]ni,j=1 is called W-matrix if aij = 0 for all (i, j) for which i > j

and i+ j > n+1 or i < j and i+ j ≤ n . The matrix A will be called unit W-matrix

if in addition aii = 1 for i = 1, . . . , n and ai,n+1−i = 0 for i �= n+1
2

. The transpose

of a W-matrix is called a Z-matrix. A matrix which is both a Z- and a W-matrix

will be called X-matrix. The names arise from the shapes of the set of all possible

positions for nonzero entries, which are as follows:

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

• •
• ◦ ◦ •
• ◦ ◦ ◦ ◦ •
• ◦ • • ◦ •
• • • •
• •

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

• • • • • •
◦ ◦ ◦ •
◦ •
• ◦

• ◦ ◦ ◦
• • • • • •

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

• •
• •
• •
• •

• •
• •

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

For sake of simplicity of notation we assume that n is even, n = 2m. The case of

odd n is similar. A unit W- or Z-matrix A is obviously nonsingular and a system

Af = b can be solved by back substitution with n2

2
additions and n2

2
multiplications.

A representation A = ZXW of a nonsingular matrix A in which Z is a Z-matrix,

W is a W-matrix, and X an X-matrix is called ZW-factorization. Analogously

WZ-factorization is defined. A necessary and sufficient condition for a matrix A =

[ ajk ]nj,k=1 to admit a ZW-factorization is that all central submatrices [ ajk ]n+1−l
j,k=l are

nonsingular for all natural numbers l = 1, . . . , [ n
2

]. A matrix with this property

will be called centro-nonsingular. Under the same condition A−1 admits a WZ-

factorization. Among all ZW-factorizations of A there is a unique one in which the

factors are unit. Symmetry properties of the matrix are inherited in the factors of

the unit ZW-factorization. If A is symmetric or skewsymmetric, then W = ZT ,
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and X is symmetric or skewsymmetric, respectively. If A is centrosymmetric, then

all factors Z, X and W are also centrosymmetric, if A is centro-skewsymmetric,

then Z and W are centrosymmetric and X is centro-skewsymmetric (in particular,

anti-diagonal). All this follows from the uniqueness of the unit ZW-factorization.

If the matrix is not centro-nonsingular, then one might look for a block ZW-

factorization. We show that for some cases the matrix classes under consideration

such a factorization exists and can be evaluated with the help of the algorithms de-

scribed above. However, the block factorization for centrosymmetric T+H matrices

we present below will not be a generalization of the unit ZW-factorization but of a

modification of it which will be described next. We introduce the n× n X-matrix

Θn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1
. . . . .

.

−1 1

1 1

. .
. . . .

1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Obviously, Θ−1
n = 1

2
Θn. If Z0 is an n×n centrosymmetric Z-matrix, then the matrix

Z1 = Z0Θn has the property JnZ1 = Z0JnΘn. That means that the first m columns

of Z1 are skewsymmetric, whereas the last m columns are symmetric. Let us call a

matrix with this property column-symmetric. If moreover the X-matrix built from

the diagonal and antidiagonal of Z1 is equal to Θn, then Z1 will be referred to as unit.

The unit ZW-factorization A = Z0X0Z
T
0 of a centrosymmetric, symmetric matrix A

can be transformed into a ZW-factorization A = ZXZT in which Z is unit column-

symmetric. We will call this factorization unit column-symmetric ZW-factorization.

Since the product [ −1 1

1 1

] [
a b

b a

] [ −1 1

1 1

]
is a diagonal matrix, the X-factor in the column-symmetric ZW-factorization is

actually a diagonal matrix. Thus, provided that A is centro-nonsingular, A admits

a factorization A = ZDZT in which Z is unit column-symmetric and D is diagonal.

5.2. Centrosymmetric T+H Matrices

We show now that any nonsingular centrosymmetric T+H matrix Cn = T+
n P

+
n +

T−
n P

−
n has a block unit column-symmetric ZW-factorization. This is a representation

A = ZDZT in which D is a block diagonal matrix and Z is a column-symmetric

Z-matrix. If the diagonal blocks of D have size m±
k ×m±

k , then the corresponding
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diagonal blocks of Z are assumed to be ±Im±
k
. In this case we call the Z-matrix

block unit column-symmetric. Clearly, such a factorization is, if it exists, unique.

It can be expected that the block sizes mk are equal to the numbers dk that were

introduced in Section 3.1. Let Σd denote the (2d− 1)× d matrix

Σd =

⎡⎢⎢⎢⎣
1

1 1

. .
. . . .

1 1

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ d .

The nk×(2dk−1) matrix M2dk−1(u
(k))ΣT

dk
has symmetric or skewsymmetric columns,

depending whether we have the + or – case, and has the form⎡⎣ ±Jdk
U (k)

∗
U (k)

⎤⎦ ,

where U (k) is the (nonsingular) upper triangular Toeplitz matrix

U (k) =

⎡⎢⎣ u
(k)
0 . . . u

(k)
dk−1

. . .
...

u
(k)
0

⎤⎥⎦ (11)

and u
(k)
j (k = 0, . . . , dk − 1) are the first components of u(k) ∈ F nk−1+2 possibly

extended by zeros in case where nk−1 + 2 < dk. We evaluate, for the + and – cases,

the matrices

M2dk−1(u
(k))ΣT

dk
(U (k))−1.

These matrices will be extended to n × dk matrices by adding symmetrically zeros

at the top and the bottom. The resulting matrices will be denoted by W
(k)
± . Clearly,

W
(k)
± has again symmetric or skewsymmetric columns. From now on we indicate by

a subscript or superscript the + or – case.

We form the block matrix

W = [W
(�−)
− Jd−	−

, . . . W
(1)
− Jd−1

, W
(1)
+ , . . . , W

(�+)
+ ] , (12)

which is a block unit column-symmetric W-matrix. Next we evaluate CnW . We

have

T±
n W

(k)
± =

⎡⎢⎣ ±Jνk+d±k
R

(k)
±

O

R
(k)
±

⎤⎥⎦ (U
(k)
± )−1 ,

305



where

R
(k)
± =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r
±(k)
0

. .
. ...

r
±(k)
0 . . . r

±(k)

d±k −1

r
±(k)
1 . . . r

±(k)

d±k
...

...

r
±(k)

ν±
k

. . . r
±(k)

ν±
k +d±k −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ν±k = 1
2
(n− n±

k ). We introduce matrices V
(k)
± by

V
(k)
± =

⎡⎢⎢⎣
r
±(k)
0 . . . r

±(k)

d±k −1

. . .
...

r
±(k)
0

⎤⎥⎥⎦
and the matrices Z

(k)
± by

Z
(k)
± = T±

n W
(k)
± U

(k)
± (V

(k)
± )−1Jd±k

=

⎡⎢⎣ ±Jν±
k +d±k

R
(k)
±

O

R
(k)
±

⎤⎥⎦ (V
(k)
± )−1Jd±k

.

We arrange the matrices Z
(k)
± to the n× n matrix

Z = [Z
(�−)
− Jd−	−

, . . . Z
(1)
− Jd−1

, Z
(1)
+ , . . . , Z

(�+)
+ ] .

This matrix is a block unit column-symmetric Z-matrix.

We have now the relation

CnW = ZD , (13)

where D = diag (D
(�−)
− , . . . , D

(1)
− , D

(1)
+ , . . . , D

(�+)
+ ) and

D
(k)
+ = Jd+

k
V

(k)
+ (U

(k)
+ )−1, D

(k)
− = V

(k)
− (U

(k)
− )−1Jd−k

.

Note that the matrices D
(k)
+ are lower triangular and the matrices D

(k)
− are upper

triangular Hankel matrices. Since the inverse of a W-matrix is a W-matrix again

we have a block ZW-factorization Cn = ZDW−1. The matrix 2W−1 is a block

unit row-symmetric W-matrix. Taking the uniqueness of unit ZW-factorization into

account we conclude that ZT = 2W−1. Summing up, we obtain the following result.

Theorem 5.1 Any nonsingular centrosymmetric T+H matrix Cn admits a repre-

sentation Cn = ZDZT in which Z is a block unit column-symmetric Z-matrix and
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D is a block diagonal matrix the diagonal blocks of which are triangular Hankel

matrices.

In order to find the block ZW-factorization of Cn one has to run the split Schur

algorithm from Section 4.1. This gives the factor Z. In order to evaluate the block

diagonal factor one has to find the first d±k components of the vectors u
(k)
± . This

can be done running partly the split Levinson algorithm described in Section 3.1.

Unfortunately the numbers dk are not known a priori, so some updating might be

necessary during the procedure.

5.3. Symmetric Toeplitz Matrices

Symmetric Toeplitz matrices are special centrosymmetric T+H matrices, so

Theorem 5.1 holds. However, there are some specific relations between the left and

the right parts of the matrices Z and D, which are not fully understood yet. The

following can be shown. The matrix D is of the form

D = diag ( JµpK
−
p Jµp , . . . , Jµ1K

−
1 Jµ1 , K

+
1 , . . . , K

+
p )

where the following cases are possible:

1. The matrices K+
j and K−

j are both µj × µj lower triangular Hankel matrices.

2. K+
j is a µj × µj lower triangular Hankel matrix and K−

j is of the form⎡⎣ ∗ 0 0

0 K ′ 0

0 0 ∗

⎤⎦ , (14)

where K ′ is a (µj − 2)× (µj − 2) lower triangular Hankel matrix.

3. K−
j is a µj × µj lower triangular Hankel matrix and K+

j is of the form (14).

5.4. Skewsymmetric Toeplitz Matrices

The construction of the block ZW-factorization of general skewsymmetric Toeplitz

matrices is, to some extend, similar to that of centrosymmetric T+H matrices. How-

ever, the result has some different features. In the skewsymmetric case, the Z-factor

will not be column-symmetric but centrosymmetric, the middle factor will block

anti-diagonal and skewsymmetric rather than block diagonal and symmetric, and

the blocks will be triangular Toeplitz rather than triangular Hankel.
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We introduce the n× dk matrices W̃
(k)
± by

W̃
(k)
− =

⎡⎢⎢⎢⎣
Oνk×dk

Mdk
(u(k−1))

Odk×dk

Oνk×dk

⎤⎥⎥⎥⎦ , W̃
(k)
+ =

⎡⎢⎢⎢⎣
Oνk×dk

Odk×dk

Mdk
(u(k−1))

Oνk×dk

⎤⎥⎥⎥⎦ ,

where νk = 1
2
(n− nk), and form the matrix

W̃ = [ W̃
(�))
− , · · · , W̃ (1)

− , W̃
(1)
+ , · · · , W̃ (�)

+ ] . (15)

Then W̃ is a centrosymmetric W-matrix. Furthermore, we set

Z̃
(k)
+ = TnW̃

(k)
− , Z̃

(k)
− = −TnW̃

(k)
+ ,

and form the matrix

Z̃ = [ Z̃
(�)
− · · · Z̃(1)

− Z̃
(1)
+ · · · Z̃(�)

+ ]. (16)

Then Z̃ is a centrosymmetric Z-matrix and

TnW̃ = Z̃K̃,

where K̃ is the skewsymmetric block antidiagonal matrix

K̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −Id	

. .
.

−Id1

Id1

. .
.

Id	
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (17)

We represent now W̃ and Z̃ in the form W̃ = WD1 and Z̃ = ZD2, where W and Z

are block unit and D1 and D2 are block diagonal with triangular Toeplitz diagonal

blocks and centrosymmetric. From this we obtain a unit block ZW-factorization

T = ZD2K̃D−1
1 W−1.

The matrix K = D2K̃D−1
1 is now skewsymmetric and block anti-diagonal with tri-

angular Toeplitz anti-diagonal blocks. Taking the uniqueness of such a factorization

into account we arrive at the following result.
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Theorem 5.2 Any nonsingular skewsymmetric Toeplitz matrix Tn admits a repre-

sentation Tn = ZKZT in which Z is a block unit centrosymmetric Z-matrix and K

is a skewsymmetric block anti-diagonal matrix the anti-diagonal blocks of which are

triangular Toeplitz matrices.

5.5. Hermitian Toeplitz Matrices

ZW-factorization of centrononsingular hermitian Toeplitz matrices is studied in

[29]. It is an open problem how to generalize this to the case where the matrix has

singular central submatrices.
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1. INTRODUCTION

A boundary element approach for predicting the productivity of oil wells arranged

in complex configurations within irregularly shaped reservoirs were developed. The

integral equations are written for boundary points as well as for the locations of

the wells which are treated as point sources and sinks with specified pressures but

unknown strengths. Using this approach, the solution to the resulting matrix gives

the values of the nodal boundary pressure and their normal derivatives, as well as

the unknown flow rates of all the wells.

2. PROBLEM FORMULATION

Consider a hypothetical two-dimensional homogeneous reservoir S having NSS

sources and /or sinks located randomly within an arbitrarily shaped reservoir. The

following assumptions were used in developing the theory: a) the reservoir is in

steady-state flow with reservoir pressure above bubble points i.e. undersaturated

condition; b) single phase fluid having small (and constant) compressibility and

constant viscosity is flowing in the system; c) the reservoir has a uniform thickness

and it has a finite boundary; and d) gravitational effects are negligible.

The differential equation describing the unknown functions i.e. pressure, at

all points in the reservoir, is obtained by the introduction of Darcy’s law into the

continuity equation. By imposing the conditions and assumptions stated above, the

differential equation describing the pressure distribution in the reservoir is [1,2]:

∂2p

∂X2
+

∂2p

∂Y 2
+
µ

k

∑NSS

m=1
qm δ(X −Xm, Y − Ym) = 0, (1)

where p is the pressure , µ is the dynamic viscosity of the fluid, k is the perme-

ability, qm is the flow rate of the mth well per unit area (positive for injectors and

negative for producers), δ is the Dirac delta function, X,Y are coordinates axes,
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and Xm, Ym are coordinates of the mth source and/or sink, where m goes from 1 to

NSS.

Equation (1) can be transformed into an integral equation by multiplying it

with the free space Green’s function and integrating it twice by parts. The free-

space Green’s function is also called the fundamental solution [1,2,3] and is given

as:

G =
1

2π
ln

(
1

r

)
, (2)

where r is the distance between a field point (X,Y ) and a point of application of a

unit charge (Xc, Yc). After standard manipulation [1], equation (1) then becomes:

αp(Xi, Yi) =
1

2π

∑N

j=1

∂p

∂nj

∫
sj

ln

(
1

ri,j

)
ds−

1

2π

∑N

j=1
pi

∫
sj

∂

∂n

[
ln

(
1

ri,j

)]
ds +

1

2π

µ

k

∑NSS

m=1
qm ln

(
1

ri,m

)
, (3)

where the boundary of the reservoir is divided into N constant elements with con-

stant properties as shown in Figure 1. α is the included angle at the ith pivot point.

It is assigned a value of 1
2

when the pivot point is on a smooth boundary (i.e. not

on a corner), and a value of 1 when the pivot point is inside the problem domain.

For simplicity, let

Gi,j =
1

2π

∫
sj

ln

(
1

ri,j

)
ds (4)

Hi,j =
1

2π

∫
sj

∂

∂n

[
ln

(
1

ri,j

)]
ds (5)

GSSi,m =
1

2π
ln

(
1

ri,m

)
, (6)

where Xi, Yi are coordiantes of any pivot point, ri,j is the distance between the pivot

point and the jth element where j runs from 1 to N , and ri,m is the distance between

the pivot point and the mth source and/or sink. Equation (3) now simplifies to :

αp(Xi, Yi) =
∑N

j=1

∂p

∂nj

Gi,j −
∑N

j=1
pjHi,j +

∑NSS

m=1
qmGSSi,m (7)
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Figure 1: Reservoir having NSS sources and sinks where its boundary is divided into

N segments or elements

The boundary of the reservoir S can be of the type Sp or Sdp/dn or a combination

of the two types. Over the Sp type boundary, the pressure p is specified as constant

throughout the element while dp/dn is unknown. Over the Sdp/dn type boundary,

the dp/dn is prescribed as constant and the pressure p is unknown. Similarly, the

sources and/or sinks can also have known and unknown rates. For the known flow

rate well the well-bore pressure pw is unknown and for the unknown flow rate well,

the well-bore pressure is prescribed.

The idea is to apply Equation (7) at all the boundary nodes (α = 1
2
), as well

as at the entire source and/or sink locations (α = 1). By doing so, a system of

N + NSS equations with N + NSS unknowns can be obtained and simplified to

matrix form as follows:

[HGGSS] #U = #A, (8)

where [HGGSS] consists of the coefficients H,G and GSS. The vector #U contains

all the N + NSS unknowns of p, dp/dn, pw and q and #A is a vector containing all

the known values.

3. VALIDATION

The flow rates obtained from Muskat’s analytical equation [4] are compared with

the BEM solutions for a circular battery of wells located at a radius r = 50 feet in a

circular reservoir as of radius R = 5, 000 feet as shown in Figure 2. The wells in the
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battery are symmetric about the center. In order to have uniform pressures around

the boundary of the reservoir, it was necessary to place the center of the battery at

the reservoir center.

The ratio of the total production of the battery Qn to the production of a single

well Q1 is plotted against the number of wells and compared with the Muskat’s

results as shown in Figure 3. The perfect match of the plots in Figure 3 clearly

shows that the BEM solutions agree with the Muskat’s analytical solutions.

Even though regular well patterns and boundary geometries are presented in

these example applications, this was done simply to allow comparison with published

analytical solutions. The method is equally applicable to non-pattern well clusters

arbitrarily located in reservoirs with irregular boundary shapes.

Figure 2: A circular battery of n wells at the center of a circular reservoir

4. CONCLUSIONS

The concept of formulating differential equations at source and/or sink points as

well as at boundary node points was investigated and found to give excellent results.

The formulation has the advantage of calculating the unknown source and/or sink

rates directly as part of the matrix solution. Other potential uses include (i) the

calculation of the production of individual wells within leases in a multiple lease

reservoir and (ii) the identification of candidate wells in a field that may need work-

over by comparing the predicted production rates with the actual field production

rates.
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Figure 3: Comparison between Muskat’s solution and the BEM solution
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1. INTRODUCTION

Various problems arising in Natural Sciences, Industry, and Economy are solved

by mathematical modeling and scientific computing. Recently, several monographs

were published on this topic (e.g., MacCluer [7], Shier and Wallenius [8]). Given

such a problem with the relevant parameters, the basic laws or empiric experience

are used to derive a mathematical description of the problem. Mathematical mod-

els may consist of equations representing systems of linear or nonlinear equations,

ordinary or partial differential equations, or time series, Markov chains, etc. For

the solution of mathematical models efficient numerical methods together with ap-

propriate software have to be developed. Visualization allows to simulate the given

problem. Finally, the numerical results have to be calibrated with real data and then

the mathematical model has to be refined. The realization of these different steps

requires the cooperation of engineers, mathematicians and computer scientists.

Interesting problems arise in chemical processes. This note is addressed to math-

ematical modeling and numerical treatment of chemical processes, especially the

chemical vapor deposition, which is widely used for the production of advanced ma-

terials. To mention is the production of carbon fibre-reinforced carbon and carbon-

carbon composites. Further, the production of catalytic converters, solar cells, or

microelectronic devices involve such processes. The chemical vapor deposition of

carbon on graphite by methane pyrolysis is considered. In an exemplary reactor the

gas mixture flows into the reactor from the bottom to meet the heated substrate,

where the deposition takes place. The reactor walls are cold to avoid chemical re-

actions there. The gas mixture leaves the reactor on top after being cooled down

(Bammidipati et al. [1]).

In section two the mathematical model to describe the chemical vapor deposi-

tion process is derived. The Navier-Stokes equations to model the flow in the reactor

are coupled with convection-diffusion-reaction equations to describe the concentra-
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tions of the chemical species in the reactor. Chemical reactions in the gas-phase

as well as on the surface are taken into account. The idea of separating the hy-

perbolic part from the parabolic part of the convection-diffusion equations leads

to the concept of operator splitting (Karlsen et al. [4], [5]) that is introduced in

section three. More precisely, the convection-diffusion-reaction equations are sep-

arated in four parts: convection, diffusion, gas-phase and surface reactions. The

numerical splitting method to solve the hyperbolic and parabolic part of the equa-

tions (Crandall and Majda [3], LeVeque [6], Strang [9], Vreugdenhil and Koren [10])

are considered in section four. A test equation is used to discuss local discretization

errors and numerical results obtained by splitting methods with some basic schemes.

2. THE MATHEMATICAL MODEL

To describe chemical vapor deposition mathematically the simple two dimensional

geometry of figure 1 is used. In the reactor model there are at least four different

processes, which have to be described. The defining equations are the Navier-Stokes

equations to describe the flow in the reactor and a convection-diffusion-reaction

system to describe the concentrations of the chemical species. The reaction terms

in the convection-diffusion-reaction system are given by the gas-phase reactions,

whereas the surface reactions appear as boundary conditions.

Figure 1: Reactor model

2.1.Navier-Stokes equations

The Navier-Stokes equations are used to model the flow in the reactor. They

consist of the equations for the conservation of mass, momentum, and energy. Addi-

tionally, an equation of state is needed. Here we consider laminar flow in two space

dimensions.
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Conservation of mass

∂ρ

∂t
= −∇ · (ρ#u) with density ρ and flow velocity #u = (u, v)T .

Conservation of momentum

∂(ρ#u)

∂t
= −∇ · (ρ#u#uT ) +∇ · [µ(∇#u + (∇#u)T )− 2

3
µ(∇ · #u)I]−∇p + ρ#g

with viscosity µ, thermodynamical pressure p and gravity #g = (g1, g2)
T .

Conservation of energy

ρcp
∂T

∂t
= −ρcp(#u · ∇T ) +∇ · (λ∇T ) + ρq̇s + µΦ

with specific heat capacity cp, temperature T , heat conductivity λ, external energy

q̇s and dissipativity Φ.

Equation of state

p = ρ r T with gas constant r.

2.2. Gas phase reactions and surface reactions

The chemical species mainly participating in the gas phase reactions and the

surface reactions are identified and the reaction schemes are given (Birakayala and

Evans [2]). E.g., for surface reactions the following results are possible:

1. C2H2 + 2C(S)⇒ 2C(S) + 2C(D) +H2

2. C6H6 + 6C(S)⇒ 6C(S) + 6C(D) + 3H2

3. C2H4 + 2C(S)⇒ 2C(S) + 2C(D) + 2H2

4. H + CH(S)⇔ C(S) +H2

5. H + C(S)⇔ CH(S)

Chemical reaction kinetics

A simplified reaction scheme is considered with the following reactions (CH4 :

methane gas, C : carbon, Cν : carbon compound with ν atoms, C∞ compact carbon):

gas phase reactions CH4
k12−→ C1

k23−→ C2
k34−→ C≥6,

surface reactions C1
k25−→ C∞, C2

k35−→ C∞, C≥6
k45−→ C∞,

and the reaction constants for T = 1398K and p = 20kPa.
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Consider a simple model for gas phase reactions as well as for surface reactions. Let

A and B be given substances with concentrations y1 and y2 which react to form the

substances C and D with concentrations y3 and y4 with kinetic parameter k, i.e.,

A +B
k→ C +D.

The reacting amount per time of a substance is a multiple of the product y1y2

with the multiplicative constant k. This reaction can be described by stiff ordinary

differential equations

dy1

dt
= −k y1y2,

dy2

dt
= −k y1y2,

dy3

dt
= k y1y2,

dy4

dt
= k y1y2

with suitable initial values. This simple model is only valid under certain assump-

tions such as constant temperature, constant volume, and no additional substances.

2.3. System of convection-diffusion-reaction equations

The concentrations of the chemical species are given by a system of convection-

diffusion-reaction equations derived by the principle of conservation of mass.

∂ci

∂t
= −∇ · ci#u + di∆ci + rg

i , i = 1, . . . , K,

where the following abbreviations are used:

ci: the concentration of the i-th chemical substance ci = ci(x, y, t),

#u: the velocity (in direction of x and y) #u = (u1(x, y, t), u2(x, y, t))
T

di: the diffusion coefficient of the i-th substance (di constant),

rg
i : the growth rate of the i-th substance by gas-phase reactions rg

i = rg
i (x, y, t),

rs
i : the growth rate of the i-th substance by surface reactions rs

i = rs
i (x, y, t),

K: the number of substances (K ≈ 150− 200, test equation K small).

The growth rate of the i− th chemical substance ci by surface reactions appears as

a boundary condition at the surface of the substrate:

∂ci

∂n
= rs

i , i = 1, . . . , K.

In the convection-diffusion-reaction system the four different processes are cou-

pled together. In each time-step the field of velocity, described by the Navier-Stokes

equation, the gas phase and surface reactions, described by two systems of stiff ordi-

nary differential equations, and then the solution of the convection-diffusion-reaction

equation have to be computed, which is a very complex and difficult problem.
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The treatment of the Navier-Stokes equations is a separate topic, therefore in

this paper the velocity field of the flow is taken from measurements done by chemical

engineers. Thus the treatment of the flow is decoupled from the other processes.

We concentrate on the convection-diffusion equations and the gas-phase reactions.

3. SPLITTING METHODS

With some additional simplifications such as constant flow velocities and a single

chemical substance the general convection-diffusion-reaction system from section 2.3

reduces to the convection-diffusion-reaction model equation

ct = −(ucx + vcy) + d(cxx + cyy) + r

for the concentration c = c(x, y, t) (constant velocity #u = (u, v)T , constant diffusion

d, reaction r = r(x, y, t)).

It is very difficult to construct a method convenient and effective for all three

parts in the equation. Originally operator splitting was used to reduce the dimension

from 2D to 1D. Now the idea of operator splitting is to separate the convection

part from the diffusion part and also to separate the reaction part of the equation

(LeVeque [6]). Then it is possible to use methods especially designed for solving the

given type of equation. In the following sections the model equation is considered

for the function u = u(x, y, t) instead of c = c(x, y, t).

3.1. Dimensional splitting

To introduce the idea of operator splitting consider the 2D convection equation

ut + aux + buy = 0 (1)

with initial value

u(x, y, 0) = u0(x, y)

and exact solution

u(x, y, t) = u0(x− at, y − bt)

in 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ t ≤ T . The 2D equation is splitted into two

1D equations, using the splitting stepsize τ , to determine the solution of the two

problems at time τ (one step):

vt + avx = 0, v(x, y, 0) = u0(x, y) resp. wt + bwy = 0, w(x, y, 0) = v(x, y, τ) (2)

with the exact solution

v(x, y, τ) = v(x− aτ, y, 0) = u0(x− aτ, y)
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and

w(x, y, τ) = w(x, y − bτ, 0) = v(x, y − bτ, τ) = u0(x− aτ, y − bτ) = u(x, y, τ),

respectively. In this simple case, w is the exact solution of the 2D convection equa-

tion, i.e., there is no splitting error. Usually there arises a splitting error depending

on the splitting stepsize τ .

3.2. General splitting

Consider the general equation

ut + (A+ B)u = 0, u(x, y, 0) = u0(x, y)

in some region of R2 and 0 ≤ t ≤ T , where A and B are suitable differential

operators. The solution is given using the corresponding solution operator by

u(x, y, t) = Stu0(x, y).

Splitting of the previous equation into the corresponding parts of A and B with the

splitting stepsize τ yields

vt = Av, v(x, y, 0) = u0(x, y),

wt = Bw, w(x, y, 0) = v(x, y, τ),

where the solutions at time τ (one step) are denoted by

v(x, y, τ) = SA
τ v(x, y, 0) and w(x, y, τ) = SB

τ w(x, y, 0),

respectively. The splitting solution u∗ for the original problem is achieved by

u∗(x, y, τ) = S∗
τu0(x, y) and u∗(x, y, nτ ) = (S∗

τ )n u0(x, y), n = 1, . . . , N, Nτ = T,

where S∗
τ is constructed using SA

τ and SB
τ .

The method is called Godunov resp. Strang splitting, if it holds

S∗
τ = SB

τ SA
τ resp. S∗

τ = SA
τ/2SB

τ SA
τ/2.

Considering a linear system of equations ut + Aux + Buy = 0 with initial value

u(x, y, 0) = u0(x, y), the splitting error of one step u(x, y, τ) − u∗(x, y, τ) of the

Godunov resp. Strang splitting satisfies O ((τ)2) resp. O ((τ)3) for τ → 0. Godunov
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splitting implies order one, Strang splitting order two. The splitting error depends

on the commutator AB − BA and should be studied in detail.

3.3. Special problems

For the m-dimensional convection-diffusion equation

ut +
m∑

i=1

(fi(u))xi
= ε

m∑
i=1

uxixi
, u(x, 0) = u0(x), x = (x1, . . . , xm),

u scalar, operator splitting can be introduced analogously. The constant ε > 0

regulates the dominance of the convection. The convection equation

vt +
m∑

i=1

(fi(v))xi
= 0

with inital value v(x, 0) = v0(x) and exact solution v(x, t) = S
(K)
t v0(x) and the

diffusion equation

wt = ε
m∑

i=1

wxixi

with initial value w(x, 0) = w0(x) and exact solution w(x, t) = S
(D)
t w0(x) are solved

separately to get the solution of the convection-diffusion equation u(x, t) as

u∗(x, y, nτ ) = (S(D)
τ S(K)

τ )nu0(x), n = 1, . . . , N, Nτ = T.

A result on convergence of the splitting solution u∗(x, y, nτ ) is known (Karlsen and

Risebro [4]): Let u0 ∈ L∞∩B.V. and f(u) Lipschitz continuous, then (S
(D)
τ S

(K)
τ )nu0(x)

converges for τ → 0 to the solution of the given initial value problem.

Problems of convection-reaction or diffusion-reaction or convection-diffusion-

reaction type can also be considered, where the aspect of stiffness appears in the

reaction part.

4. NUMERICAL SPLITTING METHODS

The idea of splitting can also be applied to the numerical solution of differential

equations. There exist different methods for convection and for diffusion equations

and they can complement each other.
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4.1. Numerical methods

Replace the operators SA
τ and SB

τ by the operators HA
τ and HB

τ corresponding

to numerical methods and define

H∗
τ = HA

τ HB
τ resp. H∗

τ = HA
τ/2HB

τHA
τ/2,

then the splitting method reads

Un+1 = H∗
τU

n = (H∗
τ )

n U0, n = 1, . . . , N,

where Un is the vector consisting of the numerical solution in each grid point of

the space and at time nτ . Using Strang splitting and applying numerical methods

HA
τ and HB

τ of consistency order two leads to a splitting method of order two for a

linear system. This result still holds for smooth solutions of the nonlinear system of

conservation laws

ut + (f(u))x + (g(u))y = 0

with initial value u(x, y, 0) = u0(x, y) (Strang [9]).

The numerical methods use a grid size in the different space coordinates and the

time stepsize ∆t. Usually the time step ∆t is equivalent to the splitting stepsize τ ,

but it could be possible that τ is a multiple of∆t. This depends on the splitting error,

the local error of the numerical methods, and of the propagation of the different

errors. It is very important that the numerical methods used in the different parts

harmonize with each other, then error compensations are possible and good results

can be expected.

4.2. Error estimates

Splitting methods deliver approximations to the true solution and error bounds

are needed to judge on the accuracy of the method. In this section a simple example

is discussed, which is also used for numerical experiments in section 3.

The linear 1D convection-diffusion equation

ut + aux = Duxx, x ∈ R, 0 ≤ t ≤ T

is taken as a test equation for the numerical methods (Vreugdenhil and Koren [10]).

With the initial values u(x, 0) = u0(x) = sinπ x−α
β−α

if x ∈ [α, β] and u0(x) = 0 if

x /∈ [α, β] the exact solution is given by

u(x, t) =
1√

4πDt

∫ ∞

−∞
exp

(−ξ2

4Dt

)
u0(x− at− ξ) dξ.
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Operator splitting does not introduce an additional error since the convection equa-

tion

ut + aux = 0, u(x, 0) = u0(x)

has the exact solution u∗(x, τ) = u0(x− aτ) and the diffusion equation

ut = Duxx, u(x, 0) = u∗(x, τ)

has the exact solution u∗∗(x, τ) = u(x, τ).

Different finite difference methods for the convection and diffusion parts are

discussed. Numerical methods suggested for the convection equation are the first

order upwind method and the second order Beam-Warming method. The diffusion

equation is solved using the explicit centered difference scheme of order one as well

as the implicit second order Crank-Nicolson method (LeVeque [6]).

Let u(xj, tn+1) denote the exact solution of the convection-diffusion equation and

uj,n+1 the numerical solution each at the grid point xj and at time tn+1. The numer-

ical approximation is obtained with one step of the splitting method H∗
τ using the

corresponding numerical schemes. Concerning the local discretization it is assumed

that the values uj,n are exact. The local discretization error for the pairs upwind

method/centered difference scheme and Beam-Warming/Crank-Nicolson satiesfies

u(xj, tn+1)− uj,n+1 =
1

2

(
a(a− ν)uxx +D2uxxx

) |(xj ,tn) (∆t)2 +O((∆t)3)

and

u(xj, tn+1)− uj,n+1 =
1

12

(
a(3νa− 2ν2 − a2)uxxx −Dν2uxxxx −D3uxxxxxx

) |(xj ,tn) (∆t)3

+O((∆t)4),

respectively, where ν = ∆x
∆t

and ∆t→ 0.

In both cases the leading error terms are small considering the constants mul-

tiplied with the space derivatives of u. First, for a grid ratio ν chosen close to the

convection velocity a the term a(a − ν) as well as 3νa − 2ν2 − a2 is close to zero.

Further, for typical diffusion coefficients D, it holds that D 
 1 (e.g.,D = 0.002),

so the remaining constants also turn out to be of small size.

4.3. Numerical experiments

Very satisfactory results are achieved by the combination of the Beam-Warming

method (upwind difference quotients, second order) for the convection equation
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Figure 2: Numerical solution of the convection-diffusion equation

and the Crank-Nicolson method (implicit centered differences, second order) for the

diffusion equation.

Figure 2 shows the obtained results. The parameters in the linear 1D convection

diffusion-equation are α = 0.2, β = 0.4, a = 1, D = 0.002, x ∈ [0, 1]. The first

plot shows the numerical solution of the convection-diffusion equation produced by

the splitting method using the Beam-Warming method for the convection part and

the Crank-Nicolson method for the diffusion part. Together with the numerical

solution, the initial values as well as the exact solution is shown. The numerical

solution was computed up to T = 0.3 with the space discretization ∆x = 0.025

and time-steps τ = ∆t = 0.9∆x satisfying the CFL condition for the convection

equation. The second plot shows the error of the numerical solution compared to

the exact solution. In the third plot using logarithmic scales the second order of

convergence is shown. Computations for different stepsizes ∆x have been performed

to achieve this result.

Future plans involve the generalization of the test equations in various ways.

The modeling of chemical reactions will introduce source terms to the equations.

The 1D case should be extended to the 2D case where real data from chemical

vapor deposition processes can be used. Concerning the numerical methods more

stress will be put on the interaction between the convective and the diffusive part

of the splitting methods.
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Department of Mathematics & Computer Science

Kuwait University, P. O. Box 5969, Safat 13060, Kuwait

e-mail: lenard@mcc.sci.kuniv.edu.kw

1. INTRODUCTION

P. Turán initiated the study of the (0,2)-interpolation in order to get an approximate

solution to the differential equation

y′′ + f · y = 0.

In 1961 Balázs [2] introduced a generalization of this problem, the weighted (0,2)-

interpolation problem: Let the system of distinct nodes

x1, x2, . . . , xn ∈ (a, b) (1)

be given in the finite (or infinite) open (or closed) interval (a, b) and let w ∈ C2(a, b)

be a given function, called weight function. Find a polynomial Rn of minimal degree

satisfying the conditions

Rn(xk) = yk; (wRn)′′(xk) = y′′k , (k = 1, . . . , n;n ∈ N) (2)

where yk, y
′′
k are arbitrary given real numbers.

If for any choice of the values yk, y
′′
k , there exists a unique polynomial Rn of

degree less than 2n, which fulfils the equations (2), then the problem is called regular

on the nodes (1) with the weight function w. The questions are how to choose the

nodal points and the weight function so that the problem is regular, and in the

regular case find a simple explicit form of Rn in order to prove convergence.

Balázs [2] investigated the above problem on the interval [−1, 1], when the nodes

are the zeros of the ultraspherical polynomial P
(α)
n (α > −1), and the weight function

is w(x) = (1 − x2)(α+1)/2. He showed, that in this case the problem is not regular,

there does not exist a polynomial of degree ≤ 2n − 1 satisfying the requirements

(2). He proved, that if n is even, then under the condition

Rn(0) =
n∑

k=1

ykl
2
k(0) (3)
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the problem is regular, but if n is odd, the uniqueness fails. (lk(x) represent the fun-

damental polynomials of Lagrange interpolation corresponding to the nodal points

xk, He gave the explicit form of the interpolational polynomial and proved conver-

gence theorem.

Several authors investigated the weighted (0,2)-interpolation with the additional

Balázs-type condition (3) on the roots of the classical orthogonal polynomials (Joó

[6], Joó and Szili [7], Prasad [9], [10], [11], [12], Szili [16], [17]). For special choice of

the nodes, Bajpai [1], Eneduanya [5], and Balázs [3] substituted the additional con-

dition (3) with interpolatory type conditions. For more results on (0,2)-interpolation

we refer to the survey paper of Szili [18].

In order to replace the additional Balázs-type condition (3) with interpolatory

conditions, in [8] we have studied the weighted (0,2)-interpolation problem with

two additional interpolatory conditions in a unified way with respect to the exis-

tence, uniqueness and representation (explicit formulae). In this paper we study the

weighted (0,2)-interpolation problem with one interpolatory condition:

The problem: On the finite or infinite interval [a, b] let xi, (i = 0, . . . , n;n ∈ N)

be distinct points, the nodal points of interpolation, and let w ∈ C2(a, b) be a given

function, called weight function. Find a polynomial Rn of minimal degree satisfying

the weighted (0,2)-interpolational conditions

Rn(xi) = yi, (wRn)′′(xi) = y′′i (i = 1, . . . , n− 1),

with the additional interpolatory condition

Rn(x0) = y0,

or

R′
n(x0) = y′0,

or

R′
n(x1) = y′1,

where yi, y
′
0, y

′
1 and y′′i are arbitrary real numbers.

As the number of conditions is 2n− 1, the problem is regular, if for any choice

of the values yi, y
′′
i , y

′
0 and y′1 there exists a unique polynomial Qn of degree at most

≤ 2n − 2. We formulate sufficient conditions on the nodal points and the weight

function w, for the problem to be regular. In the regular cases we find simple explicit

forms for Rn. Finally, applying the theorems, we present some results on the zeros

of the classical orthogonal polynomials.
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2. PRELIMINARIES

Let [a, b] be a finite or infinite interval, and let

x0, x1, . . . , xn ∈ [a, b] (4)

be distinct real numbers, the nodal points of the interpolation. Let pn−1(x) be a

polynomial of degree n− 1, for which

pn−1(xi) = 0 (i = 1, . . . , n− 1), (5)

and

lj(x) =
pn−1(x)

p′n−1(xj)(x− xj)
(j = 1, . . . , n− 1) (6)

are basis polynomials of Lagrange interpolation, and hence

lj(xi) = δi,j =
{ 1, i = j

0, i �= j
(i, j = 1, . . . , n− 1), (7)

and

l′j(xj) =
p′′n−1(xj)

2p′n−1(xj)
(j = 1, . . . , n− 1). (8)

Furthermore, let us introduce the notations

r(x) = (x− x0)
ε1(x− xn)ε2 ,

q(x) = (x− x0)
δ1(x− xn)δ2 ,

where εi, δi ∈ {0, 1, 2, . . . } and εi ≥ δi for i = 1, 2.

We recall the general explicit formulae of the fundamental polynomials of first

and second kind for the weighted (0,2)-interpolation ([8]):

Lemma 1. If on the system of nodes (4) the weight function w satisfies the condi-

tions

w(xi) �= 0, (qwpn−1)
′′(xi) = 0 (i = 1, . . . , n− 1), (9)

then for k = 1, . . . , n− 1 the polynomials

Ak(x) =
r(x)

r(xk)
l2k(x) +

q(x)pn−1(x)

r(xk)p′n−1(xk)

×
{
ck +

∫ x

x0

[ l′k(xk)lk(t)− l′k(t)
t− xk

· r(t)
q(t)

+ aklk(t) + bkpn−1(t)
]
dt
}
,

(10)
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where bk, ck are arbitrary constants,

ak = − (rw)′′(xk)

2(qw)(xk)
− 2l′k(xk)

(r
q

)′
(xk), (11)

satisfy the weighted (0,2)-interpolational conditions

Ak(xi) = δi,k, (wAk)
′′(xi) = 0 (i = 1, . . . , n− 1). (12)

Furthermore, for k = 1, . . . , n− 1 the polynomials

Bk(x) =
q(x)pn−1(x)

2q(xk)w(xk)p′n−1(xk)

{
ãk +

∫ x

x0

[
lk(t) + b̃kpn−1(t)

]
dt
}

(13)

satisfy the weighted (0,2)-interpolational conditions

Bk(xi) = 0, (wBk)
′′(xi) = δi,k (i = 1, . . . , n− 1) (14)

with ãk, b̃k arbitrary constants.

3. RESULTS

Theorem 1. Let {xi}n−1
i=0 (n ≥ 2) be a set of distinct nodes in [a, b], let w ∈ C2(a, b)

be a weight function, and pn−1(x) = c(x− x1) . . . (x− xn−1).

If

w(xi) �= 0,
(
wpn−1

)′′
(xi) = 0 (i = 1, . . . , n− 1), (15)

then for arbitrary real numbers yi, y
′′
i and y0 there exists a unique polynomial Rn

of degree at most 2n − 2, which fulfils weighted (0,2)-interpolational conditions at

x1, . . . , xn−1

Rn(xi) = yi, (wRn)′′(xi) = yi
′′ (i = 1, . . . , n− 1), (16)

with the additional condition at x0

Rn(x0) = y0. (17)

Proof. We apply Lemma 1 with r(x) = (x − x0) and q(x) = 1. In order to get the

minimal degree 2n− 2 for Ak, let bk = 0 in (10). From the condition Ak(x0) = 0 we

get ck = 0, hence we have for k = 1, . . . , n− 1

Ak(x) =
x− x0

xk − x0

l2k(x) +
pn−1(x)

(xk − x0)p′n−1(xk)∫ x

x0

[ l′k(xk)lk(t)− l′k(t)
t− xk

(t− x0) + aklk(t)
]
dt, (18)
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where

ak = −
(
(x− x0)w

)′′
(xk)

2w(xk)
− 2l′k(xk). (19)

Furthermore, let

A0(x) =
pn−1(x)

pn−1(x0)
, (20)

and for k = 1, . . . , n− 1

Bk(x) =
pn−1(x)

2w(xk)p′n−1(xk)

∫ x

x0

lk(t)dt. (21)

As the polynomials Ak, Bk (k = 1, . . . , n− 1), and A0, defined by (18)–(21) are

the basis polynomials of the interpolational problem, the polynomial

Rn(x) =
n−1∑
k=0

yk Ak(x) +
n−1∑
k=1

y′′k Bk(x) (22)

is of degree at most 2n− 2 and fulfils the conditions (16) and (17).

For the proof of the uniqueness we study the homogeneous problem: Find a

polynomial R̄n of degree at most 2n − 2 such that R̄n(xi) = 0, (wR̄n)′′(xi) = 0

(i = 1, . . . , n− 1), and R̄n(x0) = 0. From these conditions it is obvious, that

R̄n(x) = pn−1(x)ḡn−1(x),

where ḡn−1 is a polynomial of degree at most n− 1. As for i = 1, . . . , n− 1

(wR̄n)′′(xi) = 2w(xi)p
′
n−1(xi)ḡ

′
n−1(xi) = 0,

and w(xi) �= 0, p′n−1(xi) �= 0, therefore with a constant c̄ we get ḡn−1(x) ≡ c̄. Finally,

from the condition R̄n(x0) = 0 we obtain c̄ = 0, that is R̄n(x) ≡ 0, which completes

the proof.

Theorem 2. Let {xi}n−1
i=0 (n ≥ 2) be a set of distinct nodes in [a, b], let w ∈ C2(a, b)

be a weight function, and pn−1(x) = c(x− x1) . . . (x− xn−1).

If

w(xi) �= 0,
(
wpn−1

)′′
(xi) = 0 (i = 1, . . . , n− 1), (23)

and

p′n−1(x0) �= 0, (24)
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then for arbitrary real numbers yi, y
′′
i and y′0 there exists a unique polynomial Rn

of degree at most 2n − 2, which fulfils weighted (0,2)-interpolational conditions at

x1, . . . , xn−1

Rn(xi) = yi, (wRn)′′(xi) = yi
′′ (i = 1, . . . , n− 1), (25)

with the additional condition at x0

R′
n(x0) = y′0. (26)

Proof. We apply Lemma 1 with r(x) = (x − x0) and q(x) = 1. In order to get the

minimal degree 2n− 2 for Ak, let bk = 0 in (10). From the equation A′
k(x0) = 0 we

get ck, hence we have for k = 1, . . . , n− 1

Ak(x) =
x− x0

xk − x0

l2k(x) +
pn−1(x)

(xk − x0)p′n−1(xk){
ck +

∫ x

x0

[ l′k(xk)lk(t)− l′k(t)
t− xk

(t− x0) + aklk(t)
]
dt
}
, (27)

where

ak = −
(
(x− x0)w

)′′
(xk)

2w(xk)
− 2l′k(xk), (28)

and

ck = −pn−1(x0)lk(x0)

p′n−1(x0)

( 1

x0 − xk

+ ak

)
. (29)

Furthermore, let

C0(x) =
pn−1(x)

p′n−1(x0)
, (30)

and for k = 1, . . . , n− 1

Bk(x) =
pn−1(x)

2w(xk)p′n−1(xk)

{
−pn−1(x0)lk(x0)

p′n−1(x0)
+

∫ x

x0

lk(t)dt
}
. (31)

As the polynomials Ak, Bk (k = 1, . . . , n− 1), and C0, defined by (27)–(31), are

the basis polynomials of the interpolational problem, the polynomial

Rn(x) =
n−1∑
k=1

yk Ak(x) +
n−1∑
k=1

y′′k Bk(x) + y′0 C0(x) (32)

is of degree at most 2n− 2 and fulfils the conditions (25) and (26).

The uniqueness can be proved in a similar way as in Theorem 1, which completes

the proof.
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Theorem 3. Let {xi}n−1
i=0 (n ≥ 2) be a set of distinct nodes in [a, b], let w ∈ C2(a, b)

be a weight function, and pn−1(x) = c(x− x1) . . . (x− xn−1).

If (
(x− x0)wpn−1

)′′
(xi) =0, (i = 1, . . . , n− 1),

w(xi) �=0, (i = 0, 1, . . . , n− 1),
(33)

then for arbitrary real numbers yi, y
′′
i and y′0, there exists a unique polynomial

Rn of degree at most 2n, which fulfils weighted (0,2)-interpolational conditions at

x0, x1, . . . , xn−1 with the additional condition

R′
n(x0) = y′0.

Proof. We apply Lemma 1 with r(x) = (x − x0)
2 and q(x) = (x − x0). From the

condition A′
k(x0) = 0 we obtain ck = 0, hence we have for k = 1, . . . , n− 1

Ak(x) =
(x− x0)

2

(xk − x0)2
l2k(x) +

(x− x0)pn−1(x)

(xk − x0)2p′n−1(xk)

×
∫ x

x0

[ l′k(xk)lk(t)− l′k(t)
t− xk

(t− x0) + aklk(t) + bkpn−1(t)
]
dt,

(34)

where

ak = −
(
(x− x0)

2w
)′′

(xk)

2(xk − x0)w(xk)
− 2l′k(xk). (35)

It is clear, that Ak(xi) = δk,i for i = 0, 1, . . . , n− 1, A′
k(x0) = 0 and by Lemma

1 also (wAk)
′′(xi) = 0 for i = 1, . . . , n − 1. From (wAk)

′′(x0) = 0 we obtain the

constant

bk =
1

(xk − x0)p′n−1(xk)

( 1

x0 − xk

+ ak

)
. (36)

The polynomial A0, which fulfils the conditions

A0(xi) = δ0,i , (wA0)
′′(xi) = 0 (i = 0, 1, . . . , n− 1), A′

0(x0) = 0,

will be determined in the form

A0(x) =
p2

n−1(x)

p2
n−1(x0)

+ (x− x0)pn−1(x)g0(x), (37)

where g0 is a polynomial of degree at most n. Applying the conditions (wA0)
′′(xi) =

0 for i = 1, . . . , n− 1, we get

g′0(xi) = − 1

p2
n−1(x0)

· p
′
n−1(xi)

xi − x0

(i = 1, . . . , n− 1),
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which inspires us to define the polynomial g′0, as it follows

g′0(x) = − 1

p3
n−1(x0)

· p
′
n−1(x)pn−1(x0)− p′n−1(x0)pn−1(x)

x− x0

+ c0pn−1(x),

Thus

g0(x) = a0 − 1

p3
n−1(x0)

∫ x

x0

p′n−1(t)pn−1(x0)− p′n−1(x0)pn−1(t)

t− x0

dt+ c0

∫ x

x0

pn−1(t)dt,

(38)

where

a0 = −2p′n−1(x0)

p2
n−1(x0)

, c0 =
−w′′(x0)

2w(x0)p2
n−1(x0)

(39)

are determined from the conditions A′
0(x0) = 0 and (wA0)

′′(x0) = 0.

For the fundamental polynomials of second kind we apply Lemma 1 with the

conditions B′
k(x0) = 0 and (wBk)

′′(xk), and hence we obtain for k = 1, . . . , n− 1

Bk(x) =
(x− x0)pn−1(x)

2(xk − x0)p′n−1(xk)w(xk)

{∫ x

x0

lk(t)dt+
1

(xk − x0)p′n−1(xk)

∫ x

x0

pn−1(t)dt
}
.

(40)

It is clear, that Bk(xi) = 0 for i = 0, 1, . . . , n− 1, B′
k(x0) = 0, (wBk)

′′(x0) = 0, and

by Lemma 1 also (wBk)
′′(xi) = δk,i for i = 1, . . . , n− 1.

It is easy to verify that the polynomial

B0(x) =
(x− x0)pn−1(x)

2w(x0)p2
n−1(x0)

∫ x

x0

pn−1(t)dt (41)

fulfils the conditions

B0(xi) = 0 , (wB0)
′′(xi) = δ0,i (i = 0, 1, . . . , n− 1), B′

k(x0) = 0.

The polynomial C0, which fulfils the conditions

C0(xi) = 0 , (wC0)
′′(xi) = 0 (i = 0, 1, . . . , n− 1), C ′(x0) = 1,

will be determined in the form

C0(x) = (x− x0)pn−1(x)g̃0(x),

where g̃0 is a polynomial of degree at most n. From the equations

(wB0)
′′(xi) = 2(xi − x0)w(xi)p

′
n−1(xi)g̃

′
0(xi) = 0 (i = 1, . . . , n− 1),
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we get

g̃′0(xi) = 0 (i = 1, . . . , n− 1),

and so

g̃0(x) = c̃

∫ x

x0

pn−1(t) + d̃,

where the constants c̃ and d̃ are defined by the conditions

C ′
0(x0) = 1, (wC0)

′′(x0) = 0.

Finally

C0(x) = (x− x0)pn−1(x)
{ 1

pn−1(x0)
− (wpn−1)

′(x0)

w(x0)p3
n−1(x0)

∫ x

x0

pn−1(t)dt
}
. (42)

As the polynomials Ak and Bk (k = 0, 1, . . . , n−1) and C0, defined by (34)–(42),

are the basis polynomials of the interpolational problem, the polynomial

Rn(x) =
n−1∑
k=0

yk Ak(x) +
n−1∑
k=0

y′′k Bk(x) + C0(x)y′0 (43)

is of degree at most 2n and fulfils the interpolational conditions.

For the proof of the uniqueness we study the homogeneous problem: Find a

polynomial R̄n of degree at most 2n − 1 such that R̄n(xi) = 0, (wR̄n)′′(xi) = 0

(i = 0, 1, . . . , n− 1), and R̄′
n(x0) = 0. From these conditions it is obvious, that

R̄n(x) = (x− x0)
2pn−1(x)gn−1(x),

where gn−1 is a polynomial of degree at most n− 1. As for i = 1, . . . , n− 1

(wR̄n)′′(xi) = 2(xi − x0)w(xi)p
′
n−1(xi)

(
(x− x0)gn−1

)′
(xi) = 0,

and xi �= x0, w(xi) �= 0, p′n−1(xi) �= 0, therefore with a constant c̄ we get

(x− x0)gn−1(x) = c̄

∫ x

x0

pn−1(t)dt.

Finally, from the condition

(wR̄n)′′(x0) = 2c̄ w(x0)p
2
n−1(x0) = 0,

on using w(x0) �= 0 and pn−1(x0) �= 0 we obtain c̄ = 0, that is R̄n(x) ≡ 0, which

completes the proof.
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4. RESULTS ON THE ZEROS OF THE CLASSICAL ORTHOGONAL

POLYNOMIALS

Lemma 2. The classical orthogonal polynomials (Jacobi-, Laguerre-, and Hermite

polynomials) satisfy the homogeneous differential equation

(wy)′′ + f · (wy) = 0 (44)

with an appropriate weight function w and function f .

Proof. We refer to [15] ((4.24.1), (5.1.2), (5.5.2)):

For the Jacobi polynomials y = P
(α,β)
n , (α, β > −1),

w(x) = (1− x)
α+1

2 (1 + x)
β+1

2 ,

and

f(x) =
1

4

1− α2

(1− x)2
+

1

4

1− β2

(1 + x)2
+

2n(n + α + β + 1) + (α + 1)(β + 1)

2(1− x2)
.

For the Laguerre polynomials y = L
(α)
n , (α > −1),

w(x) = e−
x
2x

α+1
2 ,

and

f(x) =
2n + α + 1

2x
+

1− α2

4x2
− 1

4
.

For the Hermite polynomials y = Hn,

w(x) = e−
x2

2 , f(x) = 2n + 1− x2.

4.1. Hermite polynomials

COROLLARY 1. (S. Datta and P. Mathur [4]) If the weight function is w(x) =

e−x2/2, then under the condition

Rn(0) = y0, for even n,

338



or

R′
n(0) = y′0, for odd n,

the weighted (0,2)-interpolation is regular on the zeros of the Hermite polynomial

Hn of degree n.

Proof. As Hn(0) = 0 for odd n, Hn(0) �= 0 for even n, H ′
n(x) = 2nHn−1(x) (cf.

(5.5.10) in [15]), and w(0) �= 0, thus by Lemma 2 we can apply Theorem 1 and 3

with x0 = 0, pn(x) = Hn(x), and with x0 = 0, pn−1(x) = Hn(x)/x, respectively,

which completes the proof.

COROLLARY 2. If the weight function is w(x) = e−x2/2, x0 is the smallest or

largest zero of Hn+1, then under the condition

Rn(x0) = y0,

or

R′
n(x0) = y′0,

the weighted (0,2)-interpolation is regular on the zeros of the Hermite polynomial

Hn of degree n.

Proof. The zeros of Hn and Hn+1 form an interscaled system, so Hn(x0) �= 0 and

H ′
n(x0) �= 0, therefore by Lemma 2 we can apply Theorem 1 and 2, which completes

the proof.

4.2. Laguerre polynomials

COROLLARY 3. If the weight function is w(x) = e−x/2x(α+1)/2, then under the

condition

Rn(0) = y0,

or

R′
n(0) = y′0,

the weighted (0,2)-interpolation is regular on the zeros of the Laguerre polynomial

L
(α)
n (α > −1) of degree n.

Proof. As L
(α)
n (0) �= 0, L

(α)′
n (0) �= 0, so by Lemma 2 we can apply Theorem 1 and

2 with x0 = 0 and pn(x) = L
(α)
n (x), which completes the proof.
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COROLLARY 4. If the weight function is w(x) = e−x/2, then under the condition

R′
n(0) = y′0,

the weighted (0,2)-interpolation is regular on the zeros of L
(−1)
n (x) = − 1

n
xL

(1)
n−1(x).

Proof. By Lemma 2 we can apply Theorem 3 with x0 = 0, pn−1(x) = L
(1)
n−1(x), and

we obtain the statement.

4.3. Jacobi polynomials

In a similar way one can prove

COROLLARY 5. If the weight function is w(x) = (1− x2)(α+1)/2, then under the

additional condition

R′
n(0) = y′0, for odd n,

or

Rn(0) = y0, for even n,

the weighted (0,2)-interpolation is regular on the zeros of the ultraspherical polyno-

mial P
(α)
n (α > −1) of degree n.

COROLLARY 6. If the weight function is w(x) = (1 − x)(α+1)/2(1 + x)(β+1)/2,

then under the additional condition

R′
n(1) = y′0,

or

Rn(1) = y0,

the weighted (0,2)-interpolation is regular on the zeros of the Jacobi polynomial

P
(α,β)
n (α, β > −1) of degree n.

COROLLARY 7. If the weight function is w(x) = (1 + x)(β+1)/2, then under the

additional condition

R′
n(1) = y′0,

the weighted (0,2)-interpolation is regular on the zeros of P
(−1,β)
n (x) = n+β

2n
(x −

1)P
(−1,β)
n−1 (x) (β > −1).

Remark. On using P
(α,β)
n (−x) = (−1)nP

(β,α)
n (x) ([15] (4.1.3)) we obtain similar

results, if we substitute x with −x and x0 = −1.
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Abstract

The paper is devoted to latest results of author and his colleagues concerning the

structure of groups with various finiteness conditions, which contain elements of

small orders.

1. GROUPS WITH SMALL SPECTRUM

For a group G, define the spectrum of G as the set ω(G) of element orders of G.

This set consists of some natural numbers and, possibly, the symbol ∞.

It is obvious that a group with ω(G) = {1, 2} is elementary Abelian. F.Levi and

B.L. van der Waerden [14] proved that if ω(G) = {1, 3} then G is nilpotent of class

at most 3. B.H.Neumann [22] described groups with ω(G) = {1, 2, 3}. I.N.Sanov

[25] and M.Hall [10], respectively, stated that a group G with ω(G) ⊆ {1, 2, 3, 4} and

ω(G) ⊆ {1, 2, 3, 6} is locally finite. Nothing is known about the locally finiteness

of groups of exponent 5, but the following results are proved for groups with small

spectrum which contains the number 5.

Theorem 1.1. Let G be a group.

1 [24, 9]. If ω(G) = {1, 2, 5} then G contains an Abelian normal Sylow subgroup.

2 [9]. If ω(G) = {1, 3, 5} then one of the following holds:

(i) G = FT where F is a normal 5-subgroup which is nilpotent of class at most 2

and |T | = 3;

(ii) G contains a normal 3-subgroup T which is nilpotent of class at most 3 and

G/T is a 5-group.

3 [34]. If ω(G) = {1, 2, 3, 5} then G is isomorphic to the alternating group A5.
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4 [9]. If ω(G) = {1, 2, 4, 5} then one of the following holds:

(i) G = TD where T is a non-trivial elementary Abelian 2-group and D is a

non-Abelian group of order 10;

(ii) G = FT where F is an elementary Abelian normal 5-subgroup and T is iso-

morphic to a subgroup of quaternion group of order 8.

(iii) G contains a normal 2-subgroup T which is nilpotent of class at most 6 and

G/T is a 5-group.

5 [17]. If ω(G) = {1, 2, 3, 4, 5}. Then one of the following holds:

(i) G � A6;

(ii) G = V C where V is a non-trivial elementary Abelian normal 2-subgroup of

G and C � A5. More precise, V is the direct product of minimal normal

subgroups of G of order 16 and every of those is the natural two-dimensional

module for SL2(4) � C.

Questions.

1. Is a group G locally finite if 2 ∈ ω(G) ⊆ {1, 2, 3, 4, 5}? In view of Theorem

1.1. this question is equivalent to the following: Is a 5-group of exponent 5 acting

as a group of fixed-point-free automorphisms on a non-trivial elementary Abelian

group necessarily cyclic?

2. Is a groupG locally finite if ω(G) coincides with {1, 2, 3, 4, 6} or {1, 2, 3, 4, 5, 6}?

Since A5 is isomorphic to the first member of the infinite family of finite simple

groups L2(2
n) = SL(2, 2n), n ≥ 2, the part 2 of Theorem 1.1 is a particular case of

the following characterization of L2(2
n).

Theorem 1.2 [34]. Let G be a group. If ω(G) = ω(L2(2
n)) for some n ≥ 2

then G is isomorphic to L2(2
n).

Under assumption that G is finite, this theorem was proved in [3]. In its turn,

Theorem 1.2 follows from
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Theorem 1.3. Let G be a periodic group such that ω = ω(G) satisfies the

following conditions:

a) 2, 3 ∈ ω;

b) if n ∈ ω and n �= 2 then n is odd;

c) there exists a prime p > 3 such that p ∈ ω, 3p �∈ ω.

Then there exists a locally finite field P of characteristic 2 such that G �
L2(P ) = PSL2(P ), projective special linear group of dimension 2 over P .

The crucial point in the proof of this theorem is that the centralizer of every

involution in a group G satisfying the conditions of this theorem is elementary

Abelian, so that we can use Theorem 2.1 below. Notice that, under conditions of

Theorem 1.3, the cases 2.1 and 2.2 of Theorem 2.1 are not presented by Corollary 2

of Theorem 4.2.

Theorem 1.3 can be used to point out examples of infinite groups which are

recognizable up to isomorphism by their spectra.

Theorem 1.4 [16]. Let P be a field which is the union of an ascending series

of finite fields of orders 2mi ,mi > 1, i = 1, 2, ..., and let L = PGL2(P ). If there

exists a natural s such that 2s does not divide mi for every i = 1, 2, ... then L is

recognizable by ω(L), i.e. every group G with ω(G) = ω(L) is isomorphic to L. In

all other cases, there exist infinitely many pair-wise non-isomorphic groups G such

that ω(G) = ω(L).

This theorem answers affirmatively a question by H.Deng and W.Shi [5] on

the existence of a infinite group G which is recognizable by ω(G). Notice that

every group G which is recognizable by ω(G) should be periodic because, for a

group G containing an element of infinite order and arbitrary torsion-free group X,

ω(G) = ω(G×X).

2. GROUPS WITH ABELIAN CENTRALIZERS OF INVOLUTIONS

An involution t of a group G is said to be a finite involution (in G) if, for every

g ∈ G, the order of the commutator [t, g] = ttg is finite. This definition is equivalent

to the condition that the order of ti is finite for every involution i ∈ G. It is obvious

that in a periodic group every involution is finite.
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Theorem 2.1 [16]. Let G be a group containing a finite involution t. Suppose

that the centralizer of every involution in G is an Abelian 2-group.

1. If the centralizer CG(t) of t in G contains an involution other than t then one

of the following statements holds:

1.1. CG(t) is normal in G.

1.2. CG(t) is elementary Abelian.

2. If CG(t) is elementary Abelian then one of the following statements holds:

2.1. G = A < t > where A is an Abelian periodic subgroup containing no

involutions and at = a−1 for every a ∈ A.

2.2. G is an extension of an Abelian 2-group by a group containing no involu-

tions.

2.3. There exists a locally finite field P of characteristic two such that G is

isomorphic to PGL2(P ).

For the finite groups, this theorem is a particular case of a result by M.Suzuki

[28]. Finite case of part 2 was proved firstly by R.Brauer, M.Suzuki and G.E.Wall [4]

(see also [12, Theorem XI.2.7]) with an aid of the character theory of finite groups.

Later, D.Goldschmidt [7] found an elementary proof in which the finiteness of G

was used also substantially.

The condition of the existence of a finite involution cannot be weakened as

shows an example of free product PGL2(P ) ∗ X where P is an arbitrary field of

characteristic 2 and X is an arbitrary torsion free group.

On the other hand, it is easy to notice that, under conditions of Theorem 2.1,

groups of form 2.1 and 2.3 are locally finite, but there exist non-locally finite groups

of form 2.2. For example, the natural semi-direct product of the additive group of

an arbitrary field P of characteristic 2 and the multiplicative group of P acting on

P by the multiplication satisfies the conditions of Theorem 2.1.

To prove Theorem 2.1, suppose that T = CG(t) is not normal in G and contains

more than one involution. Then one can show that T is a Sylow 2-subgroup of G and

NG(T ) = TK where K is a periodical Abelian group which contains no involutions.
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Moreover, G acts by right multiplications on the set of right cosets of N = NG(T )

as a triply transitive group, and one can apply

Theorem 2.2 [16]. Let G be a triply transitive group in which the stabilizer of

some two points is periodic and contains no involutions. If the stabilizer of some

three points is trivial then there exists a locally finite field P of characteristic 2 such

that G is similar to PGL2(P ) in its natural action on projective line P ∪ {∞}.

Theorem 2.2 generalizes the well known Zassenhaus theorem [30] on finite

sharply triply transitive groups of odd degree (see also [12, Theorem XI.2.1]).

Questions. 1. Is it true that a simple group with Abelian centralizers of involutions

which contains a finite involution is isomorphic to PGL2(P ) for some locally finite

field P of characteristic two?

2. Let G be a group with a finite involution T such that CG(t) is a locally cyclic

2-group. Is it true that G = NCG(t) for some normal Abelian subgroup N?

3. QUADRATIC AUTOMORPHISMS OF ABELIAN GROUPS

An automorphism x of an Abelian group V is said to be a quadratic automorphism

if there exist natural numbers a, b such that vx2 + avx + bv = 0 for all v ∈ V , in

other words, x2 + ax+ b = 0 in the endomorphism ring of G. A pair (a, b) is said to

be type of quadratic automorphism x.

The most important examples of quadratic automorphisms are generators of

cyclic groups of fixed-point-free automorphisms of orders 3, 4, 6 for which, respec-

tively, x2 + x + 1 = 0, x2 + 1 = 0 and x2 − x + 1 = 0.

Let F be a field, a, b ∈ Z, λ ∈ F, λ �= 0, A(a, b) =

(
0 1

b a

)
, B(a, b, λ) =( −a λ−1b

λ 0

)
. If A(a, b) and B(c, d, λ) are non-degenerated then denote by

L(a, b; c, d;λ, F ) a subgroup H of GL2(F ) generated by A(a, b) and B(c, d, λ) and

call H the group of type (a, b; c, d) over F corresponding to λ.

Theorem 3.1 [31, 15]. Let V be an Abelian group, G is a group generated by

two quadratic automorphisms α, β of V of types (a, b), (c, d), respectively, such that

orders of α, β, αβ are finite. Then G is an extension of a finite nilpotent group N

by a subgroup of the direct product of a finite Abelian group A and a finite number
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of groups Hi of type (a, b; c, d) over an extensions of a prime field Pi, i = 1, ..., s, by

a n-th root of unity where n is equal to order of αβ, and the following conditions

holds:

1. If V is torsion-free then N = 1 and Hi = L(a, b; c, d;λ,Q(λi)), i = 1, ..., s,

where λi is some n-th root of unity in complex number field C.

2. If the exponent m of V is finite then G is a finite group, and every prime

divisor of |N | and the characteristic of Pi, i = 1, ..., s, divide m.

Corollary. If G is a group generated by two quadratic automorphisms α, β

of an Abelian group of a finite exponent m such that orders of α, β, αβ are finite

then G is a finite group and every composition factor of G is isomorphic either to

alternating group A5, or to projective special linear group L2(q) of degree 2 over a

field of order q whose characteristic divides m.

4. GROUPS GENERATED BY FIXED-POINT-FREE AUTOMOR-

PHISMS OF SMALL ORDERS

An action of a non-trivial group G on an (additive) non-zero group V is said to be

free, if vg �= v for 1 �= g ∈ G, 0 �= v ∈ V . In other words, G acts freely on V if G is

a group of fixed-point-free automorphisms of V .

This section is devoted to generalizations of the following well-known result

which is a particular case in the classification (given by H.Zassenhaus [30]) of finite

groups acting freely on an Abelian group.

Theorem 4.1. Let G be a finite group acting freely on an Abelian group. If

G is generated by elements of prime order p then either G is cyclic, or p = 5 and

G is isomorphic to SL2(5), or p = 3 and G is isomorphic to one of the groups

SL2(3), SL2(5).

A proof of the following theorem is based on Theorem 3.1.

Theorem 4.2 [32, 20]. Suppose that a group G acting freely on a non-zero

Abelian group is generated by a non-empty normal set X of elements of order 3. If

one of the following conditions holds:

a) the order of x−1y is finite for every two elements x, y ∈ X,
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b) the order of xy is finite for every two elements x, y ∈ X,

then G is a finite group which is isomorphic to either a cyclic group of order 3, or

SL2(3), or SL2(5). In particular, if G is periodic then G is finite.

Corollary 1. Let x be an element of order 3 in a group G which acts freely on

a non-trivial Abelian group. If, for every g ∈ G, the order of the commutator [x, g]

is finite, then x belongs to a finite normal subgroup of G.

Corollary 2. Periodic group acting freely on an Abelian group and containing

an element of order 3 contains a central element of order 2 or 3.

A proof of Theorem 4.2, together with Theorem 3.1, uses the following two

results.

Proposition 1. Let x, y be elements of order 3 in SL2(C) such that the order

n of xy is finite. If one of the following conditions holds:

a) the order of [x, y] = x−1xy is finite,

b) the order of xxy is finite and non-equal to 3,

then either n is equal to one of the numbers 1, 2, 3, 4, 6, 10 and 〈x, y〉 is finite, or the

case b) holds, n = 14 and the order of xxy is equal to 7.

Proposition 2. Let x, y be an order 3 automorphisms of an Abelian group V

such that the order of xy is finite and G = 〈x, y〉 acts freely on V . If one of the

following conditions holds:

a) the order of [x, y] = x−1xy is finite,

b) the order of xxy is finite,

then either n is equal to one of the numbers 1, 2, 3, 4, 6, 10 and 〈x, y〉 is finite, or the

case b) holds, n = 14 and the order of xxy is equal to 7.

There exists an example which shows that, in Proposition 2, the alone condition

of finiteness of order of xy cannot imply the finiteness of G. More exact, for every

natural n not equal to 1, 2, 3, 4, 6, 10, there exists a subgroup G = G(n) of SL2(C)

such that:
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a) G is generated by two elements of order 3 whose product is of order n,

b) G is infinite,

c) G acts freely on C2.

Moreover, there exists an infinite group which acts freely on an Abelian group

and is generated by three elements of order 3 every pair of which generates a finite

group.

Theorem 4.3 [33]. Let G be a group of automorphisms of a non-trivial Abelian

group A, x ∈ G is an element of prime order p and, for every g ∈ G, the subgroup

〈x, xg〉 is finite and acts freely on A. Then x is contained in a finite normal subgroup

of G.

More exactly, either H = 〈xG〉 is cyclic, or one of the following conditions holds:

a) p = 5 and H � SL2(5);

b) p = 3 and H is isomorphic to one of the groups SL2(3), SL2(5).

Let S be a set of arbitrary (not necessarily finite) cardinality n and An the

(locally finite) alternating group on S.

Theorem 4.4 [19]. Let G be a group acting faithfully on an Abelian group V .

Suppose that G is generated by a conjugacy class X of elements of order 3 such that

every two non-commuting members of X generate a finite subgroup which acts freely

on V . Then either G is Abelian, or G contains a central subgroup C of order 2 such

that G/C � An for some cardinality n.

On the other hand, for every cardinality n ≥ 3 (finite or infinite) there exists

an extension G of a group of order 2 by An such that every two elements of order 3

from pre-images in G of 3-cycles in An either commute, or generate a group which

acts freely on V.

The first part of this result is a direct consequence of the following

Theorem 4.5 [19]. Suppose that a group G contains a normal subset X of

elements of order 3 such that, for every non-commuting x, y ∈ X, the subgroup

〈x, y〉 is isomorphic to A4, or to A5. Then 〈xG〉 is locally finite and is isomorphic to
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the (discrete) direct product of groups every of which is isomorphic either to An for

some cardinality n or to an extension of an elementary Abelian 2-group by a group

of order 3.

5. SELFCENTRALIZING SUBGROUPS OF ORDER 3.

W.Feit and J.G.Thompson [6] obtained a description of finite groups containing a

subgroup T of order 3 which coincides with its centralizer. We extend this results

on arbitrary groups with the condition that T generates with every its conjugate a

finite subgroup.

Theorem 5.1 [18]. Suppose that a group G contains a subgroup T of order 3

such that CG(T ) = T . If, for every g ∈ G, the subgroup 〈T, T g〉 is finite, then one

of the following holds:

1. G = NNG(T ) for a periodic nilpotent normal subgroup N of class 2 and NT

is a Frobenius group with core N and complement T .

2. G = NA where A is isomorphic to A5 � SL2(4) and N is a normal elemen-

tary Abelian 2-subgroup such that N is the direct product of subgroups of order 16

normal in G and isomorphic to the natural SL2(4)-module of dimension 2 over a

field of order 4.

3. G is isomorphic to L2(7).

In particular, G is locally finite.

Our arguments are based on the using of the coset enumeration algorithm for a

proof of finiteness of some finitely presented groups. All necessary calculations are

made in GAP [26].

Let t be a generator of T and X = tG. By the mentioned Feit-Thompson

theorem, a group generated by any two members ofX can be described up to defining

relations. This gives a possibility to calculate orders of various groups generated by

specially chosen triples of members of X and then to prove the finiteness of a group

generated by a finite number of members of X.

The following example shows that the finiteness condition for subgroups 〈T, T g〉
cannot be omitted.
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Example. Let G be the periodic product of odd exponent n ≥ 665 (see [1]) of

two subgroups G1, G2 of order 3. Then G is an infinite simple group of exponent

3n, CG(G1) = G1, and G is not a locally finite group.

6. FROBENIUS GROUPS

Let G be a transitive permutation group on a (possibly, infinite) set Ω such that

the stabilizer H = Gα of a point α ∈ Ω is non-trivial but the stabilizer of every two

distinct points is trivial. In particular, H is detached in G (this term was introduced

by Yu.M. Gorchakov in [8]), that is H is a proper subgroup of G and H
⋂
Hg = 1 for

every g �∈ H. In V.P.Shunkov’s notation [27], this means that (G,H) is a Frobenius

pair. By famous result of G.Frobenius, if Ω is finite then H has a normal complement

F in G consisting of trivial element and all elements in G which fix no points in

Ω, and F is a regular subgroup, i.e. F is transitive and Fα = 1. In this situation,

the set of subgroups consisting of F and all Gβ, β ∈ Ω form a partition of G, i.e.

the set of proper subgroups having pair-wise trivial intersections and covering G.

For infinite group G, the set F = (G \ ⋃
α∈Ω

Gα) ∪ {1} is not necessarily a subgroup

(for example, if G is a free group of rank 2 and H is a maximal Abelian subgroup

of its commutator subgroup, see [13]), and if F is a regular subgroup we call G a

Frobenius group. Note, that this definition differs from the definition of Frobenius

group by P.Neumann and P.Rowly [23] (our Frobenius group is a particular case of

their split Frobenius group).

If G is a Frobenius group then

(a) F is a non-trivial proper normal subgroup of G, G = FH and F ∩H = 1;

(b) H ∩Hg = 1 for every g ∈ G \H;

(c) F \ {1} = G \ (
⋃

g∈G Hg) =
⋂

g∈G(G \Hg).

On the other hand, if F and H are subgroups of an arbitrary group G which

satisfy the conditions (a)-(c) then one can easy to see that G acts by the right

multiplication on the set Ω of all cosets Hg, g ∈ G, as a permutation Frobenius

group and, after Shunkov [27], we call such G an (abstract) Frobenius group. The

subgroup F is said to be the Frobenius core and H a Frobenius complement (in

respect to the decomposition (a).)

For example, the semidirect product of the additive group of arbitrary skew-field
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F and a non-trivial subgroup H of its multiplicative group such that H acts on F

by multiplication from the right is a Frobenius group.

For finite Frobenius groups, the structure of the core F and a complement H is

well-studied: F is nilpotent by Thompson theorem [29] and H is either soluble or

contains a normal subgroup N � SL2(5) such that H/N is metacyclic. Moreover, if

H contains no elements of order 3 or 4 then H is super-soluble [30]. Thus elements

of order 3 and 4 play a special role in the structure of Frobenius groups. For infinite

group the situation differs radically. For example, every group can be embedded

in the core of some Frobenius group, and every right orderable group is isomorphic

to a complement of some Frobenius group [2]. The state changes, if a Frobenius

complement contains elements of order 2 or 3.

Let G be a Frobenius group with core F and complement H. Then H acts

freely on F by conjugation, i.e. fh = f for f ∈ F, h ∈ H only if f = 1 or h = 1.

Furthermore, H acts co-freely, i.e., for every non-trivial h ∈ H, the map φh : F −→
F with φh(f) = fhf−1 is onto. On the other hand, if H is an automorphism group

of a group F acting freely and co-freely then the natural semi-direct product FH is

a Frobenius group with core F and complement H.

Suppose that a is an element of order 3 or 4 in H. Then it easy to prove that

ba
2

= b−1(b−1)a = b−1b−a or, respectively, ba
2

= b−1 for every b ∈ F . Hence, a is a

quadratic automorphism in the sense of the following definition.

An automorphism a of a group X is a quadratic automorphism if there exist

integers m = m(a), n = n(a) such that, for every x ∈ X, xa2
= xn(xm)a = xnxma.

If G is a Frobenius group we say that g ∈ G is quadratic, if g induces in the core F

by conjugation a quadratic automorphism.

Theorem 6.1 [35]. A Frobenius group generated by two quadratic elements of

finite order is finite and its core is Abelian.

Corollary. Let G be a Frobenius group generated by two elements of orders at

most 4. Then G is finite and the core of G is Abelian.

For a proof of Theorem 6.1, we study a co-free action of a cyclic group C on an

Abelian group V and prove that C is finite if V is generated by a finite number of

orbits of C. This fact is used also in a proof of the following

Theorem 6.2 [35]. Suppose that a non-trivial group H acts co-freely on a
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soluble group F . If, for every nontrivial h ∈ H, F contains a finite subset M = M(h)

such that F = 〈mhi|m ∈M, i ∈ Z〉 then F and H are finite.

Corollary 1. A Frobenius group with finitely generated soluble core is finite.

Corollary 2. Let G be a Frobenius group with core F and complement H. Sup-

pose that H is generated by elements of order 3 and the order of the product of any

two elements of order 3 in H is finite. Then H is finite. If, under such conditions,

G is finite generated then it is finite.
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P. Mǐskinis1,2

1NORDITA, Nordic Institute of Theoretical Physics,

Blegdamsvej 17, DK-2100 Cøpenhagen Ø, Denmark

2Department of Physics, Faculty of Fundamental Sciences,

Vilnius Gediminas Technical University, Saulėtekio Ave 11, LT-2040 Vilnius,
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Abstract

A nonlocal generalization of the one-dimensional Burgers equation is suggested.

The explicit form of a particular analytical solution, existence of the travelling wave

solution, interaction of nonlocal perturbation, asymptotic behaviour of solutions as

well as the symmetries and conservation laws of the equation are considered. Its

relation with the Burgers equation of integer order and the universal character of

the Reynolds number are discussed.

1. INTRODUCTION

The Burgers equation initially had been proposed as a simple nonlinear partial dif-

ferential equation in studies on turbulence: Burgers [1], Whitham [2]. This equation

can be viewed as a simplified version of the Navier–Stokes equation and related to

the heat equation via the Hopf–Cole transformation: Hopf [3], Cole [4]. Presently,

the number of applications of the Burgers equation is immense (see, for instance:

Gurbatov et al. [5], Woyczynski [6], Smaoui and Belgacem [7] and references below).

In the case when the properties of a system in a certain point of configuration

or phase space depend not only on the properties of this system at this point,

but also on the properties of at least one point of the environment, we deal with

nonlocal phenomena. From the mathematical point of view, such phenomena are

usually described by integro-differential equations: Agarwal and O’Regan [8]. Over

the last few years more attention has been given to a special part of theory of

integro-differential equations, the so-called fractional calculus: Miller and Ross [9],

Oldham and Spanier [10], Samko, Kilbas and Marichev [11]. This approach is applied

not only in the theory of fractals, but also for description of electrical, biological

and diffusion phenomena. The latter topic, as follows from the growing number of

publications, receives the bulk of attention: Podlubny [12].
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Thus the nonlocal Burgers equation can arise in continuum mechanics as a result

of the cumulative (memory) effects and be defined by considering the fractional

powers of corresponding differential operators.

2. THE NONLOCAL BURGERS EQUATION AND ITS SOLUTIONS

Below, we consider some properties of the nonlocal Burgers equation (NBE), such as

a nonlinear and nonlocal generalization of diffusion equation, based on a fractional

generalization of the Hopf and Cole transformation:

φt +
1

2 aD
p
x

(
aD

1-p
x φ
)2 − αφxx = 0 , (1)

in which φ(x, t), φ0(x) ∈ R ,−∞ < x < +∞ ; t ≥ 0 and the parameter α > 0. aD
p
x

is the fractional derivative in the sense of Riemann–Liouville [11]:

aD
p
xφ(x, t) =

1

Γ (1− p)

d

dx

∫ x

a

φ(ξ, t)

(x− ξ)p dξ , (2)

in which 0 < p < 1, and a is the parameter of nonlocality. From the physical point of

view, we may consider this spatial fractional derivative as a Fourier transformation

of the fractional power of the wave number k.

2.1. The Reynolds number and solutions of the nonlocal Burgers equation

The Reynolds number is a very convenient dimensionless quantity which is used

in the nonlinear Burgers equation. For NBE (1) we may introduce a dimensionless

generalization of the Reynolds number

Re ∼ aD
p
x (aD

1-p
x φ)

2

αφxx

∼ φxp

α
. (3)

Note that in the case when Re 
 1, the influence of the nonlinear-nonlocal term

is minimal and NBE (1) turns into an ordinary diffusion equation. This implies a

deep correlation between the diffusion equation and the NBE.

Suppose the solution of the diffusion equation w(x, t) is known. Then, due to a

useful relation between the Burgers equation and diffusion equation at p = 1, we can

express the solution of NBE (1) for any fractional or integer value of the parameter

p:

φ(x, t) = −2α aD
p
x logw(x, t) . (4)
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2.1.1. An example

In the case when the solution of the diffusion equation is

w(x, t) = exp

(
− cx

2α
+
c2t

4α
− b

)
, (5)

the solution of NBE (1) at a = 0 is

φ(x, t) = cx− c2

2
t+ 2αb , p = 0 , (6)

φ(x, t) = c , p = 1 , (7)

φ(x, t) =
c

Γ (2− p)
x1−p +

x−p

Γ (1− p)

(
2αb− c2

2
t

)
, 0 < p < 1 . (8)

Note that solution (8) transforms from solution (6) into (7) when the parameter p

runs from p = 0 to p = 1.

2.2 Evolution of the initial conditions

Let the initial conditions for NBE (1) and for the diffusion equation be related

by the expression

w0 = e−
1
2α aD

-p
y φ0 . (9)

This allows us to express the solution φ(x, t) of the NBE through the initial condition

φ0(x) and the general form of the solution of the diffusion equation

φ(x, t) = −2α aD
p
x log

1√
4παt

∫ +∞

−∞
e−

|x−y|2
4αt

− 1
2α aD

−p
y φ0(y)dy . (10)

As follows from NBE (1), depending on the values of the parameter p we deal

with not one, but with an infinite number or a whole hierarchy of integro-differential

equations. One of the most important properties of NBE (1) is interrelation be-

tween nonlinearity and nonlocality: for the fractional meaning of the parameter

p we have the nonlinear-nonlocal and for the integer positive p only a nonlinear

generalization of the Burgers equation. In this hierarchy, due to the substitution

φ(x, t)→ aD
q-p
x φ(x, t), the low order equations turn into the higher order ones, but

in the inverse direction this transformation is multivalued.
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2.3 The travelling wave solution

Now consider a special type of the travelling wave solution when φ(x, t) =

φ(x− ut) ≡ φ(ξ), where ξ ≡ x− ut. Then the NBE takes the form

1

2aD
p
ξ

[
aD

1-p
ξ φ
]2

= αφ′′ + uφ′ . (11)

The travelling wave solution of (11), according to the above mentioned property, for

p > 1 is

φ(ξ) = aD
p-1
ξ ψ(ξ) (12)

where ψ(ξ) is

ψ(ξ) = ψ1 +
ψ2 − ψ1

1 + exp
(

ψ2−ψ1

2α
ξ
) , p = 1 , (13)

with the asymptotics ψ(ξ → +∞) = ψ1 , ψ(ξ → −∞) = ψ2 , ψ2 > ψ1 . This means

that NBE (1) can describe transition from one asymptotic state ψ(−∞) = ψ2ξ
1−p

to the other – ψ(+∞) = ψ1ξ
1−p, which takes place in the region ∆x = 2α/(ψ2−ψ1)

in the presence of nonlinearity and nonlocality.

2.4 Interaction of nonlinear and nonlocal perturbations

The relation (4) between the solutions of NBE and the diffusion equation allows

to consider an interaction of nonlocal and nonlinear perturbations. Two or more per-

turbations moving with a different velocity can overtake each other or flow together

into a new intensive perturbation. The NBE also describes the interaction process

of two or more moving nonlocal perturbations. The principle of superposition is not

valid for the nonlinear NBE, but it is valid for the linear diffusion equation. The

fractional Hopf–Cole transformation (4) interrelates the solutions of nonlocal and

nonlinear NBE and of linear diffusion equation. Thus, if wi(x, t) are the solutions

of diffusion equation, then φ(x, t) = −2α aD
p
x(log

∑
wi) are the solutions of NBE.

For instance, for two solutions of the diffusion equation in the form (5) we obtain

a nonlocal and nonlinear interaction of these perturbations −φ(x, t)/2α =

log (w1 + w2) , p = 0 , (14)

1

Γ (−p)
∫ x

a

log [w1(ξ, t) + w2(ξ, t)]

(x− ξ)(p+1)
dξ , 0 < p < 1 , (15)

c1w1 + c2w2

w1 + w2

, p = 1 . (16)
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3. THE CONSERVATION LAWS

In the case of the usual BE, for x ∈ E1,∀ t > 0, φ(±, t) = φx(±∞, t) = 0, we have a

conservation value of

I(1) =

∫ +∞

−∞
φ(x, t) dx = inv , (17)

since
∂I(1)

∂t
=

∫ +∞

−∞

[
αφx −

1

2
φ2

]
x

dx =

(
αφx −

1

2
φ2

) ∣∣∣∣+∞

−∞
= 0 . (18)

In the applications, this conservation law is called the “mass” conservation law,

because φ(x, t) can be a one-dimensional density or gradient of any physical, chemical

or biological magnitude.

In the case of NBE (1), if ∀ t > 0, φx(±∞, t) = φxx(±∞, t) = 0, we again deal

with the conservation value:

I(0) = φ(+∞, t)− φ(−∞, t) = inv , (19)

since by applying the derivative ∂x to the evolutionary equation (1) followed by

integration we obtain

∂I(0)

∂t
=

∂

∂t

∫ +∞

−∞
φx dx =

(
αφxx −

1

2
φ2

x

) ∣∣∣∣+∞

−∞
= 0 . (20)

This conservation value shows that the difference in asymptotic values for any

time moment remains unchanged. If, for instance, we deal with the evolution of the

potentials, the conservation value I(0) (19) shows that the difference of potentials

for x→ ±∞ does not change.

In the case of NBE (1), if ∀ t > 0, aD
2−p
x φ(±∞, t) = aD

1−p
x φ(±∞, t) = 0 , again

we deal with a conservation value:

I(p) =

∫ +∞

−∞
aD

1−p
x φ(x, t) dx = inv , (21)

as

∂I(p)

∂t
=

∫ +∞

−∞

[
αaD

2−p
x φ− 1

2
(aD

1−p
x φ)2

]
x

dx =

[
αaD

2−p
x φ− 1

2
(aD

1−p
x φ)2

] ∣∣∣∣+∞

−∞
= 0 .(22)
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Even this simple example highlights two important properties of the nonlocal

conservation law (21): it interrelates the conservation values of two different dynam-

ical systems, which can be of different mathematical nature (e.g., in our case these

values are integral and discrete).

Note that in the “common” case of the nonlocal BE

φt + φφx − αaD
2−p
x φ = 0 , (23)

an analogous conservation integral exists at other asymptotic values:

φ(±∞, t) = aD
1−p
x φ(±∞, t) = 0 . (24)

At this point, it is not difficult to characterize the “mass” conservation law of

the nonlinear nonlocal evolution equation as

φt +
1

2aD
p
x

(
aD

1−p
x φ

)2 − αaD
2−q
x φ = 0 , (25)

The magnitude I(p,q) is the invariant of the evolution equation (25)

I(p,q) =

∫ +∞

−∞
aD

1−p
x φ(x, t) dx = inv , (26)

for aD
1−p
x φ(±∞, t) = aD

2−(p+q)
x φ(±∞, t) = 0. However, in this case the integrability

is sacrificed: the fractional generalization of the Hopf–Cole transformation does not

exist.

The “energy” of travelling excitation

K =
1

2

∫ +∞

−∞

(
aD

1−p
x φ

)2
dx , (27)

if ∀t > 0, aD
2−p
x φ(±∞, t) = aD

1−p
x φ(±∞, t) = 0, as in the case of BE, is not in

variable, but it is constantly decreasing:

d

dt

1

2

∫ +∞

−∞

(
aD

1−p
x φ

)2
dx = −1

3

(
aD

1−p
x φ

)3 ∣∣∣∣+∞

−∞
+

+α
(

aD
1−p
x φ

) (
aD

2−p
x φ

) ∣∣∣∣+∞

−∞
− α

∫ +∞

−∞

(
aD

2−p
x φ

) · (aD2−p
x φ

)
dx = (28)

= −α
∫ +∞

−∞

(
aD

2−p
x φ

)2
dx < 0 .
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Like in the case of the nonlocal “mass” conservation law, the “energy” K (27)

links the energy of the travelling excitation in the case of BE (p = 1) and the

one-dimensional density of energy in the case of NDE (p = 0).

3.1 The asymptotic form of the solutions

The momentum conservation law predetermines the asymptotic form of the

NBE solution. To arrive to such a result, let us consider some estimates. From the

general form of NBE solution (11) it follows that the limit t→ +∞ corresponds to

a rather low value of the parameter α. At a low α, to calculate the values of the

corresponding integrals we can apply the saddle point approximation.

The critical point y0 can be determined from the equation

y0 − x

t
+ aD

1−p
y φ0(y0) = 0 . (29)

Then the asymptotic expression of the NBE solution acquires the form

φ(x, t) = aD
p
x

[
(x− y0)

2

2t
+ C

]
∼ (x− a)2−p

tΓ (3− p)
+ C1(x− a)−p . (30)

For x → +∞ and p > 2 the solution φ(x, t) → 0, and for p < 2 the solution

φ(x, t) → (x − a)2−p/[tΓ (3 − p)]. Thus we obtain a power-deformed perturbation

of the usual solution of the Burgers equation . Note here that these estimates are

valid not only in the environment of the meaning p = 1, but also for any p ∈ R.

We have to show the region of the validity of solution (30). In both its limit

cases the integral in the expression of the momentum conservation law diverges.

Therefore, for x > x0 the solution φ(x) ≡ 0. To determine the value x0, we insert

the asymptotic form of solution (30) in the expression of the momentum conservation

law. This means that x2
0/2t ∼ I. Thus the maximum meaning of the solution

φmax(x, t) ∼
I1− p

2

(2t)
p
2

and x0 ∼
√

2It . (31)

3.2 The width and spectrum of the nonlocal shock wave

The Reynolds number or its powers express various regimes of the physical

processes. As an example, consider the determination of the shock wave width, i.e.

the width of the region ∆x where smoothing of the single perturbation near the

border of the wave turnover takes place. The influence of the nonlinear-nonlocal
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term aD
p
x (aD

1-p
x φ)

2
and of the dissipative term αφxx on the interval ∆x becomes

equal. Therefore,
φ(∆x)p

α
∼ 1 , (32)

and using the universal expressions of the Reynolds number

Re = 2I/α , (33)

which is valid for any integer or fractional value of parameter p and expression (31)

we have
∆x

x0

∼ 1

Re1/p
. (34)

In other words, the relative width of the nonlocal shock wave front is the inverse

power of Re1/p.

The coefficients of the Fourier transformation of the asymptotic solution of the

nonlocal shock wave propagation decrease as 1/k(3−p) under an increase of the wave

number k, therefore the spectrum of φk does not cut off effectively at any meaning

of k. The turnover perturbation cutoff is effective under condition that k∆x � 1.

The effective width of the space spectrum

k0 ∼
1

∆x
. (35)

The wave number ∆k corresponding to the wave length x0 is ∆k = 2π/x0. Therefore

the dimensionless width of the wave perturbation

k0

∆k
∼ x0

∆x
= Re1/p . (36)

Equation (36) actually determines a certain number of single perturbation degrees

of freedom, i.e. the number of the space modes that format the wave packet of a

single perturbation periodically repeated in the space direction.

Such interpretation of the Reynolds number as a number of the perturbation

degrees of freedom may look somewhat artificial. Nevertheless, this interpretation

is universal for a wide class of systems and not only for dissipative ones and, as we

see now, can be extended to nonlocal systems too.

3.3 The symmetries

Note here a property that allows us to get new solutions of the NBE. Let v(x, t)

be a known solution of NBE (1), and u(x, t) is the solution of the linear equation

ut +
(

aD
1-p
x v
)
ux − αuxx = 0. (37)
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Then

φ(x, t) = −2αaD
p
x log u + v (38)

is a new solution of NBE (1). At an integer meaning of p we have a local equation

(37), in particular, for p = 1 we obtain a new solution of the Burgers equation .

An important and not yet clear problem is the nonlocal and nonclassical sym-

metries of NBE. Some general aspects have already been presented in Abraham-

Shrauner and Guo [13]. Promising seems an attempt of computer symmetry analysis,

as was done for nonlinear heat equation in Clarcson and Mansfield [14]. Symme-

tries in the discrete Burgers equation have been studied in Hernandez, Lavi and

Winternitz [15].

Note here that the existence of a transformation T expressed by relation (4)

allows to solve the problem of symmetry group of NBE (1). Let G1 be a group of

symmetry of the diffusion equation, then G = TG1T
−1 is a symmetry group of NBE

(1).

4. THE SUPERSYMMETRIC NONLINEAR NONLOCAL

DIFFUSION EVOLUTION EQUATION

We shall show that the NNDE has a supersymmtric generalization. Let the super-

field χ = θaD
1−p
x φ + ψ unite two fields of different properties: the “bosonic” field

φ(x, t) and its spinor superpartner ψ(x, t); θ is the constant Majorana spinor. The

transformations of the fields φ, ψ, are nonlocal because of the fractional derivatives

aD
p
xf(x).

δηψ = ηaD
1−p
x φ , δηaD

1−p
x φ = ηψx . (39)

However, the commutator of the two transformations (39) are a spatial translation:[
δη, δξ

]
= 2ξη∂x . (40)

The supersymmetric equation

χt = (χx +
1

2
χDχ)x , (41)

(here D = θ∂x + ∂θ is a supersymmetric derivative) is a system of two evolutionary

equations,

ψt = ψxx +
1

2

(
aD

1−p
x φ · ψ)

x
, φt = φxx +

1

2aD
p
x

[(
aD

1−p
x φ

)2 − ψψx

]
, (42)
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which is invariant with respect to the supertransformations (39). In the general case,

the system (42) is a system of two nonlinear nonlocal evolution equations, which

becomes local when

p = 0 : ψt = ψxx +
1

2
(φxψ)x , φt = φxx +

1

2

(
φ2

x − ψψx

)
; (43)

p = 1 : ψt = ψxx +
1

2
(φψ)x , φt = φxx +

1

2

(
φ2 − ψψx

)
x
. (44)

The supersymmetric equation (41) and the corresponding system of equations

(42) unites two fields of different nature, and only one of them is nonlocal.

Here to the point is one general note related to the application of the nonlocal

systems. Suppose that a dynamic system is characterized by two interacting fields,

one of which for instance, the “fermionic” field ψ(x, t), can be measured in the

course of experiment, whereas the other, “bosonic” field φ(x, t) is assessed only

phenomenologically. Such assessment in the class of local evolution equations results

in a qualitatively erroneous mathematical model of a dynamic system.

5. CONCLUSIONS AND DISCUSSION

It is important to note that the influence of nonlocality can be arbitrarily large.

Therefore we do not describe nonlocality by an additional term in the Burgers

equation.

Remind here that the classical Burgers equation belongs to a unique group of

the three completely integrable second-order PDEs. I suggest that the NBE also

belongs to a unique group of the completely integrable nonlocal PDEs of fractional

order.

The fractional diffusion process is related to the non-Gaussian statistics which

leads to slow diffusion correlators 〈(∆x)2〉 ∝ Dtγ with γ �= 1, and D is a generalized

diffusion coefficient of the dimension L2/T γ . In our case, the NBE is related to the

so-called Lévi statistics: Shlesinger, Zaslavsky and Frisch [16]; at the same time the

initial Burgers equation as well as the diffusion equation are related to the usual

Gauss statistics.

From our point of view, the NBE has at least two important topics:

i) the influence of nonlocality is not assumed to be insignificant;
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ii) the relation of the NBE with the usual diffusion equation allows a lot of

analytical solutions of the NBE.

Besides, despite the nonlocality in the proposed nonlinear and nonlocal NBE,

• space-localized solutions are possible;

• nonlocal perturbations of a system described by the NBE can interact;

• the Reynolds number is a universal dimensionless parameter both for the local

and nonlocal Burgers equation;

• there are analogies of the momentum conservation law and dissipation of

kinetic energy .

In some fields of physics we need the vectorial form of the Burgers equation,

e.g. in astrophysics to describe the large-scale structure of the Universe: Shandarin

and Zeldovich [17], Miskinis [18]. In such cases the vectorial NBE can be proposed:

φt +
1

2 aD
p
x

(
aD

1-p
x φ

)2 − α∇(∇φ) = 0 , (45)

where φ = (φ1, . . . , φn) ∈ Rn, aD
p
x is the fractional generalization of the gradient

operator ∇.

Note also that for α = 0 from NBE (1) follows the fractional generalization of

the Riemann equation, which also has numerous applications.

The proposed NBE, because of its general character, allows a wide range of ap-

plications. Actually we may try to introduce the nonlocal generalization in almost

all fields where the BE is applied. These are the nonlocal effects in shock wave prop-

agation in acoustics, the effective model of the process of nonlinear heat distribution

in the environment in the presence of heat sources and sinks, the Kardar–Parisi–

Zhang (KPZ) equation in the crystal growth phenomena in (1+1)-dimensions: Kar-

dar, Parisi and Zhang [19], the nonlinear dynamics of moving line: Hwa and Kardar

[20], galaxy formation: Shandarin and Zeldovich [17], Mǐskinis [18], behaviour of the

magnetic flux line in superconductor: Hwa [21], and spin glasses: Fisher and Huse

[22], as well as numerous examples of the application of the usual Burgers equation

presented in the above mentioned monographs Gurbatov et al. [5], Woyczynski [6].
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Abstract

Main objective of this article is to discuss the univalency of the function defined by

the integral operator of the form

Λf (z) =

∫ 1

0

tb−1(1− t)c−a−bϕ(1− t)
f(tz)

t
dt

under suitable restrictions on the parameters a, b, c and the functions f(z) and φ(t).

1. INTRODUCTION

Let A denote the class of all analytic functions f in the unit disk ∆ = {z ∈ C :

|z| < 1} with the normalization f(0) = 0 = f ′(0)− 1. For β < 1, let

P1(β) = {f ∈ A : Re {eiη(f ′(z)− β)} > 0, z ∈ ∆},

and

P(β) = {f ∈ A : Re {eiη(
f(z)

z
− β)} > 0, z ∈ ∆}

for some η ∈ R. For 0 ≤ β < 1, functions in P1(β) are known to be univalent in ∆

whereas functions in P(β) are not necessarily univalent in ∆ (see [2]). For f ∈ A,

the object of our study concerns the integral transform

Vλ(f)(z) =

∫ 1

0

λ(t)
f(tz)

t
dt.

Here λ(t) is a real valued nonnegative weight function normalized so that
∫ 1

0
λ(t) dt =

1. This operator contains some of the well known operators such as Libera, Bernardi,

Carlson-Shaffer and Komatu as its special cases (see [8]). This operator has been

studied by a number of authors for various choices of λ(t) which includes these

special cases [1, 3, 6, 7, 8, 9]. The most interesting choice concerns the integral

representation for F (a, b; c; z) and hence for Ha,b;c(f(z)) := zF (a, b; c; z)∗f(z), where
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f ∈ A and ∗ denotes the usual convolution/Hadamard product between two power

series represented by two functions. We recall that [1]

Ha,b;c(f(z)) := [Ha,b;c(f)](z) =

∫ 1

0

λ(t)
f(tz)

t
dt (1)

where

λ(t) =
Γ (c)

Γ (a)Γ (b)Γ (c− a− b + 1)
tb−1(1− t)c−a−bF

(
c− a, 1− a

c− a− b + 1
; 1− t

)
.

In [1], the authors studied this integral in detail and, in particular, concerning

its convexity, and starlikeness properties. The so called hypergeometric integral

operators were studied earlier by Love, Kalla etc. e.g. see V. Kiryakova, Generalized

Fractional Calculus and Applications, Longman - J. Wiley, New York, 1994. We

introduce an auxiliary function

ϕ(1− t) = 1 +
∞∑

m=1

bm(1− t)m

and consider Pa,b,c(f)(z) := P (f(z)) defined by

Pa,b,c(f)(z) := C

∫ 1

0

(1− t)c−a−btb−1ϕ(1− t)
f(tz)

t
dt (2)

where C is a normalized constant so that

C

∫ 1

0

λ(t) dt = 1, (3)

where

λ(t) = tb−1(1− t)c−a−bϕ(1− t).

We are interested in obtaining conditions so that Pa,b,c(f)(z) ∈ P1(β
′), whenever

f ∈ P(β).

2. DISCUSSION FOR OUR MAIN RESULTS

To proof our results we need the following lemma.

Lemma 1 [10] If f, g are analytic in unit the disc ∆ and φ, ψ are convex (need not

be normalized) functions in ∆ such that f ≺ φ, g ≺ ψ, then f ∗ g ≺ φ ∗ ψ.

In Lemma 1, ≺ denotes subordination (see [2]).
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Let Pa,b,c(f)(z) := P (f(z)) be given by (2) and f(z) = z +
∑∞

n=2 anz
n. Then,

with a1 = 1, we have

P ′(f(z)) = C

∫ 1

0

tb−2(1− t)c−a−bϕ(1− t)
∞∑

n=1

nant
nzn−1 dt

= C

∫ 1

0

tb−2(1− t)c−a−bϕ(1− t)
∞∑

n=1

ntnzn−1 ∗
∞∑

n=1

anz
n−1 dt

=
f(z)

z
∗M(z) (4)

where

M(z) = C

∫ 1

0

tb−2(1− t)c−a−bϕ(1− t)
∞∑

n=0

(n + 1)tn+1zn dt

= C

∞∑
n=0

(n + 1)zn

∫ 1

0

tn+b−1(1− t)c−a−b

∞∑
m=0

bm(1− t)m dt (b0 = 1)

= C
∞∑

n=0

(n + 1)zn

∞∑
m=0

bm

∫ 1

0

tn+b−1(1− t)m+c−a−b dt

= C
∞∑

n=0

∞∑
m=0

(n + 1)znbm
Γ (n + b)Γ (m+ c− a− b + 1)

Γ (n+m + c− a + 1)

= C
∞∑

n=0

∞∑
m=0

(n + b)znbm
Γ (n + b)Γ (m+ c− a− b + 1)

Γ (n +m + c− a + 1)

+(1− b)C
∞∑

n=0

∞∑
m=0

znbm
Γ (n + b)Γ (m+ c− a− b + 1)

Γ (n +m + c− a + 1)
.

After a simple calculation we see that first double summation equals∫ 1

0

tb(1− t)c−a−b−1 1

1− tz

∞∑
m=0

bm(1− t)m(m+ c− a− b) dt

whereas second double summation equals∫ 1

0

tb−1(1− t)c−a−b 1

1− tz

∞∑
m=0

bm(1− t)m dt.

In view of the above observations, we have

M(z) = C

∫ 1

0

tb−1(1− t)c−a−b−1 1

1− tz

∞∑
m=0

[bm(1− t)m ×

{(m + c− a− b)t− (b− 1)(1− t)}]dt (5)
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which after a simple calculation, gives the representation

M(z) = C

∫ 1

0

tb−1(1− t)c−a−b−1 1

1− tz

[ ∞∑
m=0

Rm(1− t)m+1 + (c− a− b)

]
dt

where

R(m) = bm+1(m+ c + 1− a− b)− bm(m + c− a− 1).

The above discussion gives the following result.

Theorem 2. Let c + 1 − a − b > 0 and 0 < b ≤ 2. Suppose ϕ(t) =
∑∞

m=0 bmt
m

with b0 = 1, and {bm}m≥1 is an increasing sequence of non-negative real numbers.

Suppose that f(z) ∈ P(β). Then Pa,b,c(f) defined by (2) is in P1(γ), where γ =

1− 2(1− β)(1− β′) with

β′ = C

∫ 1

0

(1− t)c−a−btb−2(1 + t)−2ϕ(1− t) dt.

where C is given by (3).

Proof. . Let c+ 1− a− b > 0 and 0 < b ≤ 2. Assume that b0 = 1, and {bm}m≥1

is an increasing sequence of non-negative real numbers. Then R(m) defined above

gives

R(m) ≥ bm(m + c + 1− a− b)− bm(m + c− a− 1) = bm(2− b)

which is nonnegative if 0 < b ≤ 2. Thus, we have ReM(z) > M(−1) and the

estimate here is clearly sharp. Finally, we assume that f(z) ∈ P(β). Now, we

choose

φ(z) = 1 + 2(1− β)
z

1− z
and ψ(z) = 1 + 2(1− β′)

z

1− z
.

Both φ(z) and ψ(z) are known to be convex in ∆. Further,

(φ ∗ ψ)(z) = 1 + 4(1− β)(1− β′)
z

1− z
= 1 + 2(1− γ)

z

1− z

and the desired conclusion follows from Lemma 1 and (4).

Similarly, the following result can be proved.

Theorem 3. Let a > 0, 0 < b ≤ 1, and c > a + 1. Suppose ϕ(t) =
∑∞

m=0 bmt
m

with b0 = 1, and {bm}m≥1 is a sequence of non-negative real numbers. Suppose that

f(z) ∈ P(β). Then P defined by (2) is in P1(γ) where γ = 1− 2(1−β)(1−β′) with

β′ = C

∫ 1

0

(1− t)c−a−btb−2(1 + t)−2ϕ(1− t) dt.
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where C is given by (3).

Proof. By hypothesis, we have c − a − b > 0. The desired conclusion follows

easily from (3) and (5), since the square bracketed term in (5) is non-negative for

all 0 ≤ t ≤ 1.
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Abstract

Various generalizations of certain families of elliptic-type integrals are studied in a

number of earlier works on the subject due to their importance for possible appli-

cations in certain problems arising in physics and nuclear technology. The object of

this paper is to present certain theorems on generating functions and to show how

easily these theorems can be associated with the families of elliptic-type integrals

in a unified and generalized form. Many single and double integrals of Euler-type

which are seemingly relevant to the present investigation, are also considered here.
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functions, and Appell’s functions.
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1. INTRODUCTION

Let

(k) =

∫ π/2

0

dθ√
1− k2 sin2 θ

(k2 < 1) (1)

E(k) =

∫ π/2

0

√
1− k2 sin2 θ dθ (k2 < 1) (2)

and

u(k) =

∫ π

0

dφ′√
1− k2 sin2 φ′

(k2 < 1) (3)

where K(k) and E(k) denote the complete elliptic integrals of the first and

second kinds, respectively and u(k) denotes the incomplete elliptic integrals of the

first kind.

The integral

Ωj =

π∫
0

(1− k2 cos θ)−j−1/2dθ (4)
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where j = 0, 1, 2, . . . ; 0 ≤ k < 1 is called the Epstein-Hubbell integral. (4) has

been studied by many workers during the last three decades due to its importance

in certain problems arising in radiation physics and nuclear technology [see, eg.

3,4,6,13,19].

We now describe the various generalizations of (4) studied earlier by a number

of authors, notably by Kalla [7,8], Kalla, Conde and Hubbell [10], Kalla and Al-

Saqabi [9], Siddiqi [19], Srivastava and Siddiqi [22], Kalla and Tuan [12], Al-Zamel

et.al [2], Saxena et.al [16] and Saxena and Pathan [18].

The integral

Rµ(k, α, γ) =

π∫
0

cos2α−1(θ/2) sin2γ−2α−1(θ/2)dθ

(l − k2 cos θ)µ+1/2
, (5)

where 0 ≤ k < 1, Re(γ) > Re(α) > 0, Re(µ) > −1/2, which is a generalization

of (4) was discussed by Kalla et.al [9,11] and Glasser and Kalla [5].

An interesting generalization of the elliptic-type integral (4) follows from Al-

Saqabi [1]

Bµ(k,m, ν) =

π∫
0

cos2m(θ) sin2ν(θ)dθ

(1− k2 cos θ)µ+1/2
, (6)

where 0 ≤ k < 1; m ∈ N0, µ ∈ C; Re(µ) > −1/2.

Siddiqi [19] studied yet another generalization of (4) in the form

λ̄ν(α, k) =

π∫
0

exp[α sin2(θ/2)]dθ

(1− k2 cos θ)ν+1/2
, (7)

where 0 ≤ k < 1, α, ν ∈ R.

An interesting unification and extension of the families of elliptic-type integrals

(4) to (7) was given by Siddiqi and Srivastava [20] in the form

λ̄
(α,β)
(λ,µ)(ρ, k) =

π∫
0

cos2α−1(θ/2) sin2β−1(θ/2)(1− ρ sin2(θ/2)dθ

(1− k2 cos θ)µ+1/2
, (8)
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where 0 ≤ k < 1, Re(α) > 0, Re(β) > 0; λ, µ ∈ C, | ρ | < 1.

Kalla and Tuan [12] extended (8) by means of the following integral and derived

its asymptotic expansion.

λ̄,
(α,β)
(λ,γ,µ)(ρ, δ, k) =

π∫
0

cos2α−1(θ/2) sin2β−1(θ/2)[1 + δ cos2(θ/2)]−γ [1− ρ sin2(θ/2)]−λdθ

(1− k2 cos θ)µ+1/2
,

(9)

where 0 ≤ k < 1, Re(α) > 0, Re(β) > 0; λ, µ, γ ∈ C, either |ρ|.|δ| < 1 or ρ(or

δ) ∈ C whenever λ = −m(or γ = −m), m ∈ N0.

Al-Zamel et.al [2] discussed a generalized family of elliptic-type integrals in the

form

Z
(α,β)
(γ) (k) = Z

(α,β)
(γ1,...,γn)(k1, . . . , kn)

=

π∫
0

cos2α−1(θ/2) sin2β−1(θ/2)
n∏

j=1

(1− k2
j cos θ)−γjdθ, (10)

where Re(α) > 0, Re(β) > 0, |kj| < 1, γj ∈ C, j = 1, . . . , n.

Saxena et.al [16] introduced yet another unification and extension of (9) in the

form

Ω
(α,β)
(σ1,...,σn−2;δ,µ)(ρ1, . . . , ρn−2, δ : k) =

∫ π

0

cos2α−1(θ/2) sin2β−1(θ/2)

×
n−2∏
j=1

[1− ρj sin2(θ/2)]−σj[1 + δ cos2(θ/2)]−γ(1− k2 cos θ)−µ−1/2dθ, (11)

where 0 ≤ k < 1, Re(α) > 0, Re(β) > 0 ; σj(j = 1, . . . , n − 2). γ, µ ∈ C ;

max

{
|ρj| ,

∣∣∣∣ δ

1 + δ

∣∣∣∣ , ∣∣∣∣ 2k2

k2 − 1

∣∣∣∣} < 1.

For n = 3, (11) reduces to (9).

In a recent paper, Saxena and Pathan [18] introduced a new generalized family

of the elliptic-type integrals in the following general form, which includes, both the

generalisations given by (10) and (11).

Ω = Ω
(α,β)
(σ1,...,σm,γ;τ1,...,τn)(ρ1, . . . , ρm, δ;λ1, . . . , λn) =

∫ π

0

cos2α−1(θ/2) sin2β−1(θ/2)
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×
m∏

j=1

[1− ρj sin2(θ/2)]−σj [1 + δ cos2(θ/2)]−γ

n∏
j=1

[1− λ2
j cos θ]−τjdθ, (12)

where min(Re(α), Re(β)) > 0; |λj| < 1;σi, γ, τj ∈ C;

max

{
|ρi|,

∣∣∣∣ 2λ2
j

λ2
j − 1

∣∣∣∣ , ∣∣∣∣ δ

1 + δ

∣∣∣∣} < 1 (i = 1, . . . ,m; j = 1, . . . , n)

Upon a closer examination of (12), it is obvious that Ω is contained in the

following Euler-type integral∫ 1

0

tβ−1(1− t)α−1

m∏
j=1

(1− ρjt)
−σj(1− At)−γ

n∏
j=1

(1−Bjt)
−τj dt (13)

where A =
δ

(1 + δ)
, and Bj =

2λj

(λ2
j − 1)

In this article, we will study a new family of the elliptic-type integrals which

generalizes the integral given by Ω (mentioned above). In Section 2, we will give

three theorems associated with 2 and 4 variables generating functions. Our strategy

to obtain these theorems is an extension of the idea given in Mohammed [14] and

Srivastava and Yeh [23]. We apply these theorems in Section 3 to obtain explicit

representations of elliptic-type integrals given in Section 1 and their generalizations.

Moreover, we obtain a number of single and double Euler-type integrals for various

choices of generating functions involved in Theorems 1 to 3.

2. THEOREMS

Let a two variable generating function F (x, t) possesses a formal (not necessarily

convergent for t �= 0) power series expansion in t such that

F (x, t) =
∞∑

n=0

Cnfn(x)tn (14)

where each member of the generalized set {fn(x)}∞n=0 is independent of x and

t. Also, let (λ)n denote the Pocchammer symbol defined by

(λ)n =
Γ (λ+ n)

Γ (λ)
=

{
λ(λ+ 1) · · · (λ + n− 1), n ∈ N = {1, 2, 3, · · · }
1, n = 0, λ �= 0
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Motivated essentially by earlier results of Saran [15] and Mohammad [14; p.262],

Srivastava and Yeh [23] gave two theorems on bilinear and bilateral generating func-

tions associated with Lauricella functions F
(r)
A and F

(r)
C in r-variables [15]. Making

use of the integral representation of Lauricella function F
(r)
D of r-variables, given by

F
(r)
D [α, β1, · · · , βr; γ; x1, · · · , xr]

=
Γ (γ)

Γ (α)Γ (γ − α)

∫ 1

0

uα−1(1− u)γ−α−1

r∏
i=1

(1− uxi)
−βi du (15)

where Re(γ) >Re(α) > 0 and F
(r)
D is defined by [15], [21].

F
(r)
D [a, b1, · · · , br; c; x1, · · · , xr]

=
∞∑

m1,··· ,mr=0

(a)m1+···+mr(b1)m1 · · · (br)mr

(c)r m1! · · ·mr!
xm1

1 · · ·xmr
r , (16)

it is not difficult to prove the following theorem.

Theorem 1. Let the generating function F (x, t) and the Lauricella function

F
(r)
D be given by (14) and (16), respectively. Then∫ 1

0

uα−1

(1− u)α−γ+1

r∏
i=1

(1−uxi)
−βiF (x, tu(1−u)) du

=
Γ (α)Γ (γ − α)

Γ (γ)

∞∑
n=0

(α)n(γ − α)n

(γ)2n

cnt
nfn(x)F

(r)
D [α+n, β1, · · · , βr; γ+2n;x1, · · · , xr]

(17)

provided the each side of (17) exists.

Due to importance of Theorem 1 in various generalizations of Elliptic-type inte-

grals, we state an obvious modified version of this theorem which provides an inter-

esting generalization of Elliptic-type integrals (12) and (13) of Saxena and Pathan

[18].

Theorem 2. Let the generating function F (x, t) and the Lauricella function

F
(r)
D be given by (14) and (16), respectively. Then∫ 1

0

uβ−1(1− u)α−1

m∏
j=1

(1− ρju)−σj

(
1− δ

(1 + δ)
u

)−γ n∏
j=1

(
1− 2λ2

ju

λ2
j − 1

)−τj
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F (x, tu(1− u))du = B(α, β)
∞∑

n=0

(α)n(β)n

(α + β)2n

cnt
nfn(x)

F
(m+n+1)
D

[
β + n, σ1, · · · , σm; γ, τ1, · · · , τn;α + β + 2n; ρ1, · · · , ρm,

δ

1 + δ
,

2λ2
1

λ2
1 − 1

, · · · 2λ2
n

λ2
n − 1

]
(18)

provided that each side of (18) exists.

Next, we consider a generating function F (x, y; t, T ) (not necessarily, convergent

for t �= 0, T �= 0) in t and T such that

F (x, y; t, T ) =
∞∑

m,n=0

cm,n fm,n(x, y)tmT n (19)

where each member of the generated set {fm,n(x, y)}∞m,n=0 is independent of t and T

and the coefficient set {cm,n}∞m,n=0 may contain the parameters of the set {fm,n(x, y)}∞m,n=0

but is independent of x, y, t and T .

In our attempt to generalize the above theorems, we are easily led to the fol-

lowing extension of the Eulerian integral.

Theorem 3. Let the generating function F (x, y; t, T ) be given by (19). Then

∞∑
m,n=0

(λ)ρm(µ− λ)σm(k)ρn(ν − k)σnt
mT n

(µ)(ρ+σ)m(ν)(ρ+σ)n

cm,nfm,n(x, y)

=
Γ (µ)Γ (ν)

Γ (λ)Γ (µ− λ)Γ (k)Γ (ν − k)∫ 1

0

∫ 1

0

uλ−1vk−1

(1− u)λ−µ+1(1− v)k−ν+1

F (x, y; tuρ(1− u)σ, T vρ(1− v)σ) du dv (20)

provided that Re(µ) >Re(λ) > 0, Re(ν) >Re(k) > 0, ρ ≥ 0, σ ≥ 0, ρ + σ > 0

and each side of (19) exists.

Proofs of theorems. To prove Theorem 1, we replace F (x, t) by its power

series (14) in the integral of (17). On changing the order of integration and summa-

tion, which is permissible due to the uniform convergence of the series involved and

evaluating the resulting integral using (15), we arrive at the result (17).

The proofs of Theorems 2 and 3 are similar to that of Theorem 1.
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3. APPLICATIONS

In view of the importance and usefulness of Theorem 1 to 3, we first mention some

interesting applications of Theorem 1.

(i) Consider the generating function

F (x, t) = (1− xt)−λ =
∞∑

n=0

(λ)n x
n tn

n!
(21)

and apply Theorem 1 to get∫ 1

0

uα−1

(1− u)α−γ+1

r∏
i=1

(1− uxi)
−βi(1− xtu(1− u))−λ du

=
Γ (α)Γ (γ − α)

Γ (γ)

∞∑
n=0

(α)n(γ − α)n(λ)n

(γ)2n n!
xntn F

(r)
D [α+n, β1, · · · , βr; γ+2n;x1, · · · , xr]

(22)

Re(γ) > Re(α) > 0

Setting u = cos2 θ/2 and using cos θ = 2 cos2 θ/2− 1, (22) give us the following

representation which is a generalization of the elliptic-type integral of Kalla et.al

[9,11] and Glasser and Kalla [5]∫ π

0

cos2α−1 θ/2 sin2γ−2α−1 θ/2
r∏

i=1

(
1− xi

2− xi

cos θ

)−βi
(

1− xt

4
sin2 θ

)−λ

dθ

=
Γ (α)Γ (γ − α)

Γ (γ)

r∏
i=1

(
1− xi

2

)βi
∞∑

n=0

(α)n(γ − α)n)(λ)n

(γ)2n n!
xntn

F
(r)
D [α + n, β1, · · · , βr; γ + 2n;x1, · · · , xr] (23)

Re(γ) > Re(α) > 0,

∣∣∣∣ xi

2− xi

∣∣∣∣ < 1, i =

1, · · · , r

If we set r = 3 and x3 = 1 in (16) and apply

F
(3)
D (a, b1, b2, b3; c;x1, x2, 1) =

Γ (c)Γ (c− a− b3)

Γ (c− a)Γ (c− b3)
F1(a, b1, b2; c− b3;x1, x2) (24)
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where F1 is Appell’s function [21], we get∫ 1

0

uα−1(1− ux1)
−β1(1− ux2)

−β2

(1− u)α−γ+1(1− xtu(1− u))λ
du

=
Γ (γ − α)Γ (α)

Γ (γ)

∞∑
n=0

(α)n(λ)n(γ − α)n

n! (γ)2n

xntn F1(α + n, β1, β2; γ + 2n;x1, x2)

Re(γ − α) > 0,max(|x1|, |x2|) < 1 (25)

Furthermore, since

F
(3)
D (a, b1, b2, b3; c3;x, 1, 1) =

Γ (c)Γ (c− a− b2 − b3)

Γ (c− a)Γ (c− b2 − b3)
2F1

⎛⎝ a, b

;x

c− b2 − b3

⎞⎠
(26)

a special case of (22) when r = 3 and x2 = x3 = 1 yields∫ 1

0

uα−1(1− ux1)
−β1

(1− u)α−β+1(1− xtu(1− u))λ
du

=
Γ (α)Γ (β − α)

Γ (β)

∞∑
n=0

(α)n(β − α)n(λ)n

n! (β)2n

xntn 2F1

⎛⎝ α + n, β1

;x1

β + 2n

⎞⎠ , (27)

Re(γ − α) > 0, |x| < 1

In view of the familiar transformation [21, p.55(15)], for r = 3 and x1 = x2 = 1,

(25) yields

∫ 1

0

uα−1(1− xtu(1− u))−λ

(1− u)−β+1
du =

Γ (α)Γ (β)

Γ (α + β)
3F2

⎛⎜⎜⎜⎝
α, λ, β

;
xt

4
β + α

2
,
β + α + 1

2

⎞⎟⎟⎟⎠ ,

(28)

(ii) Consider the generating relation [21]

F (x, t) = (1−X1t)
−α1(1−X2t)

−α2 =
∑

gα1,α2
n (X1, X2)t

n (29)

where gα1,α2
n (X1, X2) is the Lagrange polynomial defined by

gα,β
n (x, y) =

∞∑
n=0

(α)r(β)n−r

r! (n− r)!
xryn−r (30)
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and apply Theorem 1 to get∫ 1

0

uα−1

(1− u)α−γ+1

r∏
i=1

(1− uxi)
−βi

2∏
j=1

(1−Xjtu(1− u))−αj du

=
Γ (α)Γ (γ − α)

Γ (γ)

∞∑
n=0

(α)n(γ − α)n

(γ)2n

gα1,α2
n (X1, X2)t

nF
(r)
D (α + n, β1, · · · , βr; γ + 2n;x1, · · · , xr) (31)

(iii) Consider the generating function

F (x, t) = e−xt =
∞∑

n=0

(−1)n xntn

n!

and apply Theorem 1 to get

I =

∫ 1

0

e−xt(u(1−u))

(1− u)α−γ+1
uα−1

r∏
i=1

(1− uxi)
−βi du

=
Γ (α)Γ (γ − α)

Γ (γ)

∞∑
n=0

(α)n(γ − α)n (−x)ntn

n! (γ)2n

F
(r)
D (α + n, β1, · · · , βr; γ + 2n;x1, · · · , xr) (32)

or, equivalently

I =

∫ π

0

e−(xt/4) sin θ sin2α−1 θ/2

cos2α−2γ+1 θ/2

r∏
i=1

(1− xi sin
2 θ/2)−βi dθ (33)

Making use of Theorem 2 and generating function (21), it is not difficult to

prove that ∫ 1

0

uβ−1(1− u)α−1

m∏
j=1

(1− ρju)−σj

(
1− δ

1 + δ
u

)−γ

n∏
j=1

(1− Aju)−τj(1− xtu(1− u))−λ du

= B(α, β)
∞∑

n=0

(α)n(β)n(λ)n

(α + β)2n n!
tn xn

×F (m+n+1)
D [β + n, σ1, · · · , σm; γ, τ1, · · · , τn;α + β + 2n;

ρ1, · · · , ρm,
δ

1 + δ
, A1, · · · , An

]
(34)
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where Aj =
2λj

λ2
j − 1

, j = 1, · · · , n

For λ→ 0 and u = sin2 θ/2, (33) yields an explicit representation of a general-

ized family of the elliptic-type integrals given recently by Saxena and Pathan [18]

in the form

Ω
(α,β)
(σ1,··· ,σn,γ;τ1,...,τn)(ρ1, · · · , ρm, δ;λ1, · · · , λn)

=

π∫
0

cos2α−1 θ/2 sin2β−1 θ/2
m∏

j=1

(1− ρj sin2 θ/2)−σj (1 + δ cos2 θ/2)−γ

n∏
j=1

(1− λ2
j cos θ)−τj dθ

= B(α, β)(1 + δ)−γ

n∏
j=1

(1− λ2
j)

−τj

× F
(m+n+1)
D [β, σ1, · · · , σm, γ, τ1, · · · , τn;α + β; ρ1, · · · ,

ρm,
δ

1 + δ
,

2λ2
1

λ2
1 − 1

, · · · , 2λ2
n

λ2
n − 1

]
, (35)

where min(Re(α),Re(β)) > 0, |λj| < 1; σi, γ, τj /∈ C, max

{
|ρi|
∣∣∣∣ 2λ2

1

λ2
1 − 1

∣∣∣∣ , ∣∣∣∣ δ

1 + δ

∣∣∣∣} <

1 (i = 1, · · · ,m; j = 1, · · · , n).

(iv) With a view to obtaining numerous families on double integral represen-

tations of Euler-type as an application of Theorem 3, we first observe that

(1− z1 − z2)
−a =

∞∑
m,n=0

(a)m+nz
m
1 zn

2

m! n!

yields easily the generating function

∞∑
m,n=0

(b)m(c)n

m! n!
F2(a,−m,−n, b, c;x, y)tmT n

= (1− t)−b(1− T )−c

(
1 +

xt

1− t
+

yT

1− T

)−a

= F (x, y; t, T ) (36)

where F2 is Appell’s function of second kind [21].
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Now, upon using this last result (35) in Theorem 3, we get∫ 1

0

∫ 1

0

uλ−1vk−1(1− tuρ(1− u)σ)−d(1− Tvρ(1− v)σ)−d′

(1− u)λ−µ+1(1− v)k−ν+1
F2(a, d, d

′, b, c;−X,−Y ) dudv

=
Γ (λ)Γ (k)Γ (µ− λ)Γ (ν − k)

Γ (λ)Γ (ν)

∞∑
m,n=0

θḞ2(a,−m,−n, b, c;x, y)tmT n (37)

where X =
xtuρ(1− u)σ

1− tuρ(1− u)σ
, Y =

yTvρ(1− v)σ

1− Tvρ(1− v)σ
,

θ =
(λ)ρm(µ− λ)σm(k)ρn(v − k)σn

(µ)(ρ+σ)m(ν)(ρ+σ)n

(d)m(d′)n

m! n!

Re(µ) > Re(λ) > 0, Re(ν) > Re(k) > 0, ρ ≥ 0, σ ≥ 0 and ρ + σ > 0.

Furthermore, put b = c = a in (36) and use [20, p.305(108)]

F2(α, β, β
′, α, α;x, y) = (1− x)−β(1− y)−β′

2F1

⎛⎜⎜⎝
β, β′

;
xy

(1− x)(1− y)
α

⎞⎟⎟⎠ ,

to get∫ 1

0

∫ 1

0

uλ−1vk−1(1− tuρ(1− u)σ)−d(1− Tvρ(1− v)σ)−d′

(1− u)λ−µ+1(1− v)k−ν+1
(1 +X)−d(1 + Y )−d′

× 2F1

⎛⎜⎜⎝
d, d′

;
XY

(1 +X)(1 + Y )
a

⎞⎟⎟⎠ dudv

=
Γ (λ)Γ (µ− λ)Γ (k)Γ (ν − k)

Γ (λ)Γ (ν)

∞∑
m,n=0

θ(1− x)m(1− y)n
2F1

⎛⎜⎜⎝
−m,−n

;
xy

(1− x)(1− y)
a

⎞⎟⎟⎠ tmT n (38)

where θ,X, Y are defined in (36).
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Abstract

This paper consider a two-stage unreliable continuous production process with merg-

ing configuration. A stochastic model, which consists of twelve differential equations,

is developed and solved to study the reliability and productivity of the production

system under random failure and repair rates.

1. INTRODUCTION

In most of the continuous processes, including chemical and petrochemical indus-

tries, a storage tank, or an array of tanks, is provided between the production stages

to decouple the stages and to reduce the effects of variation in one stage over the

others. Without intermediate storage, random equipment failures and variable op-

eration times significantly reduce the process output rate and line efficiency. Since

providing a large storage tank is costly, it is important to be able to determine the

exact effect of a given tank size on production output rate. Different aspects of this

problem have been considered in several previous studies (1-5), with emphasis being

on discrete parts manufacturing systems. In this paper, mathematical modeling of

a continuous process with two unreliable stages is considered, where the first stage

consists of two parallel machines and the second stage has one machine as shown in

figure 1. The system is modeled using continuous Markov processes and the state

of the system is described by set of differential equations, which are then solved to

determine the reliability and productivity of the system under different operational

conditions.

2. THE STOCHASTIC MODEL

In order to develop a stochastic model to describe the state of the system at any time

and to analyze its performance measures, the following notations are introduced:
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Figure 1: A Two-stage process with a decoupling intermediate storage tank.

1. Mi, i = 1, 2 denotes two identical machines at stage 1 with failure, repair and

production rates denoted by λ1, µ1, and q1 respectively.

2. M3 is a machine at stage 2 with parameters λ2, µ2, and q2. It is assumed that

q2 = 2q1.

3. The storage tank has a finite capacity of z.

4. Each stage has its own repair crew; i.e., repairs start without waiting.

5. Machine failures and repairs are random quantities with exponentially dis-

tributed time to failure and time to repairs.

6. Failure rate of M3 reduces to λ′
2 = λ2/2 when its operation rate reduces to q1

from q2.

7. The system operates until one machine fails. If M1 (or M2) fails, the operation

continues until one of the following events occurs:

i) The tank level is reduced to zero by machine M3;

ii) machine M3 fails; or

iii) machine M2 (or M1) fails. If the tank level reduces to zero before the repair of

failed machine is completed, the second stage (M3) slows down and operates

at rate q1 instead of its normal rate q2. If both machines M1 and M2 fail, the

second stage continues operation until the tank is empty, at which time; M3

is forced down due to unavailability of incoming flow. The failure of M3 will
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force M1 and/or M2 down, i.e., blocked, when the tank reaches its maximum

level z. In any case, a forced down machine will not fail.

State of the system is described by the following variables: Sijx(t, x) =State of the

system at time t with tank level x; t > 0, 0 ≤ x ≤ z; i and j machines operating at

the first and the second stages respectively (i = 0, 1, 2 and j = 0, 1).

x = Tank level, 0 ≤ x ≤ z at a time t.

z = Maximum tank capacity.

fijx(t, x) = Probability distribution function of state Sijx(t, x) with i = 0, 1, 2;

j = 0, 1; 0 < x < z.

Pijx(t) = Marginal probability of state Sijx for the states in which x is variable.

For those states in which tank level varies, i.e., 0 < x < z, the system changes its

state with respect to tank level x as well as the time t. There are six such states,

namely, S00x(t, x), S01x(t, x), S11x(t, x), S21x(t, x), S20x(t, x), and S10x(t, x).

For the states in which storage tank is either empty or full, the system changes

its state with respect to time t only and there are also six such states, which are:

S010(t, 0), S110(t, 0), S210(t, 0), S10z(t, z), S20z(t, z), andS21z(t, z). Thus, the system

operates within twelve states. Note that the probability of two machines failing

at the same time, while the tank is full or empty, is negligible since such an event

has infinitely small probability. The marginal probabilities for the first six states

are given by the equation , Pijx(t) =
z∫
0

fijx(t, x)dx, i = 0, 1, 2; j = 0, 1; 0 < x < z.

The equivalent probabilities for the last six states do not depend on x, an thus

x is fixed at 0 or z. Operation of the system is governed by the following set of

differential equations, which describe the twelve system states. Here fijx is used to

denote fijx(t, x) for simplification.
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∂f00x

∂t
= −(µ1 + µ2)f00x + λ2f01x + λ1f10x (1)

∂f21x

∂t
= −(2λ1 + λ2)f21x + µ1f11x + µ2f20x (2)

∂f01x

∂t
− q2

∂f01x

∂x
= µ2f00x − (µ1 + λ2)f01x + λ1f11x (3)

∂f11x

∂t
− q1

∂f11x

∂x
= 2λ1f21x + µ1f01x − (λ1 + λ2 + µ1)f11x + µ2f10x (4)

∂f10x

∂t
− q1

∂f10x

∂x
= µ1f00x + λ2f11x − (µ1 + µ2 + λ1)f10x + 2λ1f20x (5)

∂f20x

∂t
− 2q1

∂f20x

∂x
= λ2f21x + µ1f10x − (µ2 + 2λ1)f20x (6)

∂p010

∂t
= −µ1p010 + λ1p110 + q2f01x(0) (7)

∂p110

∂t
= −µ1p010 − (λ1 + µ1 + λ′

2)p110 + 2λ1p210 + q1f11x(0) (8)

∂p10z

∂t
= −(µ1 + µ2)p10z + q1f10x(z) (9)

∂p20z

∂t
= µ1p10z − µ2p20z + λ2p21z + 2q1f20x(z) (10)

∂p210

∂t
= µ1p110 − (2λ1 + λ2)p210 (11)

∂p21z

∂t
= −µ2p20z − (2λ1 + λ2)p21z (12)

3. THE SOLUTION

In order to solve the above system of equations, boundary conditions must be speci-

fied. For the system under consideration, there are four boundary conditions caused

by the flows from states S110, S210, S10z, and S21z to the states S10x, S20x, S11x, and

S11x respectively. These conditions are stated as:

λ′
2p110 = q1f10x(0); λ2p210 = 2q1f20x(0);

µ2p10z = q1f11x(z); 2λ1p21z = q1f11z(z) (13)

Equations (1) to (6), which are decoupled from equations (7) to (12), can be

represented in matrix notations as follows:

[Ḟ ]t = [q1][Ḟ ]x = [A][F ] (14)
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where,

[Ḟ ]t =
∂

∂t

∣∣∣∣ F1

F2

∣∣∣∣ , [Ḟ ]x =
∂

∂x

∣∣∣∣ F1

F2

∣∣∣∣ , [F ] =

∣∣∣∣ F1

F2

∣∣∣∣ , [F1] =

∣∣∣∣ f00x(t, x)

f21x(t, x)

∣∣∣∣ , [F2] =

∣∣∣∣∣∣∣∣∣
f01x(t, x)

f11x(t, x)

f10x(t, x)

f20x(t, x)

∣∣∣∣∣∣∣∣∣

[q1] =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 −q2 0 0 0

0 0 0 −q1 0 0

0 0 0 0 q1 0

0 0 0 0 0 2q1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

[
0 0

0 q01

]

[A] =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−(µ1 + µ2) 0 λ2 0 λ1 0

0 −(2λ2 + λ2) 0 µ1 0 µ2

µ2 0 −(µ1 + λ2) λ1 0 0

0 2λ2 µ1 −(µ1 + λ1 + λ2) µ2 0

µ1 0 λ2 −(µ1 + µ2 + λ1) 2λ1 0

0 λ2 0 0 µ1 −(µ2 + λ1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

[
A1 A2

A3 A4

]

Where A1 is 2 × 2;A2 is 2 × 4;A3 is 4 × 2; and A4 is 4 × 4 sub matrix in A.

At steady state, the partial derivatives with respect to time t approach zero, i.e.,

[Ḟ ]t = 0 and [F1] & [F2] become functions of x only. The new system of differential

equations is written as:

[A1][F1] + [A2][F2] = 0 (15)

[A3][F1] + [A4][F2] = [q01][Ḟ2]x (16)

Substituting [F1] from equation (15) into (16), we get

[Ḟ2]x = [Ω][F2] (17)

where, [Ω] = [q01]
−1{[A4]− [A3][A1]

−1[A2]}. This is a system of homogenous differ-

ential equations, which has a general solution as

[F2] = [S][ekx][c] = [Ψ2][c] (18)

392



Where, [S] is a 4× 4 matrix containing the eigenvectors of matrix [Ω] and [ekx]

is a 4 × 4 diagonal matrix with ekix in the ith diagonal; ki is the ith eigenvalue of

[Ω] and [C] = (c1, c2, c3, c4)
T is the set of constant coefficients to be determined by

the initial conditions. By substituting [F2] from (18) into (15), [F1] is determined

as follows:

[F1] = −[A]−1[A2][S][ekx][C] = [Ψ1][C] (19)

Similarly, equations (7) to (12), which constitute a linear system, are represented

by:

[Ṗ ]t = [B][P ]t + [qII ][F0], (20)

where

[Ṗ ]t =
∂

∂t
|P | [P ] =

∣∣∣∣ P3

P4

∣∣∣∣ [P3] =

∣∣∣∣∣∣∣∣∣
p010(t)

p110(t)

p10z(t)

p20z(t)

∣∣∣∣∣∣∣∣∣ [p4] =

∣∣∣∣ p210(t)

p21z(t)

∣∣∣∣

[B] =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ1 λ1 0 0 0 0

µ1 −(λ1 + µ1 + λ′
2) 0 0 2λ1 0

0 0 −(µ1 + µ2) 0 0 0

0 0 µ1 −µ2 0 λ2

0 µ1 0 0 −(2λ1 + λ2) 0

0 0 0 µ2 0 −(2λ1 + λ2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

[
B1 B2

B3 B4

]

[qII ] =

∣∣∣∣∣∣∣∣∣∣∣∣∣

q2 0 0 0 0 0

0 q1 0 0 0 0

0 0 q1 0 0 0

0 0 0 2q1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

[
q02 0

0 0

]
[F0]

∣∣∣∣∣∣∣∣∣∣∣∣∣

f01x(0)

f11x(0)

f10x(z)

f20x(z)

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣ F01

0

∣∣∣∣

Where, B1 is 4× 4;B2 is 4× 2; B3 is 2× 4; and B4 is 2× 2 sub matrix. For the

steady state solution, [Ṗ ]t = 0 and therefore, [B1][P3] + [B2][P4] + [q02][F01] = 0 and

[B3][P3] + [B4][P4] = 0, which are solved to obtain

[P3] = [D][C] (21)

[P4] = [H][C] (22)
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where, [D] = −{[B1]− [B2][B4]
−1[B3]}−1[q02][R] [H] = −[B4]

−1[B3][D]

[R] =

∣∣∣∣∣∣∣∣∣
S11 S12 S13 S14

S21 S22 S23 S24

S31e
k1z S32e

k2z S33e
k3z S34e

k4z

S41e
k1z S42e

k2z S43e
k3z S44e

k4z

∣∣∣∣∣∣∣∣∣
Where, sij are the elements of matrix [S]. The constant coefficients, [C] are deter-

mined by using the boundary conditions, the normalizing condition, and some matrix

manipulations. Matrix [C] is then substituted into equations (18), (19), (21) and

(22) to obtain [F2], [F1], [P3], and [P4]. Finally [P1] and [P2] are obtained by integrat-

ing [F1] and [F2] respectively. The solution set [P1], [P2], [P3], and [P4] are the steady

sate probabilities of twelve system states. Combining all these into a single vector,

one obtains the solution vector [Ps] = [p00x, p21x, p01x, p11x, p10x, p20x, p010, p110, p10z, p20z,

p210, p21z].

4. LINE PERFORMANCE MEASURES

Two performance measures, reliability and productivity, can be calculated from the

solutions for the system state probabilities. Line reliability can be defined as full

reliability or partial reliability. At full reliability, all the equipment operate at full

rate. Fill reliability is determined by Rfull = p21x +p210 +p21z. At partial reliability,

some equipment operate at full rate and some at partial rate with no imposed

stoppages. Partial reliability is determined from Rpartial = p01x + p11x + p10x +

p20x + p110.

The production rate of the line is determined by determining the proportion of

time that the last stage is producing at its full rate give by β1 =
2∑

i=0

pi1x +p210 +p21z

and at its reduced rate by β2 = p110. Thus, line production rate is obtained from

βl = q2β1 + q1β2 = q1(2β1 + β2), while line efficiency is obtained from E = βl/q2 =

(2β1 + β2)q1/q2.

These formulas can be used to evaluate line performance under different line

operational characteristics. Computational results show that line efficiency increases

with respect to increasing storage tank capacity. For example, for failure rates of

equipmen given as λ1 = λ2 = 0.2 failures per time unit; repair rates given as

µ1 = µ2 = 2 repairs per time unit, then the line efficiency approaches to about 88%

with a tank capacity of z = 20 units. If the repairs rates are doubled, then the
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line efficiency approaches to 95% for the same tank capacity of z = 20 units. While

the line efficiency is about 78.6% at a tank capacity of z = 0 units, it exceeds 85%

for z = 10 units for the same repair rates of µ1 = µ2 = 2 repairs per time unit.

Similarly, while the line efficiency is about 88% for z = 0, it approaches to almost

95% for z = 10, for repair rates of µ1 = µ2 = 4 repairs per time unit. Similar results

are obtained when the failure rates are changes. After the storage tank capacity

reaches a certain value, no more improvement is possible in the line efficiency for a

given set of failure and repair parameters.

The expected storage level can be determined using the state probabilities and

the expectation formula as follows. In only nine states the storage level is above

zero. In the remaining three states the storage level x is equal to zero.

E(x) =

z∫
0

x[f00x(x)+f01x(x)+f10x(x)+f11x(x)+f20x(x)+f21x(x)]dx+z[p10z+p20z+p21z]

5. CONCLUSION

In this paper, a stochastic model is presented for an unreliable two-stage continuous

process. The model consists of twelve differential equation which describe operation

of the system with unreliable equipment and a storage tank. The proposed model

can be used to evaluate system efficiency as a function of storage tank capacity,

failure rates, repair rates, and production rates of each stage (or machine). Expected

storage tank level can also be determined at steady state for a given maximum tank

capacity (z). The solution is in a closed form, with final equations of the production

output rate given as a function of storage capacity and other line parameters. The

model can be used to study efficiency of a given line and to determine the optimum

storage tank capacity, which results in maximum line efficiency or through put under

different operational parameters. It is not possible, with the given set of equations,

to determine the optimum capacity in closed form, which is done by differentiation

of a given nonlinear function. However, expected storage level can be determined

under given operational conditions using the state probabilities and the expectation

formula as stated in the previous section.

In order to determine the optimum storage capacity, one must try several ca-

pacity levels using the model and find out the capacity that results in best efficiency

or production output rate. This is a trivial computational exercise using the math-

ematical model presented here. The problem presented in this paper becomes more

complicated in case of longer production processes or several stages with parallel

machines. Analytical solutions are very difficult. On must try to approximate solu-
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tion approach or use the simulation modeling approach to study such processes in

which number of stages exceeds three.
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Abstract

Our main goal in this paper is the development and analysis of an aggregation model

of phytoplankton. The model consists of an integro-differential advection-diffusion

equation, with convolution term. The Cauchy problem is well posed in a suitable

function space. Existence, uniqueness and positivity of solutions are investigated.

1. INTRODUCTION

The role of aggregates in marine food webs and vertical transport processes is now

well recognized (Alldredge and Silver,1988; Fowler and Knauer, 1986). Recent at-

tention has been devoted to modeling studies of the mechanisms by which aggregates

form and the dynamics governing their formation (review in Jackson and Lochmann,

1993).

Coagulation theory has more recently been applied to describe phytoplankton ag-

gregation (Jackson, 1990; Hill, 1992; Riebesel and Gladrow, 1992). It requires that

primary particles collide by some physical process and stick together upon collision.

Brownian motion, differences in sinking velocity between particles, and fluid shear

may all cause primary particles to collide.

However, studies of marine aggregates at small-scales have emphasized biological

mechanisms for their formation. That is, although planktonic organisms can be

thought of as particles, the richness of biological responses makes the nature of

their interactions more complex than the simple physical ones described by coag-

ulation theory. Some planktonic species (algae, bacteria, dinoflagellates that are

motile species of phytoplankton) have chemosensory abilities (Fitt, 1985; Spero,

1985; Spero and Morée, 1981): they can sense the chemical field generated by

the presence of other particles. The dinoflagellates and more generally algae are

known to leak organic matter into solution (Mague et al., 1980). Bell and Mitchell

(1972) noted that this leakage creates a zone around individual cells, the “phyco-

sphere” where extracellular products exist in enhanced concentrations compared to

the surrounding concentration. The released products such as amino-acids and sugar

attract algae or bacteria that are present in a suitable neighborhood.
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The remaining part of this paper is organized as follows. In section 2, we describe

our model in detail. In section 3, we show that the Cauchy problem associated to the

model is well posed in a suitable function space. Indeed, we investigate existence,

uniqueness and positivity of solutions. We also prove that the solution satisfies the

principle of conservation of mass for all positive time. Finally, we conclude with a

brief discussion in section 4.

2. MODEL DERIVATION

In this paper, we perform the mathematical analysis of a non-local advection model

for the motion of large plankton populations. This model is the continuum limit

of an infinite system of planktonic particles subject to random dispersal modeled

as Brownian motions and mutual interactions allowing the particles motions some

dependence [23]. The model deals with temporal and spatial changes in the phyto-

plankton population density. To describe interactions between planktonic particles,

we propose two hypotheses : a) a non uniform concentration fields around organ-

isms, b) organisms considered (plankton particles) having chemosensory abilities

and hence some “knowledge” of their neighbors’ whereabouts and modifying their

motion accordingly. So, aggregation here is due to “social” forces induced by in-

teractions of each cell with others in the population which belong to a suitable

neighborhood. As each particle has a limited knowledge of the spatial distribution

of its neighbors (Berg and Purcell, 1977; Jackson, 1987, 1989), the particles are

subject to their interaction aggregate within a range R = r1 − r0(0 < r0 < r1).

The model is given by the following partial differential equation:

∂

∂t
u(x, t) = d

∂2

∂x2
u(x, t)− ∂

∂x

(
u(x, t)Φ(x)

[
G ∗ u0(., t)

]
(x)
)
, inΩ × (0,∞), (1)

where Ω = ]0, L[ is a bounded domain with smooth boundary ∂Ω in R, x is a one

dimensional coordinate, t is time. u(x, t) represents the proportion density function

of phytoplankton at time t. That is u(x, t)dA is the expected proportion of organ-

isms in the sample area dA surrounding the point x at time t. Here, R represents

the vertical axis oriented downward from the surface to the seabed. The point 0 is

at the surface of water and L is the limit of the euphotic zone (the upper layers of

oceans and lakes). Generally, phytoplankton particles can survive and multiply only

in the “euphotic zone”, that is why we restrict our model to Ω. d is a coefficient of

diffusion and G is the attractive force given by:

G(x) =

⎧⎨⎩
|x|2 − (r0 + r1) |x|+ r0r1 ifr0 < x < r1

− |x|2 + (r0 + r1) |x| − r0r1 if − r1 < x < −r0

0 otherwise.
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Typically, terms in the advective velocity have the form of convolution (Mogilner

and Edelstein Keshet, 1996), i.e.,

[
G ∗ u0(., t)

]
(x) =

∫
R

G (x− x′)u0(x′, t)dx′,

where

u0(x) =

{
u(x) 0 < x < L

0 x ≤ 0 or x ≥ L.

This form describes the velocity induced at the site x by the net effects of all indi-

viduals at various sites x′. The kernel G (x− x′) associates a strength of interaction

per unit density as a function of the distance x − x′ between any two particles.

Boundary conditions are imposed at the surface and at L :

∂

∂x
u(x, t) = 0, on∂Ω × R+ (2)

and the initial condition is

u(x, 0) = u0(x) ≥ 0, inΩ. (3)

We also assume that

u0(x) ≥ 0 and

∫ L

0

u0(x)dx = 1. (4)

and

Φ ∈ H1
0 (Ω), supΦ ⊂ [δ, L− δ] , δsufficientlysmall, (5)

where supΦ denotes the support of function Φ.

The normalization condition (4) is connected with the fact that u(x, t) is a

proportion and that the mass must be conserved. Namely, that

u(x, t) ≥ 0 and

∫ L

0

u(x, t)dx = 1,∀t.

will be shown to hold when assumptions in (4) are made. We will not consider

growth terms, and focus exclusively on non-linear and non-local transport proper-

ties of the population. The model describes motion of phytoplankton particles alive

during their lifetimes.
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3. EXISTENCE, UNIQUENESS AND POSITIVITY

3.1 Abstract formulation and well-posedness

The system (1)-(3) will be studied via the theory of operator semigroups [24].

For this purpose, we write (1)-(3) as an abstract Cauchy problem. We obtain a

quasilinear problem with nonlinearities in the first order term:⎧⎨⎩
d

dt
u(t) = Au(t)−B

[
u(t)g(Φ,G) (u(t))

]
u(0) = u0.

(6)

in which u(t) is used for u(., t). The operator A : D(A) ⊂ X := L2(Ω) → X is

defined by

Aw = d
d2w

dx2
,

D(A) =
{
w ∈ H2(Ω) : w′

|∂Ω = 0
}
,

(7)

and the operator B : D(B) ⊂ X → X by

Bw =
d

dx
w,

D(B) = H1(Ω).
(8)

H1(Ω) and H2(Ω) denote usual Sobolev functions spaces. We will denote by 〈, 〉 and

‖.‖ , respectively, the scalar product and the norm in X. The operator A commutes

with B and they are related by the following formula

〈Bu, dBu〉 = −〈u,Au〉 ,∀u ∈ D(A). (9)

We endow D(B) with the graph norm ‖x‖B = ‖Bx‖ for x ∈ D(B).

The main existence result will be derived using successive approximations in a space

of continuous functions from some suitable interval [0, t0] (where t0 > 0 will be chosen

later on) into D(B). On occasion, we will use the notation Y = C([0, t0] ,D (B)).

The operator g(Φ,G) is defined as follows:

g(Φ,G) (ϕ) (x) = Φ (x) [G ∗ ϕ] (x) = Φ (x) RG (x− y)ϕ (y) dy.

By straightforward consequence of standard calculations, we can establish that

g(Φ,G) : D(B)→ D(B), continuously so there exists a constant δ, so that∣∣g(Φ,G) (ϕ)
∣∣
D(B)

≤ δ |ϕ|D(B) , ∀ϕ ∈ D(B).
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Note also that G ∗ u0 is uniformly bounded. Hence, g(Φ,G)u is uniformly bounded.

As a result of Hölder’s inequality, we get∣∣g(Φ,G)u
∣∣
∞ ≤

√
L |G|∞ |Φ|∞ ‖u‖ , ∀u ∈ D(B). (10)

On the other hand, we have∣∣Bg(Φ,G)u
∣∣
∞ ≤

√
L |G|∞ max(|Φ|∞ , |BΦ|∞) |u|D(B) , ∀u ∈ D(B). (11)

We now return back to the Cauchy problem (6)

Proposition 1 The operator A defined by (7) is the generator of an analytic semi-

group of contractions in X, (T (t))t≥0, compact for t > 0. The restrictions T (t)/D(B)

sendD(B) into itself and are uniformly bounded inD(B)(that is, there exists C1 ≥ 0,

such that,
∣∣T (t)/D(B)

∣∣
D(B)

≤ C1, for t ≥ 0).

The solving of the problem (6) involves two steps: first, one deals with local

existence; next, a noncontinuation principle will be established (Theorem 5) which

will ensure solutions exist on as long a time interval as desired.

To prove local existence for problem (6), we write it in integral form by using the

variation of constants formula

u(t) = T (t)u0 −t
0 T (t− s)B

[
u(s)g(Φ,G) (u(s))

]
ds. (12)

We remind that a solution of (12) is called a mild solution of the differential equa-

tion(6) (see [24]).

3.2 Local existence of solutions

This subsection is concerned with local existence of solutions for problem (6).

For this purpose, we start by establishing some useful estimates.

Lemma 2

1) There exists a constant M, such that, for all u, v ∈ D (B) , we have∥∥B [ug(Φ,G)(u)
]−B

[
vg(Φ,G)(v)

]∥∥ ≤M max(|u|D(B) , |v|D(B)) |u− v|D(B) .

2) There exists a positive constant Q, such that, for all u ∈ D (B) , it holds that∥∥B [ug(Φ,G)(u)
]∥∥ ≤ Q |u|D(B) ‖u‖ .

3) There exists a positive constant C, such that, for all u ∈ X, it holds that

‖BT (t)u‖ ≤ C√
t
‖u‖ , ∀t > 0. (13)
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We can now state the main theorem of this subsection:

Theorem 3 For every R > 0, there exists t0 > 0, t0 = t0(R), such that, for

each u0 ∈ BD(B) (R) , (i.e., the ball of radius R centered at 0 of D (B)), the Cauchy

problem (6) has a unique mild solution u defined on the interval [0, t0]. Moreover, the

map u0 → u is Lipschitz continuous from BD(B) (R) into Y . Finally, Ωu(x, t)dx =Ω

u0(x)dx, for all t ≥ 0.

3.3 Global existence

Global existence (i.e., the fact that the solutions are defined on the whole of

t > 0) is established for positive solutions. For that, we will show, the boundedness

of the solution u(t) in the D(B) norm. This property, together with theorem 5,

implies that tmax =∞. Prior to this, we will prove that (CP ) preserves positiveness,

which will be needed in the a priori estimates of the solutions. Our first result in

this direction is the following theorem.

Theorem 4 Equation (1)-(3) preserves positiveness, that is: u0 ≥ 0 implies that

u(x, t) ≥ 0 for all t ≥ 0.

The next two results are crucial in continuation of solutions.

Theorem 5 For every initial data u0 ∈ D (B) , the abstract Cauchy problem (6) has

a unique mild solution on a maximal interval of existence [0, tmax[.

If tmax <∞ then

lim
t→tmax

sup |u(t)|D(B) =∞.

Proposition 6 There exists a function K : R+ → ]0,+∞], non increasing, such

that, if u(., t) is a solution of (CP ) with u0 ∈ D(B) and u0 ≥ 0, then it holds that

|u(t)|D(B) ≤ K1(‖u0‖) |u0|D(B), for all t ∈ [0, K (‖u0‖)], where K1(x) = 2 [C1 + exp (L1K (x))].

3.4 Regularity

The following result describes the regularity of a mild solution of (6).

Theorem 7 For every u0 ∈ D(A), the mild solution of equation (6) is a classi-

cal solution, i.e. u is continuous on [0,∞), continuously differentiable on (0,∞),

u(t) ∈ D(A) for t ∈ (0,∞) and (6) is satisfied on [0,∞) .
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4. CONCLUSION

Our main result in this paper is the development and analysis of an aggregation

model of phytoplankton. Here, the clustering phenomenon is a consequence of so-

cial behavior and is due to the nonlinear interactions between particles. The model

describes the evolution of the mean-field spatial density of phytoplankton popula-

tion on the vertical water column by a deterministic nonlinear partial differential

equation of the advection-diffusion type. We have proved that the Cauchy problem

associated to this model is well posed in D(B). Solutions are fixed points of strict

contractions and initial values in D(A) yield classical solutions. We have also proved

the conservation of mass of phytoplankton for all positive time.
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Abstract

The present paper treats iterative methods for a class of nonlinear matrix equations

of the form X ±A�F(X)A = Q, where F(X) maps positive definite matrices either

into positive definite matrices or into negative definite matrices, and satisfies some

monotonicity property. Here the matrix A is arbitrary and Q is a positive definite

matrix. The available iterative methods for solving the nonlinear matrix equations

are based on basic fixed point, inversion free variant of the basic fixed point, appli-

cations of Newton’s method and on cyclic reduction method. The nonlinear matrix

equations have a solution if and only if a related iterative algorithm converges to a

positive definite solution (PDS) under some conditions on the given matrix A.
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INTRODUCTION

Let P(n) denote the set of n × n positive semidefinite matrices. We consider the

following class of nonlinear matrix equations

X ± A�F(X)A = Q, (1)

where F(·) : P(n) → P(n) is either monotone (meaning that 0 ≤ X ≤ Y implies
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that F(X) ≤ F(Y )) or anti-monotone (meaning that 0 ≤ X ≤ Y implies that

F(X) ≥ F(Y )). In particular, we shall be interested in the case where F(X) is

generated by a function from [0,∞) to [0,∞) which is either operator monotone

or operator anti-monotone. For example, F(x) = xr is operator monotone for 0 <

r ≤ 1, while F(x) = x−1 is operator anti-monotone (see, e.g., [9], where a thorough

study of operator monotone functions is presented). This type of nonlinear matrix

equation (5),(for example when F(X) = X−1) often arises in the analysis of ladder

networks, dynamic programming, control theory, stochastic filtering, statistics, see

[1] and the references contained therein. Also in many mathematical and physical

applications, we must solve a system of linear equations

M x = f, (2)

where the positive definite matrix M arises from the finite difference approximation

to an elliptic partial differential equation. As an example, let

M =

(
I A

A∗ I

)
.

We consider the matrix M = M̃ + diag[I −X, 0] where

M̃ =

(
X A

A∗ I

)
.

We can decompose the matrix M̃ via two ways. First(
X A

A∗ I

)
=

(
I 0

A∗X−1 I

) (
X A

0 X

)
. (3)

In order that the decomposition (3) exists the matrix X must be a solution of

the matrix equation X + A∗X−1A = I.

Second (
X A

A∗ I

)
=

(
I 0

A∗X−1 I

) (
X A

0
√
X

)
. (4)

In order that the decomposition (4) exists the matrix X must be a solution of the

matrix equation Y + A∗Y −2A = I, Y =
√
X. We can see the matrix equation

(5) (when F(X) = X−1) in another point of view as a particular case from the

discrete-time algebraic Riccati matrix equation

0 = Q+ F �XF −X − (F �XB + A�)(R +B�XB)−1(B�XF + A),
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where Q is a positive definite matrix, see [6, 9]. The above equation can reduced

to the equation (1) with F(X) = X−1, by substituting F = 0, B = I, and R = 0.

Several authors [1-5,7-13] have considered such a nonlinear matrix equation (5) and

its special cases.

The matrix equation

X + A�X−1A = I (5)

has been studied recently by several authors [1-4,11-13]. Anderson, Morley and

Trapp [1] discussed the existence of a positive solution to the matrix equation (5)

with right hand side an arbitrary matrix, while Engwerda, Ran and Rijkeboer [2]

established necessary and sufficient conditions for the existence of a positive definite

solution of same matrix equation as in [1]. They discussed both the real and complex

case and proposed recursive algorithms to compute the largest and smallest solution

of the equation. Engwerda [3] proved the existence of a positive definite solution of

the real matrix equation (5) and also found an algorithm to calculate the solution.

El-Sayed et al. [5, 7-11] obtained necessary and sufficient conditions for the existence

of a positive definite solution of matrix equations with several forms instant of X−1

in (5). Zhan and Xie [12] proposed several numerical algorithms for finding solutions

for (5). In [13], Zhan proposed an algorithm called inversion free variant of the basic

fixed point iteration, that avoids matrix inversion.

Take X0 = Y0 = I,

Xn+1 = I − A�YnA,

Yn+1 = Yn (2I −XnYn) , n = 0, 1, 2, · · · . (6)

Guo and Lancaster [4] modified Zhan’s algorithm (6) to find the maximal positive

definite solutions of Eq. (5) as follows:

Take X0 = Y0 = I,

Yn+1 = Yn (2I −XnYn) ,

Xn+1 = I − A�Yn+1A, , n = 0, 1, 2, · · · . (7)

They presented a deeper discussion of convergence of the inversion free variant of

the basic fixed point iteration method for Eq. (5) than was done in [13].

Our goal of this paper is to discuss the matrix equation (5) with a new inversion

free variant of the basic fixed point iteration method.

Take X0 = Y0 = I

Yn+1 = (I −Xn)Yn + I (8)

Xn+1 = I − A�Yn+1A, n = 0, 1, 2, · · · .
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The suggested algorithm also avoids matrix inversion. Furthermore the algorithm

requires only three matrix multiplications per step, whereas Zhan’s algorithm (6)

and Guo et al. algorithm (7) require four matrix multiplications per step. We use

the algorithm to obtain numerically the maximal solution of Eq. (5) under some

additional conditions. We obtain the rate of convergence for the sequence generated

by our algorithm. Some numerical examples are given to show the behavior of the

considered algorithm.

The paper is organized as follows. In section 2, under some conditions on

matrix A we obtain the rate of convergence of the iterative sequence of approximate

solutions. Section 3 illustrates the performance of the method with some numerical

examples. Section 4 contains the conclusion and Remarks drawn from the results.

We will start with some notations, which are used throughout the rest of the

paper. The notation A > 0 (A ≥ 0) means that A is positive definite (semidefinite).

A� denotes the complex conjugate transpose of A, and I is the identity matrix. The

notation A > B (A ≥ B) indicates that A−B is positive definite (semidefinite). We

denote by ρ(A) the spectral radius of A (i.e. maxλi
|λi|, where λi are the eigenvalues

of A). In the following we denote by ‖.‖ the spectral norm (i.e. ‖ A ‖=
√
ρ(AA�))

unless otherwise noted. We denote by X+ the maximal solution.

1. CONDITIONS FOR THE EXISTENCE OF SOLUTIONS

In this section, we introduce an inversion free variant of the basic fixed point iteration

method to avoid the computation of the matrix inverse in every iteration. We will

obtain the conditions for existence of the solutions of Eq. (5).

We will prove that the sequence {Xn} is monotone decreasing and converges to

the maximal solution X+.

Theorem 1.1 If Eq. (5) has a positive definite solution and the two sequences {Xn}
and {Yn} are determined by Algorithm (8), then {Xn} is monotone decreasing and

converges to the maximal solution X+. If the matrix A is nonsingular and Xn > 0

for every n, then (5) has a positive definite solution.

Proof. First, we will prove that I = X0 ≥ X1 ≥ X2 ≥ · · · ≥ Xn ≥ X+ and

I = Y0 ≤ Y1 ≤ Y2 ≤ · · · ≤ Yn ≤ X−1
+ .

Since X+ is a solution of (5), i.e.

X+ = I − A�X−1
+ A,
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then X0 = I ≥ X+. Also

X1 = I − A�A ≥ I − A�X−1
+ A = X+,

i.e. X0 ≥ X1 ≥ X+. For

X2 = I − A�Y2A = I − A�A− A�2A2 = X1 − A�2A2

this implies X2 ≤ X1, so that X0 ≥ X1 ≥ X2.

For the sequence {Yn} we have Y0 = Y1 = I and since X−1
+ ≥ I, then Y0 = Y1 ≤ X−1

+

Y0 = Y1 = I ≤ Y2 = (I −X1)Y1 + I = A�A + I,

i.e. Y0 = Y1 ≤ Y2.

We have also

Y2 = (I −X1)Y1 + I ≤ (I −X+)X−1
+ + I = X−1

+ ,

i.e. Y1 ≤ Y2 ≤ X−1
+ . Concerning {X2}, we get

X2 = I − A�Y2A ≥ I − A�X−1
+ A = X+.

i.e. X0 ≥ X1 ≥ X2 ≥ X+.

That is means that the inequalities are true for n = 0, 1, 2. So, assume that the

above inequalities are true for n = k, i.e.

I = X0 ≥ X1 ≥ X2 ≥ · · · ≥ Xk ≥ X+

and

I = Y0 ≤ Y1 ≤ Y2 ≤ · · · ≤ Yk ≤ X−1
+ .

Now we will prove the inequality for n = k + 1. We have

Yk+1 = (I −Xk)Yk + I ≥ (I −Xk−1)Yk−1 + I = Yk.

We have also

Yk+1 = (I −Xk)Yk + I ≤ (I −X+)X−1
+ + I (9)

= X−1
+ ,

i.e. Yk ≤ Yk+1 ≤ X−1
+ . Concerning the sequence {Xn}, we have

Xk −Xk+1 = A� (Yk+1 − Yk)A,
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since Yk+1 ≥ Yk, hence Xk ≥ Xk+1. Therefore,

Xk+1 = I − A�Yk+1A ≥ I − A�X−1
+ A = X+.

i.e. Xk ≥ Xk+1 ≥ X+.

This completes the proof of the inequality for n = k + 1. Therefore, I = X0 ≥
X1 ≥ X2 ≥ · · · ≥ Xn ≥ X+ and I = Y0 ≤ Y1 ≤ Y2 ≤ · · · ≤ Yn ≤ X−1

+ are true

for all n, and limn→∞Xn and limn→∞ Yn exist. By taking limits in the equations of

(8) leads to Y = X−1 and X = I − A�X−1A. Moreover, as each Xn ≥ X+ then

X = X+, see [13].

If matrix A is nonsingular and Xn > 0 for every n. Hence the above proof

of the monotonicity of {Yn} remains valid (monotone increasing). It follows that

sequence {Xn} is monotone decreasing and bounded from below by the zero matrix.

So limn→∞Xn = X exists. Since A is nonsingular Yn+1 = A−� (I −Xn+1)A
−1. Thus

limn→∞ Yn = Y exist. As Y0 = I and {Yn} is monotone increasing, Y ≥ I. Taking

limit in the Algorithm (8) implies

Y = (I −X)Y + I (10)

X = I − A�Y A.

Since Y ≥ I, X = Y −1 > 0, and hence X = I−A�X−1A. So Eq. (5) has a positive

definite solution.

Lemma 1.2 Assume that Eq. (5) has a positive definite solution and ‖A‖ < 1/2,

then the sequence {Yn} satisfies ‖YnA‖ < 1 for every n = 0, 1, · · · .

Proof. Since Y0 = Y1 = I, it is clear that ‖Y0A‖ = ‖Y1A‖ < 1
2
< 1. For Y2 we have

Y2 = (I −X1)Y1+I = A�A+I, thus ‖Y2A‖ = ‖A�A2+A‖ ≤ ‖A�A2‖+‖A‖ < 5
8
< 1.

This means that the inequality is holds for n = 0, 1, 2. So, assume that the inequality

is satisfied for n = k, i.e. ‖YkA‖ < 1. Now we will prove inequality when n = k+ 1.

Yk+1A = [(I −Xk)Yk + I]A, (11)

= [(I − (I − A�YkA))Yk + I]A,

= A�YkAYkA + A.

Then we get

‖Yk+1A‖ ≤ ‖A�YkAYkA‖+ ‖A‖, (12)

≤ ‖A�‖‖YkA‖2 + ‖A‖,
≤ ‖A�‖+ ‖A‖ < 1.
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This completes the proof of the lemma.

We now establish the following result to obtain the rate of convergence for

Algorithm (8).

Theorem 1.3 If Eq. (5) has a positive definite solution and ‖A‖ < 1
2
, then the

sequence {Xn} satisfies

‖Yn+1 −X−1
+ ‖ ≤ ‖AX−1

+ ‖‖Yn −X−1
+ ‖, (13)

and

‖Xn+1 −X+‖ ≤ ‖A‖2‖Yn −X−1
+ ‖, (14)

for all n large enough. If the matrix A is nonsingular, we also have

‖Xn+1 −X+‖ ≤ ‖X−1
+ A‖‖Xn −X+‖. (15)

Proof.

Yn+1 = (I −Xn)Yn + I, (16)

= A�YnAYn + I,

= A�
(
Yn +X−1

+ −X−1
+

)
AYn + I,

= A�
(
Yn −X−1

+

)
AYn + A�X−1

+ AYn + Yn − Yn + I,

= A�
(
Yn −X−1

+

)
AYn −

(
I − A�X−1

+ A
)
Yn + Yn + I,

= A�
(
Yn −X−1

+

)
AYn −X+Yn + Yn + I.

Then we get

X−1
+ − Yn+1 = X−1

+ + A�
(
X−1

+ − Yn

)
AYn +X+Yn − Yn − I, (17)

= (I −X+)
(
X−1

+ − Yn

)
+ A�

(
Yn −X−1

+

)
AYn,

= A�X−1
+ A

(
X−1

+ − Yn

)
+ A�

(
Yn −X−1

+

)
AYn,

i.e. we have

‖X−1
+ − Yn+1‖ ≤ ‖A�X−1

+ A‖‖X−1
+ − Yn‖+ ‖A�‖‖AYn‖‖X−1

+ − Yn‖, (18)

≤ (‖X−1
+ A‖+ ‖AYn‖

) ‖A�‖‖X−1
+ − Yn‖.

Since lim→∞ Yn = X−1
+ , then

‖Yn+1 −X−1
+ ‖ ≤ 2‖A�‖‖AX−1

+ ‖‖Yn −X−1
+ ‖, (19)

≤ ‖AX−1
+ ‖‖Yn −X−1

+ ‖.
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Thus the inequality (13) is true. The second inequality (14) can be proved to hold

directly from the following equality.

Xn+1 −X+ = A�
(
X−1

+ − Yn+1

)
A.

We now prove the last inequality (15). We have from Eq. (17) the following:

X−1
+ − Yn+1 = A�X−1

+ A
(
X−1

+ − Yn

)
+ A�

(
Yk −X−1

+

)
AYn, (20)

= A�X−1
+ AA−�

(
A�X−1

+ A− A�YnA
)
A−1 +

(
A�YkA− A�X−1

+ A
)
Yn,

= A�X−1
+ AA−� (Xn −X+)A−1 + (Xn −X+)Yn.

Therefore,

Xn+1 −X+ = A�
(
X−1

+ − Yn+1

)
A, (21)

= (A�)2 X−1
+ AA−� (Xn −X+) + A� (Xn −X+)YnA.

Taking norm for the above equation, we get

‖Xn+1 −X+‖ ≤ ‖A�‖2‖X−1
+ A‖‖A−�‖‖Xn −X+‖

+ ‖A�‖‖YnA‖‖Xn −X+‖,
≤ (‖X−1

+ A‖+ ‖YnA‖
) ‖A�‖‖Xn −X+‖. (22)

Since lim→∞ Yn = X−1
+ , then

‖Xn+1 −X+‖ ≤ 2‖A�‖‖X−1
+ A‖‖Xn −X+‖, (23)

≤ ‖X−1
+ A‖‖Xn −X−1

+ ‖.
Thus the inequality (15) holds.

We note that from Algorithm (8) I −XnYn = Yn+1 − Yn → 0, as n→∞. Thus

one stopping criterion may be ‖I − XnYn‖ < ε, for small ε > 0. The effect of the

stopping criterion can be seen from the following Theorem.

Theorem 1.4 If Eq. (5) has a solution and after n iterative steps of Algorithm (8),

we have ‖I −XnYn‖ < ε, thus

‖Xn + A�X−1
n A− I‖ ≤ ε‖A‖2‖X−1

+ ‖.

Proof. Since,

Xn + A�X−1
n A− I = Xn −Xn+1 + A�

(
X−1

n − Yn+1

)
A (24)

= A� (Yn+1 − Yn)A + A�
(
X−1

n − Yn+1

)
A

= A�
(
Yn+1 −X−1

n +X−1
n − Yn

)
A + A�

(
X−1

n − Yn+1

)
A

= A�X−1
n (I −XnYn)A
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Taking norm on both sides,

‖Xn + A�X−1
n A− I‖ ≤ ‖A‖2‖X−1

+ ‖‖I −XnYn‖ (25)

≤ ε‖A‖2‖X−1
+ ‖

2. NUMERICAL EXPERIMENTS

In this section, numerical experiments are given to display the flexibility of the new

inversion free variant of the basic fixed point iteration methods. The maximal so-

lution are computed for some different matrices A with different orders. We will

compare the suggested Algorithm (8)with Algorithm (6) and Algorithm (7). The

numerical experiments were carried out on an IBM-PC Pentium IV 2000 MHz com-

puter. Double precision is used in the following calculations. The machine precision

is approximately 1.11022×10−16. For the following examples, we use the practical

stopping criterion ‖X + ATX−1A− I‖ < 10−16.

Example 2.1 Consider Eq. (5) with normal matrix

A =
1

32

⎛⎜⎜⎜⎝
0.2 −0.1 −0.5 0.1

−0.1 0.6 −0.5 0.7

−0.5 −0.5 0.1 0.8

0.1 0.7 0.8 0.5

⎞⎟⎟⎟⎠ .

For this matrix the spectral norm is ‖A‖ = 0.0412375. The exact maximal solution

can be found according to the formula

X+ =
1

2

[
I + (I − 4A�A)1/2

]
,

which is valid for any normal matrix A with ‖A‖ ≤ 1/2 (see [12]). Therefore the

exact maximal solution is

X+ =

⎛⎜⎜⎜⎝
0.999697 −0.234558 10−3 0.195301 10−4 0.391194 10−3

−0.234558 10−3 0.998915 −0.254492 10−3 −0.352352 10−3

0.195301 10−4 −0.254492 10−3 0.998876 −0.784171 10−4

0.391194 10−3 −0.352352 10−3 −0.784171 10−4 0.99864

⎞⎟⎟⎟⎠ .

Algorithm (6) needs 9 iterations to find the above maximal solution, Algorithm (7)

needs 5 iterations and the suggested algorithm needs 5 iterations as Algorithm (7)

but the number of operations is less than Algorithm (7).
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Example 2.2 We consider Eq. (5) with nonnormal matrix

A =
1

100

⎛⎝ 0.2 −0.1 0.4

0.7 0.6 −0.5

0.4 0.8 0.6

⎞⎠ .

For this matrix the spectral norm is ‖A‖ = 0.00796591. We will obtain the maximal

solution X+ (with first fifteen digits) by any iterative algorithm. Therefore the

maximal solution is

X+ =

⎛⎝ 0.999931 −0.72008 10−4 0.299962 10−5

−0.72008 10−4 0.999899 −0.140023 10−4

0.299962 10−5 −0.140023 10−4 0.999923

⎞⎠ .

Algorithm (6) needs 5 iterations to find the maximal solution, Algorithm (7) needs

3 iterations and the suggested algorithm needs 3 iterations as Algorithm (7) but the

number of operations is less than Algorithm (7).

3. CONCLUSIONS AND REMARKS

In this paper we considered the nonlinear matrix equations (5). We suggested a

new inversion free variant of the basic fixed point iteration method. We achieved the

conditions for the existence of a positive definite solution. We discussed an iterative

algorithm from which a solution can always be calculated numerically whenever

the equation is solvable. Moreover, Two numerical examples are given to show the

accuracy of the suggested algorithm. We observe that our suggested algorithm also

avoid matrix inversion and involves only matrix-matrix multiplication. Furthermore

the algorithm requires only three matrix multiplications per step, whereas Algorithm

(6) and Algorithm (7) require four matrix multiplications per step.
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Abstract

One of the main applications of the fractional calculus, integration and differen-

tiation of arbitrary (fractional) orders, is modeling of the intermediate physical

processes. Here we survey our results on two of these processes, the diffusion-wave

process and the convection-diffusion process.

1. INTRODUCTION

Let J = [0, T ], f be integrable on J and g be (at least) absolutely continuous on J .

Definition 2.1. The ( Riemann-Liouville) fractional order integral of f of order

β ≥ 0 is defined by (see [11], [12] and [15]- [17])

Iβ f(t) =

∫ t

0

(t− s)β−1

Γ (β)
f(s) ds =

∫ t

0

φ(t− s) f(s) ds = f(t) ∗ φα(t), (1)

where φβ(t) = tβ−1

Γ (β)
, for t > 0, φβ(t) = 0, for t ≤ 0, and ([10])

lim
β→0

Iβ f(t) = lim
β→0

f(t) ∗ φβ(t) = f(t) ∗ δ(t) =

∫ t

0

f(s) ds.

Definition 2.2. The ( Caputo) fractional order derivative of g of order α ∈ (0, 1)

is defined by ([1]- [5], [11] and [15]-[17])

Dα g(t) = I1−α Dg(t), D =
d

d t
, (2)

where

lim
α→1

Dαg(t) =
dg(t)

dt
and Dαk = 0, k �= 0 is constant.

When α ∈ (n− 1, n) and if Dng is integrable we have

Dα g(t) = In−α Dng(t). (3)

Let X be a Banach space (with norm ‖.‖) and L(J,X) be the class of integrable

functions defined on J with values in X. Let A be a closed linear operator with dense
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domain D(A) ⊂ X. Consider the two Cauchy problems, the abstract fractional order

diffusion problem,

Dγu(t) = Au(t), t ∈ (0, T ], with u(0) = uo, γ ∈ (0, 1] (4)

and the abstract fractional order wave problem

Dβu(t) = Au(t), t ∈ (0, T ], with u(0) = uo ut(0) = 0, β ∈ [1, 2). (5)

The author (see [2]) proved, under certain conditions, that the problem (4) has

a unique solution uγ(t) ∈ L(J,D(A)) and the problem (5) has a unique solution

uβ(t) ∈ L(J,D(A)), these two solutions satisfy the continuation properties

lim
γ→1−

uγ(t) = lim
β→1+

uβ(t) = u(t) = T (t)uo, (6)

lim
γ→1−

Dγuγ(t) = lim
β→1+

Dβuβ(t) = AT (t)uo = du(t)/dt, (7)

where u(t) = T (t)uo is the solution of the Cauchy problem

du(t)/dt = Au(t), t ∈ (0, T ], and u(0) = uo (8)

and {T (t), t ≥ 0} is the semigroup generated by the operator A.

Combining these results the abstract diffusion-wave problem have been defined

(see[3]) as

Dαu(t) = Au(t), t ∈ (0, T ], with u(0) = uo, ut(0) = 0, α ∈ (0, 2). (9)

Here we have two remarks:

(1) The continuation properties (6) and (7) have been proved under the assumption

that ut(0) = 0.

(2) α ∈ (0, 2) is being understood to consider either problem (4) whenever

α ∈ (0, 1] or problem (5) when α ∈ [1, 2).

In this paper we formulate the more general and accurate model of the (abstract)

diffusion-wave problem as

Dαu(t) =

∫ t

0

h(t− s)Au(s) ds, t > 0, α ∈ (0, 1], u(0) = uo. (10)

The existence and uniqueness of the solution uα ∈ L(J,D(A)) will be proved. The

continuation as α→ 1 will be studied. The special cases, fractional-order diffusion
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problem, diffusion problem, fractional-order wave problem and wave problem, will

be given. Finally, we consider the model of the convection-diffusion process ([7])

∂u(x,t)
∂t

=x W
γu(x, t), γ ∈ (1, 2), t ∈ (0, T ), x ∈ (0, b)

u(x, 0) = uo(x),

u(0, t) = ux(b, t) = 0,

⎫⎪⎬⎪⎭ (11)

where xW
γu(x, t) is the finite Weyl fractional order derivative (see [4]). The

existence and uniqueness of the solution uγ(x, t) ∈ H2(0, b) ∩ C1(0, T ) will be

proved, The continuation ( of the problem) to the convection problem ( γ → 1) and

to the diffusion problem ( γ → 2) will be studied.

2. EVOLUTIONARY INTEGRAL EQUATIONS

Let X be a Banach space and A be a closed linear operator with domain D(A) dense

in X and satisfying the assumption

(I) A generates an analytic semigroup {T (t), t ≥ 0} on X . In particular

Λ1 = {λ ∈ C : |argλ| < π/2 + δ1}, 0 < δ1 < π/2 is contained in the resolvent set

of A and ‖(λI − A)−1‖ ≤M1/|λ|, Reλ > 0 on Λ1 , for M1 > 0 .

Example Let the operator A be defined by

D(A) = {u(x, t) ∈ C2(−∞,∞), lim
x→±∞

u(x, t) = 0}, Au(x, t) =
∂2

∂x2
u(x, t), (12)

then ([18]) A satisfies the condition (I).

The following results have been proved for the Cauchy problem (10)(see [6])

Theorem 2.1 Let α ∈ (0, 1), uo ∈ D(A2), and e−th(t) ∈ L((0,∞), R). If

the operator A satisfies the condition (I), then the Cauchy problem (10) has the

unique solution uα ∈ L(J,D(A)), Duα ∈ L(J,D(A)). given by

uα(t) = uo −
∫ t

0

esrα(s)uods, (13)

where the resolvent operator rα satisfies the relations

rα(t)x = −h(t)Ax + rα(t) ∗ h(t)Ax, a.e., t > 0 (14)

and

rα(t)x = h(t)Ax + h(t) ∗ Arα(t)x, a.e., t > 0. (15)

Theorem 2.2 If the solutions of the initial value problem (10) exists then

lim
α→1−

uα(t) = u1(t) and if Auo ∈ D(A2), then lim
α→1−

Dαuα(t) =
du1(t)

dt
, (16)
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where u1(t) is the solution of the Cauchy problem

du(t)

dt
=

∫ t

0

h(t− s) Au(t), t > 0, γ ∈ (0, 1], u(0) = uo.

The following corollary can easily proved.

Corollary 2.1 If the solution of the diffusion wave problem (10) exists then it

depends continously on the initial data uo.

3. DIFFUSION-WAVE EQUATION

Now let A be given by (12), then the problem (10) will be of the form.

∂αu(x, t)

∂tα
=

∫ t

0

h(t− s)
∂2u(x, s)

∂x2
ds, t > 0, α ∈ (0, 1], u(x, 0) = uo(x). (17)

Now applying the results of [2], [5] and ([6]) we get the following.

3.1 Fractional-order diffusion process Let α ∈ (0, 1), γ ∈ (0, 1] such that

γ − α ∈ (0, 1) and h(t) = φγ−α(t) = tγ−α−1/Γ (γ − α), t > 0.

Then the problem (17) will be the problem of fractional-order diffusion process

∂γu(x, t)

∂tγ
=

∂2u(x, t)

∂x2
, t > 0, u(x, 0) = uo(x)

with the solution

uγ(x, t) = uo(x)−
∫ t

0

esrγ(s)uo(x)ds → 1

2
√
πt
e

−x2

4t ∗ u0(x) as γ → 1−.

3.2 Diffusion process

Let α ∈ (0, 1) and h(t) = φ1−α(t) = t−α

Γ (1−α)
, t > 0.

Then the problem (17) will be the problem of diffusion process

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
, u(x, 0) = u0(x)

with the solution

u(x, t) =
1

2
√
πt
e

−x2

4t ∗ u0(x).

3.3 Fractional-order wave process

Let α ∈ (0, 1], β ∈ (1, 2) such that β − α ∈ (0, 1] and h(t) = φβ−α(t). Then we

deduce that ut(x, 0) = 0 and the problem (17) will be the problem of fractional-order

wave process

∂βu(x, t)

∂tβ
=

∂2u(x, t)

∂x2
, t > 0, u(x, 0) = uo(x) and ut(x, 0) = 0
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with the solution

uβ(x, t) = uo(x)−
∫ t

0

esrβ(s)uo(x)ds → 1

2
√
πt
e

−x2

4t ∗ u0(x) as β → 1+.

3.4 Wave process

Let α → 1− and h(t) = 1. Then we deduce that ut(x, 0) = 0 and the problem

(17) will be the problem of wave process

∂2u(x, t)

∂t2
=

∂2u(x, t)

∂x2
, t > 0, u(x, 0) = uo(x) and ut(x, 0) = 0

with the solution ( D’Alembert solution of the Wave Equation)

u(x, t) = lim
α→1−

uα(x, t) = u1(x, t) =
1

2
(uo(x− t) + uo(x + t)).

Remark

In Sect. 3 we deduced that the initial value ut(x, 0) = 0. Recently in [9] we

study a modification of our model in order that ut(x, 0) �= 0.

4. CONVECTION-DIFFUSION PROCESS

Let β ∈ (0, 1]. Consider now the mixed problem ( see [7])

∂ u(x, t)

∂ t
= xW

−β
b

∂2 u(x, t)

∂ x2
=

∫ b

t

(s− t)−β

Γ (β)

∂2 u(x, t)

∂ x2
, t ∈ (0, T ) , x ∈ (0, b)

(18)

u(x, 0) = uo(x) and u(0, t) = ux(b, t) = 0. (19)

Definition 4.1 By a solution of the problem (18) and (19), we mean a function

u(x, t) ∈ H2(0, b) ∩ C1(0, T ) (the space H2(a, b) is the Sobolev space (see [18]))

which satisfies the problem.

Let the operator A be defined as

D(A) = {u(x, t) : u(x, t) ∈ H2(0, b) ∩ C1(0, T )), u(0, t) = ux(b, t) = 0, ∀ t ≥ 0}
(20)

Au(x, t) = xW
−β
b

∂2 u(x, t)

∂x2
. (21)

The following results have been proved in ([7]).

Theorem 4.1 Let uo(x) ∈ D(A). The initial value problem (18) and (19) has the

unique solution

u(x, t) = Tβ(t) uo(x) ∈ H2(0, b) ∩ C1(0, T ), (22)
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where { Tβ(t) , t > 0 } is the semi-group generated by the operator A.

Theorem 4.2 (Continuation theorem) Let the solution of (18) and (19) exist,

then

1. When β → 1, the problem (18) and (19) will be the convection problem

∂ u(x, t)

∂ t
= − ∂ u(x, t)

∂ x
, t ∈ (0, T ) , x ∈ (0, b)

u(x, 0) = uo(x) and u(b, t) = 0.

2. When β → 0, then the problem (18) and (19) will be the diffusion problem

∂ u(x, t)

∂ t
=

∂2 u(x, t)

∂ x2
, t ∈ (0, T ) , x ∈ (0, b)

u(x, 0) = uo(x), and u(0, t) = ux(b, t) = 0.

4.1 Continuation of the solution

Recently in [8] we study ( by using the Trotter -Kato Theorem) the continuation

as β → 1− and → 0 of the semigroup Tβ(t), consequently the solution (22) to the

solution of the convection and diffusion problems respectively.
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Abstract.

We conduct a computerized search for groups generated by symmetric sets of invo-

lutions. A coset enumeration algorithm for groups presented in this way together

with its computer implementation is described.
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progenitor.
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1. INTRODUCTION

The Todd-Coxeter algorithm described in [14] remains a primary reference for coset

enumeration programs. It may be viewed as a means of constructing permutation

representations of finitely presented groups. A statement of the basic technique

and the early study appear in [7, 8]. A detailed survey and comparison of different

strategies are given in [2]. A contemporary work is described in [6, 9]. All the

strategies and variants of the algorithm perform essentially the same calculations as

the original Todd-Coxeter algorithm, merely choosing different orders in which to

process the available information.

In this paper we describe a particular technique of single coset enumeration

which gives the action of elements of a group generated by symmetric set of involu-

tions on the cosets of a group of automorphisms of these generators. The algorithm

may appear significantly different from the Todd-Coxeter algorithm, but can still be

viewed as another variant of the algorithm, one which uses some additional group-

theoretical information. The basis of the algorithm was described in [11]. It is to be

noted that our algorithm is practical in the sense that it can be programmed readily

on a computer [1] and results can be obtained in reasonable time.
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2. INVOLUTORY SYMMETRIC GENERATORS OF GROUPS

Let G be a group and let T = {t0, t1, . . . , tn−1} be a set of elements of order m in

G. Making the definitions Ti = 〈ti〉 and T = {T0, T1, . . . , Tn−1} allows us to define

N = NG(T ), the set normalizer in G of T . We say that T is a symmetric generating

set for G if the following two conditions hold:

(i) G = 〈T 〉, and

(ii) N permutes T transitively.

We call N the control subgroup. Conditions (i) and (ii) imply that G is a homomor-

phic image of the progenitor

m∗n : N ,

where m∗n represents a free product of n copies of the cyclic group Cm and N is a

group of automorphisms of m∗n which permutes the n cyclic subgroups by conjuga-

tion. For further information about the symmetric generations of groups the reader

is referred to [4, 5, 10].

Since in this paper we are only concerned with involutory symmetric generators

we restrict our attention to the case m = 2 (while N will simply act by conjugation

as permutations of the n involutory symmetric generators).

Theorem 2.1. All non-abelian finite simple groups can arise as finite homomorphic

images of progenitors of the form 2∗n : N .

Proof. Let H be a maximal subgroup of a finite simple group G. Suppose that

1 �= t ∈ G, t2 = 1. Under the subgroup H, tG, the conjugacy class of t in G, splits

into orbits as

tG = T1∪̇T2∪̇ . . . ∪̇Tr.

Without loss of generality, we may assume that T1 = {t0, t1, . . . , tn−1} is not a subset

of H. It is clear that

NG(〈T1〉) ≥ 〈H, T1〉 = G,

since H is maximal in G and T1 is not a subset of H. Therefore,

1 �= 〈T1〉 % G,

and, since G is simple, we have

〈T1〉 = G.

Moreover, if π ∈ H and tπ
i = ti (i = 0, 1, . . . , n − 1) then π ∈ Z(G) and so

π = 1, i.e. H permutes the elements of T1 faithfully (and transitively). Now, let 2∗n

denote a free product of n copies of the cyclic group C2 with involutory generators

t0, t1, . . . , tn−1 and let N ∼= H consist of all automorphisms of 2∗n which permute

the ti as H permutes the ti:
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π−1tiπ = tπi = tπ(i) for π ∈ N.
Then, clearly G is a homomorphic image of 2∗n : N , a split extension of 2∗n by the

permutation automorphisms N . ♦

Since the progenitor is a semi-direct product (of 〈T 〉 with N), it follows that in

any homomorphic image G, we may use the equation:

tiπ = πtπi = πtπ(i),

or iπ = πiπ as we will more commonly write (see below), to gather the elements of

N over to the left. Each element of the progenitor can be represented as πw, where

π ∈ N and w is a word in the symmetric generators. Indeed, this representation is

unique provided w is simplified so those adjacent symmetric generators are distinct.

Thus any additional relator by which we must factor the progenitor to obtain G

must have the form

πw(t0, t1, . . . , tn−1),

where π ∈ N and w is a word in T . Another consequence of this is that a relation

of the form (πti)
n = 1 for some π ∈ N in a permutation progenitor becomes:

πn = titπ(i) . . . tπn−1(i).

3. COSET ENUMERATION ALGORITHM

In this section we describe how a factor group

G ∼= 2∗n:N
π1w1,π2w2,...,πsws

,

may be identified. We need to establish the order of G by enumerating the cosets

of a subgroup (of G) of known order. Naturally, we would like this subgroup to be

the control subgroup N .

We will allow i to stand for the coset Nti, ij for the coset Ntitj and so on. The

coset N is denoted by ∗. We will also let i stand for the symmetric generator ti
when there is no danger of confusion. Thus we write, for instance, ij ∼ k to mean

Ntitj = Ntk and ij = k to mean titj = tk.

We define the subgroups N i, N ij, N ijk, . . .(for i, j and k distinct) as follows:

N i = CN(〈ti〉),
N ij = CN(〈ti, tj〉),

N ijk = CN(〈ti, tj, tk〉),
or, more generally,

N i1i2...im = CN(〈ti1 , ti2 , . . . , tim〉),
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for i1, i2, . . . , im distinct.

It is sometimes useful to have the notation of a length of a coset. The fact that

for π ∈ N we have

Nw(ti)π = Nπ−1w(ti)π = Nw(tπi ) = Nw′(ti)
shows that all N -cosets have a representative in 〈T0 ∪ T1 ∪ . . . ∪ Tn−1〉. We are in

a position to define the length, L(Nw) = L(w), of a coset Nw. Firstly, we have

L(N) = 0. If Nw has length k and t ∈ T then Nwt has length at most k + 1 and

has length precisely k+1 if it does not have (or has not been proved to have) length

at most k. We specify that all cosets of length k + 1 have the form Nwt where

L(Nw) = k and t ∈ T .

Following the Todd-Coxeter algorithm we maintain a set C of cosets and a table

(for each additional relation of the progenitor) which can be considered as a function

f : C × T −→ C. We read f(w, ti) = w′ as meaning that Nwti = Nw′ where w and

w′ are words in the symmetric generators of length k and at most k+1 respectively.

It is also convenient to have some way of recording in the table when a coset w′ has

been proved to be the same (in G) as an earlier coset w so that references to w′ can

be diverted to w. We have to ensure that cosets which are distinct in G remains

distinct in C. We also demand that if Nw is earlier in the table than Nw′, then

L(Nw) ≤ L(Nw′).

We start with an empty table and progressively modify it, using the above

function, until it represents the permutation action of T on the cosets of N (in G).

We will know that we have completed the coset enumeration when the set of right

cosets obtained is closed under right multiplication. We can say that if N is of finite

index, closure must be reached after finite number of steps. The proof is very similar

the proof of a theorem of Mendelson (see, for example, [13]) which states that the

Todd-Coxeter method will succeed in finding the permutation representation of a

group G provided that the index |G : H| is finite, where H is a subgroup of G.

With the observation of this section, we are in a position to carry out simple

coset enumeration. We consider the group

G ∼= 2∗4:S4
(0,1)=t0t1t0

,

which means that the progenitor 2∗4 : S4 quotiented out by the relation (0, 1) =

t0t1t0. Here the control subgroup N ∼= S4 acts on the 2∗4 in its normal action on

four points.
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It is clear that N = N(0, 1) = Nt0t1t0, which we write as ∗ ∼ 010 in our

notation. By postmultiplying both sides by t0, we deduce that Nt0 = Nt0t1, that is

01 ∼ 0. In general, we have ∗ ∼ iji and thus that ij ∼ i. The relation table for the

coset enumeration of G over N is given below (see Table 1):

The symmetric generators t0 acts on these five cosets by right multiplication as

the transposition interchanging the coset ∗ with the coset 0. Since (∗, 0)(∗, 1)(∗, 0) =

(0, 1) we see that our additional relation is satisfied by these transpositions, and we

have a symmetric presentation of S5.

4. IMPLEMENTATION

This section of the paper describes the implementation of the coset enumeration

algorithm of section 3. A more detailed description is provided. The program is

heavily Magma-dependent, but can be readily modified for other packages such as

GAP.

Given a control subgroup N (of a group G) as permutations on n letters together

with some relations, in which elements of N are written in terms of n (involutory)

symmetric generators (of G), the program performs a coset enumeration for G over

N . The program returns what is essentially a Cayley graph of the action of G on

the cosets of N . Each element of G is represented by a permutation of N followed

by a word in the symmetric generators. Indeed, the program allows the user readily

to pass between the symmetric representation of an element of G and its action on

the cosets of N . If the index |G : N | is finite, the procedure does finish and succeed

in finding the permutation representation of the group G.

The system contains a set of routines (procedures) such as eqcoset, canon,

main, x2per, t2per, sym2per and per2sym. In the remainder of this paper, we

give a detailed description and an outline of some difficulties which arise with the

implementation.

4.1 Eqcoset Procedure

The same coset will often have many names and the purpose of the procedure is to

find these coincidences by using the additional relations of the group G.

Given any two sequences (each represents a word in the symmetric generators):

e1 = [a1, a2, . . . , ar] and e2 = [b1, b2, . . . , br], ai, bi ∈ {1, 2, . . . , n};
the procedure checks the equivalence (ep

2 = e1, for some p ∈ N) between them. If
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they are equivalent it determines the permutation p of N such that ep
2 = e1.

We know that

N ≥ N b1 ≥ N b1b2 ≥ · · · ≥ N b1b2...br .

Assume that

n1 = |N : N b1| and ni = |N b1...bi−1 : N b1...bi|, i ∈ {2, 3, . . . , r}.
Consequently, there exist tarnseversals

{τ1, . . . , τn1}, {σ1, . . . , σn2}, {ρ1, . . . , ρn3}, . . . , and {φ1, . . . , φnr}
such that

N = N b1τ1∪̇N b1τ2∪̇ . . . ∪̇N b1τn1 ,

N b1 = N b1b2σ1∪̇N b1b2σ2∪̇ . . . ∪̇N b1b2σn2 ,

N b1b2 = N b1b2b3ρ1∪̇N b1b2b3ρ2∪̇ . . . ∪̇N b1b2b3ρn3 ,
...

N b1...br−1 = N b1...brφ1∪̇N b1...brφ2∪̇ . . . ∪̇N b1...brφnr .

Now, if ep
2 = e1, p ∈ N , then we can find the permutation p = φ′ . . . ρ′σ′τ ′,

where

τ ′ ∈ {τ1, . . . , τn1}, σ′ ∈ {σ1, . . . , σn2}, ρ′ ∈ {ρ1, . . . , ρn3}, . . . , and φ′ ∈ {φ1, . . . , φnr},
as follows: Since σ′, ρ′, . . . , φ′ fix b1, the equation bP1 = a1 can be reduced to bτ

′
1 = a1.

Also, the permutations ρ′, . . . , φ′ fix b2, so the equation bP2 = a2 can be reduced to

bσ
′τ ′

2 = a2. Similarly we have bρ
′σ′τ ′

3 = a3, . . . , bφ
′...ρ′σ′τ ′

r = ar. Thus, we can easily

identify (in a recursive manner) the permutations τ ′, σ′, ρ′, . . . , φ′ and consequently

p.

eqcoset 1: Set p as the identity element of Sn.

eqcoset 2: For i ∈ {1, 2, . . . , r} do

If i = 1 then trans = Transversal(N,N b1),

else trans = Transversal(N b1b2...bi−1 , N b1b2...bi).

If there exist a permutation trans[j] such that a
(p−1·trans[j]−1)
i = bi then set p =

trans[j]·p,
otherwise e1 is not equivalent to e2, leave the loop and return with a proper

prompt.

4.2 Canon Function

The function takes such a word in the symmetric generators and reduces it to its

shortest form, using the following recursive function:

canon: If any two adjacent elements of a given sequence are equal, delete them and

429



call the function again with a new reduced sequence, otherwise return.

4.3 Main Processing

We show how the program generates the cosets and give an efficient method for

handling the collapses. We will allow the variable level to stand for the length of

the coset corresponding to the last row in the coset tables.

Input and initialization. The control subgroup N is defined as a permutation

group of degree n. Now Magma and other theoretical packages handle permutations

of a high degree with immense ease. The two sequences

π = [π1, π2, . . . , πm] and w = [w1, w2, . . . , wm],

where πi ∈ N and wi are words in the symmetric generators, represent the left and

the right hand side of the problem relations. Also, C and CT [i], i ∈ {1, 2, . . . ,m},
are defined as sequences of sequences whose terms are the complete set of coset

representative words and the coset tables respectively.

Reduction. Any word w in the symmetric generators is put by the procedure

into its canonically shortest form. No other representations of group elements are

used; words in the symmetric generators are simply shortened by application of the

relations (and their conjugates under N). The relations

wi = πi, i ∈ {1, 2, . . . ,m},
where wi = ti1ti2 . . . tir and πi ∈ N , can be written as

ti1ti2 . . . tik = πitirtir−1 . . . tik+1
,

where k equals to r
2

or r+1
2

according to whether r is even or odd respectively.

The procedure checks if a part of any given word w in the symmetric generators

of length equal to k is equivalent to ti1ti2 . . . tik , the left hand side of one of the

previous relations using the eqcoset procedure, if so, the procedure replaces this

part by tirtir−1 . . . tik+1
after permuting by p−1 (a permutation obtained from the

eqcoset procedure) and moves the permutation πp−1
over to the left of the whole

word.

If a new word w′ of length less than the length of w is obtained; in this case the

procedure replaces the coset represented by w by the new coset represented by w′.
References to the coset represented by w can be diverted to the coset represented

by w′. On the other hand, if a new word w′ of length equal to the length of w and

equivalent to w is obtained, we call that the coset represented by w′ has been proved

to be the same (in G) as the coset represented by w. It is also convenient to have
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some way of recording, in a sequence, all the coincidences that were obtained during

the reduction step.

reduce 1: For any sequence in the symmetric generators, set the pointer at the first

letter.

reduce 2: Check if the first k elements starting from the pointer position are equivalent

to the left hand side of the given relation, replace them by the right hand

side of the same relation after permuting by p−1 and conjugate the preceding

elements by the permutation πp−1

i .

reduce 3: Call the canon function, shift the pointer one position and go to 2.

Collapses. From time to time we pack the sequence of coset representative words,

reclaiming the space that was occupied by the redundant elements and this might

lead to the collapse of part or the entire coset diagram. The strategy here is to

use the collapse procedure at the end of each level which leads to minimizing the

storage needed. We use all the coincidences obtained during the reduction step

together with the problem relations to reduce the coset tables. If the coincidences

generate further coincidences, the process must be repeated.

collapse 1: Set level1 = level.

collapse 2: If new coincidences have been defined during level1 which is equal n, say,

try to reduce again the cosets of length equal n− 1 using these coincidences,

together with the problem relations, otherwise stop.

collapse 3: Set level1 = n− 1 and go to 2.

Termination. We call a coset table is closed if it has no cosets in our tables of length

greater than level. In this case we call the set of right cosets obtained is closed under

right multiplication. Since N is a finitely generated subgroup of countable index in

a finitely presented group G, the point of termination will always be reached.

4.4 X2per Procedure

As mentioned earlier, each element of the group G can be represented by a per-

mutation on n letters; n is the cardinality of the permutation group N , followed
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by a word in the n involutory symmetric generators. Given a permutation x ∈ N ,

the procedure constructs a permutation, xp, say, which gives the action of x on the

cosets of N in G.

x2per 1: Initialize xs as a sequence of integers of length equal to the number of the

cosets of N .

x2per 2: For each i, j such that length(C[i]) = length(C[j]), if (C[i])x = C[j] then set

xs[i] = j.

x2per 3: Convert the sequence of integers xs to xp, a permutation on the cosets of N .

4.5 T2per Procedure

This procedure gives the action of the symmetric generators on the cosets of N in

G. In general ti in its action on the cosets of N has the form:

(∗, i)(j, ji) . . . (jk, jki) . . . (jkl, jkli) . . . , for i, j, k, l distinct.

In practice our symmetric presentation is given in terms of a set of generators

of N together with one of the symmetric generators. So, if the action of one of the

symmetric generators, ti, on the cosets of N is known, we can obtain the action of

the others on the cosets of N by permuting this symmetric generator by NN (the

control subgroup N in its action on the cosets of N).

t2per 1: Initialize ts as a sequence of integers of length equal to the number of the

cosets of N .

t2per 2: For each i, j such that length(C[i]) = length(C[j]) + 1, if (C[i] cat 1) = C[j]

then set ts[i] = j and ts[j] = i.

t2per 3: Convert the sequence of integers ts into tp[1], a permutation on the cosets of

N .

t2per 4: Construct tp[i], i = 2, 3, . . . , n by permuting tp[1] by NN .

4.6 Sym2per Procedure

This procedure converts a symmetrically represented element πw, where π ∈ N

and w = [i, j, k, . . . ] a word in the symmetric generators, into a permutation acting
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on the cosets of N in G. Then p = x2per(π) · tp[i] · tp[j] · tp[k] . . . , where p is a

permutation acting on the cosets of N .

4.7 Per2sym Procedure

The procedure converts a permutation p (acting on the cosets of N) of G into its

symmetric representation. The image of one under p gives the coset representative

for Np as a word w in the symmetric generators. Multiplication of p by the symmet-

ric generators in w, in reverse order, yields a permutation which can be identified

with an element of N by its action on cosets of length one.

per2sym 1: Assume p = πw, obtain w as w = C[1p].

per2sym 2: Obtain π as a permutation on the cosets of N , using the equation π = pw−1.

per2sym 3: Identify the action of π on the cosets of length one as

π = [j | (1tp[i])π = (1tp[j]),∀ i, j ∈ {1, 2, . . . , n}].
Finally write π as a permutation of Sn.

5. EXAMPLES

We give here three illustrative examples of the use of the program. We will consider

the progenitors 2∗n : N , for N ∼= S3, S4 and L2(5), for n = 3, 4 and 6 respectively.

Example 5.1. Consider the group:

G ∼= 2∗3:S3
(0,1)=t0t1t0t1t0, (0,2,1)=t0t1t2t0t1

.

The result of the coset enumeration of G over S3 is shown in Table 1 and Table

2. Thus, |G : N | ≤ 10, so |G| ≤ 60 = |L2(4)|, and the (relatively) easy task of

finding generators for L2(4), see [3], satisfying the required relations completes the

identification of G with L2(4).

Example 5.2. Consider the group:

G ∼= 2∗4:S4
(2,3)=[t0t1]2

.
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0 1 0

∗ 0 01 ∼ 0 ∗
0 ∗ 1 10 ∼ 1

1 10 ∼ 1 ∗ 0

2 20 ∼ 2 21 ∼ 2 20 ∼ 2

3 30 ∼ 3 31 ∼ 3 30 ∼ 3

Table 1: The relation table of the enumeration of S5 over S4

0 1 0 1 0

∗ 0 01 010 ∼ 01 0 ∗
0 ∗ 1 10 101 ∼ 10 1

1 10 101 ∼ 10 1 ∗ 0

2 20 201 ∼ 02 020 ∼ 02 021 ∼ 20 2

01 010 ∼ 01 0 ∗ 1 10

10 1 ∗ 0 01 010 ∼ 01

02 020 ∼ 02 021 ∼ 20 2 21 210 ∼ 12

20 2 21 210 ∼ 12 121 ∼ 12 120 ∼ 21

12 120 ∼ 21 2 20 201 ∼ 02 020 ∼ 02

21 210 ∼ 12 121 ∼ 12 120 ∼ 21 2 20

Table 2: The first relation table of the enumeration of L2(4) over S3

0 1 2 0 1

∗ 0 01 012 ∼ 10 1 ∗
0 ∗ 1 12 120 ∼ 21 2

1 10 101 ∼ 10 102 ∼ 01 010 ∼ 01 0

2 20 201 ∼ 02 0 ∗ 1

01 010 ∼ 01 0 02 020 ∼ 02 021 ∼ 02

10 1 ∗ 2 20 201 ∼ 02

02 020 ∼ 02 021 ∼ 20 202 ∼ 20 2 21

20 2 21 212 ∼ 21 210 ∼ 12 121 ∼ 12

12 120 ∼ 21 2 ∗ 0 01

21 210 ∼ 12 121 ∼ 12 1 10 101 ∼ 10

Table 3: The second relation table of the enumeration of L2(4) over S3
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The result of the coset enumeration of G over S4 shown in Table 3 indicates that

|G : N | ≤ 14, so |G| ≤ 336 = |PGL2(7)|. In fact, if we make the correspondence

between the N -cosets and the 7 points and the 7 lines of the projective plane of

order 2, see [12], we can easily identify G with PGL2(7).

0 1 0 1

∗ 0 01 ∼ 10 1 ∗
0 ∗ 1 10 ∼ 01 0

1 10 ∼ 01 0 ∗ 1

2 20 201 ∼ 310 31 3

3 30 301 ∼ 210 21 2

10 1 ∗ 0 01 ∼ 10

20 2 21 210 ∼ 301 30

30 3 31 310 ∼ 201 20

21 210 ∼ 301 30 3 31

31 310 ∼ 201 20 2 21

32 320 3201 ∼ 32 320 3201 ∼ 23

210 21 2 20 201 ∼ 310

310 31 3 30 301 ∼ 210

320 32 321 ∼ 320 32 321 ∼ 230

Table 4: The relation table of the enumeration of PGL2(7) over S4

Example 5.3. Consider the group:

G ∼= 2∗6:L2(5)
[(0,1,2,3,4)t0]4=1

.

Here the L2(5) acts on the 2∗6 as the group of linear fractional transformations (of

determinant 1) on the projective line of order 5 whose points may be labelled with

the elements of F5 ∪ {∞}. The result of the coset enumeration of G over L2(5) is

shown in Table 4. It is easy to recognize the group G−in this case the projective

general linear group PGL2(11) of order 22 × 60 = 1320−and check that it does

contain such a symmetric generating set.
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0 1 2 3

∗ 0 01 ∼ 32 3 ∗
∞ ∞0 ∼ 12 121 ∼ 212 21 ∼ ∞3 ∞
0 ∗ 1 12 ∼ 43 4

1 10 101 ∼ 242 24 ∼ 03 0

2 20 ∼ 41 4 42 ∼ 13 1

3 30 ∼ 14 141 ∼ 232 23 2

4 40 ∼ 21 2 ∗ 3

∞0 ∞ ∞1 ∼ 23 232 ∼ 323 32 ∼ ∞4

∞1 ∼ 04 040 ∼ 131 13 ∼ 42 4 43 ∼ ∞0

∞2 ∼ 10 1 ∗ 2 23 ∼ ∞1

∞3 ∼ 40 4 41 ∼ 20 202 ∼ 343 34 ∼ ∞2

∞4 ∼ 01 010 ∼ 101 10 ∼ ∞2 ∞ ∞3

0∞ 0∞0 ∼ 141 14 ∼ 2∞ 2∞2 ∼ 313 31 ∼ 4∞
1∞ ∼ 03 030 ∼ 121 12 1 13 ∼ 0∞
2∞ ∼ 30 3 31 ∼ 02 0 03 ∼ 1∞
3∞ ∼ 20 2 21 212 ∼ 303 30 ∼ 2∞
4∞ ∼ 02 020 ∼ 1∞1 1∞ ∼ 24 242 ∼ 3∞3 3∞
∞0∞ ∼ 0∞0 0∞ ∼ 13 131 ∼ 2∞2 2∞ ∼ 30 303 ∼ ∞4∞
∞1∞ ∼ 020 02 ∼ 31 3 32 323 ∼ ∞0∞
∞2∞ ∼ 040 04 ∼ ∞1 ∞ ∞2 ∼ 34 343 ∼ ∞1∞
∞3∞ ∼ 010 01 0 02 ∼ 31 313 ∼ ∞2∞
∞4∞ ∼ 030 03 ∼ 1∞ 1∞1 ∼ 202 20 ∼ 3∞ 3∞3 ∼ ∞3∞

Table 5: The relation table of the enumeration of PGL2(11) over L2(5)

6. CONCLUDING REMARK

A number of techniques have been proposed to reduce the calculation during the

reduction step. For example, we may write all the problem relations and their

conjugates under N of the form ti1ti2 . . . tik = πitirtir−1 . . . tik+1
, where k equals to r

2

or r+1
2

according to whether r is even or odd respectively. In the reduction step, if a

string ti1ti2 . . . tik appears, replace it by πitirtir−1 . . . tik+1
and move the permutation

πi over the preceding symmetric generators in the standard manner. We can also

apply a consistency condition to our tables that f(w, ti) = w′ ⇐⇒ f(w′, ti) = w, so

that inverses have the behavior we expect.
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1. INTRODUCTION

Let F be a field of characteristic 0 and ΣF 2 the set of all sums of squares of elements

of F . For a ∈ ΣF 2 the minimal n ∈ N such that

a = a2
1 + · · ·+ a2

n, ai ∈ F,

is called the length of a. It is denoted by l(a). If −1 ∈ ΣF 2, then the number

s(F ) = l(−1) is called the level of F .

The number p(F ) = sup{l(a) |a ∈ ΣF 2} is called the Pythagoras number of F .

If F is nonreal, then s(F ) ≤ p(F ) ≤ s(F ) + 1. A formally real field (= real field)

F is called pythagorean if p(F ) = 1, hereditarily pythagorean (= h. p.) if any real

algebraic extension of F is pythagorean. Note that any nonrial extension of a h. p.

field contains
√−1. It is also know that a field F is a h. p. field iff p(F (x)) = 2

where F (x) is the rational function field over F in one variable. We refer the reader

to [1] for properties of h. p. fields.

Let C be a conic defined over a h.p. field F . In this paper we compute the

Pythagoras number of the function field F (C) of C. This article is an extended

version of the shot communication [4]. We will consider separately the cases of real

and nonreal F (C).

2. PRELIMINARIES

Below we fix the following notations and conventions. For an abelian group A, the

kernel of the multiplication by 2 is denoted by 2A. For a field k, we denote its
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algebraic closure by k. If R is a commutative ring, R∗ denotes the group of units in

R, and R∗2 denotes the subgroup of squares in R∗. If s ∈ R∗, then for the brevity

the class sR∗2 will be denoted by the same symbol s.

Br L denotes the Brauer group of a field L. For any finite dimensional L-central

simple algebra A, we use [A] to denote its class in Br L. For finite dimensional

L-central simple algebras A and B, we write A ∼ B if [A] = [B] in Br L. We write

A ∼ 1 if [A] = 0. For a, b ∈ L∗, we denote by (a, b) the corresponding quaternion

algebra over L. Note that (a, b) ∼ 1 iff b ∈ NL(
√

a)/L(L(
√
a)∗). Br F/L denotes the

relative Brauer group of the extension F/L.

Let k be an arbitrary field of characteristic zero, X a smooth projective variety

over k, k(X) its function field. The set of k-points of X is denoted by X(k). If L/k

is a field extension, we set XL = X ×Spec k Spec L.

For a discrete valuation v of k(X) trivial on k with the residue field k(v), there

exists the homomorphism of ramification at v

ramv : Br k(X) −→ Homcont(Gv,Q/Z) = H1(Gv,Q/Z),

where Gv = Gal(k/k(v)). The ramification map is described in [3, Ch. 10]. A

central simple algebra A over K is said to be ramified at v if ramv([A]) �= 0; then v

is called a ramification point. The subgroup ∩v ker ramv, where v runs over the set

of valuations with the aforementioned properties, is called the unramified Brauer

group of the field k(X) and is denoted by Brnrk(X).

Let A be a k(X)-algebra of exponent 2. Then ramv([A]) ∈ 2H
1(Gv,Q/Z) ∼=

H1(Gv,Z/2) ∼= k(v)∗/k(v)∗2. Note that for a quaternion algebra A = (a, b),

ramv([A]) = (−1)v(a)v(b)av(b)bv(a) ∈ k(v)∗/k(v)∗2 by ”tame symbol” formula.

Let C be a conic over k. For any point P ∈ C, there is the corresponding

valuation vP of k(C). The residue field of vP is k(P ). There is a natural inclusion of

Br C in Br k(C) where Br C denotes the Brauer group of a conic C. This inclusion

identifies Br C with the unramified Brauer group Brnrk(C). Bellow we will write

Br C instead of Brnrk(C) keeping in mind this identification. We need the following

PROPOSITION 1. Let C be a curve over a h. p. field k and fi ∈ k(C)∗,
i = 1, . . . , n. Then the k(C)-algebra A = (−1,

∑n
i=1 f

2
i ) is unramified.

Proof. Let g =
∑n

i=1 f
2
i . The algebra A can be ramified at zeros or nodes of g. Let P

be a pole or a zero of g. Choosing numeration one can assume that for the valuation
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vP of k(C) at the point P there are the following unequalities vP (f1) ≤ vP (fi),

i = 1, . . . , n. Then

A ∼ (−1, f 2
1 (1 + f 2

2 /f
2
1 + · · ·+ f 2

r /f
2
1 )) ∼ (−1, 1 + f 2

2 /f
2
1 + · · ·+ f 2

r /f
2
1 ).

If 1 + (f 2
2 /f

2
1 )(P ) + · · ·+ (f 2

r /f
2
1 )(P ) �= 0, then A is unramified at P by ”tame

symbol” formula.

If 1 + (f 2
2 /f

2
1 )(P ) + · · ·+ (f 2

r /f
2
1 )(P ) = 0, then k(P ) is nonreal. Hence −1 is a

square in k(P ). Therefore ramP ([A]) = (−1)vP (g)gvP (−1) = 1.

Thus A is unramified and hence [A] ∈ Br C. The proposition is proved.

3. THE CASE OF A REAL FIELD

We begin with the following

LEMMA 2. Let C be a conic over a h. p. field k, D = (−1, u), where u ∈ k∗. Let

also k(C) be real. Assume that C(k) = ∅ and D ⊗ k(C) �∼ 1. Then A �∼ D ⊗ k(C)

where A is as in Proposition 1.

Proof. Without loss of generality we will assume that C is defined by an affine

equation y2 = ax2 + b, a, b ∈ k. Since C(k) = ∅, then a, b �∈ k∗2 and −ab �∈ k∗2.

Moreover, −a �∈ k∗2 or −b �∈ k∗2 since otherwise k(C) is not real.

We will give the proof by breaking it into several cases.

Case 1. Assume ub �∈ k∗2.

(i) Let b �∈ −k∗2. There exists an ordering of k such that u < 0, b > 0. Indeed,

k(
√
b) is real and u �∈ k(

√
b). Then L = k(

√
b)(
√−u) is real and there is an ordering

of L such that b > 0, u < 0. We can extend this ordering to k(x) viewing x as an

infinitely small element. Then ax2+b > 0 and k(C) has an ordering such that u < 0.

Consider a real closure k(C)R of k(C) corresponding to the constructed ordering.

Then

A⊗ k(C)R ∼ 1 and D ⊗ k(C)R ∼ (−1, u)⊗ k(C)R ∼ (−1,−1)⊗ k(C)R �∼ 1.

Thus A �∼ D ⊗ k(C).
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(ii) Let b ∈ −k∗2. If ua ∈ k∗2, then

D ⊗ k(C) ∼ (−1, u)⊗ k(C) ∼ (−1, a)⊗ k(C) ∼ (a, b)⊗ k(C) ∼ 1.

Since D ⊗ k(C) �∼ 1, then ua �∈ k∗2.

Then there exists an ordering of k such that u < 0, a > 0. We can extend

this ordering to k(x) viewing x as an infinitely big element. Then ax2 + b > 0 and

A �∼ D ⊗ k(C), by an argument analogous to that above.

Case 2. Assume ub ∈ k∗2. If a ∈ −k∗2, then

D ⊗ k(C) ∼ (−1, u)⊗ k(C) ∼ (−1, b)⊗ k(C) ∼ (a, b)⊗ k(C) ∼ 1.

For au ∈ k∗2, one has

D ⊗ k(C) ∼ (−1, u)⊗ k(C) ∼ (u, u)⊗ k(C) ∼ (a, b)⊗ k(C) ∼ 1.

Since D ⊗ k(C) �∼ 1, then a �∈ −k∗2 and au �∈ k∗2.

There exists an ordering of k such that u < 0, a > 0. Hence by arguments

analogous to that above we conclude again that A �∼ D ⊗ k(C). The lemma is

proved.

Now we are in a position to formulate the main result of this section.

Theorem 3 Let C be a conic defined over a h.p. field k such that k(C) is real.

Then p(k(C)) = 2.

Proof. Without loss of generality we will assume that C is defined by an affine

equation y2 = ax2 + b, a, b ∈ k. Moreover, we will assume that C(k) = ∅ since

otherwise k(C) is a rational function field in one variable over k and then p(k(C)) =

2. As in the proof of Lemma 2 we obtain that a, b �∈ k∗2 and −ab �∈ k∗2. Besides,

−a �∈ k∗2 or −b �∈ k∗2 since otherwise k(C) is not real. Let g ∈ Σk(C)2 and

A = (−1, g).

Proposition 1 implies that [A] ∈ Br C. Since C(k) = ∅, then there is an exact

sequence ([2])

0 −→< [(a, b)] >−→ Br k
res−→ Br C −→ 0,

where < [(a, b)] > is a subgroup generated by [(a, b)] ∈ Br k.
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We will prove that [A] = 0. Let B be a central simple k-algebra such that

[A] = res([B]). Assume that B ⊗ k(C) �∼ 1. If B ⊗ k(
√−1) ∼ 1, then B ∼ (−1, u),

where u ∈ k∗, and by Lemma 2 [A] �= res([B]).

Now we consider the case where B⊗ k(√−1) �∼ 1. For the conic C we have two

possibilities:

(i) C(k(
√−1)) �= ∅;

(ii) C(k(
√−1)) = ∅.

In the case (i) k(
√−1)(C) is a rational function field in one variable over

k(
√−1). Hence B⊗k(√−1)(C) �∼ 1. Since A⊗k(√−1)(C) ∼ 1, then A �∼ B⊗k(C).

In the case (ii) we use an exact sequence

0 −→< [(a, b)⊗ k(
√−1)] >−→ Br k(

√−1)
resk(

√−1)−→ Br Ck(
√−1) −→ 0.

If A ∼ B ⊗ k(C), then B ⊗ k(
√−1)(C) ∼ 1. Since B ⊗ k(

√−1) �∼ 1, we obtain

that [B] ∈ ker(resk(
√−1)). Therefore B⊗(a, b)⊗k(√−1) ∼ 1 and B ∼ (a, b)⊗(−1, u)

for some u ∈ k∗. Note that (−1, u)⊗ k(C) �∼ 1 since otherwise res([B]) = 0. Then

[A] = res([B]) = res([(−1, u)]), i.e. A ∼ (−1, u) ⊗ k(C). But this contradicts to

Lemma 2. Thus A ∼ 1 and hence g is a sum of two squares. The theorem is proved.

4. THE CASE OF A NONREAL FIELD

In the case of a nonreal k(C) we have the following

Theorem 4 Let C be a conic defined over a h.p. field k. Assume that k(C) is

nonreal. Then

p(k(C)) =

{
2 if |Br k(

√−1)/k| = 2,

3 if |Br k(
√−1)/k| > 2.

Proof. Without loss of generality we will assume that C is defined by an affine

equation y2 = ax2 + b, a, b ∈ k. Since k(C) is nonreal, then C(L) = ∅ for any

real algebraic extension L/k. Indeed, assume that there exists a point P ∈ C(L)

for some real extension L/k. The completion of L(C) with respect to the valuation

corresponding to P is L((z)) for some uniformizer z. Since L(P ) = L is real, then

L((z)) is also real. Then k(C) is real in view of the inclusions k(C) ⊂ L(C) ⊂ L((z)).
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This remark implies that we can assume without loss of generality that an affine

equation of the conic C is y2+x2 = −1. To see this one can observe that a is negative

at any ordering of k since otherwise C has a point (
√
a : 1 : 0) in a real extension.

This implies that −a is a sum of squares in k and therefore is a square since k is

pythagorean. In a similar way we can obtain that−b ∈ k∗2. Then C is k-birationally

equivalent to the conic with an affine equation y2 + x2 = −1.

Let g ∈ Σk(C)2 and A = (−1, g). Proposition 1 implies that [A] ∈ Br C. Note

that (−1,−1)⊗ k(C) ∼ 1. Since C(k) = ∅, then there is an exact sequence

0 −→< [(−1,−1)] >−→ Br k
res−→ Br C −→ 0.

Note that [A] ∈ res(Br k(
√−1)/k). Indeed, assume that [A] �∈ res(Br k(

√−1)/k).

Then [A] = res[B] for some central simple k-algebra B such that B ⊗ k(
√−1) �∼ 1.

Since C(k(
√−1)) �= ∅, then B⊗k(√−1)(C) �∼ 1. We obtain a contradiction in view

of A⊗ k(
√−1)(C) ∼ 1. Thus [A] ∈ res(Br k(

√−1)/k).

If |Br k(
√−1)/k| = 2, then the group Br k(

√−1)/k consists of [(1,−1)],

[(−1,−1)]. Since these elements are in the kernel of res, then [A] = 0. Thus

A ∼ 1 and hence g is a sum of two squares. Hence p(k(C)) = 2.

If the cardinality of the group Br k(
√−1)/k is bigger then 2, we can take an

element u ∈ k∗ such that res([(−1, u)]) �= 0. Hence u is not a sum of two squares.

Since s(k(C)) = 2, then 2 ≤ p(k(C)) ≤ 3. Thus p(k(C)) = 3.
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INTRODUCTION

The increasing development of electronic support for the publication of articles and

books in mathematics lead to a drastic change in the communication facilities be-

tween authors and editors, new ways of distributing mathematics publications to

researchers - like electronic journals -, and an enhancement of the information dis-

semination on mathematical research to the scientific community.

As a consequence of the permanently growing number of research articles the

search for appropriate information on new results and the access to the corresponding

publications is becoming more and more difficult. In addition to this, even libraries

with a comparatively high budget cannot afford to subscribe to all journals they

should offer to their users. Thinking of the high subscription rates for some impor-

tant mathematical journals libraries with low budgets will not be able to provide the

minimum of indispensable journals to their mathematicians. Electronic publishing

with its diversity of alternative presentations and integrated access systems could

offer better solutions to these problems. Initially there was the hope that this would

reduce the publication costs, though several publishers gave arguments that these

savings have to be used for the compensation of new costs emerging from electronic

publishing. Clearly this would not apply if we only think about electronic versions of

printed publications. But in the ideal case an electronic publication would provide

additional semantics mark-up, interactive components and a multiple linkage with

other articles on the same subject, and including these facilities requires enhanced

efforts.

The aim of this article is to describe the facilities provided by EMIS (Euro-

pean Mathematical Information Service) as an example for an information gateway

to electronic offers in mathematics. It could be seen as a model for integrated ac-

cess to such offers, not only caring about installation and dissemination of electronic

publications, but also implementing advanced tools of mathematics knowledge man-

agement.
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1. THE GENERAL CONCEPT OF EMIS

EMIS was discussed by the Executive Committee of the EMS in 1994 and founded

as a cooperation with FIZ Karlsruhe in 1995. See the article in the references for

the first steps of EMIS. In addition to the common society services several enhanced

services have been developed during the life time of EMIS. The most prominent ones

currently are: the Electronic Library ElibM, links to reference data bases, projects

dealing with information and communication in mathematics like EULER, EMANI,

MoWGLI, MONET and the digital archive in classical mathematics ERAM. Most

important is the free access to ElibM and ERAM.

Another important aspect is the distribution of EMIS to more than 40 mirror

sites world wide. The mirroring is organized automatically by a tree like forwarding

system. The mirrors are supporting the safety of the data, being able to regenerate

one mirror site from another in the case of failure. In Europe almost every country

has its own mirror, but also world wide distribution like in Latin America is in good

progress. Admittedly there are not so many in the orient up to the copy in Ankara.

But a mirror site in Kuwait is just on the way of installation and copies in Iran

and Egypt are under discussion. This is very important for the local and regional

availability of the services of EMIS.

2. THE ELECTRONIC LIBRARY

The main objective of the Electronic Library in EMIS is to provide free access to a

high quality collection of electronic publications which is complete as possible. This

refers to standard publications like journals, proceedings volumes and monographs,

but also to innovative offers like the collection of geometric models. To monitor the

quality of publications included in ElibM the Electronic publishing Committee of

the EMS is employed. In particular as a general rule only peer reviewed publications

will be included. This was very important at the beginning of EMIS there were some

reservations that electronic publishing may damage the quality control and the peer

reviewing system. After ten years these preoccupations have more or less vanished.

Some electronic journals even succeeded to enter the closed circle of the Science

Citation Index. There still are few pure electronic journals without printed version

now. But most printed journals developed an electronic version in the recent past.

In ElibM pure electronic journals and electronic versions of printed journals

are available at equal ratio. Pure electronic journals are mirrored from the web-

site where they are produced. For some electronic versions of printed journals the
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production and installation is supported by EMIS, but preferably EMIS only cares

about bundling these offers and distributing them to the EMIS mirror sites. The

journals in ElibM, which are not fully sponsored by an academic institution, need

some modest income from the printed version. They are low-budget journals any-

way. To protect that income the so-called moving wall model is applied. The free

access will be only available for the back volumes having passed that wall. Generally

a period of three years is proposed for this.

This solution worked very well in the first years of EMIS. But very soon many

publishers started to offer journals online first: the electronic version is posted as

soon as the final editing was completed, the source code is converted to Postscript

and PDF, and the article could be read in the web months before the printing of

a volume could be completed. This had impact on the electronic offers in EMIS,

because online first gives a considerable advantage to the electronic version, and

income could not be expected from the printed version in the same way as before,

when the electronic version could be read for free so much in advance. Here EMIS

had to adjust its policy. So the part before the moving wall will be installed including

the online first period, but the new material is open for subscribers only until it will

have passed the moving wall. Control for that is done by IP addresses at the EMIS

master site. In a first period only metadata will be distributed to the mirror sites,

and after having passed the moving wall the full article will be distributed to all

mirror sites.

More than 60 journals are freely accessible in ELibM at present. They cover

most of the 4 Gigabytes needed to store EMIS at present. The total number of

articles offered in ElibM is about 13.000. The journals, which look back to a period

where only a printed version was available, have been retrodigitised for that period

in the ERAM project. Links from EMIS to these offers are provided, such that these

journals a fully electronically available. They are also accessible through links from

several offers in EMIS like ERAM directly, or the EULER engine or the reference

databases Zentralblatt MATH and JFM (Jahrbuch).

The direct access to the journals in EMIS still is organised quite conventionally.

On the top page of EMIS the choice of an appropriate mirror site of EMIS could

be made. Then, going to the journals section in the ELibM two choices appear,

a short list of journals having an entry of at most to lines for each journals and

enabling a quick selection, or a long list of journals with more information on the

journal and links to more details like editorial policy, list of editors, information

for authors, style files etc. After having chosen the journal the next stations will
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be volume, list of contents, article and finally he choice of file. Standard offers are

Postscript and PDF, but in many cases also the DVI and the TEX source code will

be available. HTML is not considered as an appropriate format for the presentation

of mathematical formulas. Search facilities in ElibM are possible using the reference

databases in EMIS.

Access to Proceedings in EMIS is organised in a similar way, but this section does

not show the same growth as the journals section. One highlight in the ElibM are

the complete collected works by Riemann and Hamilton, which have been collected,

organised on the electronic level and provided by Professor Wilkins.

3. THE REFERENCE DATABASES ACCESSIBLE THROUGH EMIS

At present five reference databases are accessible through EMIS: Zentralblatt MATH,

the Jahrbuch database, MATHDI, Compuscience and MPRESS. Another one deal-

ing with logics is under construction. There offers in EMIS underline the involvement

of the European Mathematical Society EMS in these services. EMS directly takes

part in the editorial system of Zentralblatt MATH.

Zentralblatt MATH was founded 1931 as a comprehensive literature documen-

tation service in mathematics and its applications. Clearly, at that time it was

available in printed form only. Now the name stands for three services, the tradi-

tional printed version and the two electronic versions, one as a web service and the

other as a stand-alone version on CD-ROM. Providing a lot of good search facilities

and links to the full articles the online version became the most important option for

the users. It can be reached through EMIS under the URL http://www.emis.de/cgi-

bin/ZMATH, or directly at one of the international mirror sites for the database.

Just recently the items from the Jahrbuch über die Fortschritte der Mathematik

have been added to the Zentralblatt database. As a result all mathematics going

back to 1868 is covered by this offer now.

The database itself is not part of the EMIS mirroring system, nor is full usage of

the service for free. But there is the free offer of three hits per search for everybody.

This enables good navigation in mathematical publications through reference links

for example, where searches initiated by these links will lead to one-item hit lists

and may activate the access to the full text of the publication of interest, if that will

be electronically available and the user will have a reading licence from the provider

of the full text. Links to the full text are integrated in Zentralblatt MATH as far as

available. This refers to digitally born material as well as to scanned articles from

447



digitisation projects.

A similar distribution and access model applies to MATHDI, which covers a lot

of literature in the field of education in and popularisation of mathematics. Here

completeness cannot be reached, because the field is too large and in many case the

articles are of national or local interest only. A global core part may be didactics in

mathematics, which was the original subject of MATHDI. But having in mind that

the community in didactics of mathematics is rather small and that there is a big

interest in more general publications, the extension to education and popularisation

was a natural consequence.

The Jahrbuch database captures the content of the the Jahrbuch über die

Fortschritte der Mathematik electronically, enhanced by modern indexation and

links to digitised versions of the papers from the Jahrbuch period (1868 - 1943). As

mentioned above it is available for integrated search with the Zentralblatt database,

but having been established in a project funded by DFG the Jahrbuch data are

freely accessible in this separate offer.

Compuscience is still in development. It covers an extension of the data provided

by Zentralblatt in the subject area 68 (Computer Science related to mathematics)

adding articles which are not of main interest for mathematicians. A first prototype

is visible in EMIS. As a next step a more complete version as far as Computer

Science is regarded will be available in the near future.

MPRESS is another free offer, which can be reached in EMIS. It is an index

covering electronically available pre-prints in mathematics world-wide. The full text

of the preprints can be obtained through a link from MPRESS. The information is

gathered automatically by robots visiting websites where preprints are offered more

or less regularly. The harvesting of data is organised by some mathematicians at

the University of Osnabrück. The quality of the search depends on the quality of

the metadata provided at the site of the preprint server. Only some core data could

be expected in general. The full index is generated by harvesting after well-defined

periods. As a consequence, preprints, which are removed from a server do not appear

in MPRESS anymore. The system is far from being complete, but major preprints

servers like the arXive are included all.

As a full text database of a highly innovative character also the Electronic Geo-

metric Models have to be mentioned here. This is a collection of small peer-reviewed

articles edited by Konrad Polthier (ZIB Berlin) and Michael Joswig (TU Berlin).
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For each model an explanatory text is provided. This is accompanied by images

and animations trying to give a good idea about the model and its applications and

enabling the user to make his own experiments with the subject. Precautions for

long-term archiving are taken by the editors. Freely available viewing software has

been chosen for theses offers.

4. ACCESS TO MATHEMATICS THROUGH PROJECTS IN EMIS

The projects displayed in EMIS dealing with improved access to mathematics in

the web are as follows: ERAM - the Electronic Research Archive in Mathematics,

EULER - searching mathematics in distributed heterogeneous sources, LIMES - de-

veloping and offering services like Zentralblatt based on a distributed infrastructure,

MoWGLI - Mathematics on the Web, Get it by Logics and Interfaces, EMANI - long-

term preservation of digital documents in mathematics using a network of libraries,

and MONET - a broker system for getting access to mathematical software.

As mentioned above one aim of ERAM was to capture the content of the

Jahrbuch über die Fortschritte der Mathematik (1868- 1943) in a database. This

was combined with the request to make a lot of the documents described in the

Jahrbuch digitally available. The digital archive is installed at the SUB Göttingen,

the holdings are linked with the databases in EMIS and as a consequence of the

funding from DFG free access could be provided for all mathematicians world-wide.

The construction of the content is still in progress though the major part of the

capacity of 1.200.000 pages has been spent already. Famous parts of the content

are Mathematische Zeitschrift, Mathematische Annalen, Inventiones Matematicae,

Kleinś Encyclopaedia et al. This was achieved in cooperation with EMANI where

also other digitisation projects are participating.

The EULER project was financed by the EU within the program Telematics for

Libraries. It had developed a prototype for searching mathematics in distributed

heterogeneous sources. That prototype had been brushed up to a service by an

additional take-up project. EULER now is provided as a service by a consortium.

Members are mainly libraries which make adjustments of their information available

in their OPACS to be able to apply the EULER search. The consortium still is

growing by adding more libraries from Europe to the system.

Still three projects have to be mentioned, all of them being supported by the

5th Framework Program. In LIMES the architecture and tools have been developed

for producing the input for reference databases like Zentralblatt MATH remotely
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within a distributed system of editorial units. This enables European countries to

care about their own contribution to the database in a quite autonomous way. On the

other side the system allows them to connect national or regional electronic offers of

mathematics with the database. The project ended in March 2004. Currently several

efforts are made to implement the system step by step for Zentralblatt MATH.

General goal of MoWGLI is to contribute to the implementation of the semantic

web in the case of mathematics. More concretely unified XML encodings of formulas

are considered, search facilities for mathematics knowledge bases are developed,

links to and communication with proof assistants are enabled, facilities for human

understandable rendering of automated proofs are installed. This is integrated on a

test basis in interactive textbooks to demonstrate that these offers can be used for

an improved understanding of mathematics. The project is still in progress.

The same applies to MONET. People from the Mathematics Knowledge Man-

agement are involved and some selected software providers are in that group. Main

goal is to develop a communication system where in an automated way professionals

and researchers needing mathematical software can be guided to software providers

having appropriate offers for them. This worked before for special software libraries,

but to have a broker system, which integrates as many offers as possible, is a very

ambitious goal, which finally may provide an extremely useful access tool to math-

ematics.

5. CONCLUDING REMARKS

Over the period of ten years EMIS has developed its services and links in a way,

which provides one of the most comprehensive gateways to heterogeneous offers in

mathematics. This has been shown above by just describing three main sections of

the EMIS web page. Additional information could be obtained from other sections

like the conference calendar. Furthermore links lists to external full text offers could

also be consulted. Some facilities could be found in different ways. But in spite

of this, there is plenty of electronic material in mathematics, to which no access

through EMIS could be found.

Hence EMIS still is far from being a portal to mathematics, nor should it have

the ambition to develop itself into such a portal. The next step for enhancing the

system further should be a cooperation with other services of the same kind in order

to have a bundle which may give a better approximation to a comprehensive portal

to mathematics. A good navigation facility has to be established for that bundle.
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At least such a solution seems to be a more realistic approach than what is pursued

by other systems, which just establish an ambitious and authoritarian governance

structure with having almost nothing to govern.
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1. INTRODUCTION

It is known (see [5], p. 202) that the set Pd of all integer solutions (x, y) of the Pell

equation x2 − dy2 = 1, where d is a square-free positive integer, is a multiplicative

group on two generators. More exactly, every pair (x, y) ∈ Pd corresponds uniquely

to the element ξ = x+y
√
d, and there is a smallest pair (x0, y0) ∈ Pd with x0, y0 > 0;

defining ξ∗ as x− y
√
d, we have that every ξ is of the form ξ = ±δn for some n ∈ Z,

where δ = x0 + y0

√
d and δ−1 = δ∗.

In this paper, we address natural algebraic structures that can be defined on

the set En of all solutions of the Diophantine equation considered by Euler

(E) a2 + b2 = tn,

where n is a fixed positive integer. Thus, En := {(a, b, t) : (a, b, t) fulfils (E)}.
For n = 2 equation (E) becomes the classical Pythagorean equation, and in this

case we put P instead of En; the elements of P are called Pythagorean triples. This

section deals with the semigroup structures on En, and the next one is devoted to

the ring structures on P (a new result is presented in Theorem 1).

Let Z be the set of all integers, and let Z(i) denote the Gauss ring Z + iZ. It

is well known that a triple (a, b, t) is an element of P if and only if a = Re(z2),

b = Im(z2) (or a = Im(z2), b = Re(z2)), |t| = |z|2 for some z ∈ Z(i). The form

of (a, b, t) suggests that a natural multiplication on P can be defined by means of

multiplication on Z(i). Indeed, if αj = (aj, bj, tj) = (Re(z2
j ), Im(z2

j ), εj|zj|2) for some

zj ∈ Z(i) and εj = ±1, j = 1, 2, then the triple (Re((z1z2)
2), Im((z1z2)

2), ε1ε2|z1z2|2)
lies in P and has the form (a1a2 − b1b2, a1b2 + a2b1, t1t2). It is now easy to check

that the latter expression defines a commutative and associative operation ◦ on the

whole set P:

(∗) α1 ◦ α2 = (a1a2 − b1b2, a1b2 + a2b1, t1t2).

Moreover, the triple e := (1, 0, 1) is the neutral element of P with respect to ◦, and

hence (P, ◦, e) is a monoid (i.e., a semigroup with unit).
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For every n ≥ 1 formula (∗) defines also ◦ on En, and (En, ◦, e) is a commutative

monoid called an Euler monoid [4]. For some n’s the monoids En are free.

Proposition 1. (see [4]). We have that En is free if and only if n is odd. More

exactly, if R denotes the set of all prime elements of the Gauss ring Z(i) then

(i) for every odd integer n ≥ 1, the set Xn = {(Re(zn), Im(zn), |z|2) : z ∈ R} is

a base of En;

(ii) if n = 2k ≥ 2, then the element α = (5n, 0, 25) ∈ En has two different

factorizations by irreducible elememnts of En: α = (5k, 0, 5) ◦ (5k, 0, 5) =

(A+, B+, 5) ◦ (A−, B−, 5), where A± = Re((1± i2)n), B± = Im((1± i2)n).

Thus, for n = 2 we have that E2 = P is non-free. However, for a narrower (and

more natural) subset of P the situation changes drastically. Let Po denote the

subset of all primitive elements (a, b, t) of P , that is, such that a and t are positive

and co-prime with a, b, t ≥ 0. One can slightly modify operation ◦ for Po to be a

free group. The result presented below is due to Eckert [2].

Proposition 2. The set Po is a free abelian group under the operation ◦ defined by

(a, b, c) ◦ (A,B,C) = (aA− bB, bA + aB, cC) when aA− bB > 0,

(a, b, c) ◦ (A,B,C) = (bA + aB,−aA + bB, cC) when aA− bB < 0.

The identity in Po is (1, 0, 1), the inverese of (a, b, c) is (b, a, c), and the base of Po

is the set X = {(a, b, p) : p prime, p ≡ 1 mod 4, a > b}.

2. THE RING STRUCTURES ON P

Let us divide P into infinite and pairwise disjoint subsets Pk := {(a, b, t) ∈ P :

t− b = k}, for k �= 0, and P0 = {(0, j, j) : j ∈ Z}:

P =
⋃
k∈Z

Pk .

(Thus, (3, 4, 5) ∈ P1 and (4, 3, 5) ∈ P2.) In 1994 Dawson [1] defined the ring

operations on every set Pk and then extended them to P in such a way as to give P
a ring structure, but both the addition an multiplication were given in inconvenient

form. In 1997 Grytczuk [3] gave the construction of more natural ring operations
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⊕k and )k on Pk, and this construction was studied in details in [6], [7]. Grytczuk

showed that every (a, b, t) ∈ Pk, k �= 0, is of the form

b =
a2 − k2

2k
, t =

a2 + k2

2k
, (1)

where a and k are the same parity. Now we shall describe the Grytczuk’s operations

(G-operations, for short), and we shall show below how this description can be

applied to define more natural pairs of ring operations on P .

Since the elements of each Pk, k �= 0, depend on the first coordinate only, it is

enough to define ”basic” operations just on this coordinate and, by the use of (1),

to carry them to b and t. The operations defining ⊕k and )k were obtained in [3]

from the kth shifts on Z (see [6]): Sk(x) = x − k; then the ”basic” operations +∗

and ·∗ on Z are given by the formulas

x +∗ y = S−1
k (Sk(x) + Sk(y)) = x + y − k,

x ·∗ y = S−1
k (Sk(x) · Sk(y)) = (x− k) · (y − k) + k, (2)

and G-operations on Pk are of the form: if k �= 0 and αj = (aj, (a
2
j − k2)/2k, (a2

j +

k2)/2k), j = 1, 2, then

α1⊕kα1 = (a1 +∗ a2,
(a1 +∗ a2)

2 − k2

2k
,
(a1 +∗ a2)

2 + k2

2k
),

α1)kα1 = (a1 ·∗ a2,
(a1 ·∗ a2)

2 − k2

2k
,
(a1 ·∗ a2)

2 + k2

2k
), (3)

and coordinatewise for k = 0. One should note that G-operations have nothing to

do with formula (∗): for example, if α1, α2 ∈ Pk, k �= 0, then α1 ◦ α2 �∈ Pk, in

general. Moreover, for every k �= 0 the ring (Pk,⊕k,)k) has no unit.

The ring structure of P, through the structure of Pk’s, was also studied by

the present author in [7], where the key role played the form of a in the triple

(a, b, t) ∈ Pk. Let us define the number x(k), k ∈ Z \ {0} as follows (see [7], pp.

17-18). If pd1
1 · . . . pds

s is the prime factorization of |k|, then the integer ∗√k is defined

as pe1
1 · . . . pes

s , where ej = [(dj + 1)/2], j = 1, . . . , s, and [x] denotes the integer part

of x. Moreover, if |k| = 2q · r0, where q, r0 are non-negative integers with r0 ≥ 1 and

odd, then dev(k) is defined as 1 for q odd, and 2 for q even or q = 0. Then we put

x(k) = ∗√k ·dev(k). (Thus, x(k) = x(2k) = 2k for every odd and square-free positine

integer k.) The result presented below is another form of ([7], Proposition 1).

Lemma 1. Let α = (a, b, t) ∈ Pk, k �= 0. Then there is uniquely determined l ∈ Z

such that a = l · x(k) + k.
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The above uniqueness allows us to describe G-operations more precisely. We have

(see (2)):

(l1x(k) + k) +∗ (l2x(k) + k) = (l1 + l2)x(k) + k, and

(l1x(k) + k) ·∗ (l2x(k) + k) = (l1l2x(k))x(k) + k,

for all l1, l2 ∈ Z and fixed k �= 0. We put A(l, k) := l · x(k) + k to define a function

acting from Z× Z into Z, and we see that for every l ∈ Z and k as above we have

(A(l, k), b, t) ∈ Pk, where b, t are as in (1) with a = A(l, k). Moreover,

A(l1, k) +∗ A(l2, k) = A(l1 + l2, k), and

A(l1, k) ·∗ A(l2, k) = A(l1l2x(k), k); thus

G− operations on Pk correspond to the ring operations on the ring ideal x(k)Z.

(4)

The lemma allows us also to define a natural bijection from Z × Z onto P . For

this purpose we define two auxiliary functions: B(l, k) := (A(l, k)2 − k2)/2k, and

T (l, k) := B(l, k) + k, where l, k ∈ Z. From the above remarks and formu-

las (1) we obtain that every (a, b, t) ∈ Pk, with k �= 0, has the form (a, b, t) =

(A(l, k), B(l, k), T (l, k)) for some unique l ∈ Z. It is now obvious that the function

λ : Z× Z→ P defined by

λ(l, k) =

{
(A(l, k), B(l, k), T (l, k)) for k �= 0

(0, j, j) for k = 0

is a bijection, and hence we can transfer the ring structures (both coordinatewise

and complex) from Z× Z onto P (see [7], Theorem 7):

Proposition 3. The set P is a commutative ring with unit under the following

pairs of addition and multiplication:

(i) λ(l1, k1)⊕λ(l2, k2) := λ(l1+l2, k1+k2), and λ(l1, k1))α(l2, k2) := λ(l1l2, k1k2),

with the additive zero (0, 0, 0) = λ(0, 0) and the multiplicative unit (3, 4, 5) =

λ(1, 1);

(ii) λ(l1, k1)⊕̃λ(l2, k2) := λ(l1 + l2, k1 + k2), and λ(l1, k1))̃λ(l2, k2) := λ(l1l2 −
k1k2, l1k2 + l2k1),

with the additive zero (0, 0, 0) and the multiplicative unit (0, 1, 1) = λ(1, 0).
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The above pairs of addition and multiplication do not extend G-operations because

they do not leave Pk’s invariant: for k �= 0 and α, β ∈ Pk we have that α ⊕ β ∈
P2k �= Pk (similarly for ⊕̃).

It is readily seen that every addition ⊕̂ on P , defined by means of the function

λ and leaving each Pk invariant, leads to an idempotent semigroup operation # on

the second coordinate. Indeed, for any l, k ∈ Z we then have

λ(2l, k#k) = λ(l, k)⊕̂λ(l, k) = λ(2l, k),

and hence, by injectivity of λ, we obtain that every k ∈ Z must be #-idempotent.

The remaining part of this paper is devoted to the ring operations on Z × Z

defined coordinatewise with exactly one idempotent operation on the second coor-

dinate (a general construction is presented in the lemma below, and its easy proof

is omitted). These structures will be transferred onto P in Theorem 1 below.

Lemma 2. Let X = (X,+, ·) be a ring with unit eX , and let Y = (Y,#) be a

commutative and idempotent monoid with unit eY . Then the product X×Y , enowed

with the addition ⊕ and the multiplication ) defined by the formulas:

(x1, y1)⊕ (x2, y2) := (x1 + x2, y1#y2), and (x1, y1)) (x2, y2) := (x1 · x2, y1#y2)

is a ring with unit e = (eX , eY ). Moreover, for all x1, x2 ∈ X, y ∈ Y we have

(x1, y)⊕ (x1, y) = (x1 + x2, y) and (x1, y)) (x1, y) = (x1 · x2, y).

Now we give two sample operations that make Z an idempotent monoid with unit

element e = 1. For this purpose, let s(k) denote the sign of k ∈ Z, and let [m,n]

denote the least common multiple of two positive integers m,n. Then the operations

are defined as follows:

k1♣k2 := min{s(k1), s(k2)} · [|k1|, |k2|] for k1k2 �= 0, and k1♣k2 := 0 otherwise;

k1♠k2 := min{s(k1), s(k2)} ·max{|k1|, |k2|}.

From Lemma 2 and the above two examples it follows that Z × Z possess two

additional ring structures, and that these structures can be transferred onto P by

means of the function λ, with λ(l1, k)⊕λ(l2, k) = λ(l1+l2, k) and λ(l1, k))λ(l2, k) =

λ(l1l2, k), where ⊕ and ) are defined as in Lemma 2. We thus have obtained the

following result.
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Theorem 1. Let # ∈ {♣,♠} be fixed. Then the set P is a commutative ring with

unit e = (3, 4, 5) = λ(1, 1) under the following addition ⊕ and multiplication ):

λ(l1, k1)⊕ λ(l2, k2) := λ(l1 + l2, k1#k2),

λ(l1, k1)) λ(l2, k2) := λ(l1l2, k1#k2),

and these operations leave each Pk invariant.

By comparing Theorem 1 and the claim in (4), we see that the problem of extending

(in a natural way) G-operations to the whole set P remains open.

ACKNOWLEDGEMENTS.

I would like to thank the Organizers of ICMA 2004 both for the financial support

of my participation in the Conference and their warm hospitality during my stay in

Kuwait.

REFERENCES

[1] Dawson, B., A Ring of Pythagorean Triples, Missouri J. Math. Sci., 6 (1994),

72-77.

[2] Eckert, E.J., The Group of Primitive Pythagorean Triangles, Math. Magazine,

57 (1984), 22-27.

[3] Grytczuk, A., Note on a Pythagorean Ring, Missouri J. Math. Sci., 9 (1997),

83-89.
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1. INTRODUCTION

In various applications, e.g. semi-discretized boundary control problems, parabolic

problems with piecewise defined boundary conditions generically occur, in particular,

with jumps at the boundary. Since discontinuous data lead to a reduced smoothness

of the solution, adapted numerical methods have to be chosen. As model problem

in the present paper we consider linear parabolic problems with a finite number

of jumps in boundary data. For a spatial semi-discretization we apply piecewise

linear finite elements with mass lumping. This method of lines approach generates

initial value problems (IVP) which are stiff and have to be treated by an efficient

method for time discretization. In case of smooth boundary data the trapezoidal

rule, corresponding to the Crank-Nicolson method, works efficiently for such a class

of equations. In case of jumps in data, however, applying Crank-Nicolson leads

to high frequency oscillations over a long time horizon. To avoid these spurious

oscillations one could ensure the discrete maximum principle, but this would result

in serious restrictions on the time steps similar to the explicit Euler integration. On

the other hand the commonly used implicit Euler scheme, though it generates stable

discretizations without restrictions on the step size, is only of first order convergent.

The focus of the present paper is to analyze in detail certain implicit Tay-

lor methods. Numerical experiments showed that these techniques are quite well

adapted to the particular situation of linear IVP with nonsmooth data. They pos-

sess higher accuracy properties as well as provide a damping of unwanted oscilla-

tions. Assuming smoothness of the solution standard consistency and convergence

analysis has been given e.g. in Scholz [13]. However, the derived consistency error

explicitely contains estimates of derivatives of the solution. In case these terms are

not bounded no conclusion can be derived from this type of consistency errors. An

important aim of our study is to obtain estimates that depend only upon the chosen

step sizes and original data of the considered parabolic problem.
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Furthermore, in the investigated implicit Taylor methods at each discrete time

level a linear system has to be solved. Unlike in the implicit Euler method or

Crank-Nicolson the coefficient matrix of the generated linear systems contains higher

powers of the original stiffness matrix. Conjugate gradient (CG) methods provide

an efficient tool for the numerical treatment of these systems because only repeated

evaluations of the type stiffness matrix times a vector are required. However, the

increasing ill-conditioning of the system with decreasing spatial steps sizes would

lead to a high number of necessary iterations if no appropriate preconditioner is

applied. We propose a special preconditioner for the CG algorithm which bases

on linear systems that have the same sparsity structure as the original stiffness

matrix of the FEM spatial discretization. The convergence of the corresponding

preconditioned conjugate gradient algorithm (PCG) is studied. It turns out that

this preconditioner is highly efficient; due to the rapid convergence of only a few

iteration steps are needed. Moreover, a truncated and a further simplified version

of this PCG method are considered, their convergence is discussed and the claimed

damping properties concerning higher order frequencies are justified.

The paper is organized as follows. In Section 2 we introduce the parabolic

boundary value problem and its semi-discretization by finite elements. Implicit

Taylor methods are studied in Section 3 and are applied to the considered model

problem to obtain a corresponding discrete problem. Then a convergence analy-

sis is provided, where unlike the general nonlinear consistency analysis, there we

derive truncation errors directly depending on the given problem data. That way

no estimates of higher derivatives of the solution are required. In Section 4 a CG

algorithm with preconditioning to solve the generated linear systems is constructed

and its convergence properties are investigated. Further, a truncated and a simpli-

fied versions of this PCG method are discussed. Several test examples are given in

Section 5 to illustrate the efficiency of the proposed methods.

2. THE PARABOLIC PROBLEM AND SEMI-DISCRETIZATION

Let Ω ⊂ R2 denote a bounded domain with a piecewise Lipschitz boundary Γ .

Further, let T > 0 be fixed. We consider the parabolic boundary value problem

∂w
∂t
− ∆w = f in Q := Ω × (0, T ],

γD w + ∂w
∂n

= b on ΓT := Γ × (0, T ],

w(·, 0) = 0 on Ω.

(1)

Here γD ≥ 0 is a given coefficient, f ∈ L∞(Q) and b ∈ L∞(ΓT ).
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Concerning existence and uniqueness of the solution of (1) various results can be

found in literature. We refer e.g. to Casas [5], where existence and uniqueness results

for more general classes of parabolic problems are proved. For our model problem

it provides the existence of a unique weak solution w(·, ·) ∈ W (0, T ) ∩ C(Q) of (1)

satisfying the variational equation∫
Q

∂w

∂t
ϕ dQ +

∫
Q

∇w ◦ ∇ϕdQ + γD

∫
ΓT

wϕdΓT =

∫
Q

f ϕ dQ +

∫
ΓT

b ϕ dΓT (2)

∀ϕ ∈ V := L2(0, T ;H1(Ω))

and w(·, 0) = 0. Here

W (0, T ) := {v ∈ V :
∂v

∂t
∈ V ∗}, (3)

and V ∗ denotes the dual space corresponding to V . Notice that this result is valid

for any right-hand side f ∈ V ∗. The type of Robin or Neumann boundary conditions

can be also replaced by those of Dirichlet type. However, in this case of non-matching

conditions further singularities occur (cf. Grossmann, Noack and Vanselow [10]).

Obviously, in the considered parabolic problem (1) the boundary conditions are

naturally included in the variational equation (2).

To solve the equations (1) numerically appropriate discretizations of the states

w and the appearing differential operators in (1) as well as of the boundary function

b are required. We apply the principle of semi-discretization in space (MOL) with

piecewise linear triangular finite elements and mass-lumping. To avoid additional

errors due to the discretization of the boundary of Γ we assume Ω to be a polyhedron

and consider such discretizations only which take into account the sub-structuring

of its boundary Γ . Furthermore, we assume that the discretization at the boundary,

i.e. for te function b, relates to macro-elements of the discretization of (1) w.r.t.

space and time.

Let Ω be covered by triangles which satisfy the standard assumptions of finite

element methods (cf. Ciarlet [7]). The related grid points in space we denote by

xj, j = 1, . . . , N and ϕj ∈ C(Ω̄) denote the Lagrange basis functions of piecewise

linear C0 finite elements. The related conforming finite element discretization of the

Sobolev space H1(Ω) is then given by the subspace Vh := span {ϕi}Ni=1.

We apply the Ritz-Galerkin semi-discretization with mass lumping, i.e. integrals∫
Ω
ϕj ϕi dΩ are replaced by the lumping operator

DL(ϕj, ϕi) := µi δij, i, j = 1, . . . , N (4)
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with µi :=
∑N

j=1

∫
Ω
ϕj ϕi dΩ. As shown in Thomée [14] this kind of mass lump-

ing is equivalent to the evaluation of the mass integrals by the trapezoidal rule.

Introducing the semi-discrete solution wh ∈ Vh in the spatial basis {ϕj}j by

wh(x, t) =
N∑

j=1

wj(t) ϕj(x) (5)

with coefficient functions wj : [0, T ]→ R, j = 1, . . . , N the Ritz-Galerkin technique

applied to (2) leads to a finite dimensional IVP for the coordinate function w =

(w1, . . . , wN) : [0, T ]→ RN as given by

Dw′(t) = Aw(t) + f(t), t ∈ (0, T ], w(0) = 0, (6)

where the elements of the matrix A := (aij)
N
i,j=1 are defined by

aij := −
∫
Ω

∇ϕj ◦ ∇ϕi dΩ −
∫
Γ

γD ϕjϕi dΓ , i, j = 1, . . . , N, (7)

D := diag(µi) denotes the matrix representation of DL and f := (fi)
N
i=1 is given by

fi(t) :=

∫
Ω

f(x, t)ϕi(x) dΩ +

∫
Γ

b(x, t)ϕi(x) dΓ , i = 1, . . . , N. (8)

Let us indicate that existence and uniqueness of solutions of system (6) are covered

by standard theory and piecewise defined solutions.

By means of the transformation D1/2w, and simply renaming all modified ma-

trices and functions by their former names, (6) is equivalent to the IVP

w′(t) = Aw(t) + f(t), t ∈ (0, T ], w(0) = 0 (9)

with a symmetric, negative definite matrix A.

Next we consider a restriction of the space of boundary functions b to the sub-

space of piecewise constant functions w.r.t. some given time grid

0 = t0 < t1 < · · · < tM
c−1 < tM

c

= T (10)

by P0,ρ ⊂ L∞(ΓT ), i.e. it holds

bρ ∈ P0,ρ ⇐⇒ b(x, t) = bk(x), ∀t ∈ (tk−1, tk], k = 1, . . . ,M c, x ∈ Ω (11)

with functions bk ∈ L∞(Γ ). Here M c denotes the number of grid points. In case

of boundary control problems this can be interpreted as simple time discretization
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of controls. In the sequel we use bρ in (8) if the function b belongs to P0,ρ, i.e. by

bρ(x, t) ≡ b(x, tk) for t ∈ (tk−1, tk]. Similarly, we write

w′(t) = Aw(t) + fρ(t), t ∈ (0, T ], w(0) = 0 (12)

if f is generated via boundary data gρ. Since bρ is piecewise constant the right-

hand side of (12) is discontinuous, so we cannot expect a higher smoothness in the

classical sense as it would be in case of, say, continuous boundary values b ∈ C(ΓT ).

But according to the structure (11) of b the solution of (12) can be received

recursively on the subintervals (tk−1, tk] by

w′(t) = Aw(t) + fρ(t), t ∈ (tk−1, tk],

w(tk−1 + 0) = w(tk−1),
(13)

for k = 1, . . . ,MC with w(t0) = 0. Taking into account the linearity of the above

equations and the smoothness of fρ and bρ in the subintervals there exists a classical

solution of (13) which can be represented in integral form by

w(t) = eA(t−tk−1)w(tk−1) +

t∫
tk−1

eA(t−s)fρ(s)ds, t ∈ (tk−1, tk], k = 1, . . . ,MC . (14)

This representation will be utilized in the next section.

3. IMPLICIT TAYLOR METHODS

In this section we briefly describe implicit Taylor methods (for further details

cf. Griewank et al [6], Scholz [13]) applied to N -dimensional linear initial value

problems of the type

w′(t) = Aw(t) + f(t), t ∈ (0, T ], w(0) = g (15)

with a symmetric, negative definite matrix A, a given function f : (0, T ]→ RN and

some vector g ∈ RN . As shown in Section 2 above, the chosen semi-discretization of

the parabolic problem (1) leads to a finite dimensional IVP of this type. In view of

this semi-discretization with jumps in data we restrict our attention to right-hand

sides f which may possess discontinuities, as finite jumps, at the grid points of some

given time grid.

Unlike Scholz [13], where a general study of implicit Taylor methods in terms

of derivatives of the solution is given, here we investigate the special case (15) more
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in detail for the case of linear IVPs with a finite number of discontinuities. In

the convergence analysis, which we provide in this section, truncation errors are

derived which only depend on the given problem data such that no estimates of

the solution and its derivatives need to be involved. This convergence behaviour

and certain damping properties, which shall be discussed later, show that for semi-

discretized parabolic problems with discontinuous data, as considered in Section 2,

a time discretization with implicit Taylor methods prove to be suitable.

Now we consider the first step of the implicit Taylor method, i.e. from t0 = 0

to t1 = τ . For simplicity we take some equidistant time grid tj = jτ, j = 0, . . . ,M ,

where M denotes the number of grid points and τ = T/M . The idea is to approxi-

mate the solution w of (15) in the interval [0, τ ] by a function wτ of the form

wτ (t) =

q∑
j=0

αj

j!
(τ − t)j, t ∈ [0, τ ] (16)

with a fixed q ∈ N and vectors αj ∈ RN , j = 0, 1, . . . , q, which are uniquely deter-

mined by the conditions

wτ (0) = w0 (17)

wτ (τ) = w0 +

τ∫
0

(
[Awτ ](t) + f(t)

)
dt (18)

and the conditions for the derivatives

w(j)
τ (τ) = Ajwτ (τ) +

j−1∑
l=0

Aj−1−lf (l)(τ), , j = 1, . . . , q − 1, (19)

where due to (15) the inital vector w0 = g is chosen. In the sequel we denote the

implicit Taylor method (16) - (19) by ITM-q.

Let us now restrict our attention to the vector w1 := wτ (τ) at the grid point t1.

After eliminating the coefficients αj (cf. Al-Zanaidi and Grossmann [1], Grossmann

and Horváth [9] for details) the above conditions yield that w1 arises from w0

according to(
I +

q−1∑
j=0

(−1)j

j!

(
1

q + 1
− 1
j + 1

)
τ j+1 Aj+1

)
w1 =

(
I + τ

q + 1
A

)
w0

+
q−1∑
j=1

(−1)jτ j+1

j!

(
1

j + 1
− 1
q + 1

)
j−1∑
l=0

Aj−lf (l)(τ) +
τ∫
0

f(t) dt.

(20)
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ITM-q consists in applying the above rules, which we presented for the first time

step, analogously to each of the following time steps of the given time grid. That way

in the grid points an approximation wj ∼ w(tj), j = 1, . . . , N , of the solution of the

IVP (15) is generated. Now we consider this method in each of the subintervals where

the right-hand side f is smooth, and for simplicity omit the notation of possibly

different step sized τ for different subintervals. Then by introducing the matrices

B := I +
q−1∑
j=0

(−1)j

j!

(
1

q + 1
− 1
j + 1

)
τ j+1 Aj+1,

S := I + τ
q + 1

A

(21)

and the linear operator

Rf :=

q−1∑
j=1

(−1)jτ j+1

j!

(
1

j + 1
− 1

q + 1

)
j−1∑
l=0

Aj−lf (l) (22)

ITM-q is equivalently described by the recursive equations

Bwk = Swk−1 + [Rf ](tk) +
tk∫

tk−1

f(t) dt, k = 1, . . . ,M

w0 = g.

(23)

Remark 1 In general, to avoid a heavy reduction of sparsity caused by higher powers

of A in formula (20) we focus on the cases q = 1, 2, 3. Observe that for q = 1 the

corresponding Implicit Taylor method forms a Crank-Nicolson-like method and for

q = 2 it coincides with ETF (extended trapezoidal formula) as studied in Chawla

and Al-Zanaidi [3].

To derive stability results for ITM-q we indicate that the stability function of

ITM-q for values q = 2 and q = 3 coincides with that of the Implicit Runge-Kutta

methods Radau IA and Lobatto III C, respectively. Hence, according to the stability

behaviour of these Runge-Kutta methods (cf. Hairer, Nørsett and Wanner [11]) we

conclude that ITM-q are A-stable for values of q = 1, 2, 3 and even L-stable for

values of q = 2, 3. Stability as well as consistency properties of Implicit Taylor

methods in case of sufficiently smooth data can be found e.g. in Scholz [13].

Notice further that for q = 2, 3 the corresponding Implicit Taylor methods are

advantageous over Crank-Nicolson in case of dominantly occurring high eigenfre-

quencies. This fact rests on the L-stability of these methods and will be discussed

more in detail in the next section.
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Theorem 1 Let be given a function f : (0, T ] → RN which is sufficiently smooth

on each of the subintervals of a given time grid. Then ITM-q applied to (15) is

convergent with order of convergence q + 1 and the local error of one step of the

method, w.l.o.g. for the first one, is of the form

eloc =
(−1)q

(q + 2)!

(
1

q + 1
Aq+2w(τ)−Aq+1f(τ) + f (q+1)(τ)

)
τ q+2+O(τ q+3). (24)

Proof: We sketch only the main steps of the proof and refer to Al-Zanaidi and

Grossmann [1] for the further details of underlying expansions. According to the

structure of the implicit Taylor method (23) it is obvious that we have to consider

just one step in the consistency analysis.

First notice that we may increase the upper index q−1 to q in all the appearing

summations without changing the method. Hence, considering the first interval,

scheme (20) can be written equivalently as(
I +

q∑
j=0

(−1)j

j!

(
1

q + 1
− 1
j + 1

)
τ j+1 Aj+1

)
w1 =

(
I + τ

q + 1
A
)

w0

+
q∑

j=1

(−1)jτ j+1

j!

(
1

j + 1
− 1
q + 1

) j−1∑
l=0

Aj−lf (l)(τ) +
τ∫
0

f(t) dt.

(25)

Now, replacing wτ by the exact solution w of (13) and using a Taylor expansion

and the expression w(τ) = eAτw0 +
τ∫
0

eA(τ−s)f(s) ds (compare (14)) we obtain

that the left-hand side of (25) equals(
I +

q∑
j=0

(−1)j

j!

(
1

q + 1
− 1
j + 1

)
τ j+1 Aj+1

)
w(τ)

=
(
I + τ

q + 1
A
)

w0 + rq +
(
I + τ

q + 1
A
) τ∫

0

e−Asf(s) ds

(26)

with

rq =
(−1)q

(q + 2)!

τ q+2

q + 1
Aq+2w(τ) +O(τ q+3) (27)

On the other hand, after some calculations, it follows(
I +

τ

q + 1
A
) τ∫

0

e−Asf(s) ds =

τ∫
0

f(s) ds +

q∑
j=1

τ j+1 (−1)j

j!

( 1

j + 1
− 1

q + 1

) j−1∑
l=0

Aj−lf (l)(τ) + sq, (28)

465



where

sq =
(−1)q+1

(q + 2)!

(
Aq+1f(τ)− f (q+1)(τ)

)
τ q+2. (29)

Thus for the defect appearing when replacing the approximation by the exact solu-

tion in the Implicit Taylor formula we obtain

eloc = rq + sq

=
(−1)q

(q + 2)!

(
1

q + 1
Aq+2w(τ)−Aq+1f(τ) + f (q+1)(τ)

)
τ q+2+O(τ q+3) (30)

Since O(τ−1) subintervals occur, the above results imply that the ITM-q (23)

possesses the overall consistency order q + 1 provided that f is sufficiently smooth

on each of the subintervals. Together with the known stability of one-step methods

this proves the assertion.

Remark 2 One should be aware of the fact that the term τ q+2Aq+2 and conse-

quently (τ/h2)q+2 occurs in the error term. In case of smooth data this effect will be

compensated by the smoothness of the solution - not so for nonsmooth data. Thus,

in case of discontinuities to guarantee convergence a coupling condition for spatial

and time steps of the form

τ/h2 → 0 (31)

has to be required.

Returning to the semi-discretized parabolic problem (1) with discontinuous

boundary data bρ ∈ P0,ρ, notice that in Section 2 we derived the recursive for-

mula (13) on subintervals. Hence, assuming a sufficiently smooth right-hand side

f in each of the subintervals and choosing a probably finer time grid for ITM-q

containing all jumps at the boundary, Theorem 1 can be applied and gives a char-

acterization of the convergence behaviour of ITM-q for semi-dicretizations of linear

parabolic problems with jumps in boundary data.

4. EFFICIENT NUMERICAL REALIZATION OF ITM-q

In each step of ITM-q linear systems

Bwk = Swk−1 + [Rf ](tk) +
tk∫

tk−1

f(t) dt, k = 1, . . . ,M

w0 = g.

(32)
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have to be solved. In particular, we are interested in the method for values of

q = 2, 3. The related coefficient matrices B := Bq for the considered values q = 2

and q = 3 have the specific form

B2 = I − 2

3
τ A +

1

6
τ 2 A2 (33)

and

B3 = I − 3

4
τ A +

1

4
τ 2 A2 − 1

24
τ 3 A3, (34)

respectively. It is well known that the semi-discretization of the parabolic state

equations (1) by linear finite elements generates a stiffness matrix A that is rather

sparse. However, this sparsity is partially destroyed in A2 and A3. Hence, appro-

priate numerical realizations of (23) that avoid this effect should be applied. To

maintain the structural properties of A our method of choice is PCG, the precondi-

tioned conjugate gradient method, with a preconditioner of the type

Pq :=

q∏
j=1

( I − σj τ A) , q = 2, 3 (35)

with appropriately chosen constants σj > 0, j = 1, . . . , q. For these matrices we

obtain spectral bounds which are independent of the spatial and time discretization

parameters h and τ . To cancel the highest order term of Bq and, that way, to obtain

good contraction properties of PCG for relatively large time steps τ > 0 we impose

upon the parameters σj the condition

q∏
j=1

σj =
1

q! (q + 1)
. (36)

Theorem 2 Independent of the discretization parameters h > 0 and τ > 0 with the

constant

c2 := c2(σ1, σ2) =
6 + 2

√
6

6 + 3
√

6 (σ1 + σ2)
(37)

it holds

c2 vTP2 v ≤ vTB2 v ≤ vTP2 v, ∀v ∈ RN . (38)

Moreover, the constant c2 is optimal, i.e. maximal, in case of σ1 = σ2 = 1√
6
.

Proof: To obtain the stated spectral bound we study the generalized symmetric

eigenvalue problem

B2 v = νP2 v, v �= 0. (39)
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Since A is symmetric and negative definite due the structure of B2 and P2 we obtain

that ν ∈ R is an eigenvalue of the problem (39) iff an eigenvalue λ of A exists such

that

ν =
1− 2

3
τλ + 1

6
(τλ)2

(1− σ1τλ)(1− σ2τλ)
, (40)

holds. With the abbreviation s := −τλ, σ := σ1 + σ2 and (36) as function of the

parameter s > 0 we define

ν2(s) := ν =
1 + 2

3
s + 1

6
s2

1 + σ s+ 1
6
s2

= 1 +
( 2

3
− σ
) s

1 + σ s+ 1
6
s2
. (41)

By the estimate 1
2
(σ1 + σ2) ≥ √σ1σ2 = 1√

6
between arithmetic and geometric

means we have σ ≥ 2√
6
. Hence, 2

3
−σ < 0 for any feasible value of σ and from (41)

it follows the upper bound

ν ≤ 1 (42)

for any eigenvalue ν of (39). To obtain a lower bound we use

max
s≥0

s

1 + σ s+ 1
6
s2

=

√
6

2 + σ
√

6
. (43)

in (41) which proves the left inequality in (38). It remains to derive the optimal

parameters σ1, σ2. Obviously c2(σ1, σ2) is monotone in σ, thus using σ ≥ 2√
6

again

results in

max
σ≥2/

√
6
c2(σ1, σ2) = c2(1/

√
6, 1/
√

6) =
3 +
√

6

6
≈ 0.90825. (44)

A direct consequence of the theorem is that the optimal preconditioning of the

form (35) is attained for σ1 = σ2 = 1/
√

6 which yields the preconditioner

P2 = ( I − 1√
6
τ A )2. (45)

For the case q = 3 the study can be similarly done. In the following we concentrate

upon σ1 = σ2 = σ3 = 1/ 3
√

24 , i.e. upon the preconditioner

P3 = ( I − 1
3
√

24
τ A )3. (46)

For this particular preconditioner P the eigenvalues of the generalized symmetric

eigenvalue problem

B3 v = νP3 v, v �= 0. (47)
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are positive and can be expressed by

ν3(s) :=
1 + 3

4
s + 1

4
s2 + 1

24
s3

(1 + s/ 3
√

24 )3
(48)

with s = −τλ and λ an eigenvalue of A. Further elementary calculus yields

c3 vTP3 v ≤ vTB3 v ≤ vTP3 v, ∀v ∈ RN (49)

with c3 ≈ 0.7803.

The scheme of ITM-q can shortly be written as linear system

Bv = b (50)

with B = Bq and b the right-hand side of ITM-q. Then in both cases, q = 2

and q = 3, the corresponding estimates (38) and (49), respectively, guarantee that

the related PCG-method when applied to (50) starting from any v0 ∈ RN generates

vectors vl ∈ RN , l = 1, 2, . . . which converge to its solution v according to (compare

e.g. Axelsson [2])

‖vl − v‖P−1B ≤ 2

(
1−√cq

1 +
√
cq

)l

‖v0 − v‖P−1B, l = 1, 2, . . . . (51)

Here ‖ ·‖P−1B denotes the related discrete energy norm. In the considered cases this

provides the estimate

‖vl − v‖P−1B ≤ 2 γl ‖v0 − v‖P−1B, l = 1, 2, . . . (52)

with γ ≈ 0.024 and γ ≈ 0.062 for q = 2 and q = 3, respectively. If, as a rule,

τ/h2 � 1 then the convergence is even better since lim
s→+∞

νq(s) = 1, and since this

limit is reached rather rapidly (see Fig. 1 and Fig. 2).
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Fig. 1: Graph of ν2
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Fig. 2: Graph of ν3

As a consequence of the fast reduction of the error only a few iteration steps of

the PCG-method are required to solve problem (50) approximately, even up to high

accuracy. Moreover, in case the linear systems arise from the time discretization

of a semi-discrete parabolic problem good starting iterates are available from the

previous time level provided that the solution does not change too rapidly. In

addition, rapid changes correspond to a dominant influence of larger eigenvalues,

but these are damped quite fast. In computational experiments which are reported

later beside the discussed ITM-q methods we studied numerically the convergence

behaviour of a simplified algorithm considering ITM-2 with only one PCG step at

each time level. Given an initial guess v0 ∈ RN this truncated version of PCG yields

ṽ = v0 + αp , (53)

where the search direction p ∈ RN and the step size α > 0 are defined by

p := P−1d, α :=
pTd

pTBp
with d := b−Bv0 . (54)

¿From (54) it follows

α =
pTPp

pTBp
, (55)

and applying Theorem 2 this leads to the estimate 1 ≤ α ≤ 1/cq and thus α ∼ 1.

This suggests the following further simplification of the truncated ITM-2 method

ṽ = v0 + P−1(b−Bv0) = P−1b + (I−P−1B)v0 . (56)
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Applying the structure of B = B2 and P = P2 this method determines the approx-

imate solution ṽ of (50) as solution of the linear system

P ṽ = b + τ (
2

3
− 2√

6
)Av0. (57)

It is easily seen that for the spectral radius of the related iteration matrix the

estimate

ρ(I−P−1B) ≤ 1

2
(1−

√
6

3
) ≈ 0.092 (58)

holds which is independent of the discretization parameters h > 0 and τ > 0. Hence,

a good improvement of an approximate solution of (50) relative to the choice of the

starting value is achieved.

For this simplified PCG method (56) the announced damping behaviour is rather

easily to be shown. Consider an orthonormal eigensystem (wj)
N
j=1 of A. It is a

system of eigenvectors for B and P as well, due to the structure of these matrices,

as announced in the proof of Theorem 2. Let v denote the exact solution of Bv = b.

Then from (56) we obtain

ṽ − v = (I−P−1B)v0 + P−1Bv − v = (I−P−1B)(v0 − v). (59)

Introducing the representations

ṽ =
N∑

j=1

γ̃jwj, v0 =
N∑

j=1

γj
0wj, v =

N∑
j=1

γjwj, (60)

this leads to
N∑

j=1

(γ̃j − γj)wj =
N∑

j=1

(1− ν2(λj))(γ
j
0 − γj)wj, (61)

and thus

γ̃j − γj = (1− ν2(λj))(γ
j
0 − γj) (62)

holds, where νj
2, j = 1, . . . , N, as defined in (41) denote the eigenvalues of P−1B. As

indicated above lims→+∞ ν2(s) = 1, and this convergence is rather fast. Hence, for

larger values of s the term 1− ν2(s) becomes quite small. This property causes the

rapid damping of components corresponding to larger eigenvalues.

If we choose on each time level the value of the solution at the previous time step,

v0 := wk−1, as initial value of the PCG step then simplified ITM-2 (56) becomes

P2wk =
(
S2 +

(2
3
− 2√

6

)
τA
)
wk−1+ [R2 f ](tk) +

tk∫
tk−1

f(t) dt, k = 1, . . . ,M

w0 = g. (63)

471



Because of this single inner iteration step it is to be expected that the order of

convergence of this modified method is reduced compared to the original ITM-2

method. Analogously to the proof of Theorem 1 we obtain the following assertion

about the consistency error.

Theorem 3 Let be given a function f : (0, T ] → RN which is sufficiently smooth

on each of the subintervals of a given time grid. Then simplified ITM-2 as given in

(63) applied to (15) is of first order convergent with the local truncation error

eloc =
2−
√

(6)

3
τ 2A2w(0) +

2−√6

6
τ 2Af(τ) +O(τ 3). (64)

Remark 3 Notice that other values of α in the range 1 ≤ α ≤ 1/cq could be chosen.

But a similar consistency analysis as for Theorem 3 shows that only for the value

α = 1 convergence of first order is achieved, for any α �= 1 error terms of first order

appear.

5. NUMERICAL RESULTS

Example 1. We consider the parabolic initial-boundary value problem (1) with

Ω = (−1, 1)× (−1, 1) ⊂ R2, f ≡ 0, γD = 1, T = 1. (65)

Further, the boundary conditions are defined by the function g that is piecewise

constant along the boundary and takes the values g = 1 or g = −1 , alternating

w.r.t. subintervals of length 0.5 in spatial as well as in time direction.

For a spacial discretization we choose a uniform triangulation with totally 4225 grid

points. Concerning time integration we compared the performance of the Euler

implicit method (EI), Crank-Nicolson (CN) and ITM-2 in all cases with equidistant

time steps τ = 0.05. Euler implicit as well as ITM-2 lead to acceptable results

where ITM-2 guarantees a higher accuracy. However, the Crank-Nicolson method

generates oscillating approximations, which due to maximum principle cannot occur

as features of solutions of the considered continuous problem.

Example 2. In this example we consider again the parabolic initial-boundary value

problem (1), but now with an anchor shaped domain Ω ⊂ R2 and select T = 1.

Further, we assume that no source term occurs, i.e. f ≡ 0 .

For the boundary conditions we choose γD = 5 and

g(x, y) =

{
0, if y ≥ 0.3,

−30, if y < 0.3.
(66)
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Fig. 3: Heat distribution at t = 0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.05

0

0.05

0.1

0.15

Fig. 4: Behaviour of EI, CN and ITM-2 at the point x = (−1, 0.0938)

In our calculations we applied the following triangulation generated by the pde-

toolbox from MATLAB.
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Fig. 5:Anchor with grid

In the figures given below the numerical results for a step size τ = 0.2 obtained

by EI, CN and ITM-2, respectively, at the time levels t = 0.2 and t = 0.4 are

sketched as a 3D-plot.

Fig. 6: Euler implicit, t = 0.2 Fig. 7: Euler implicit, t = 0.4
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Fig. 8: Crank-Nicolson, t = 0.2 Fig. 9: Crank-Nicolson, t = 0.4

Fig. 10: ITM-2, t = 0.2 Fig. 11: ITM-2, t = 0.4

Again, the Crank-Nicolson method leads to physically unacceptable approxima-

tions of the wanted temperature profile as one can observe in Figure 10. Despite the

cooling at the lower part of the boundary the numerically obtained temperature is

internally lower than at the nearby boundary - which, indeed, cannot occur in reality.

Finally, Fig. 12 shows the behaviour of Euler implicit, Crank-Nicolson, ITM-2

and the simplified ITM-2 in time direction for a step size τ = 0.2.

Here again, the already mentioned spurious oscillatory behavior of the Crank-

Nicolson method is clearly visible. For comparison the solution obtained with high

accuracy is sketched. The severe damping behavior of EI can be recognized as well

as the good approximation via ITM-2. The simplified ITM-2 (dashed line) shows
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Fig. 12: Temperature at (x, y) = (−0.2, 0.3)

some mild overshooting in the first time step.

All computations have been implemented in MATLAB, Version 6.5.
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