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Abstract

Let G = (V,E) be a graph. A set M of edges is called a matching in G if each vertex
in G belongs to at most one edge from M , and M is a maximal matching if any edgeset
M ′, such that M ⊂ M ′, is not a matching in G. If all maximal matchings in G have the
same cardinality then G is an equimatchable graph. In this paper we characterize the
equimatchable graphs of girth at least five. As a consequence we also determine those
graphs of girth five or more in which every minimal set of edges dominating edges is a
minimum.
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1 Introduction

For notation and graph theory terminology we in general follow [5]. Specifically, let G =
(V, E) be a graph with vertex set V and edge set E. A vertex of degree one is called a leaf
and a vertex adjacent to a leaf is called a stem. The girth of a graph G, denoted g(G), is
the length of the shortest cycle or circuit of G.

A set M of edges is called a matching in G if each vertex in G belongs to at most one
edge in M , and M is a maximal matching if any edgeset M ′, such that M ′ contains M as
a proper subset, M ⊂ M ′, is not a matching in G. If all maximal matchings in G have the
same cardinality then G is a equimatchable graph. For a matching M we define A(M) to
be all the edges in M or incident with an edge from M or in M .

Although the equimatchable graphs were characterized in [1] they are not explicitly de-
scribed. In fact, as stated in [1] ”using our characterization we show that membership
in this class can be polynomially determined.” In this note, we give an explicit, easy to
recognize, description of such graphs in the case that the girth is 5 or more. Part of the
motivation is also the connection to three similar problems. Graphs in which every min-
imal set of dominating vertices is of one size (called well-dominated [3]), graphs in which
every minimal set of vertices dominating edges is of fixed size ( the well-covered graphs
[2]) and graphs in which every minimal set of edges dominating vertices (uniform size star
factors [4]) have all been characterized in the situation that the girth is five or more. This
leaves the case of graphs in which every minimal set of edges dominating edges is of one
cardinality (call these graphs Class A). Noting that a maximal matching is also a minimal
edge dominating set, it follows that the equimatchable graphs contain the class A ones as
a sub-collection. In particular, if a graph is in the class A collection then all independent
as well as non-independent minimal dominating sets are of one cardinality whereas a graph
that is equimatchable only requires the independent minimal dominating sets to be equal.
As it turns out, for girth at least 5, the two collections are identical while at girth 4 the
class A ones are a proper subcollection of the equimatchable ones.

2 Results on equimatchable graphs

We begin by stating some observations on matchings and equimatchable graphs. In addition
a number of lemmas are established that will be useful in proving the main result in this
note.

Observation 1 If M is a matching in a graph G, then M can be extended to a maximal
matching M ′. That is, M ⊆ M ′.

Observation 2 A graph G is equimatchable if and only if each component of G is equimatch-
able.
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Observation 3 If M is a matching in a equimatchable graph G, then G − A(M) is a
equimatchable graph.

Lemma 1 Let G be a equimatchable graph. If M1 and M2 are matchings in G and A(M1) ⊆
A(M2), then |M1| ≤ |M2|.

Proof. Let M ′
2 be a maximal matching such that M2 ⊆ M ′

2. Since A(M1) ⊆ A(M2) the
set M1 ∪ (M ′

2\M2) is a matching in G. Thus there is a maximal matching M ′
1 such that

M1 ∪ (M ′
2\M2) ⊆ M ′

1. If G is equimatchable then |M ′
2| = |M ′

1| ≥ |M1| + |M ′
2\M2| =

|M1| − |M2|+ |M ′
2| and therefore |M1| ≤ |M2|. 2

Lemma 2 If G ∼= Ck then G is equimatchable if and only if k ∈ {3, 4, 5, 7}.

Proof. Let G ∼= Ck : v1, v2, . . . , vk, v1. If k ≤ 7 the statement can easily be checked.
Assume that k ≥ 8 and let M1 := {v1v2, v3v4, v5v6, v7v8} and M2 := {v1v2, v4v5, v7v8}.
Then A(M1) = A(M2) and Lemma 1 implies that |M1| = |M2| if G is equimatchable. Since
|M1| 6= |M2| this implies that G is not equimatchable. 2

Lemma 3 Let G 6∼= K2 be a connected equimatchable graph. Then G does not contain a
path v1, v2, . . . , v2k such that v1 and v2k are stems.

Proof. Assume that G contains a path v1, v2, . . . , v2k such that v1 and v2k are stems and let
l1 be a leaf adjacent to v1 and let l2 be a leaf adjacent to v2k. If M1 := v1v2, v3v4, . . . , v2k−1v2k

and M2 := l1v1, v2v3, . . . , v2kl2 then M1 and M2 are matchings in G and A(M1) = A(M2).
From Lemma 1 it follows that |M1| = |M2| but by construction |M2| = |M1|+ 1. Since this
is a contradiction the statement is verified. 2

Lemma 4 Let G be a equimatchable graph with g(G) ≥ 8. Then G does not contain a path
v1, v2, v3, v4 such that neither v1 nor v4 are stems.

Proof. Assume otherwise and let P : v1, v2, v3, v4 be a path such that neither v1 nor v4 are
stems. For each edge e incident to v1 or v4 not on P let e′ be an edge incident with e where
e′ does not include a vertex of P . Let M be the set containing all of these edges. Then
M is a matching and A(M) ∩ {v1v2, v2v3, v3v4} = ∅. Thus M1 := M ∪ {v1v2, v3v4} and
M2 := M ∪ {v2v3} are matchings in G. By construction A(M1) = A(M2) and thus Lemma
1 implies that |M1| = |M2| but this contradicts the fact that |M1| = 1 + |M2|. 2

Lemma 5 Let G be a equimatchable graph with g(G) ≥ 5. If G contains a path v1, v2, v3

such that v1 is a stem then v3 is also a stem.

Proof. Assume otherwise and let P : v1, v2, v3 be a path such that v1 is a stem and v3 is
not a stem. Let l be a leaf adjacent to v1. For each edge e incident to v3 not on P let e′ be
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an edge incident with e but not incident with v3. Let M be the set containing all of these
edges. Then M is a matching and A(M)∩{lv1, v1v2, v2v3} = ∅. Thus M1 := M ∪{lv1, v2v3}
and M2 := M ∪ {v1v2} are matchings in G. By construction A(M1) = A(M2) and thus
Lemma 1 implies that |M1| = |M2| but this contradicts the fact that |M1| = 1 + |M2|. 2

Let F be the family of graphs containing K2 and all connected bipartite graphs G with
bipartite sets V1 and V2 such that all vertices in V1 are stems and no vertex from V2 is a
stem.

Lemma 6 Each graph from F is equimatchable.

Proof. Consider a graph G from F . If M is a maximal matching in G then for each edge
e = uv between a stem u and a leaf v the matching M must contain an edge from A(e).
If M ′ is a set of edges containing exactly one edge from A(e) for each such edge e then
A(M ′) = E(G). Thus it follows that |M | is the number of stems in G or G ∼= K2 and thus
G is equimatchable. 2

Corollary 1 Let G be a connected equimatchable graph with girth g(G) ≥ 5. If G has a
stem, then G ∈ F .

Proof. The statement is trivially true if G ∼= K2. If s is a stem in G and s, v1, v2, . . . , v2k,
k ≥ 1, is a path in G then Lemma 5 implies that v2, v4, . . . , v2k are stems and by Lemma 3
v1, v3, . . . , v2k−1 are not stems. Thus it follows that G ∈ F . 2

Corollary 2 Let G be a connected equimatchable graph with girth g(G) ≥ 8. Then G ∈ F .

Proof. By Lemma 4 the graph G must contain a stem, and thus Corollary 1 implies that
G ∈ F . 2

3 Main Result

By using the results from Section 2 we obtain a simple characterization of the equimatchable
graphs with girth at least five.

Theorem 1 Let G be a connected equimatchable graph with girth g(G) ≥ 5. Then G ∈
F ∪ {C5, C7}.

Proof. Assume that there is a connected equimatchable graph with girth g(G) ≥ 5 not
contained in F∪{C5, C7}. Let G be such a graph of minimum size. It follows from Corollary
2 that g(G) ≤ 7 and by Corollary 1 it can be assumed that G does not have a stem. Assume
that g(G) = 7 and let C be a 7-cycle in G. Since G 6∼= C7 there must be a vertex u ∈ V (C)
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such that u is adjacent to a vertex v 6∈ V (C). For each vertex z ∈ N [v]\u let ez be an edge
incident with z and not incident with v and let M be all of these edges. Since g(G) = 7 the
set M is a matching and the vertex u is a stem in G−A(M). Observe that C is still a cycle
in the equimatchable graph G − A(M). Since |E(G − A(M))| < |E(G)| a contradiction is
obtained and we may assume that g(G) < 7.

Now assume that g(G) = 6 and let C be a 6-cycle in G. Since C6 is not equimatchable
there must be a vertex u ∈ V (C) such that u is adjacent to a vertex v 6∈ V (C). Let z be
a vertex from V (C) adjacent to u. For each vertex from x ∈ N({u, z})\V (C) let ex be an
edge incident with x and not incident with u or z. If M denotes all of these edges then
M is a matching in G. Thus since the girth is 6 it can be observed that G − A(M) has a
component that contains C and two adjacent vertices u and v where deg(u) = deg(z) = 2.
Since this component is not contained in F ∪{C5, C7} but is equimatchable a contradiction
is reached, and therefore we may assume that g(G) = 5.

Let C be a 5-cycle in G. Since G 6∼= C5 there must be a vertex u ∈ V (C) such that u is
adjacent to a vertex v 6∈ V (C). By considering an edge e not incident with a vertex from
V (C) it follows that G − A(e) has a component containing C and if the component is not
isomorphic to C then we have a contradiction with the choice of G. It follows that G must
be the graph obtained from a C5 : v1, v2, . . . , v5, v1 by adding two vertices x, y and the edges
v1x, xy and yv3. Since this graph is not equimatchable a contradiction is obtained. 2

Theorem 1 along with Lemmas 2 and 6 complete the characterization.

We conclude by observing that it is easy to verify that the equimatchable graphs of girth
5 or more are also in the class A collection but considering the equimatchable graph K3,2

we see that once the girth is 4 the class A ones are a proper subcollection.
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