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Abstract. We present results on total domination in a partitioned graph G = (V, E). Let γt(G)
denote the total dominating number of G. For a partition V1, V2, . . . , Vk, k ≥ 2, of V , let γt(G; Vi)
be the cardinality of a smallest subset of V such that every vertex of Vi has a neighbour in it
and define the following

ft(G; V1, V2, . . . , Vk) = γt(G) + γt(G; V1) + γt(G; V2) + . . . + γt(G; Vk)

ft(G; k) = max{ft(G; V1, V2, . . . , Vk) | V1, V2, . . . , Vk is a partition of V }
gt(G; k) = max{Σk

i=1γt(G; Vi) | V1, V2, . . . , Vk is a partition of V }
We summarize known bounds on γt(G) and for graphs with all degrees at least δ we derive

the following bounds for ft(G; k) and gt(G; k).

(i) For δ ≥ 2 and k ≥ 3 we prove ft(G; k) ≤ 11|V |/7 and this inequality is best possible.

(ii) for δ ≥ 3 we prove that ft(G; 2) ≤ (5/4 − 1/372)|V |. That inequality may not be best
possible, but we conjecture that ft(G; 2) ≤ 7|V |/6 is.

(iii) for δ ≥ 3 we prove ft(G; k) ≤ 3|V |/2 and this inequality is best possible.

(iv) for δ ≥ 3 the inequality gt(G; k) ≤ 3|V |/4 holds and is best possible.

Key words. Total domination, Partitions and Hypergraphs.

1. Notation

By G = (V,E) we denote a graph G with vertex set V = V (G) and edge set E = E(G).
The order of G is |V (G)| = n. For x ∈ V (G) we denote by NG(x) the set of neighbours to
x and NG[x] = {x}∪NG(x). Indices may be omitted if clear from context. The degree of x
is dG(x) = |NG(x)|, the number of neighbours to x. We let δ(G) = δ denote the minimum
degree in G and ∆(G) = ∆ the maximum degree. A hypergraph H = (V,E) has vertex set
V = V (H) and its set of hyperedges, or edges for short, is E = E(H). Each hyperedge e
is a subset of V , e ⊆ V (H). A vertex v is incident with an edge e if v ∈ e, the degree of
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v is the number of hyperedges in H containing v. We let δ(H) = δ denote the minimum
degree in H and ∆(H) = ∆ the maximum degree. H is r-regular if each vertex has degree
r, i.e. dH(x) = r, or equivalently, x is contained in precisely r edges. H is k-uniform if
each hyperedge contains exactly k vertices. Two edges e1 and e2 are said to be overlapping
if |V (e1) ∩ V (e2)| ≥ 2. Let Y ⊆ V (H) then E(Y ) denotes all hyperedges, e, contained in
Y (i.e. V (e) ⊆ Y ).

For a hypergraph H a hitting set or a transversal T is a set of vertices T ⊆ V (H) such
that e∩T 6= ∅ for each hyperedge e in E(H), i.e. each edge e contains at least one vertex
from T . T (H) denotes the minimum cardinality of a transversal for the hypergraph H. For
sets S, T ⊆ V , in a graph G the set S totally dominates T if every vertex in T is adjacent
to some vertex of S. The minimum number of vertices needed to totally dominate V is the
total domination number γt(G). For a subset S of V we let γt(G; S) denote the smallest
number of vertices in G which totally dominates S. A partition V = (V1, V2, . . . , Vk) of
V (G) into k disjoint sets, k ≥ 2, has V =

⋃k
i=1 Vi, Vi ∩ Vj = ∅, 1 ≤ i < j ≤ k. For a

partition (V1, V2, . . . , Vk) of V , we define the following.

ft(G; V1, V2, . . . , Vk) = γt(G) + γt(G; V1) + γt(G; V2) + . . . + γt(G; Vk)

gt(G; V1, V2, . . . , Vk) = γt(G; V1) + γt(G; V2) + . . . + γt(G; Vk)

We furthermore define ft(G; k) and gt(G; k) as follows.

ft(G; k) = max{ft(G; V1, V2, . . . , Vk) | V1, V2, . . . , Vk is a partition of V }
gt(G; k) = max{gt(G; V1, V2, . . . , Vk) | V1, V2, . . . , Vk is a partition of V }
For further notation we refer to Chartrand and Lesniak [1].

2. Introduction

The theory of domination is outlined in two books by Haynes, Hedetniemi and Slater [5,
6]. A combination of domination and partitions is treated by Hartnell and Vestergaard
[7], Seager [14], Tuza and Vestergaard [17], Henning and Vestergaard [11]. There has been
an upsurge in the study of total domination. New results on total domination are given by
Henning, Kang, Shan, Thomassé and Yeo in [10,12,15,18]. In [9] Henning surveys recent
results on total domination. Here we shall study total domination in partitioned graphs.

3. Bounds on γt

We summarize in Theorem 1 results found by Henning, Thomassé and Yeo. If C10 :
v1, v2, . . . , v10, v1 is the circuit with 10 vertices then let G10 denote the graph obtained
from C10 by addition of the edge v1v6 and let H10 denote the graph obtained from C10 by
addition of the edges v1v6 and v2v7.

Theorem 1. Let G be a connected graph with n vertices and minimum degree δ(G) = δ.
Then

δ ≥ 2 implies γt(G) ≤ 4n/7 for G /∈ {C3, C5, C6, C10, G10, H10} ([8, Corollary 6], [9, The-
orem 27]).

δ ≥ 3 implies γt(G) ≤ n/2. ([15]).
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δ ≥ 4 implies γt(G) ≤ 3n/7 ([15]) and there exists some ǫ > 0 such that γt(G) ≤ (3/7−ǫ)n
for G 6= G14, where G14 is an incidence bipartite graph of order 14 derived from the
Fano plane ([19]).

It is a conjecture that δ ≥ 5 implies γt(G) ≤ 4n/11.
Theorem 2 and Theorem 3 below, give conditions for equality in Theorem 1.

Theorem 2. ([9, Theorem 29]) Let G be a connected graph of order n > 14 with δ ≥ 2.
Then γt(G) = 4n/7 if and only if G can be obtained from a connected graph F of order at
least three by adding |V (F )| disjoint copies of C6, one corresponding to each v ∈ V (F ),
such that either v is joined by a new edge to a vertex in its corresponding C6 or by two
new edges to two vertices at distance two apart in its corresponding C6.

The family G ∪ H is constructed in [3] as follows. Take two copies a1b1a2b2 . . . akbk

and c1d1c2d2 . . . ckdk, of the path P2k, k ≥ 2, and add edges aidi, bici for i = 1, 2, . . . , k.
¿From this the graph of order 4k belonging to the infinite family G is obtained by adding
a1c1 and bkdk, while the graph of order 4k in H is obtained by adding a1bk and c1dk,
The generalized Petersen graph GP16 is obtained from two circuits u1u2u3 . . . u7u8 and
v1v2v3 . . . v7v8 by addition of edges u1v1, u2v4, u3v7, u4v2, u5v5, u6v8, u7v3, u8v6.

Theorem 3. ([12, Theorem 5]) Let G be a connected graph with δ(G) ≥ 3. Then γt(G) =
n/2 if and only if G ∈ G ∪H or G = GP16.

4. ft for k-partitioned graphs with δ ≥ 2

We have that ft increases with the number of partition classes, i.e.,
ft(G; k) ≤ ft(G; k + 1). Therefore we get a weaker inequality if we partition V into more
than two classes. That is demonstrated in Theorem 4 below.

Theorem 4. Let G be a connected graph of order n with δ(G) ≥ 2 and G 6∈ {C3, C5, C6, C10}.
If k ≥ 2 then ft(G; k) ≤ 11n/7.

If k = 2 then ft(G; k) ≤ 3n/2. Equality holds if and only if G is a circuit of length zero
modulo four, G = C4t, t ≥ 1.

If k = 3 then ft(G; k) ≤ 11n/7. For n > 14 equality holds if and only if G can be obtained
from a circuit or a path of order at least three by joining each of its vertices by one
edge to disjoint copies of C6.

If k ≥ 4 then ft(G; k) ≤ 11n/7 and for n > 14 equality holds if and only if ∆(G) ≤ k and
G can be obtained from a connected graph F having order at least three and gt(F ; k) =
|V (F )| by adding disjoint copies of C6, one corresponding to each v ∈ V (F ), such that
either v is joined by a new edge to one vertex in its corresponding C6 or by two new
edges to two vertices at distance two apart in its corresponding C6.

Proof. By Theorem 1 we have γt(G) ≤ 4n/7 and assigning to each vertex its own class
dominator we have gt(G; k) ≤ n. Therefore ft(G; k) = γt(G) + gt(G; k) ≤ 11n/7. The
result for k = 2 is proven by Frendrup, Henning and Vestergaard in [4, Theorem 2]. For
k ≥ 3 the equality ft(G; k) = 11n/7 implies γt(G) = 4n/7 and gt(G; k) = n and therefore
G has the structure described in Theorem 2. Since gt(G; k) = n each subgraph H of G
must satisfy gt(H; k) = |V (H)| and further ∆(G) ≤ k. Let H1 be the graph obtained from
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a circuit C6 : v1v2 . . . v6 by adding a new vertex x and the edge xv1 and let H2 := H1+xv3.
Observe for k = 3 that gt(H1; k) = |V (H1)| (obtainable from partitioning x, v1, v2 . . . , v6

into classes indexed 1122133 or 1221133) while gt(H2; k) < |V (H2)|. For k ≥ 4 we can
easily show that gt(Hi; k) = |V (Hi)|, i = 1, 2. This proves for k ≥ 3 that ft(G; k) = 11n/7
implies G has the structure described in this theorem. Conversely, assume first that k = 3
and that G is obtainable as a disjoint union of H1’s with edges added between the vertices
named x, so they span F , where F is a path or circuit. We must exhibit a partition of V (G)
proving that ft(G; k) = 11n/7, i.e. that gt(G; k) = |V (G)|. It is easy to find a partition
V ′

1 , V
′
2 , V

′
3 of V (F ) such that gt(F ; k) = |V (F )|. If k = 3 we can extend this partition to

all the H1’s such that the following holds, which proves that gt(G; V ′
1 , V

′
2 , V

′
3) = n.

– N(x) = NF (x) ∪ {v1} contains at most one vertex from each V ′
1 , V

′
2 , V

′
3 (just put v1 in

the partition set which doesn’t contain any of the two vertices in NF (x)).
– N(v1) = {x, v2, v6} contains one vertex from each V ′

1 , V
′
2 , V

′
3 (just put v2 and v6 in the

partition sets such that this holds).
– N(v3), N(v5) ⊂ {v2, v4, v6}, which contains one vertex from each V ′

1 , V
′
2 , V

′
3 (just put v4

in the same set as x).
– N(v2), N(v4), N(v6) ⊂ {v1, v3, v5}, which contains one vertex from each V ′

1 , V
′
2 , V

′
3 (just

put v3 and v5 in the partition sets such that this holds).

Assume next that k ≥ 4. Then a vertex x ∈ F may belong to a unit H1 or H2. Again
there is a partition V ′

1 , V
′
2 , . . . , V

′
k of V (F ) such that gt(F ; k) = |V (F )| and similarly to

above we can extend this partition to all of G, such that the neighbourhood of every
vertex in G contains at most one vertex from any partition set. The details are left to the
reader. This proves that gt(G; k) = n.

5. gt for two-partitioned graphs with δ ≥ 3

Chvátal and McDiarmid [2] and Tuza [16] independently established the following result
about transversals in hypergraphs (see also Thomassé and Yeo [15] for a short proof of
this result).

Theorem 5. ([2,16,15]) If H is a hypergraph with all edges of size at least three, then
T (H) ≤ (|V (H)|+ |E(H)|)/4.
Theorem 6. Let G be a graph of order n with δ ≥ 3. Then gt(G; 2) ≤ 3n/4.

Proof. ¿From the two-partitioned graph G, we define for i = 1, 2, Hi to be the hypergraph
on n vertices and mi edges where V (Hi) = V (G) and the hyperedges of Hi are the sets of
neighbourhoods of class i vertices. In other words, e ∈ E(Hi) precisely if, for some vertex
v in Vi, e = NG(v). Each edge in Hi has at least three vertices because δ(G) ≥ 3. In G
we see that a set Ti of vertices totally dominates Vi if and only if Ti is a transversal of Hi.
Applying Theorem 5 to H1 and H2 separately we obtain transversals Ti of Hi, i = 1, 2,
satisfying

|T 1| ≤ m1+n
4

|T 2| ≤ m2+n
4

.

Since m1+m2 = n we obtain |T1|+|T2| ≤ m1+n
4

+m2+n
4

= 3n
4

. This proves Theorem 6.

An example of graphs with equality gt(G; 2) = 3n/4 is given in the next section.
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6. An infinite family of graphs extremal for Theorem 6

We have the following theorem.

Theorem 7. For each integer r ≥ 1 there exists a connected bipartite graph Gr of order
n = 16r with δ(Gr) = 3 such that gt(Gr; 2) = 3|V (Gr)|/4 and ft(Gr; 2) ≥ 9|V (Gr)|/8.
Proof. We define the graph Gr as follows. Define the vertex set of Gr to be V (Gr) =
Wr ∪ Ar ∪Br, where

Wr = {w0, w1, w2, . . . , w8r−1}
Ar = {a0, a1, a2, . . . , a4r−1}
Br = {b0, b1, b2, . . . , b4r−1}

We define the edge set of Gr such that the following holds, for all i ∈ {0, 1, 2, . . . , r−1}
(where b−1 = b4r−1 by definition):

N(w8i) = {a4i, a4i+1, b4i} N(w8i+1) = {a4i, a4i+1, b4i}
N(w8i+2) = {a4i, a4i+2, b4i} N(w8i+3) = {a4i+1, a4i+2, b4i−1}
N(w8i+4) = {a4i+2, b4i+1, b4i+2} N(w8i+5) = {a4i+3, b4i+1, b4i+2}
N(w8i+6) = {a4i+3, b4i+1, b4i+3} N(w8i+7) = {a4i+3, b4i+2, b4i+3}
We now assume r ≥ 1 is fixed, and therefore omit the subscripts of the above sets and

graph. Define V1 and V2 as follows.

V1 = A ∪ ∪r−1
i=0{w8i+1, w8i+2, w8i+3, w8i+5}

V2 = B ∪ ∪r−1
i=0{w8i, w8i+4, w8i+6, w8i+7}

We will now show that if Si is a set such that every vertex in Vi has a neighbour in
Si, then |Si| ≥ 3|V (G)|/8, for i = 1, 2. This would imply that ft(G; 2) ≥ 9|V (G)|/8 and
gt(G) ≥ 6|V (G)|/8 when k = 2 (as clearly the above would also imply that γt(G) ≥
3|V (G)|/8). From Theorem 6 follows that gt(G) = 3|V (G)|/4.

Let S1 be a set that totally dominates V1 (i.e. every vertex in V1 has a neighbour in
S1). As w8i+5 has a neighbour in S1 we note that |S1 ∩ {a4i+3, b4i+1, b4i+2}| ≥ 1, for all
i = 0, 1, 2, . . . , r − 1. As w8i+1, w8i+2 and w8i+3 all have a neighbour in S1 we note that
|S1 ∩ {a4i, a4i+1, a4i+2, b4i, b4i−1}| ≥ 2, for all i = 0, 1, 2, . . . , r− 1 (recall that b−1 = b4r−1).
As the above sets are all disjoint we note that |S1 ∩ (A ∪B)| ≥ 3|A ∪B|/8.

As a4i+3 has a neighbour in S1 we note that |S1 ∩ {w8i+5, w8i+6, w8i+7}| ≥ 1, for all
i = 0, 1, 2, . . . , r − 1. As a4i, a4i+1 and a4i+2 all have a neighbour in S1 we note that
|S1 ∩ {w8i, w8i+1, w8i+2, w8i+3, w8i+4}| ≥ 2, for all i = 0, 1, 2, . . . , r − 1. As the above sets
are all disjoint we note that |S1 ∩W | ≥ 3|W |/8. This implies the desired result for S1.

The fact that if S2 totally dominates V2, then |S2| ≥ 3|V (G)|/8 is proved analogously
to above. We now just need to show that G is connected. Let Pi = {w8i, w8i+1, . . . , w8i+7}
and let Qi = {a4i, a4i+1, a4i+2, a4i+3, b4i, b4i+1, b4i+2, b4i+3} for all i = 0, 1, 2, . . . , r− 1. Note
that G[Pi ∪Qi] is connected. As the edges w8i+3b4i−1, for all i = 0, 1, 2, . . . , r− 1 connects
Pi with Qi−1 (Q−1 = Qr−1) we are done.

7. ft(G) for two-partitioned graphs with δ ≥ 3

Let G be a graph of order n with δ(G) ≥ 3.
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From Theorems 1 and 6 it follows immediately that ft(G; 2) = γt(G) + gt(G; k) ≤
n/2+3n/4 = 5n/4 when δ(G) ≥ 3. We shall in Theorem 8 below prove a slightly stronger
result and later pose an even stronger conjecture.

The following result is known (see for example [13]).

Lemma 1. ([13]) If G is a 3-regular graph, then there exists a matching M in G, such
that |M | ≥ 7

16
|V (G)|.

Lemma 2. Let H be a 2-regular 3-uniform hypergraph with no two edges overlapping.
Then T (H) ≤ |V (H)+|E(H)|

4
− |V (H)|

24
.

Proof. Let H be a 2-regular 3-uniform hypergraph with no overlapping edges. Define the
graph GH as follows V (GH) = E(H) and E(GH) = {e1e2 : |V (e1) ∩ V (e2)| = 1}. As there
are no overlapping edges and H is 2-regular and 3-uniform, we note that GH is a 3-regular
graph. By Lemma 1, there exists a matching M in GH , such that |M | ≥ 7

16
|V (GH)|.

If e1e2 ∈ M , then by the definition of GH we note that V (e1) ∩ V (e2) = {xe1e2} for
some xe1e2 ∈ V (H). Let X = {xf | f ∈ M} and note that 2|M | edges in H contain a
vertex from X (as M was a matching). Let X ′ be a set of vertices of order |E(H)|− 2|M |
containing a vertex from every edge in H, which does not contain a vertex from X. Note
that X ∪X ′ is a transversal of H of order |M | + (|E(H)| − 2|M |). By the above bound
on |M | we get the following, as 3|E(H)| = ∑

x∈V (H) d(x) = 2|V (H)|.
T (H) ≤ |E(H)| − |M | ≤ |E(H)| − 7

16
|E(H)|

= |E(H)|
4

+ 5|E(H)|
16

= |E(H)|
4

+ 5
16
× 2|V (H)|

3

= |V (H)|+|E(H)|
4

− |V (H)|
24

Lemma 3. Let H be a 3-uniform hypergraph, where multiple edges are allowed. For each
edge and vertex in H we assign a non-empty subset of {0, 1, 2}. Let this subset be denoted
by L(q) for all q ∈ V (H)∪E(H). Let Hi be the 3-uniform hypergraph containing vertex-set
Vi = {v : i ∈ L(v) and v ∈ V (H)} and edge-set Ei = {e : i ∈ L(v) and e ∈ E(H)}, for
i = 0, 1, 2. Let Y ⊆ V (H) be arbitrary and assume that the following holds.

(a): ∆(H1), ∆(H2) ≤ 2
(b): ∆(H − E(Y )) ≤ 4.
(c): There are no overlapping edges in Hi, i ∈ {1, 2}.
(d): If e ∈ E(H)− E(Y ), then 0 ∈ L(e) and |L(e)| ≥ 2.

This implies that the following holds.

2∑
i=0

T (Hi) ≤ (
2∑

i=0

|Vi|+ |Ei|
4

)− |V (H0) ∩ V (H1) ∩ V (H2) \NH [Y ]|
372

Remark. We assume here in Lemma 3 that the assignment of a set L(q) to each q
is done such that H0, H1, H2 really are hypergraphs, i.e., such that each hyperedge in Ei

consists of vertices from Vi, i = 0, 1, 2. This requirement will be satisfied in the proof of
Theorem 8 where the lemma is applied.

Proof. Assume that the lemma is false, and that H is a counterexample with minimum
|E0| + |E1| + |E2|. Clearly |E0| + |E1| + |E2| > 0, as otherwise

∑2
i=0 T (Hi) = 0. For

simplicity we will use the following notation:
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T ∗ =
∑2

i=0 T (Hi)

S∗ =
∑2

i=0
|Vi|+|Ei|

4

V ∗ = V (H0) ∩ V (H1) ∩ V (H2)

We recall that H was assumed to be a “minimal” counterexample to T ∗ ≤ S∗− (|V ∗ \
NH [Y ]|)/372. We will now prove a few claims, which end in a contradiction, thereby
proving the lemma. For H the left hand side of the inequality, ℓ, and the right hand side
of the inequality, r, in Lemma 3 satisfies ℓ > r. We shall construct smaller H ′ which
also satisfies (a)-(d) and which therefore has ℓ′ ≤ r′ by the minimality of H. H ′ is to
be constructed such that there exist α ≤ β for which ℓ − α ≤ ℓ′ and r′ ≤ r − β. Those
inequalities combine to give the desired contradiction ℓ ≤ r.

Claim A: If we add a vertex to Y , then N [Y ] does not increase by more than 9 vertices.

Proof of Claim A: This follows from the fact that H is 3-uniform and ∆(H−E(Y )) ≤ 4,
by (b) in the statement of the lemma.

Claim B: There is no e = {v1, v2, x} ∈ Ei, such that dHi
(v1) = dHi

(v2) = 1 and
dHi

(x) = 2, for i = 0, 1, 2.

Proof of Claim B: Assume that there is such an edge e = {v1, v2, x} ∈ Ei. Let e′ =
{w1, w2, x} be the other edge in Hi containing x. Now delete v1, v2, x, e and e′ from Hi

and add {v1, v2, x, w1, w2} to Y . Note that (a)-(d) still hold and that T ∗ decreases by
1 as we simply add x to any transversal in the new Hi in order to get a transversal in
the old Hi. By Claim A the set N [Y ] does not increase by more than 45 vertices. As V ∗

does not decrease by more than 3 vertices and S∗ decreases by 5/4, we are done by the
“minimality” of H (as α = 1 ≤ 5/4− 48/372 = β in the argument above Claim A).

Claim C: There is no e = {x, v1, v2} ∈ Ei, such that dHi
(v1) = dHi

(v2) = 2 and
dHi

(x) = 1, for i = 1, 2.

Proof of Claim C: Assume that there is such an edge e = {x, v1, v2} ∈ Ei. Let e1 =
{w1, w2, v1} be the other edge in Hi containing v1 and let e2 = {u1, u2, v2} be the other
edge in Hi containing v2. As there are no overlapping edges in Hi (by (c) in the statement
of the lemma) we note that e1 6= e2 and |{w1, w2, u1, u2}| ≥ 3. Let S be any subset of
{w1, w2, u1, u2} such that |S| = 3. We now separately consider the cases when addition of
S as a new hyperedge to Hi causes overlapping edges in Hi, and when it doesn’t.

Assume that adding S to Ei does not cause overlapping edges in Hi − e1 − e2. Now
delete x, v1, v2, e, e1 and e2 from Hi and add the edge S to Hi (and H). Furthermore add
{x, v1, v2, w1, w2, u1, u2} to Y . Note that (a)-(d) still hold. If T ′ is a transversal in the new
Hi then due to the edge S we either have {u1, u2} ∩ T ′ 6= ∅, in which case T ′ ∪ {v1} is a
transversal in the old Hi or {w1, w2} ∩ T ′ 6= ∅, in which case T ′ ∪ {v2} is a transversal in
the old Hi. Therefore T ∗ decreases by at most one. By Claim A we have that N [Y ] does
not increase by more than 63 vertices. As V ∗ does not decrease by more than 3 and S∗

decreases by 5/4, we are done by the “minimality” of H (as 1 ≤ 5/4− 66/372).

So now assume that the above addition of S would cause overlapping edges in Hi−e1−
e2. This can only happen if there is an edge e′ ∈ Ei such that |S∩V (e′)| ≥ 2. Note that by
(a) the degree in Hi is two for all vertices in S∩V (e′) (they only lie in S and e′). Now delete
the vertices {x, v1, v2} ∪ (S ∩ V (e′)) from Hi and delete the edges e, e1, e2 and e′ from Hi

(do not add the edge S to Hi). Furthermore add {x, v1, v2, w1, w2, u1, u2} ∪ (V (e′)−S) to
Y . Note that (a)-(d) still hold. By a similar argument to above we note that T ∗ decreases
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by at most two. By Claim A we see that N [Y ] does not increase by more than 72 vertices.
As V ∗ does not decrease by more than 6 and S∗ decreases by at least 9/4, we are done
by the “minimality” of H (as 2 ≤ 9/4− 78/372).

Claim D: There is no e = {x, v1, v2} ∈ E0, such that dH0(v1) = dH0(v2) = 2 and
dH0(x) = 1 and |NH0 [V (e)]| ≥ 6.

Proof of Claim D: Assume that there is such an edge e = {x, v1, v2} ∈ E0. Let e1 =
{w1, w2, v1} be the other edge in H0 containing v1 and let e2 = {u1, u2, v2} be the other
edge in H0 containing v2. If e1 = e2, then |NH0 [V (e)]| ≤ 4, a contradiction. So assume
that e1 6= e2. As |NH0 [V (e)]| ≥ 6 we note that |{w1, w2, u1, u2}| ≥ 3. We are now done
analogously to Claim C.

Claim E: ∆(H1), ∆(H2) ≤ 1.

Proof of Claim E: Assume that ∆(H1) ≥ 2. By (a) we have ∆(H1) = 2. By Claim
B and Claim C we note that there is a 2-regular component, R, in H1. There are no
overlapping edges in R by (c). By Lemma 2 there is a transversal TR in R of order at
most (|V (R)|+ |E(R)|)/4− |V (R)|/24. So delete all edges and vertices in R and add all
vertices in R to Y . By Claim A we have that N [Y ] increases by at most 9|V (R)| vertices.
We now have a contradiction to the “minimality” of H, as |V (R)|/24 ≥ 9|V (R)|/372.
Analogously we can show that ∆(H2) ≤ 1.

Claim F: Assume e1, e2 ∈ E(H0) overlap and ei = (x1, x2, ui) for i = 1, 2, where u1 6=
u2. If dH0(x1) = dH0(x2) = 2, then there is an edge e′ ∈ E(H0) such that {u1, u2} ⊆ V (e′).

Proof of Claim F: Let e1 and e2 be defined as in the Claim, and assume that there
is no edge e′ ∈ E(H0) such that {u1, u2} ⊆ V (e′). Delete e1, e2, x1, x2 and u1 from H0.
For every edge, e′′, in H0 that contains u1, delete e′′ and add the edge (e′′ − {u1}) ∪ {u2}
instead. Furthermore add {x1, x2, u1, u2} and V (e′′) from all transformed edges, to Y . As
there is at most 4 edges containing u1 in H0 −E(Y ) we note that Y increases by at most
10 (the neighbours of u1 in H0 − E(Y ) and {u1, u2}). Therefore V ∗ −N [Y ] decreases by
at most 3 + 90, by Claim A. We also note that S∗ decreases by 5/4.

We now show that T ∗ decreases by at most one. If u2 ∈ T ′ then T ′∪{u1} is a transversal
in the old H0. If u2 6∈ T ′ then T ′ ∪ {x1} is a transversal in the old H0. As (a)-(d) still
holds after the above operations, we have a contradiction to the “minimality” of H, as
1 ≤ 5/4− 93/372.

Definition G: Let x ∈ V ∗ −N [Y ] be arbitrary. The vertex x exists since otherwise we
would be done by Theorem 5.

Claim H: dH1(u) = dH2(u) = 1 for all u ∈ NH0 [x], where x is defined in Definition G.

Proof of Claim H: Assume that u ∈ NH0 [x] has dH2(u) = 0 or u 6∈ V (H2), which are
the only possibilities for u, if dH2(u) 6= 1 (by Claim E). If u ∈ V (H2) and dH2(u) = 0,
then delete u from V (H2). We are now done as T ∗ is unchanged, S∗ decreases by 1/4
and V ∗ −N [Y ] does not decrease by more than one. So we may assume that u 6∈ V (H2).
Since x ∈ V ∗ we note that x ∈ V (H1) and x ∈ V (H2), which by the above argument
implies that dH1(x) = dH2(x) = 1 and u 6= x. Let e1 = {x, u, q} be the edge in H1 (and
H0) containing u and x. Let e2 be the edge in H2 (and H0) that contains x. Note that
dH0(x) = 2 and dH0(u) = 1. If dH0(q) = 1 then we are done by Claim B. So dH0(q) ≥ 2.
However as any edge containing q must also lie in H1 or H2, as q 6∈ Y , we note that
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dH0(q) = 2. Let eq be the edge in H2 that contains q. Note that eq 6= e2, by Claim F. As
eq and e2 do not intersect we note that |NH0 [V (e)]| = 7 ≥ 6, so we are done by Claim D.

Claim I: Let e1 ∈ E1 and e2 ∈ E2 be the edges containing x (defined in Definition G).
They exist by Claim H. Then V (e1) ∩ V (e2) = {x}.

Proof of Claim I: Assume for the sake of contradiction that |V (e1) ∩ V (e2)| ≥ 2. If
|V (e1)∩ V (e2)| = 3, then we delete e1 from H0 and add V (e1) to Y . This contradicts the
”minimality” of H, as T ∗ remains unchanged, S∗ decreases by 1/4 and N [Y ] increases
from Claim A by at most 27. Therefore assume that |V (e1)∩V (e2)| = 2. Let e1 = {x, v, w}
and let e2 = {x, v, y} where w 6= y. As dH0(x) = dH0(v) = 2, there is an edge, e′, in H0

such that {w, y} ⊆ V (e′), by Claim F. However e′ 6∈ E(H1) and e′ 6∈ E(H2) by Claim E.
This is however a contradiction to (d), as w, y 6∈ Y .

Claim J: We now obtain a contradiction.

Proof of Claim J: : Let e1 ∈ E1 and e2 ∈ E2 be the edges containing x (defined
in Definition G). They exist by Claim H and V (e1) ∩ V (e2) = {x}, by Claim I. Let
e1 = {x, v1, v2} and let e2 = {x,w1, w2}. Let e′1 be the edge in H1 containing w1 and let
e′′1 be the edge in H1 containing w2 (they exist by Claim H). Let e′2 be the edge in H2

containing v1 and let e′′2 be the edge in H2 containing v2 (they exist by Claim H).
If e′1 = e′′1, then V (e′1) ∩ V (e2) = {w1, w2} and e′1 = {w1, w2, r} for some r ∈ V (H0).

By Claim F, there is an edge in H0 that contains x and r. But this is a contradiction, as
neither e1 or e2 contain r, by Claim H. Therefore e′1 6= e′′1. Analogously we can show that
e′2 6= e′′2.

We now delete e1, e
′
1, e

′′
1 from H, H0 and H1. Delete e2, e

′
2, e

′′
2 from H, H0 and H2. Delete

V (e1) ∪ V (e′1) ∪ V (e′′1) from V (H1) and delete V (e2) ∪ V (e′2) ∪ V (e′′2) from V (H2). Delete
V (e1)∪V (e2) from H and H0. Let S1 be any subset of size three in V (e′1)∪V (e′′1)−{w1, w2}
and let S2 be any subset of size three in V (e′2)∪V (e′′2)−{v1, v2}. Add the edges S1 and S2

to H and H0. Finally add all vertices in V (e′1)∪V (e′′1)∪V (e′2)∪V (e′′2)−{w1, w2, v1, v2, x}
to Y .

We first show that T ∗ decreases by at most 8. It is clear that the transversal size drops
by three in both H1 and H2. So assume that T ′ is a transversal of the new H0. As in the
proof of Claim C we note that one of the three edges e1, e

′
2, e

′′
2 are already covered by a

vertex in T ′ (due to S2) and the other two edges can be covered by one additional vertex.
Similarly by adding one more vertex to T ′ we can make sure that e2, e

′
1, e

′′
1 are all covered.

Therefore the transversal size drops by at most two in H0.
Note that S∗ drops by 33/4 as we delete 9 vertices in each of H1 and H2 and we delete

5 vertices in H0. We also delete three edges in each of H1 and H2 and six edges in H0.
But we also add two edges in H0.

N [Y ] increases by at most 72 vertices by Claim A, as |V (e′1)∪V (e′′1)∪V (e′2)∪V (e′′2)−
{w1, w2, v1, v2, x}| ≤ 8. As V ∗ decreases by at most 13, we note that V ∗−N [Y ] decreases
by at most 85. We note that (a)-(d) still holds after the above operations. We therefore
have a contradiction to the ”minimality” of H, as 8 ≤ 33/4− 85/372.

Theorem 8. If G is a graph with δ(G) ≥ 3 then ft(G; 2) ≤ (5
4
− 1

372
)|V (G)|.

Proof. Let G be any graph with δ(G) ≥ 3 and let (W1,W2) be a partition of V (G).
Define the hypergraph HG, such that V (HG) = V (G) and E(HG) is obtained by selecting
for each v ∈ V (G) one set of three vertices from NG(v) to form a hyperedge. E(HG) =
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{ev : v ∈ V (G)}, ev = {xv, yv, zv} ⊆ NG(v). Furthermore for every hyperedge, e ∈ E(HG)
let L(e) be the set {0, i} if v ∈ Wi. For reasons which will be clear later we let L(v) =
{0, 1, 2} for every v ∈ V (HG). Let Hi be the 3-uniform hypergraph containing vertex-set
Vi = {v : i ∈ L(v) and v ∈ V (H)} and edge-set Ei = {e : i ∈ L(e) and e ∈ E(H)}, for
i = 0, 1, 2. Note that a transversal of H0 corresponds to a total dominating set in G
and a transversal of Hi (i ∈ {1, 2}) corresponds to a total dominating set in G of the
set Wi. Therefore we would be done if we could show that T (H0) + T (H1) + T (H2) ≤
(5

4
− 1

372
)|V (G)|. Let Y be an empty set. We note that |E1|+ |E2| = |E0| = |V0| = |V1| =

|V2| = |V (H0) ∩ V (H1) ∩ V (H2) \NH [Y ]| = |V (G)| and therefore the inequality above is
equivalent to

(∗)
2∑

i=0

T (Hi) ≤ (
2∑

i=0

|Vi|+ |Ei|
4

)− |V (H0) ∩ V (H1) ∩ V (H2) \NH [Y ]|
372

For simplicity we will use the following notation:
T ∗ =

∑2
i=0 T (Hi)

S∗ =
∑2

i=0
|Vi|+|Ei|

4

V ∗ = V (H0) ∩ V (H1) ∩ V (H2)
We will now do a few transformations on H,H0, H1, H2.

Transformation 1: While there is some vertex x ∈ V (H) with dH0(x) ≥ 5 (or equiva-
lently dH(x) ≥ 5), delete x and all edges incident with x from H (and therefore also from
H0, H1 and H2).

Claim A: If (*) holds for the resulting hypergraphs, then it also holds for our original
hypergraphs.

Proof of Claim A: We note that T ∗ drops by at most three, as we may place x in the
transversal of the new Hi’s in order to get transversals in the old Hi’s. We note that S∗

decreases by at least 13/4, as we delete x from H0, H1, H2 and 5 edges from H0 plus a total
of 5 edges from H1 and H2. As V ∗ decreases by one and NH [Y ] = ∅ remains unchanged,
we are done.

Transformation 2: While there is a vertex x ∈ V (H) with dH1(x) ≥ 3, delete x and all
edges incident to x from H0 and H1. Also delete these edges from H (but do not delete x
or any edges incident to x in H2). If dH2(x) = 0 then delete x from H2 (i.e. delete 2 from
L(x)). If dH2(x) > 0 then note that dH2(x) = 1 (as we have performed transformation 1
as long as we could) and put NH2 [x] in Y .

Claim B: If (*) holds for the resulting hypergraphs, then it also holds for our original
hypergraphs.

Proof of Claim B: We note that T ∗ drops by at most two, as we may place x in the
transversal of the new H0 and H1 in order to get transversals in the old H0 and H1. We
note that S∗ decreases by at least 9/4, as we delete 3 edges and 1 vertex from H0 and
H1 and we either delete a vertex in H2 or 4 edges from H0. As V ∗ decreases by one and
NH [Y ] increases by at most 21 (as ∆(H) ≤ 4, after Transformation 1), we are done.

Transformation 3: While there is a vertex x ∈ V (H) with dH2(x) ≥ 3, then do the
following. Delete x and all edges incident to x from H0 and H2. Also delete these edges
from H (but do not delete x or any edges incident to x in H1). Furthermore delete any
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vertices in H2, which get degree zero by the above transformation. If dH1(x) = 0 then
delete x from H1. If dH1(x) > 0, then we put NH1 [x] in Y .

Claim C: If (*) holds for the resulting hypergraphs, then it also holds for our original
hypergraphs.

Proof of Claim C: We note that T ∗ drops by at most two, as we may place x in the
transversal of the new H0 and H2 in order to get transversals in the old H0 and H2. Lets
count any edge, e, in H1, which does not lie in H0 as contributing 1 + |V (e) ∩ V (H0)|/3
to the sum S∗. We note that there are no such edges when we start the transformation
3’s.

We note that S∗ now decreases by at least 25/12, because of the following. For every
edge containing x in H2, which does not lie in H0 there is a vertex of degree one in the
edge, due to the above transformations. Therefore we either delete an edge in H0 or a
vertex in H2 for each of the edges containing x in H2. As we also delete the edges in H2

and the vertex x in H0 and H2 we note that S∗ drops by at least 8/4. So if dH1(x) = 0
then S∗ decreases by at least 9/4 as claimed. If dH1(x) > 0 and the edge, e, containing
x in H1 also lies in H0, then we are done as we delete an extra edge in H0 and the edge
left in H1 is counted as at most 1 + 2/3. If dH1(x) > 0 and the edge, e, containing x in
H1 does not lie in H0, then we decrease the value of e by 1/3 as 1 + |V (e) ∩ V (H0)|/3
decreases. This shows that S∗ decreases by at least 25/12.

As V ∗ decreases by one and N [Y ] increases by at most 21 (as ∆(H) ≤ 4, after Trans-
formation 1), we are done.

Transformation 4: If e1, e2 ∈ E(Hi) and |V (e1) ∩ V (e2)| ≥ 2 for some i ∈ {1, 2}, then
we do the following.

If |V (e1)∩V (e2)| = 3, then if e1, e2 ∈ E0 we delete e2 from both H0 and Hi. If ej 6∈ E0

(j ∈ {1, 2}) then we delete ej from Hi (in this case V (ej) ⊆ Y ). So now assume that
|V (e1) ∩ V (e2)| = 2 and e1 = (u1, x, y) and e2 = (u2, x, y), where u1 6= u2,

If dHi
(u1) = dHi

(u2) = 2, then by the above transformations we note that e1, e2 ∈ E0.
We now add a new vertex q to H, H0 and Hi. We delete e1 and e2 from H, Hi and H0

and add the edges {q, x, y} to H, Hi and H0.

If dHi
(uj) = 1, for some j ∈ {1, 2}, then do the following. Delete e1, e2 and the vertices

{uj, x, y} from Hi. Add the vertices {u1, u2, x, y} to Y .

Claim D: If (*) holds for the resulting hypergraphs, then it also holds for our original
hypergraphs.

Proof of Claim D: In the case when |V (e1) ∩ V (e2)| = 3 we note that T ∗ remains
unchanged, S∗ decreases by 1/4 and V ∗ − N [Y ] remains unchanged. We are now done
with this case.

In the case when dHi
(u1) = dHi

(u2) = 2, we note that T ∗, S∗ and V ∗ remain unchanged
and N [Y ] can only grow by adding q to it, but q 6∈ V ∗. We also note that the above
transformation decreases the number of edges in Hi, so it cannot continue indefinitely.
We are now done with this case.

In the case when dHi
(uj) = 1, we note that T ∗ decreases by at most one, S∗ decreases

by 5/4, V ∗ decreases by at most three and N [Y ] increases by at most 24 (In H−e1−e−2
we note that u1 and u2 have degree at most 3 while x and y have degree at most 2). As
1/4 ≥ 27/372 we are done with this case.
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Claim E: ∆(H1), ∆(H2) ≤ 2 and ∆(H−E(Y )) ≤ 4 and there are no overlapping edges
in Hi, i ∈ {1, 2}.

Proof of Claim E: The fact that ∆(H1), ∆(H2) ≤ 2 follow from Transformations 2 and
3. As ∆(H) ≤ 4 after Transformation 1 and no other transformation increases ∆(H), we
note that ∆(H − E(Y )) ≤ ∆(H) ≤ 4. There are no overlapping edges in Hi, i ∈ {1, 2}
due to Transformation 4.

Claim F: If e ∈ E(H)− E(Y ), then 0 ∈ L(e) and |L(e)| ≥ 2.

Proof of Claim F: This was true before Transformation 1 as it was true for all edges.
Transformation 1 clearly does not change this property. In Transformation 2, we only
keep an edge, e, in Hi, where i ∈ {1, 2} but delete it in H0 if we put V (e) in Y . So the
above still holds after Transformation 2. Analogously it also holds after Transformation
3. It is not difficult to check that it also holds after Transformation 4 (note that the above
property holds for the edge we might add to H in Transformation 4).

We now see that (*) holds due to Lemma 3. That implies the theorem.

8. Possible strengthening of Theorem 8

No graph extremal for Theorem 8 is known and probably an inequality ft(G; 2) ≤ α|V (G)|
can be obtained for some α smaller than 5

4
− 1

372
. Certainly α must be at least 9/8, that

is demonstrated by the graphs of section 6.
There is a graph of order 12 having ft(H12; 2) = 7n/6, namely H12 from the family H

defined after Theorem 2, with the two P6’s as its partition classes. Unless we, e.g., demand
that the order of the graphs be large, H12 shows that we cannot get a better inequality
than the following conjecture.

Conjecture 1. Let G be a graph of order n with δ ≥ 3 then ft(G; k) ≤ 7n/6.

9. Three partition classes

Theorem 9. Let G be a graph of order n with δ ≥ 3 then ft(G; 3) ≤ 3n/2.
For arbitrarily large n, n ≡ 0 (mod 6), there exist graphs Gn with gt(Gn; 3) = n,

γt(Gn) = n/3, ft(G; 3) = 4n/3.

Proof. By Theorem 1 we have that γt(G) ≤ n/2, and gt(G; 3) ≤ n holds trivially, so by
addition we get ft(G; 3) ≤ 3n/2 as desired.

Assume a graph G has gt(G; 3) = n. Then ∆(G) ≤ 3 and as δ(G) ≥ 3, G is cubic. Since
each vertex has three neighbours, one in each partition class, we see for each i = 1, 2, 3,
that vertices in class Vi span a matching in G.

Listing the 3 neighbours to each Vi-vertex we count each vertex of G once, so 3|Vi| = n
giving |V1| = |V2| = |V3| = n/3.

Each V1-vertex is adjacent to precisely one V2-vertex and that has no other V1-neighbour,
so there is a perfect matching of V1V2-edges and analogously G contains perfect matchings
of V1V3- and V2V3-edges.

One partition class Vi totally dominates G so γt(G) ≤ n/3. In fact, γt(G) = n/3
because each vertex in G can totally dominate at most its three neighbours.
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Following the steps above, it is now easy for n ≡ 0 (mod 3) to construct a graph Gn

with gt(Gn; 3) = n. This graph has ft(Gn; 3) = γt(Gn) + gt(Gn; 3) = 4n/3.

We do not know if there, for δ ≥ 3, are graphs G with 4n/3 < ft(G; 3) ≤ 3n/2, but we
pose the following conjecture.

Conjecture 2. There exists some positive ǫ such that the following holds. If G is a graph
with δ(G) ≥ 3, then ft(G; 3) ≤ (3/2− ǫ)|V (G)|.
Theorem 10. Let G be a graph of order n with δ ≥ 3 and let k ≥ 4. ft(G; k) ≤ 3n/2 and
there exists an infinite family of graphs with ft(G; k) = 3n/2.

Proof. The inequality is proven as in Theorem 9. For a graph with ft(H; k) = 3n/2 take
H ∈ H (H is defined after Theorem 2). Let v1, v2, . . . , vn/2 and u1, u2, . . . , un/2 be two
disjoint paths in H such that {v1u2, v2u1, v1vn/2, u1un/2} ⊆ E(H). Let V1, V2, V3, V4 be a
partition of H such that l(v1), l(v2), . . . , l(vn/2).... = 1, 2, 3, 4, 1, 2, 3, 4, ..... and
l(u1), l(u2), . . . , l(un/2).... = 4, 3, 2, 1, 4, 3, 2, 1, ..... where l(x) = i if x ∈ Vi,
then ft(H; V1, V2, V3, V4) = 3n/2.
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