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ON A TRANSFERENCE RESULT FOR MATRIX WEIGHTS
MORTEN NIELSEN

ABSTRACT. We consider a periodic matrix weight defined onR? and taking values in the
N x N positive-definite matrices. For such weights, we prove asfierence results between
multiplier operators om.p(Rd;W) and Lp(Td;W), 1< p< o, respectively. As an application,
we prove that Bochner-Riesz summation at the critical iridéx,(TY; W) converges if and only
if W satisfies a matrix Muckenhoupp-condition.

1. INTRODUCTION

A matrix weight is a locally integrable functiotV : RY — CN*N taking values in the set of
positive definite Hermitian forms. The associated weiglsgmbel_p(IR{d;W), 1< p<o,isthe
set of measurable (vector-)functiohs RY — CN satisfying

(1.1) 1P ey = /Rd WY/PF[Pdx < oo,

For periodic weights, i.eW : T9 — CN*N we define the associated weighted ang&‘d;W),
1< p < o, as the set of measurable periodic (vector-)functibn®? — CN satisfying

':/Td|W1/pf|pdx<oo.

In this paper, we study transference results for multiggarators oﬂlp(Rd;W) ande(’JI‘d;W)
for periodic weightdN. By a multiplier operator on a weighted vector-valued spagemean
a scalar multiplier that acts coordinatewise. More prégider a scalar multiplier operator
on RY (or T9), we lift T to an operator on functions taking values inCN by letting it act
separately on each coordinate function,

(1.3) (TH;=Tf,  j=12...N.

It is well-known that in the scalar case, there is a close eotion between bounddd, mul-
tipliers on the line and on the torus, and it turns out thahsesults can be considered in the
matrix weighted case as well. Transference can thus rethecedrkload needed to provg-
boundedness for multipliers on e.g. the tours; one only si¢edonsider the corresponding
multiplier on the line (or vice-versa).

Scalar transference results for scdlgrmultipliers were first established by de Leeuw [4]. A
systematic treatment of transference for multipliers aaaimal multiplier operators was given
by Coifman and Weiss [3]. More recent developments can bedau[1, 2, 8].

A number of authors have studied boundedness of multimiets,(R%;W). In their seminal
papers [7,10], Trefland Volberg proved that the Hilbert transform is boundead anly if the
weightW belongs to an appropriate matrix Muckenho#égtclass. This result was extended
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by Goldberg [5] who proved that boundedness of standardptiak oan(Rd;W) are closely
related to the matrix Muckenhoupt, condition on the weightV. The transference results
obtained here allow us to obtain similar conclusions fortipliér sequences obp(T%;W).

This paper is organized as follows. Section 2 contains thi@ mesults on transference for
multipliers betweert p(RY; W) andLy(T9;W). Our main application is presented in Section 3,
where we consider multipliers oo, spaces with weights satisfying a matrix Muckenhoupt
A, condition. In Section 4, we characterize boundedness ohB&eRiesz summation on
Lp(']l‘d;W) in terms of properties of the weigh¥ in . It is proved in Section 4 that bound-
edness of this summation procedure at the critical indezssmtially equivalent to the weight
W belonging to the matrix Muckenhoupt clas.

2. MAIN TRANSFERENCE RESULTS

This section contains our main result. We give results indivections. In Proposition 2.4,
we transfer boundedness for multipliers los(RY; W) to boundedness for discrete multipliers
on Lp(T%; W), while in Proposition 2.5 we transfer in the other directioom Ly(T9; W) to
Lp(R9;W).

Before we state the transference results, we need to de@raabses of bounded multipliers
onLp(RY;W) andLp(T%; W) that will be considered.

Definition 2.1. Let W : RY — CN*N pe a matrix weight, and let £ p < . We denote by
AMp(RY%;W) the set of all bounded functiomson RY such that the operator

To(f) := (bf)"

extends to a bounded operatorigs{R?;W). The norm[b|| . ra.y, Of an elemenb € .#7p(R%; W)

is by definition the norm of the operat® on Ly(RY;W).
Similarly, forw : RY — CN*N a periodic matrix weight, we denote by/,(T9; W) the set of
bounded sequences= {ax} .7« such that the operator

Ta(1) (0= Y af(k)e?m™>
kezd
extends to a bounded operator bg(T9;W). The normH{ak}H%p(Rd;W) of an element ¢
M p(RY;W) is defined to be the norm of the operalfgron Lp(T%;W).

2.1. Multipliers in .#p(R%;W). We now focus on multiplier® in .#,(R%W). The basic
idea of transference is to samiieon Z¢ and thereby obtain a multiplier inZy(T9;W). For

this to work,b must be well-behaved pointwise. A very useful notion in theory of (scalar)
transference is that of a regulated function. Let us rebelldefinition of a regulated function.

Definition 2.2. Letty € RY. A bounded measurable functibronRY is called regulated at the
pointty if

lim i/mq (b(to—t) —b(tg))dt =0.

The functionb is called regulated if it is regulated at every pdine RY.
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We now turn to vector-valued multipliers. Our idea is to uselar transference combined
with a duality argument. The dual spacelg{D; W), for 1 < p < », andD € {T9 RY}, can be

identified with,Lq(D;W~9/P), whereq is the dual exponent tpgiven by + & = 1, see [10] for
further details. The pairing dfp(D;W) andL (D'W)* = Lo(D;W~%P) is given by the integral

@) L (100.900)cm dx= /

The integrals on the right-hand side of (2.1) are ordinawlascintegrals, and in the proof
of Proposition 2.4 below we use the following well-known i@ from (scalar) transference
repeatedly.

Lemma 2.3( [3, 6]). Let T be the operator oY whose multiplier is b¢), and let S be the
operator onT¢ whose multiplier is the sequen¢b(m)} ... ,4. Assume that(£ ) is regulated at

every point me Z9. Let Lg(x) = e e for x ¢ RY ande > 0. For every pair of trigonometric
polynomials P and Q oi®%, anda, 8 > O with o + 8 = 1, we have the identity

(2.2) lim sd/z/RdT(PLga)(x)Q(x)LSB(x)dx: /TdS(P)(x)ﬁdx

£e—0t

We also need the following observation about weighitsRY — CN*N with W € Ly joc. Let
a > 0 and 1< p < ». SinceW(x) is a nonnegative and self-adjoint matrix at each printe
have uniformly inx,

IWE )| = WP (x)]|% = [tracqwF (x))]2

~( 5 whooer)”

=T
N a
= 3 W5 (x)ej|P,

where{ej}'j\‘:1 is any orthonormal basis fdzN. We apply the result fofa, p) := (1, p), and

then for(a, p) := (1/p, 1) to conclude thatV € L oc implies thatWl/P e L1joc for p> 1.
With this notation in place, we can now state the first partwfroain result.

Proposition 2.4. Let W: RY — CN*N be a periodic matrix weight with W= € L joc, and
suppose that b is a regulated function®f that lies in.//p(Rd;W) for somel < p < . Then
{b(M) }neza i in (T W). Moreover,
I{B(M) HI 7o raaw) < 101z, maw) -
Proof. The idea of proof is to use scalar transference togethertivitliact that the dual space
to Lp(T%W) is Lq(T%W~9P), with £+ % = 1, see [5]. Let®N be the family
{PO) = [Pu(¥),...AN(X)] " }

of vectors of trigonometric polynomials d@d. Take anyP € 29N, We now use (2.1) and
Lemma 2.3 to calculate the norm 8fP) in Lp(T9;W). We notice thatW /P ¢ Ly o, SO it
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follows that 229N is dense irLq(T9;W~%P) which again implies that

23)  [ISP)]lLyraw) = sup

Qegzd’N:HQ”Lq(Td;W*q/p>§1

[ (8P, Q00)r; X

Td

We now estimate the right hand side of (2.3). Defipéx) := e ™X* for x € RY ande > 0.
Using the scalar transference result (2.2) of Lemma 2.3, bt&io

N
[P0, Qudx= 3 [ SRIOQEIax
N

=3 lim &9 [ T(RLp)(OQEILe g0 dx

= e—0t

= lim 92 | (T(PLe/p) (0. Q0Leq(0)ra X

e—0t

— lim g%/2 /R d<W1/p(x)T(PL5/p)(x),W_l/p(X)Q(X)Ls/q(X)>e2dX

e—0t

1/p
< Iimsup(/]Rd €972 (x) |W1/p(x)T(P)(x)|pdx)

e—0t

1/q
x lim sup(/Rd €972 (X)W~ YP(x)Q(x)[9 dx)

e—0t+

1/p
< HTHLp(Rd;W)HLp(Rd;W) lim SUp(/l%d gd/ng(X)|W1/p(X)P(X)’de)

e—0t

1/q
X Iimsup</Rd ed/ng(x)|W‘1/p(x)Q(x)|qu)

e—0t

1/p
= HTHLp(Rd;W)—ip(Rd;W) (/]I‘d |W1/p(X)P(X)|de)

1/q
(2.4) x( y |W‘1/p(x)Q(x)|qu) :

In the last step, we have used that for any periodic functienL(T9), using Poisson’s sum-
mation formula,

£2 [ 1(0Le0odx=e2 5 [ f(x—lge K ax
R kezd /T

:/ £ (x)£9/2 3 o TEl—K gy
e kezd

_ — k|2 /& 27ix-k
— /T f(x) 3 e T /eerixk

kezd
:/ £(x) dX+ Es,
']I*d
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where

Eel < [[fllyere) ¥ €™ -0,
k>1

ase — 0. We can now complete the proof. Using the estimate (2.42.18)( we immediately
see that

ISP Ly erewy—Lperdaw) < T L) — L@y IPllLcrew) -

Moreover,Scan be extended to a bounded operatol:p(ﬁl‘d;W) with the required norm esti-
mate since”?N is dense irLp(T%W). Therefore|[{b(M)}[|_,raw) < 1]l @dw)- O

2.2. Multipliers in .#y(T9;W). We now turn to a converse result to Proposition 2.4. At a first
glance, the statement of Proposition 2.5 below may appe@atural since it requires informa-
tion about dilated versions of the weight. However, as will be demonstrated in Section 4,
the most interesting class of weights is the Muckenhoutséa, which is actually dilation
invariant making the statement appear more natural.

Proposition 2.5. Let W: RY — CN*N be a periodic matrix weight with W= € L joc, and
let 1 < p < c. Suppose that b is a bounded continuous functio®®mith {b(m/M)} .74 €
Mp(RYW(M-)) uniformly in Me N. Then b is in#p(R9;W). Moreover,

1BI] 7, mew) < Cp = hﬁgg”{b(m/M)}mH///p(Td;W(M~))'

Proof. Let F(x) = [F1(X),...,Fn(X)]T andG(x) = [G1(X),...,Gn(X)]T be vectors of compactly
supported smooth functions. There islp > 1 such thatM > Mg implies thatF(Mx) and
G(Mx) are supported ifi-1/2,1/2)9. LetM € N with M > Mo, and define

Fu() = 3 FMX=K),  Gu(x) =Y GM(x—K)).
kezd kezd

A straightforward calculation shows that the Fourier caedfits ofFy andGy satisfyﬁﬂ (m) =
M~9F(m/M) andGy (m) = M~9G(m/M). We use these facts to obtain,

2.5)
¥ o
>y b(m/M)Fi (m/M)G;(m/M)Vol ([, 114
i=lmezd
N
~|MOS 5 oM Gra(m)
iI=1mezd

— ‘Md/Td i (mede b(m/M)ﬁ.Mm)ezmm'X)mdx
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= MdAd<T{b(m/M)}FM(X)aGM(X)>£2dX

— Mmd /Td (WY PMX) Ty myny P (), W P(MX) G (X)) 1, A
| . 1/p
<M (/Td W /p('V'X)T{b(m/M)}FM(X>|pdx)

x (/Td |W‘1/p(Mx)GM(x)|qu) v

< MdH{b(m/M)}m||///p(1rd;W(M.)) IFm oo |- IGMIL(raw-arom.))
- CDHFHLP(Rd;W) ||G|||_q(]Rd;wfq/p)-

The functionsb(&)F(€)Gi(&) are Riemann integrable dkf, so letting the integeM — oo in
(2.5), we obtain using Parseval’s relation,

i/R b(f)ﬁ(f)éi(f)df‘ _

L4 (ToF (0. G (), dx
R

< CPHFHLp(Rd;W) ||G|||_q(Rd;wfq/p)-

Notice that the family of vectors of compactly smooth funog are dense in boltb(Rd;W)
and Lq(RY;W~%P), respectively, sinc®//P W/P ¢ Ly |oc. Therefore, it follows thab €
Mp(REW) with [|b]| . raaw) < Cp.

0

3. MUCKENHOUPT MATRIX WEIGHTS

So far we have proved two transference results, Proposttband Proposition 2.5. How-
ever, for these results to be useful we need to have integesxiamples of bounded multipliers
onLp(RY;W) and/orLp(T9;W) that can be used for the transfer process. This sectioniosnta
an application of Proposition 2.4 to the case of a matrix Weig that satisfies the so-calldy,
condition for matrices.

The Muckenhoupf-condition for matrix weights was introduced by NazarowiTrand
Volberg in [7,10] to study boundedness properties of thearecalued Hilbert transform. Here
we follow Roudenko [9] and give an equivalent and more dideinition of matrixA, weights.

It is proved in [9] that the following definition is equivaleto the Ap condition considered
in [7,10]. We let%(d) denote the family of all Euclidean balls if'.

Definition 3.1. Let W : R — CN*N be a matrix weight. For Xk p < o, let q denote the
conjugate exponent tp, i.e., % +% = 1. We say thaW belongs to the matrix Muckenhoupt
classA, provided

ﬂ) p/q dx

o / -1/ P — <o
(3.1) A(p,W) := sup (/Ble POW—YP(t) | B B < o,

Bc#(d)/B
We notice that a simple change of variable in (3.1) revealsAp is dilation invariant. More
precisely, for a matrix weightv € Ap, and anyM > 0, the dilated weighitV(M-) is also isAp
with the same bound(p,W(M-)) = A(p,W). This fact will be used in Section 4.
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The importance of the Muckenhoufs class is already apparent from the study of the Hilbert
transform in [7, 10]. Later Goldberg [S] demonstrated tltet Muckenhoup#,, class is also
useful for the study of general vector-valued multiplidrstact, the following general result on
vector-valued multipliers is proved in [5].

Theorem 3.2( [5]). Suppose WRY — CN*N is a matrix weight in A for somel < p < .

Assume T L4(RY) — Lq(RY) is a bounded convolution operator for sorhe< g < o, with
associated convolution kernel K satisfying

IK(x)| <Clx~® and |OK(¥)|<C|x 9%  xeRY\{0}.
Then T extends to a bounded operator giRY;W).
We combine Theorem 3.2 with Proposition 2.4 to obtain thivahg result.

Corollary 3.3. Suppose WRY — CN*N is a matrix weight in 4 for somel < p < c. Assume
that for somel < g < oo, Ty : Lq(RY) — Lg(RY) is a bounded multiplier operator induced by a
regulated multiplier b RY — RY. If the associated convolution kernel K satisfies

IK(X)|<Clx™@ and |OK(x)|<Clx™ 91  xeR¥\{0},
then{b(m) }m € .#p(T9;W), and be .#,(RY;W), with
LBz creaw) < 101 metawy-
4. BOCHNER-RIESZ SUMMATION

We now turn to a specific application of Corollary 3.3 and Pgfon 2.5. As our main
example, we consider vector Bochner-Riesz summationf Edr (T9) we define the Bochner-
Riesz partial sum operatoBg, a,R> 0, by

0 SR meZ“iZ|m|§R (1_ ?> fmyemm

with the Fourier coefficient$ (k) given by the usual formula,
f(m):= / f(x)e~2TMXdx
Td

We will need a few well-know results about Bochner-Riesz suation. The reader can find
these results and much more on Bochner-Riesz summatiof i€[6sely related tdBg is the
multiplier my onRRY given by

(4.2) Mg (&) = (1+]&[9)¢.
The convolution kernek? associated to, is given by
M (a+ 1) J444(271X))

(Mg) " (x) =K (x) :=

Y

o |X|%+a

with Jg the Bessel function of the first kind. As is well-knowg,(r) = O(r ~1/2) asr — oo for
anyf > 0. AIso,Jl’3(r) =Jg_1(r) —Jg41(r). It follows that fora > ¢y := %, there exists a
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constant such that
(4.3) KI[<C™,  |OK(x)] <Clx~**
We can now state and prove our main result on Bochner-Riesmstion.

Proposition 4.1. Suppose WRY — CN*N s a periodic matrix weight.
(i) IfW is in A, for somel < p < oo, then fora > 921,
SUPSUBIIBR [ (M) —Lp(Rew()) <

(i) Conversely, suppose that for sofhe p < o,
d—1

supsup||Bg? : . < 00,
Me§R>g|| R Ly @®awM.))—Lp®EWM.)

Then We A,

Proof. First we prove (i). The multiplier operators
Tr(f) == (ma (ﬁ) fA)v;

are bounded omz(Rd) sincemy is a bounded function. Moreover, the associated kernels
RIK?(R.) satisfy the estimates (4.3) uniformly > 0. Also,W ¢ Ap is periodic, sSWW(M-) is
a periodicAp-weight withM (p,W(M-)) = M(p,W) for M € N. We notice thain, is continuous
and thus regulated, so by Corollary 3{8g}r-o0 extends to a uniformly bounded family of
operators ofp(T9;W(M.)).

We turn to the proof of (ii). By Proposition 2.5, the multigdioperators

TM(f) = (md%l (M) f)v,

are uniformly bounded oh,(RY;W). The convolution kernel fofy is given byMIK “z* (M)
We use the asymptotic form,
1

2
r(d+3)
together with the equidistribution theorem, to concludat ttmere exist€ > 0 such that for
x € RY, we have

_ 2 d
IX[IMIK 2" (Mx) = |x|1/2Jd_%(27TM|x|) ~ \/;cos(ZnM|x| - 7") as|x| — oo,

sup|x/“MY|K “z" (Mx)| > C.
MeN
It now follows from Lemma 4.2 below thalV € Ay, O

The following technical lemma is used for the proof of (ii) Bmoposition 4.1; the lemma
gives a necessary condition for a family of multipliers tousgformly bounded ori_p(Rd;W)
under a mild “size” condition on the associated convolukemels.

For notational convenience, we define Be #(d), 1 < p < o, and%, + % =1,

3 / » dt p/q%
(4.4) A(B, p.W) -—/B(/BHWl oW PO |B|) B

We can now state and prove Lemma 4.2. The proof of the lemmassdoon [5, Theo-
rem 5.2].
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Lemma 4.2. Let W: RY — CN*N be a matrix weight, and let e C1(R%\{0}), me N, be a
sequence of convolution kernels, with denoting the operator induced by,KSuppose there
exists a uniform C such that

IOKm(¥)| <Clx 9%, xeRYmeN.
Assume that there exists a unit veator S92, and a constant a 0, such that
supmin{|Km(—ru)|, |[Km(ru)|} > ajr| 79, r € R\{0}.
m

If {Tm} is a uniformly bounded family of operators oB(IIRd;W), then W is in A.

Proof. Let Cy y be the constant given by Lemma 4.3 below,det 0 be such that 2+ £ <
%Cd‘ﬁl, and defindg := zd;% + 4. We claim that for each > 0 there existsn, € N such that

(4.5) |Kimy (V) — Ky (F£rtou)| < €|Km (£rtou)|, Vv € B(%rtou, 2r).

To verify (4.5) we pickmy € N such thafKm (+rtou)| > 555, However,|OKm(x)| < t—ﬁjfr%
0 0
for x € B(£rtou, 2r), so the claim follows directly from the mean value theorem.

Now, take any balB(y,r) € #(d), and letB’ = B(y+ rtou,r). We consider

Sf = xsTm (X Tm (X81)),
which is an integral operator with kernel

S3<X7y) :XBXB/;/ Km<X—Z>Km(Z—y)dZ,

supported orB x B. We clearly have the operator norm estimi®g|| < || Tm [|% < supy || Tml|?
onLp(RY;W).

We notice that the restrictiofix,y € B;z € B'} implies thatz—y € B(rtou,2r) andx—z €
B(—rtou, 2r). We rewrite the kernel as

(4.6) S(X,y) = |B|Km (rtou)K(—rtou)) Xexe + S1(X,Y),
where we use (4.5), and the fact thatRe2 < 1C; %, to obtain the estimate
1

(4.7) 1S1(%,Y)| < ECJ,§||5| - |[K(rtou)K(—rtou)|.

We use Lemma 4.3 to conclude that the operator with the conlstanel
So(%,y) = [B|Km (rtou)K(—rtou)) X8
has norm at lead®- A(B, p,W) on L(R%;W), with D proportional toety 2°C; {. The estimate

(4.7) and Lemma 4.3 shows that the nornSpbn L,(RY; W) is at most%A(B, p,W). It follows
that||Sg|| > 2A(B, p,W), so

2 2 2
ABB,p.W) < S[|Sgll < =1 Tm [|* < = supl|Tel|* < eo.
D D Dm

We conclude thatv belongs toA. O
The following technical Lemma, which is used to derive Lem#r is due to M. Goldberg

[5].
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Lemma 4.3( [5]). LetW: RY — CN*N pe a matrix weight, and let B (d). Suppose S is an
integral operator, Sx) := [ra S(X,y) f(y)dy, whose scalar kernel$y) is supported in B< B
and satisfies the bourj&(x,y)| < |B|~* for all (x,y) € B x B.

() The norm of S as an operator orb(IRd;W) is at most @G NA(B, p,W), with Gy a
dimensional constant independent of S.
(i) In the special casesS= |B|~1xgxg, the norm of §is at least q&lA(B, p,W).
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