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ON A TRANSFERENCE RESULT FOR MATRIX WEIGHTS

MORTEN NIELSEN

ABSTRACT. We consider a periodic matrix weightW defined onRd and taking values in the
N×N positive-definite matrices. For such weights, we prove a transference results between
multiplier operators onLp(Rd;W) andLp(Td;W), 1 < p < ∞, respectively. As an application,
we prove that Bochner-Riesz summation at the critical indexin Lp(Td;W) converges if and only
if W satisfies a matrix MuckenhouptAp-condition.

1. INTRODUCTION

A matrix weight is a locally integrable functionW : Rd → CN×N taking values in the set of
positive definite Hermitian forms. The associated weightedspaceLp(Rd;W), 1≤ p < ∞, is the
set of measurable (vector-)functionsf : Rd → CN satisfying

(1.1) ‖ f‖p
Lp(Rd;W) :=

∫
Rd
|W1/p f |pdx< ∞.

For periodic weights, i.e.,W : Td →CN×N, we define the associated weighted spaceLp(Td;W),
1≤ p < ∞, as the set of measurable periodic (vector-)functionsf : Td →CN satisfying

(1.2) ‖ f‖p
Lp(Td;W) :=

∫
Td
|W1/p f |pdx< ∞.

In this paper, we study transference results for multiplieroperators onLp(Rd;W) andLp(Td;W)
for periodic weightsW. By a multiplier operator on a weighted vector-valued space, we mean
a scalar multiplier that acts coordinatewise. More precisely, for a scalar multiplier operatorT
on Rd (or Td), we lift T to an operator on functionsf taking values inCN by letting it act
separately on each coordinate function,

(1.3) (T f) j = T f j , j = 1,2, . . .N.

It is well-known that in the scalar case, there is a close connection between boundedLp mul-
tipliers on the line and on the torus, and it turns out that such results can be considered in the
matrix weighted case as well. Transference can thus reduce the workload needed to proveLp-
boundedness for multipliers on e.g. the tours; one only needs to consider the corresponding
multiplier on the line (or vice-versa).

Scalar transference results for scalarLp-multipliers were first established by de Leeuw [4]. A
systematic treatment of transference for multipliers and maximal multiplier operators was given
by Coifman and Weiss [3]. More recent developments can be found in [1,2,8].

A number of authors have studied boundedness of multipliersonLp(Rd;W). In their seminal
papers [7,10], Treı̆l′ and Volberg proved that the Hilbert transform is bounded if and only if the
weightW belongs to an appropriate matrix MuckenhouptAp class. This result was extended
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by Goldberg [5] who proved that boundedness of standard multiplies onLp(Rd;W) are closely
related to the matrix MuckenhouptAp condition on the weightW. The transference results
obtained here allow us to obtain similar conclusions for multiplier sequences onLp(Td;W).

This paper is organized as follows. Section 2 contains the main results on transference for
multipliers betweenLp(Rd;W) andLp(Td;W). Our main application is presented in Section 3,
where we consider multipliers onLp spaces with weights satisfying a matrix Muckenhoupt
Ap condition. In Section 4, we characterize boundedness of Bochner-Riesz summation on
Lp(Td;W) in terms of properties of the weightW in . It is proved in Section 4 that bound-
edness of this summation procedure at the critical index is essentially equivalent to the weight
W belonging to the matrix Muckenhoupt classAp.

2. MAIN TRANSFERENCE RESULTS

This section contains our main result. We give results in twodirections. In Proposition 2.4,
we transfer boundedness for multipliers onLp(Rd;W) to boundedness for discrete multipliers
on Lp(Td;W), while in Proposition 2.5 we transfer in the other directionfrom Lp(Td;W) to
Lp(Rd;W).

Before we state the transference results, we need to define the classes of bounded multipliers
onLp(Rd;W) andLp(Td;W) that will be considered.

Definition 2.1. Let W : Rd → CN×N be a matrix weight, and let 1≤ p < ∞. We denote by
Mp(Rd;W) the set of all bounded functionsb onRd such that the operator

Tb( f ) :=
(
bf̂

)∨
extends to a bounded operator onLp(Rd;W). The norm‖b‖Mp(Rd;W) of an elementb∈Mp(Rd;W)
is by definition the norm of the operatorTb onLp(Rd;W).

Similarly, forW : Rd →CN×N a periodic matrix weight, we denote byMp(Td;W) the set of
bounded sequencesa = {ak}k∈Zd such that the operator

Ta( f )(x) := ∑
k∈Zd

ak f̂ (k)e2π ik·x

extends to a bounded operator onLp(Td;W). The norm‖{ak}‖Mp(Rd;W) of an elementa ∈
Mp(Rd;W) is defined to be the norm of the operatorTa on Lp(Td;W).

2.1. Multipliers in Mp(Rd;W). We now focus on multipliersb in Mp(Rd;W). The basic
idea of transference is to sampleb on Zd and thereby obtain a multiplier inMp(Td;W). For
this to work,b must be well-behaved pointwise. A very useful notion in the theory of (scalar)
transference is that of a regulated function. Let us recall the definition of a regulated function.

Definition 2.2. Let t0 ∈ Rd. A bounded measurable functionb on Rd is called regulated at the
point t0 if

lim
ε→0

1
εd

∫
|t|≤ε

(
b(t0− t)−b(t0)

)
dt = 0.

The functionb is called regulated if it is regulated at every pointt0 ∈Rd.
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We now turn to vector-valued multipliers. Our idea is to use scalar transference combined
with a duality argument. The dual space ofLp(D;W), for 1< p < ∞, andD ∈ {Td,Rd}, can be
identified with,Lq(D;W−q/p), whereq is the dual exponent top given by1

p + 1
q = 1, see [10] for

further details. The pairing ofLp(D;W) andLp(D;W)∗ = Lq(D;W−q/p) is given by the integral

(2.1)
∫

D
〈 f (x),g(x)〉ℓ2(CN) dx=

N

∑
j=1

∫
D

f j(x)g j(x)dx.

The integrals on the right-hand side of (2.1) are ordinary scalar integrals, and in the proof
of Proposition 2.4 below we use the following well-known lemma from (scalar) transference
repeatedly.

Lemma 2.3 ( [3, 6]). Let T be the operator onRd whose multiplier is b(ξ ), and let S be the
operator onTd whose multiplier is the sequence{b(m)}m∈Zd. Assume that b(ξ ) is regulated at

every point m∈ Zd. Let Lε(x) = e−πε|x|2 for x∈ Rd andε > 0. For every pair of trigonometric
polynomials P and Q onRd, andα,β > 0 with α +β = 1, we have the identity

(2.2) lim
ε→0+

εd/2
∫

Rd
T(PLεα)(x)Q(x)Lεβ (x)dx=

∫
Td

S(P)(x)Q(x)dx.

We also need the following observation about weightsW : Rd → CN×N with W ∈ L1,loc. Let
α > 0 and 1≤ p < ∞. SinceW(x) is a nonnegative and self-adjoint matrix at each pointx, we
have uniformly inx,

‖Wα(x)‖= ‖W 2α
p (x)‖ p

2 ≍ [trace(W
2α
p (x))]

p
2

=
(

∑
j=1N

|W α
p (x)ej |2

)p/2

≍
N

∑
j=1

|W α
p (x)ej |p,

where{ej}N
j=1 is any orthonormal basis forCN. We apply the result for(α, p) := (1, p), and

then for(α, p) := (1/p,1) to conclude thatW ∈ L1,loc implies thatW1/p ∈ L1,loc for p≥ 1.
With this notation in place, we can now state the first part of our main result.

Proposition 2.4. Let W : Rd → CN×N be a periodic matrix weight with W,W−1 ∈ L1,loc, and
suppose that b is a regulated function onRd that lies inMp(Rd;W) for some1≤ p < ∞. Then
{b(m)}m∈Zd is in Mp(Td;W). Moreover,

‖{b(m)}‖Mp(Td;W) ≤ ‖b‖Mp(Rd;W).

Proof. The idea of proof is to use scalar transference together withthe fact that the dual space
to Lp(Td;W) is Lq(Td;W−q/p), with 1

p + 1
q = 1, see [5]. LetPd,N be the family{

P(x) = [P1(x), . . .PN(x)]T
}

of vectors of trigonometric polynomials onRd. Take anyP ∈ Pd,N. We now use (2.1) and
Lemma 2.3 to calculate the norm ofS(P) in Lp(Td;W). We notice thatW−1/p ∈ L1,loc, so it
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follows thatPd,N is dense inLq(Td;W−q/p) which again implies that

(2.3) ‖S(P)‖Lp(Td;W) = sup
Q∈Pd,N:‖Q‖

Lq(Td;W−q/p)
≤1

∣∣∣∣∫Td
〈S(P)(x),Q(x)〉ℓ2 dx

∣∣∣∣.
We now estimate the right hand side of (2.3). DefineLε(x) := e−πε|x|2 for x∈ Rd andε > 0.

Using the scalar transference result (2.2) of Lemma 2.3, we obtain∫
Td
〈S(P)(x),Q(x)〉ℓ2 dx=

N

∑
i=1

∫
Td

S(Pi)(x)Qi(x)dx

=
N

∑
i=1

lim
ε→0+

εd/2
∫

Rd
T(PiLε/p)(x)Qi(x)Lε/q(x)dx

= lim
ε→0+

εd/2
∫

Rd
〈T(PLε/p)(x),Q(x)Lε/q(x)〉ℓ2 dx

= lim
ε→0+

εd/2
∫

Rd
〈W1/p(x)T(PLε/p)(x),W

−1/p(x)Q(x)Lε/q(x)〉ℓ2 dx

≤ limsup
ε→0+

(∫
Rd

εd/2Lε(x)|W1/p(x)T(P)(x)|pdx

)1/p

× limsup
ε→0+

(∫
Rd

εd/2Lε(x)|W−1/p(x)Q(x)|qdx

)1/q

≤ ‖T‖Lp(Rd;W)→Lp(Rd;W) limsup
ε→0+

(∫
Rd

εd/2Lε(x)|W1/p(x)P(x)|pdx

)1/p

× limsup
ε→0+

(∫
Rd

εd/2Lε(x)|W−1/p(x)Q(x)|qdx

)1/q

= ‖T‖Lp(Rd;W)→Lp(Rd;W)

(∫
Td
|W1/p(x)P(x)|pdx

)1/p

×
(∫

Td
|W−1/p(x)Q(x)|qdx

)1/q

.(2.4)

In the last step, we have used that for any periodic functionf ∈ L1(Td), using Poisson’s sum-
mation formula,

εd/2
∫

Rd
f (x)Lε(x)dx= εd/2 ∑

k∈Zd

∫
Td

f (x−k)e−πε|x−k|2 dx

=
∫

Td
f (x)εd/2 ∑

k∈Zd

e−πε|x−k|2 dx

=
∫

Td
f (x) ∑

k∈Zd

e−π|k|2/εe2π ix·k dx

=
∫

Td
f (x)dx+Eε ,
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where

|Eε | ≤ ‖ f‖L1(Td) ∑
k≥1

e−π|k|2/ε → 0,

asε → 0. We can now complete the proof. Using the estimate (2.4) in (2.3), we immediately
see that

‖S(P)‖Lp(Td;W)→Lp(Td;W) ≤ ‖T‖Lp(Rd;W)→Lp(Rd;W)‖P‖Lp(Td;W).

Moreover,Scan be extended to a bounded operator onLp(Td;W) with the required norm esti-
mate sincePd,N is dense inLp(Td;W). Therefore,‖{b(m)}‖Mp(Td;W) ≤ ‖b‖Mp(Rd;W). �

2.2. Multipliers in Mp(Td;W). We now turn to a converse result to Proposition 2.4. At a first
glance, the statement of Proposition 2.5 below may appear unnatural since it requires informa-
tion about dilated versions of the weightW. However, as will be demonstrated in Section 4,
the most interesting class of weights is the Muckenhoupt classAp, which is actually dilation
invariant making the statement appear more natural.

Proposition 2.5. Let W : Rd → CN×N be a periodic matrix weight with W,W−1 ∈ L1,loc, and
let 1≤ p < ∞. Suppose that b is a bounded continuous function onRd with {b(m/M)}m∈Zd ∈
Mp(Rd;W(M·)) uniformly in M∈N. Then b is inMp(Rd;W). Moreover,

‖b‖Mp(Rd;W) ≤Cp := sup
M∈N

‖{b(m/M)}m‖Mp(Td;W(M·)).

Proof. Let F(x) = [F1(x), . . . ,FN(x)]T andG(x) = [G1(x), . . . ,GN(x)]T be vectors of compactly
supported smooth functions. There is anM0 ≥ 1 such thatM ≥ M0 implies thatF(Mx) and
G(Mx) are supported in[−1/2,1/2)d. Let M ∈N with M ≥ M0, and define

FM(x) = ∑
k∈Zd

F(M(x−k)), GM(x) = ∑
k∈Zd

G(M(x−k)).

A straightforward calculation shows that the Fourier coefficients ofFM andGM satisfyF̂M(m) =
M−dF̂(m/M) andĜM(m) = M−dĜ(m/M). We use these facts to obtain,

∣∣∣∣ N

∑
i=1

∑
m∈Zd

b(m/M)F̂i(m/M)Ĝi(m/M)Vol
([

m
M , m+1

M

]d)∣∣∣∣
(2.5)

=
∣∣∣∣Md

N

∑
i=1

∑
m∈Zd

b(m/M)F̂i,M(m)Ĝi,M(m)
∣∣∣∣

=
∣∣∣∣Md

∫
Td

N

∑
i=1

(
∑

m∈Zd

b(m/M)F̂i,M(m)e2π im·x
)

Gi,M(x)dx

∣∣∣∣
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= Md
∫

Td
〈T{b(m/M)}FM(x),GM(x)〉ℓ2 dx

= Md
∫

Td
〈W1/p(Mx)T{b(m/M)}FM(x),W−1/p(Mx)GM(x)〉ℓ2 dx

≤Md
(∫

Td
|W1/p(Mx)T{b(m/M)}FM(x)|pdx

)1/p

×
(∫

Td
|W−1/p(Mx)GM(x)|qdx

)1/q

≤Md‖{b(m/M)}m‖Mp(Td;W(M·))‖FM‖Lp(Td;W(M·))‖ · ‖GM‖Lq(Td;W−q/p(M·))
= Cp‖F‖Lp(Rd;W)‖G‖Lq(Rd;W−q/p).

The functionsb(ξ )F̂i(ξ )Ĝi(ξ ) are Riemann integrable onRd, so letting the integerM → ∞ in
(2.5), we obtain using Parseval’s relation,∣∣∣∣ N

∑
i=1

∫
Rd

b(ξ )F̂i(ξ )Ĝi(ξ )dξ
∣∣∣∣ =

∣∣∣∣∫Rd
〈TbF(x),G(x)〉ℓ2 dx

∣∣∣∣≤Cp‖F‖Lp(Rd;W)‖G‖Lq(Rd;W−q/p).

Notice that the family of vectors of compactly smooth functions are dense in bothLp(Rd;W)
andLq(Rd;W−q/p), respectively, sinceW1/p,W−1/p ∈ L1,loc. Therefore, it follows thatb ∈
Mp(Rd;W) with ‖b‖Mp(Rd;W) ≤Cp.

�

3. MUCKENHOUPT MATRIX WEIGHTS

So far we have proved two transference results, Proposition2.4 and Proposition 2.5. How-
ever, for these results to be useful we need to have interesting examples of bounded multipliers
onLp(Rd;W) and/orLp(Td;W) that can be used for the transfer process. This section contains
an application of Proposition 2.4 to the case of a matrix weightW that satisfies the so-calledAp
condition for matrices.

The MuckenhouptAp-condition for matrix weights was introduced by Nazarov, Treı̆l′ and
Volberg in [7,10] to study boundedness properties of the vector-valued Hilbert transform. Here
we follow Roudenko [9] and give an equivalent and more directdefinition of matrixAp weights.
It is proved in [9] that the following definition is equivalent to the Ap condition considered
in [7,10]. We letB(d) denote the family of all Euclidean balls inRd.

Definition 3.1. Let W : Rd → CN×N be a matrix weight. For 1< p < ∞, let q denote the
conjugate exponent top, i.e., 1

p + 1
q = 1. We say thatW belongs to the matrix Muckenhoupt

classAp provided

(3.1) A(p,W) := sup
B∈B(d)

∫
B

(∫
B

∥∥W1/p(x)W−1/p(t)
∥∥p dt

|B|
)p/q dx

|B| < ∞.

We notice that a simple change of variable in (3.1) reveals thatAp is dilation invariant. More
precisely, for a matrix weightW ∈ Ap, and anyM > 0, the dilated weightW(M·) is also isAp
with the same boundA(p,W(M·)) = A(p,W). This fact will be used in Section 4.
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The importance of the MuckenhouptAp class is already apparent from the study of the Hilbert
transform in [7, 10]. Later Goldberg [5] demonstrated that the MuckenhouptAp class is also
useful for the study of general vector-valued multipliers.In fact, the following general result on
vector-valued multipliers is proved in [5].

Theorem 3.2( [5]). Suppose W: Rd → CN×N is a matrix weight in Ap for some1 < p < ∞.
Assume T: Lq(Rd) → Lq(Rd) is a bounded convolution operator for some1 < q < ∞, with
associated convolution kernel K satisfying

|K(x)| ≤C|x|−d and |∇K(x)| ≤C|x|−d−1, x∈ Rd\{0}.
Then T extends to a bounded operator on Lp(Rd;W).

We combine Theorem 3.2 with Proposition 2.4 to obtain the following result.

Corollary 3.3. Suppose W: Rd →CN×N is a matrix weight in Ap for some1 < p < ∞. Assume
that for some1 < q < ∞, Tb : Lq(Rd)→ Lq(Rd) is a bounded multiplier operator induced by a
regulated multiplier b: Rd → Rd. If the associated convolution kernel K satisfies

|K(x)| ≤C|x|−d and |∇K(x)| ≤C|x|−d−1, x∈ Rd\{0},
then{b(m)}m∈Mp(Td;W), and b∈Mp(Rd;W), with

‖{b(m)}‖Mp(Td;W) ≤ ‖b‖Mp(Rd;W).

4. BOCHNER-RIESZ SUMMATION

We now turn to a specific application of Corollary 3.3 and Proposition 2.5. As our main
example, we consider vector Bochner-Riesz summation. Forf ∈ L1(Td) we define the Bochner-
Riesz partial sum operatorsBα

R, α,R> 0, by

(4.1) Bα
R( f )(x) := ∑

m∈Zd:|m|≤R

(
1− |m|2

R2

)α
f̂ (m)e2π im·x,

with the Fourier coefficientŝf (k) given by the usual formula,

f̂ (m) :=
∫

Td
f (x)e−2π im·xdx.

We will need a few well-know results about Bochner-Riesz summation. The reader can find
these results and much more on Bochner-Riesz summation in [6]. Closely related toBα

R is the
multiplier mα onRd given by

(4.2) mα(ξ ) = (1+ |ξ |2)α
+.

The convolution kernelKα associated tomα is given by

(mα)∨(x) = Kα(x) :=
Γ(α +1)

πα

Jd
2+α(2π|x|)
|x| d

2+α
,

with Jβ the Bessel function of the first kind. As is well-known,Jβ (r) = O(r−1/2) asr → ∞ for
anyβ ≥ 0. Also,J′β (r) = Jβ−1(r)−Jβ+1(r). It follows that forα ≥ cd := d−1

2 , there exists a
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constantC such that

|Kα(x)| ≤C|x|−d, |∇Kα(x)| ≤C|x|−d−1.(4.3)

We can now state and prove our main result on Bochner-Riesz summation.

Proposition 4.1. Suppose W: Rd → CN×N is a periodic matrix weight.

(i) If W is in Ap for some1 < p < ∞, then forα ≥ d−1
2 ,

sup
M∈N

sup
R>0

‖Bα
R‖Lp(Rd;W(M·))→Lp(Rd;W(M·)) < ∞.

(ii) Conversely, suppose that for some1 < p < ∞,

sup
M∈N

sup
R>0

‖B
d−1

2
R ‖Lp(Rd;W(M·))→Lp(Rd;W(M·)) < ∞.

Then W∈ Ap.

Proof. First we prove (i). The multiplier operators

TR( f ) :=
(
mα

( ·
R

)
f̂
)∨

,

are bounded onL2(Rd) sincemα is a bounded function. Moreover, the associated kernels
RdKα(R·) satisfy the estimates (4.3) uniformly inR> 0. Also,W ∈Ap is periodic, soW(M·) is
a periodicAp-weight withM(p,W(M·)) = M(p,W) for M ∈N. We notice thatmα is continuous
and thus regulated, so by Corollary 3.3,{Bα

R}R>0 extends to a uniformly bounded family of
operators onLp(Td;W(M·)).

We turn to the proof of (ii). By Proposition 2.5, the multiplier operators

TM( f ) :=
(
md−1

2

( ·
M

)
f̂
)∨

,

are uniformly bounded onLp(Rd;W). The convolution kernel forTM is given byMdK
d−1

2 (M·)
We use the asymptotic form,

πd− 1
2

Γ(d+ 1
2)
|x|dMdK

d−1
2 (Mx) = |x|1/2Jd− 1

2
(2πM|x|)∼

√
2
π

cos

(
2πM|x|− dπ

2

)
, as|x| → ∞,

together with the equidistribution theorem, to conclude that there existsC > 0 such that for
x∈ Rd, we have

sup
M∈N

|x|dMd|K d−1
2 (Mx)| ≥C.

It now follows from Lemma 4.2 below thatW ∈ Ap. �
The following technical lemma is used for the proof of (ii) inProposition 4.1; the lemma

gives a necessary condition for a family of multipliers to beuniformly bounded onLp(Rd;W)
under a mild “size” condition on the associated convolutionkernels.

For notational convenience, we define forB∈B(d), 1< p < ∞, and 1
p + 1

q = 1,

(4.4) A(B, p,W) :=
∫

B

(∫
B

∥∥W1/p(x)W−1/p(t)
∥∥p dt

|B|
)p/q dx

|B| .
We can now state and prove Lemma 4.2. The proof of the lemma is based on [5, Theo-

rem 5.2].
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Lemma 4.2. Let W : Rd → CN×N be a matrix weight, and let Km∈C1(Rd\{0}), m∈ N, be a
sequence of convolution kernels, with Tm denoting the operator induced by Km. Suppose there
exists a uniform C such that

|∇Km(x)| ≤C|x|−d−1, x∈ Rd,m∈N.

Assume that there exists a unit vectoru ∈ Sd−1, and a constant a> 0, such that

sup
m

min{|Km(−ru)|, |Km(ru)|} ≥ a|r|−d, r ∈ R\{0}.

If {Tm} is a uniformly bounded family of operators on Lp(Rd;W), then W is in Ap.

Proof. Let Cd,N be the constant given by Lemma 4.3 below, letε > 0 be such that 2ε + ε2 <
1
2C−2

d,N, and definet0 := 2d+3C
εa +4. We claim that for eachr > 0 there existsmr ∈N such that

(4.5) |Kmr (v)−Kmr (±rt0u)| ≤ ε|Kmr (±rt0u)|, ∀v ∈ B(±rt0u,2r).

To verify (4.5) we pickmr ∈ N such that|Kmr (±rt0u)| ≥ a
2rdtd

0
. However,|∇Km(x)| ≤ 2d+1C

td+1
0 rd+1

for x∈ B(±rt0u,2r), so the claim follows directly from the mean value theorem.
Now, take any ballB(y, r) ∈B(d), and letB′ = B(y+ rt0u, r). We consider

SB f := χBTmr (χB′Tmr (χB f )),

which is an integral operator with kernel

SB(x,y) = χB×B

∫
B′

Kmr (x−z)Kmr (z−y)dz,

supported onB×B. We clearly have the operator norm estimate‖SB‖ ≤ ‖Tmr‖2 ≤ supm‖Tm‖2

onLp(Rd;W).
We notice that the restriction{x,y ∈ B;z∈ B′} implies thatz− y ∈ B(rt0u,2r) andx− z∈

B(−rt0u,2r). We rewrite the kernel as

(4.6) SB(x,y) = |B|Kmr (rt0u)K(−rt0u))χB×B +S1(x,y),

where we use (4.5), and the fact that 2ε + ε2 < 1
2C−2

d,N, to obtain the estimate

(4.7) |S1(x,y)| ≤ 1
2
C−2

d,N|B| · |K(rt0u)K(−rt0u)|.
We use Lemma 4.3 to conclude that the operator with the constant kernel

S0(x,y) := |B|Kmr (rt0u)K(−rt0u))χB×B

has norm at leastD ·A(B, p,W) onLp(Rd;W), with D proportional toa2t−2d
0 C−1

d,N. The estimate

(4.7) and Lemma 4.3 shows that the norm ofS1 onLp(Rd;W) is at mostD2 A(B, p,W). It follows
that‖SB‖ ≥ D

2 A(B, p,W), so

A(B, p,W)≤ 2
D
‖SB‖ ≤ 2

D
‖Tmr‖2 ≤ 2

D
sup

m
‖Tm‖2 < ∞.

We conclude thatW belongs toAp. �
The following technical Lemma, which is used to derive Lemma4.2, is due to M. Goldberg

[5].
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Lemma 4.3( [5]). Let W : Rd →CN×N be a matrix weight, and let B∈B(d). Suppose S is an
integral operator, S f(x) :=

∫
Rd S(x,y) f (y)dy, whose scalar kernel S(x,y) is supported in B×B

and satisfies the bound|S(x,y)| ≤ |B|−1 for all (x,y) ∈ B×B.

(i) The norm of S as an operator on Lp(Rd;W) is at most Cd,NA(B, p,W), with Cd,N a
dimensional constant independent of S.

(ii) In the special case S0 = |B|−1χB×B, the norm of S0 is at least C−1
d,NA(B, p,W).
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