
AALBORG UNIVERSITY

'

&

$

%

An upper bound on the domination number
of a graph with minimum degree two

by

Allan Frendrup, Michael A. Henning, Bert Randerath and
Preben Dahl Vestergaard

R-2009-08 Maj 2009

Department of Mathematical Sciences
Aalborg University

Fredrik Bajers Vej 7G DK - 9220 Aalborg Øst Denmark
Phone: +45 99 40 80 80 Telefax: +45 98 15 81 29

URL: http://www.math.aau.dk e
ISSN 1399–2503 On-line version ISSN 1601–7811



An upper bound on the domination number

of a graph with minimum degree two

1Allan Frendrup, 2Michael A. Henning∗, 3Bert Randerath and
1Preben Dahl Vestergaard

1Department of Mathematical Sciences
Aalborg University

DK-9220 Aalborg East, Denmark
Email: frendrup@math.aau.dk

Email: pdv@math.aau.dk

2School of Mathematical Sciences 3Institut für Informatik
University of KwaZulu-Natal Universität zu Köln
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Abstract

A set S of vertices in a graph G is a dominating set of G if every vertex of V (G) \S
is adjacent to some vertex in S. The minimum cardinality of a dominating set of G is
the domination number of G, denoted γ(G). Let Pn and Cn denote a path and a cycle,
respectively, on n vertices. Let k1(F ) and k2(F ) denote the number of components of
a graph F that are isomorphic to a graph in the family {P3, P4, P5, C5} and {P1, P2},
respectively. Let L be the set of vertices of G of degree more than 2, and let G− L be
the graph obtained from G by deleting the vertices in L and all edges incident with L.
McCuaig and Shepherd [5] showed that if G is a connected graph of order n ≥ 8 with
δ(G) ≥ 2, then γ(G) ≤ 2n/5, while Reed [7] showed that if G is a graph of order n with
δ(G) ≥ 3, then γ(G) ≤ 3n/8. As an application of Reed’s result, we show that if G is a
graph of order n ≥ 14 with δ(G) ≥ 2, then γ(G) ≤ 3

8n+ 1
8k1(G− L) + 1

4k2(G− L).
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1 Introduction

In this paper, we continue the study of domination in graphs. Domination in graphs is now
well studied in graph theory. The literature on this subject has been surveyed and detailed
in the two books by Haynes, Hedetniemi, and Slater [3, 4].

For notation and graph theory terminology we in general follow [3]. Specifically, let
G = (V,E) be a graph with vertex set V of order n = |V | and edge set E of size m = |E|,
and let v be a vertex in V . The open neighborhood of v is the set N(v) = {u ∈ V |uv ∈ E}
and the closed neighbourhood of v is N [v] = {v} ∪N(v). For a set S of vertices, the open
neighbourhood of S is defined by N(S) = ∪v∈SN(v), and the closed neighbourhood of S by
N [S] = N(S)∪ S. If X,Y ⊆ V , then the set X is said to dominate the set Y if Y ⊆ N [X].
For a set S ⊆ V , the subgraph induced by S is denoted by G[S] while the graph G − S is
the graph obtained from G by deleting the vertices in S and all edges incident with S. We
denote the degree of v in G by dG(v), or simply by d(v) if the graph G is clear from context.
The minimum degree among the vertices of G is denoted by δ(G).

We denote a path on n vertices by Pn and a cycle on n vertices by Cn. We call a component
of a graph a path-component if it is isomorphic to a path and a cycle-component if it is
isomorphic to a cycle. A path-component isomorphic to a path Pi we call a Pi-component,
and a cycle-component isomorphic to a cycle Ci we call a Ci-component.

We define a daisy to be a connected graph that can be constructed from two disjoint cycles
by identifying a set of two vertices, one from each cycle, into one vertex. In particular, if the
two cycles have lengths n1 and n2, we denote the daisy by D(n1, n2). The daisies D(4, 4),
D(4, 7) and D(7, 7) are shown in Figure 1.
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Figure 1: The daisies D(4, 4), D(4, 7) and D(7, 7).

A dominating set of a graph G = (V,E) is a set S of vertices of G such that every
vertex v ∈ V is either in S or adjacent to a vertex of S. (That is, N [S] = V .) The
domination number of G, denoted by γ(G), is the minimum cardinality of a dominating set.
A dominating set of G of cardinality γ(G) is called a γ(G)-set. The domination number of
a cycle or a path is easy to compute.

Theorem 1 For n ≥ 3, γ(Pn) = γ(Cn) = ⌈n/3⌉.

Let G be a graph with δ(G) ≥ 2. We define a vertex as small if it has degree 2 and large
if it has degree more than 2. Let S be the set of all small vertices of G and L the set of all
large vertices of G. Let C be any component of G− L. If C is a component of G, then C
is a cycle; otherwise, if C is not a component of G, then it is a path.
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For i ∈ {0, 1, 2, 3}, we denote the number of components of G− L of order congruent to
i modulo 4 by pi(G), or simply by pi if the graph G is clear from context. If G′ is a graph,
then for i ∈ {0, 1, 2, 3} we denote pi(G′) simply by p′i, and we denote the order and size of
G′ by n′ and m′, respectively. Further, we denote the set of large vertices in G′ by L′.

Let B1 = {C4, C7, D(4, 4)} and B2 = B1 ∪ {C10, C13, D(4, 7), D(7, 7)} be two families
consisting of cycles and daisies. For i = 1, 2, we say that a component is a Bi-component if
it is isomorphic to a graph in the family Bi.

We call a component a type-1 component if it is a Pi-component for some i ∈ {3, 4, 5} or
a C5-component, and we call a component a type-2 component if it is a P1-component or a
P2-component. For i = 1, 2, we denote the number of type-i components in a graph G by
ki(G).

2 Known Results

The decision problem to determine the domination number of a graph is known to be NP-
complete. Hence it is of interest to determine upper bounds on the domination number of
a graph. Upper bounds have been established in [1, 2, 5, 6, 7, 8, 9] and elsewhere.

McCuaig and Shepherd [5] showed that the domination number of a connected graph
with minimum degree at least 2 is at most two-fifths its order except for seven exceptional
graphs (one of order four and six of order seven). More precisely, they defined a collection
B of “bad” graphs shown in Figure 2, and proved the following result.
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Figure 2: The family B of ”bad” graphs.

Theorem 2 (McCuaig and Shepherd [5]) If G is a connected graph of order n with δ(G) ≥ 2
and G /∈ B, then γ(G) ≤ 2n/5.

In 1996, Reed [7] presented the important and useful result that if we restrict the minimum
degree to be at least three, then the upper bound in Theorem 2 can be improved from two-
fifths its order to three-eights its order.

Theorem 3 (Reed [7]) If G is a graph of order n with δ(G) ≥ 3, then γ(G) ≤ 3n/8.
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3 Main Result

Our aim in the paper is to generalize Theorem 3 by relaxing the degree condition to mini-
mum degree at least two. For notational convenience, for a graph G of order n and a graph
G′ of order n′ we let

ψ(G) =
3
8
n+

1
8
(p0 + p3) +

1
4
(p1 + p2),

ψ(G′) =
3
8
n′ +

1
8
(p′0 + p′3) +

1
4
(p′1 + p′2),

ϕ(G) =
3
8
n+

1
8
k1(G− L) +

1
4
k2(G− L), and

ϕ(G′) =
3
8
n′ +

1
8
k1(G′ − L′) +

1
4
k2(G′ − L′).

We shall prove:

Theorem 4 If G is a graph of order n with δ(G) ≥ 2 that has no B1-component, then
γ(G) ≤ ψ(G).

Theorem 5 If G is a graph of order n with δ(G) ≥ 2 that has no B2-component, then
γ(G) ≤ ϕ(G).

3.1 Preliminary Observations

Let G be an arbitrary graph. By attaching a G8-unit to a specified vertex v of G, we mean
adding a (disjoint) copy of the graph G8 of Figure 3 and identifying any one of its vertices
that is in a triangle with v.

Figure 3: A cubic graph G8 with domination number 3

We will frequently use the following observation in the proof of Theorem 4.

Observation 1 If G′ is obtained from a graph G by attaching a G8-unit to a vertex v, then
there exists a γ(G′)-set that contains v and two other vertices in the G8-unit.
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We define an elementary 3-subdivision of a nonempty graph G as a graph obtained from
G by subdividing some edge three times. The following observation will prove to be useful.

Observation 2 If G is obtained from a nontrivial graph G′ by an elementary 3-subdivision,
then γ(G) = γ(G′) + 1.

We will refer to a graph G as a reduced graph if G has no induced path on five vertices,
the internal vertices of which have degree 2 in G. Hence if u, v1, v2, v3, v is a path in a
reduced graph G, then dG(vi) ≥ 3 for at least one i, 1 ≤ i ≤ 3, or uv ∈ E(G).

3.2 Proof of Theorem 4

It suffices to prove that if G is a connected graph of order n with δ(G) ≥ 2 and G /∈ B1,
then γ(G) ≤ ψ(G). We proceed by induction on the order of the lexicographic sequence
(p0 +p1 +p2 +p3, n,m), where p0 +p1 +p2 +p3 ≥ 0, n ≥ 3 and m ≥ 3. We remark that the
order of the considered graphs does not always have to drop when applying an inductive
argument. For notational convenience, for a graph G of order n and size m and a graph G′

of order n′ and size m′, we denote the sequence (p0 + p1 + p2 + p3, n,m) by s(G) and the
sequence (p′0 + p′1 + p′2 + p′3, n′,m′) by s(G′). Further, we denote the set of small vertices of
G and G′ by S and S ′, respectively, and the set of large vertices of G and G′ by L and L′,
respectively.

When p0 + p1 + p2 + p3 = 0, the graph G has only large vertices. Thus, δ(G) ≥ 3 and the
desired result follows from Theorem 3. This establishes the base case. Let p0+p1+p2+p3 ≥
1, n ≥ 3 andm ≥ 3. Assume that for all connected graphsG′ /∈ B1 of order n′ with δ(G′) ≥ 2
that have lexicographic sequence s(G′) smaller than s, γ(G′) ≤ ψ(G′). Let G /∈ B1 be a
connected graph of order n, size m with δ(G) ≥ 2 and with lexicographic sequence s(G) = s.
Let G = (V,E). We proceed further with a series of claims that we may assume the graph
G satisfies.

Claim A G is a reduced graph.

Proof. Assume that G is not a reduced graph. Then, G contains an induced path
u, v1, v2, v3, v on five vertices, the internal vertices of which have degree 2 in G and uv /∈ E
(possibly, u or v or both u and v are large vertices in G). Let G′ = (G−{v1, v2, v3})∪{uv}.
Then, δ(G′) ≥ 2 and G is obtained from G′ by an elementary 3-subdivision. By Obser-
vation 2, γ(G) = γ(G′) + 1. If G′ = C4, then G = C7 and G ∈ B1, a contradiction.
If G′ = C7, then G = C10, while if G′ = D(4, 4), then G = D(4, 7). In both cases,
γ(G) = 4 = ψ(G), and the desired bound holds. Hence we may assume that G′ /∈ B1. Since
p′0 + p′1 + p′2 + p′3 ≤ p0 + p1 + p2 + p3 and n′ = n − 3, the lexicographic sequence s(G′)
is smaller than s(G). Applying the inductive hypothesis to G′, γ(G′) ≤ ψ(G′). Hence,
γ(G)− 1 = γ(G′) ≤ ψ(G′) ≤ ψ(G)− (3/8) ∗ 3− 1/8+1/4 = ψ(G)− 1, and so γ(G) ≤ ψ(G).
Hence we may assume that G is a reduced graph. 2
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Claim B G is not a cycle.

Proof. Assume that G is a cycle. By Claim A, either G = C3 or G = C5. On the one
hand, if G = C3, then γ(G) = 1 < (3/8) ∗ 3 + 1/8 = ψ(G). On the other hand, if G = C5,
then γ(G) = 2 < (3/8) ∗ 5 + 1/4 = ψ(G). In both cases, γ(G) < ψ(G). 2

Note that if G − L has a cycle-component C, then C is also a cycle-component of G,
implying that G = C since G is connected. Hence by Claim B, every component of G− L
is a path-component. By Claim A, every path-component has order 1, 2, 3 or 4.

Claim C p0 = 0.

Proof. Suppose that p0 ≥ 1. Let P : v1, v2, v3, v4 be a P4-component of G[S]. Since G is
a reduced graph, the two ends of P are adjacent in G to the same large vertex. Let v be
the common large neighbor of v1 and v4. Then, v, v1, v2, v3, v4, v is a cycle in G. Let G′ be
the graph obtained from G − V (P ) by attaching a G8-unit to the vertex v. Then, G′ is a
graph of order n′ = n + 3 with δ(G′) ≥ 2. Since G /∈ B1, we have that G′ /∈ B1. Further
p′0+p′1+p′2+p′3 = p0+p1+p2+p3−1, and so the lexicographic sequence s(G′) is smaller than
s(G). Applying the inductive hypothesis to G′, γ(G′) ≤ ψ(G′). By Observation 1, there
exists a γ(G′)-set D′ that contains v and a set Dv of two other vertices in the attached G8-
unit. Hence, D = (D′ \Dv)∪{v2} is a dominating set in G. Thus, γ(G) ≤ |D| = |D′| − 1 =
γ(G′) − 1. Therefore, γ(G) + 1 ≤ γ(G′) ≤ ψ(G′) ≤ ψ(G) + (3/8) ∗ 3 − 1/8 = ψ(G) + 1.
Consequently, γ(G) ≤ ψ(G). 2

Claim D p3 = 0.

Proof. Suppose that p3 ≥ 1. Let P : v1, v2, v3 be a P3-component of G[S]. Let u be
the neighbor of v1 not on P and let v be the neighbor of v3 not on P . We consider two
possibilities.

Case 1. u = v. Then, v, v1, v2, v3, v is a cycle in G. Suppose dG(v) ≥ 4. Let G′ =
G− V (P ). Then, δ(G′) ≥ 2. If G′ = C4, then G = D(4, 4) and G ∈ B1, a contradiction. If
G′ = C7 or if G′ = D(4, 4), then γ(G) = 4 = (3/8) ∗ 7+3/8 ≤ ψ(G), and the desired bound
holds. Hence we may assume that G′ /∈ B1. Since p′0 + p′1 + p′2 + p′3 ≤ p0 + p1 + p2 + p3 and
n′ = n − 3, the lexicographic sequence s(G′) is smaller than s(G). Applying the inductive
hypothesis to G′, γ(G′) ≤ ψ(G′). Every γ(G′)-set can be extended to a dominating set of
G by adding to it the vertex v2, and so γ(G) ≤ γ(G′) + 1. Hence, γ(G) − 1 ≤ γ(G′) ≤
ψ(G′) ≤ ψ(G) − (3/8) ∗ 3 − 1/8 + 1/4 = ψ(G) − 1, and so γ(G) ≤ ψ(G). Hence we may
assume that dG(v) = 3.

Let w be the neighbor of v not on P . If dG(w) = 2, let x be the neighbor of w different
from v. If dG(x) = 2, let y be the neighbor of x different from w. Let G′ be the graph
obtained from G − {v, v1, v2, v3} by attaching a G8-unit to the vertex w. Then, G′ is a
graph of order n′ = n+ 3 with δ(G′) ≥ 2. Since G /∈ B1, we have that G′ /∈ B1.
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If dG(w) ≥ 3, then p′3 = p3 − 1 and p′i = pi for i ∈ {0, 1, 2}. If dG(w) = 2 and dG(x) ≥ 3,
then, p′1 = p1 − 1, p′3 = p3 − 1 and p′i = pi for i ∈ {0, 2}. If dG(w) = dG(x) = 2, then since
G is a reduced graph, we have that dG(y) ≥ 3, and so p′0 = p0, p′1 = p1 +1, p′2 = p2− 1, and
p′3 = p3−1. Therefore in all three cases, p′0 +p′1 +p′2 +p′3 ≤ p0 +p1 +p2 +p3−1, and so the
lexicographic sequence s(G′) is smaller than s(G). Further, ψ(G′) ≤ ψ(G)+(3/8)∗3−1/8 =
ψ(G) + 1.

Applying the inductive hypothesis to G′, γ(G′) ≤ ψ(G′). By Observation 1, there exists
a γ(G′)-set D′ that contains w and a set Dw of two other vertices in the attached G8-unit.
Hence, D = (D′ \ Dw) ∪ {v2} is a dominating set in G. Thus, γ(G) ≤ |D| = |D′| − 1 =
γ(G′)− 1. Consequently, γ(G) + 1 ≤ γ(G′) ≤ ψ(G′) ≤ ψ(G) + 1, whence γ(G) ≤ ψ(G).

Case 2. u 6= v. Since G is a reduced graph, we must have uv ∈ E. Let G′ = G− V (P ).
Then, δ(G′) ≥ 2. If G′ = C4, then γ(G) = 3. Further n = 7, and p2 = p3 = 1 and
p0 = p1 = 0, and so ψ(G) = (3/8) ∗ 7 + 1/8 + 1/4 = 3. Thus if G′ = C4, then γ(G) = ψ(G).
If G′ = C7, then G would not be a reduced graph, contrary to assumption. If G′ = D(4, 4),
then γ(G) = 3. Further n = 10, and p3 = 2 and p1 + p2 ≥ 1, and so ψ(G) = (3/8) ∗
10 + 2/8 + 1/4 > 3. Thus, if G′ = D(4, 4), then γ(G) < ψ(G). Hence we may assume that
G′ /∈ B1. Since p′0+p′1+p′2+p′3 ≤ p0+p1+p2+p3 and n′ = n−3, the lexicographic sequence
s(G′) is smaller than s(G). Applying the inductive hypothesis to G′, γ(G′) ≤ ψ(G′). Every
γ(G′)-set can be extended to a dominating set of G by adding to it the vertex v2, and so
γ(G) ≤ γ(G′)+1. Hence, γ(G)−1 ≤ γ(G′) ≤ ψ(G′) ≤ ψ(G)−(3/8)∗3−1/8+1/4 = ψ(G)−1,
and so γ(G) ≤ ψ(G). 2

Claim E p2 = 0.

Proof. Suppose that p2 ≥ 1. Let P : v1, v2 be a P2-component of G[S]. Let u be the
neighbor of v1 not on P and let v be the neighbor of v2 not on P .

If the one hand, suppose that u = v. Let G′ be the graph obtained from G − V (P ) by
attaching a G8-unit to the vertex v. Then, G′ is a graph of order n′ = n+5 with δ(G′) ≥ 2.
Since G /∈ B1, we have that G′ /∈ B1. Further, p′2 = p2−1 and p′i = pi for i ∈ {0, 1, 3}. Hence,
p′0+p′1+p′2+p′3 = p0+p1+p2+p3−1, and so the lexicographic sequence s(G′) is smaller than
s(G). Applying the inductive hypothesis to G′, γ(G′) ≤ ψ(G′). By Observation 1, there
exists a γ(G′)-set D′ that contains v and a set Dv of two other vertices in the attached G8-
unit. Hence, D = D′\Dv is a dominating set in G. Thus, γ(G) ≤ |D| = |D′|−2 = γ(G′)−2.
Therefore, γ(G) + 2 ≤ γ(G′) ≤ ψ(G′) ≤ ψ(G) + (3/8) ∗ 5− 1/4 < ψ(G) + 2. Consequently,
γ(G) ≤ ψ(G).

If the other hand, suppose that u 6= v. If uv ∈ E, then let G′ = G−uv. Then, δ(G′) ≥ 2.
By our structure of G, G′ /∈ {C4, D(4, 4)}. If G′ = C7, then p3 = 1, contrary to our
assumption in Claim D. Hence, G′ /∈ B1. Further, p′0 + p′1 + p′2 + p′3 = p0 + p1 + p2 + p3.
Thus since G′ has order n′ = n and size m′ = m − 1, the lexicographic sequence s(G′) is
smaller than s(G). Applying the inductive hypothesis to G′, γ(G′) ≤ ψ(G′) ≤ ψ(G). Since
the domination number of a graph cannot decrease if edges are removed, γ(G) ≤ γ(G′),
implying that γ(G) ≤ ψ(G). Hence we may assume that uv /∈ E.
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Let G′ be obtained from G− V (P ) by adding the edge uv. Then, δ(G′) ≥ 2 and both u
and v are large vertices in G′. Since G /∈ B1, we have that G′ /∈ B1. Further p′2 = p2 − 1
while p′i = pi for i ∈ {0, 1, 3}. Thus since p′0 + p′1 + p′2 + p′3 = p0 + p1 + p2 + p3 − 1,
the lexicographic sequence s(G′) is smaller than s(G). Applying the inductive hypothesis
to G′, γ(G′) ≤ ψ(G′). Every γ(G′)-set can be extended to a dominating set of G by
adding to it v1 or v2, and so γ(G) ≤ γ(G′) + 1. Therefore, γ(G) − 1 ≤ γ(G′) ≤ ψ(G′) ≤
ψ(G)− (3/8) ∗ 2− 1/4 = ψ(G)− 1. Consequently, γ(G) ≤ ψ(G). 2

By Claims C, D and E, we have p0 = p2 = p3 = 0 and p1 ≥ 1. Thus, by our earlier
assumptions, every component ofG[S] = G−L is a P1-component. Let P be a P1-component
of G[S] with V (P ) = {v1}. Let u and v be the two neighbors of v1. Then, {u, v} ⊆ L.

Claim F uv /∈ E.

Proof. Suppose that uv ∈ E. Let G′ = G − uv. Then, δ(G′) ≥ 2 and γ(G) ≤ γ(G′). If
G′ = C4, then γ(G) = 1 < ψ(G). Since G is a reduced graph, G′ 6= C7. If G′ = D(4, 4),
then n = 7 and γ(G) = 2 < ψ(G). Hence, we may assume that G′ /∈ B1. Further,
p′0 + p′1 + p′2 + p′3 ≤ p0 + p1 + p2 + p3. Thus since G′ has order n′ = n and size m′ = m− 1,
the lexicographic sequence s(G′) is smaller than s(G). Applying the inductive hypothesis to
G′, γ(G′) ≤ ψ(G′). Since γ(G) ≤ γ(G′) and ψ(G′) ≤ ψ(G), we have that γ(G) ≤ ψ(G). 2

Claim G The vertices u and v have only one common degree-2 neighbor.

Proof. Suppose that u and v have a common degree-2 neighbor v2 that is different from
v1. Let G′ be obtained from G − {v1, v2} by adding the edge uv. Then, δ(G′) ≥ 2 and
γ(G) ≤ γ(G′)+1. If G′ = C4, then n = 6 and γ(G) = 2 < ψ(G). Since G is a reduced graph,
G′ 6= C7. If G′ = D(4, 4), then n = 9 and γ(G) = 3 < ψ(G). Hence, we may assume that
G′ /∈ B1. Further, p′0 +p′1 +p′2 +p′3 ≤ p0 +p1 +p2 +p3−1, and so the lexicographic sequence
s(G′) is smaller than s(G). Applying the inductive hypothesis to G′, γ(G′) ≤ ψ(G′).
Hence, γ(G)− 1 ≤ γ(G′) ≤ ψ(G′) ≤ ψ(G)− (3/8) ∗ 2− (1/4) ∗ 2 + 1/4 = ψ(G)− 1. Thus,
γ(G) ≤ ψ(G). 2

Claim H The vertices u and v have at least one common neighbor different from v1, and
each such common neighbor is a degree-3 vertex in G.

Proof. Suppose that v1 is the only common neighbor of u and v. Let G′ be obtained from
G−{u, v, v1} by adding a new vertex w and joining it to all vertices in (N(u)∪N(v))\{v1}.
Then, dG′(w) ≥ 4, δ(G′) ≥ 2 and γ(G) ≤ γ(G′) + 1. If G′ ∈ B1 then G′ = D(4, 4), n = 9,
and γ(G) = 3 < ψ(G). Hence G′ 6∈ B1. Further, p′1 = p1 − 1 and p′i = pi for i ∈ {0, 2, 3}.
Thus, p′0 + p′1 + p′2 + p′3 = p0 + p1 + p2 + p3 − 1, and so the lexicographic sequence s(G′)
is smaller than s(G). Applying the inductive hypothesis to G′, γ(G′) ≤ ψ(G′). Hence,
γ(G)−1 ≤ γ(G′) ≤ ψ(G′) ≤ ψ(G)−(3/8)∗2−1/4 = ψ(G)−1. Consequently, γ(G) ≤ ψ(G).
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Now suppose that w is a common neighbor of u and v different from v1. Suppose that
dG(w) ≥ 4. Let G′ = G−vw. Then, δ(G′) ≥ 2. Further, G′ /∈ B1 and p′0+p′1+p′2+p′3 ≤ p0+
p1 +p2 +p3. Thus since G′ has order n′ = n and size m′ = m−1, the lexicographic sequence
s(G′) is smaller than s(G). Applying the inductive hypothesis to G′, γ(G′) ≤ ψ(G′). Since
γ(G) ≤ γ(G′) and ψ(G′) ≤ ψ(G), we have that γ(G) ≤ ψ(G). Hence we may assume that
dG(w) ≤ 3. By Claim G, dG(w) ≥ 3. Consequently, dG(w) = 3. 2

Claim I Both u and v are degree-3 vertices in G.

Proof. Suppose that u or v has degree greater than 3. Without loss of generality, we may
assume that dG(u) ≥ 4. Let G′ be the graph obtained from G− v1 by attaching a G8-unit
to the vertex v. Then, G′ is a graph of order n′ = n + 6 with δ(G′) ≥ 2. Note that both
u and v are large vertices in G′. Since n′ > 7, we have that G′ /∈ B1. Further, p′1 = p1 − 1
and p′i = pi for i ∈ {0, 2, 3}. Thus, p′0 + p′1 + p′2 + p′3 = p0 + p1 + p2 + p3 − 1, and so the
lexicographic sequence s(G′) is smaller than s(G). Applying the inductive hypothesis to
G′, γ(G′) ≤ ψ(G′). By Observation 1, there exists a γ(G′)-set D′ that contains v and a set
Dv of two other vertices in the attached G8-unit. Hence, D = D′ \Dv is a dominating set
in G. Thus, γ(G) ≤ |D| = |D′| − 2 = γ(G′) − 2. Therefore, γ(G) + 2 ≤ γ(G′) ≤ ψ(G′) ≤
ψ(G) + (3/8) ∗ 6− 1/4 = ψ(G) + 2. Consequently, γ(G) ≤ ψ(G). 2

By Claim H, we may assume that there is a degree-3 vertex y that is adjacent to both
u and v. By Claim I, we may assume that both u and v are degree-3 vertices in G. Let
N(u) = {v1, y, w} and let N(v) = {v1, y, z}.

Claim J w = z.

Proof. Suppose that w 6= z.

Since dG(y) = 3 and {u, v} ⊂ N(y), the vertex y is adjacent to at most one of w
and z. Without loss of generality, we may assume that yz /∈ E. Let G′ be obtained
from G − {v, v1} by adding the two edges uz and yz. Then, δ(G′) ≥ 2 and each of u,
y and z is a large vertex in G′. Let D′ be a γ(G′)-set. If z ∈ D′, then D′ ∪ {u} is a
dominating set of G, while if z /∈ D′, then D′ ∪ {v} is a dominating set of G. Hence
every γ(G′)-set can be extended to a dominating set of G by adding to it either u or v.
Thus, γ(G) ≤ γ(G′) + 1. Since G /∈ B1, we have that G′ /∈ B1. Further, p′1 ≤ p1 − 1
and p′i ≤ pi for i ∈ {0, 2, 3}. Thus, p′0 + p′1 + p′2 + p′3 ≤ p0 + p1 + p2 + p3 − 1, and so the
lexicographic sequence s(G′) is smaller than s(G). Applying the inductive hypothesis to G′,
γ(G′) ≤ ψ(G′). Hence, γ(G) − 1 ≤ γ(G′) ≤ ψ(G′) ≤ ψ(G) − (3/8) ∗ 2 − 1/4 = ψ(G) − 1.
Consequently, γ(G) ≤ ψ(G). 2

By Claim J, we may assume that w = z, and so w is a common neighbor of u and v
different from v1. By Claim H, dG(w) = 3. Let G′ = G − uy − vw. Then, δ(G′) ≥ 2. If
G′ ∈ B1, then G′ = C7. But then G − L would contain a P2-component, contrary to our
earlier assumption. Hence, G′ /∈ B1. Further, p′0 + p′1 + p′2 + p′3 ≤ p0 + p1 + p2 + p3. Thus
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since G′ has order n′ = n and size m′ = m− 2, the lexicographic sequence s(G′) is smaller
than s(G). Applying the inductive hypothesis to G′, γ(G′) ≤ ψ(G′). Since γ(G) ≤ γ(G′)
and ψ(G′) ≤ ψ(G), we have that γ(G) ≤ ψ(G). This completes the proof of Theorem 4. 2

3.3 Proof of Theorem 5

Assume the theorem is false. Among all counterexamples, let G be one of minimum order n.
Then, G is a connected graph with δ(G) ≥ 2, G /∈ B2, and γ(G) > ϕ(G). We proceed further
with three claims.

Claim K The graph G− L has no cycle-component.

Proof. Assume, to the contrary, that G − L has a cycle-component C. Then, C is also
a cycle-component of G, implying that G = C = Cn and γ(G) = ⌈n/3⌉. Since G /∈ B2,
n /∈ {4, 7, 10, 13}. If n ≡ 0 (mod 3), then γ(G) = n/3 < 3n/8 ≤ ϕ(G). If n ≡ 1 (mod 3),
then n ≥ 16 and γ(G) = (n + 2)/3 ≤ 3n/8 = ϕ(G). If n ≡ 2 (mod 3), then either n = 5
and γ(G) = 2 = 3n/8 + 1/8 = ϕ(G) or n ≥ 8 and γ(G) = (n + 1)/3 ≤ 3n/8 = ϕ(G). In
all three cases, γ(G) ≤ ϕ(G), contradicting our assumption that G is a counterexample to
Theorem 5. 2

By Claim K, the graphG−L has no cycle-component. Thus, |L| ≥ 1 and every component
of G− L is a path-component.

Claim L The graph G− L has no path-component of order k ≥ 8.

Proof. Assume, to the contrary, that P : v1, v2, . . . , vk is a Pk-component of G − L where
k ≥ 8. Let u be the neighbor of v1 not on P and let v be the neighbor of vk not on P .
(Possibly, u = v.) Let G′ = (G− {v1, v2, . . . , v6})∪ {uv7} and let P ′ = P − {v1, v2, . . . , v6}.
Then, G′ is a connected graph of order n′ = n − 6 with δ(G′) ≥ 2. It follows from
Observation 2 that γ(G) = γ(G′) + 2. Note that the set of large vertices of G′ is the set L.

If G′ ∈ B2, then G′ ∈ {D(4, 4), D(4, 7), D(7, 7)}. Since G /∈ B2, this implies that G ∈
{D(4, 10), D(4, 13), D(7, 10), D(7, 13)}. In all cases, γ(G) ≤ ϕ(G), a contradiction. Hence,
G′ /∈ B2. Since G′ is not a counterexample to our theorem, γ(G′) ≤ ϕ(G′).

Note that the type-1 or type-2 components of G′−L and G−L are the same, except that
G′−L may contain one additional type-1 or type-2 component, namely the component P ′.
Hence, ϕ(G′) ≤ ϕ(G)− (3/8) ∗ 6 + 1/4 = ϕ(G)− 2. Thus, γ(G) = γ(G′) + 2 ≤ ϕ(G′) + 2 ≤
ϕ(G), a contradiction. 2

Claim M The graph G− L has no path-component of order 5, 6 or 7.

Proof. Assume, to the contrary, that P : v1, v2, . . . , vk is a Pk-component of G− L, where
k ∈ {5, 6, 7}. Let u be the neighbor of v1 not on P and let v be the neighbor of vk not on
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P . (Possibly, u = v.) Let G′ = (G − {v1, v2, v3}) ∪ {uv4} and let P ′ = P − {v1, v2, v3}.
Then, G′ is a connected graph of order n′ = n − 3 with δ(G′) ≥ 2. By Observation 2,
γ(G) = γ(G′) + 1. Note that the set of large vertices of G′ is the set L.

Suppose k = 5. Since G has no B2-component, neither does G′. Note that the type-1 or
type-2 components of G′−L and G−L are the same, except for the type-1 component P of
G−L which becomes the type-2 component P ′ of G′−L. Hence, k1(G′−L) = k1(G−L)−1
and k2(G′ −L) = k2(G−L) + 1, and so ϕ(G′) = ϕ(G)− (3/8) ∗ 3− 1/8 + 1/4 = ϕ(G)− 1.
Since G′ is not a counterexample to our theorem, γ(G′) ≤ ϕ(G′). Hence, γ(G) = γ(G′)+1 ≤
ϕ(G′) + 1 = ϕ(G), a contradiction.

Suppose k ∈ {6, 7}. If G′ ∈ B2, then k = 6 and G ∈ {D(4, 10), D(7, 10)} and γ(G) ≤
ϕ(G), a contradiction. Hence, G′ /∈ B2. Note that the type-1 or type-2 components of G′−L
and G − L are the same, except that G′ − L contains one additional type-1 component,
namely the component P ′. Hence, k1(G′−L) = k1(G−L)+1 and k2(G′−L) = k2(G−L),
and so ϕ(G′) = ϕ(G)− (3/8) ∗ 3 + 1/8 = ϕ(G)− 1. Since G′ is not a counterexample to our
theorem, γ(G′) ≤ ϕ(G′). Hence, γ(G) = γ(G′) + 1 ≤ ϕ(G′) + 1 = ϕ(G), a contradiction. 2

By Claims L and M, every path-component of G − L has order at most 4. Hence,
k1(G− L) = p0 + p3 and k2(G− L) = p1 + p2, and so ψ(G) = ϕ(G). Thus, by Theorem 4,
γ(G) ≤ ϕ(G), a contradiction. This completes the proof of Theorem 5. 2

That the bound of Theorem 5 is in a sense best possible, may be seen as follows. Let v be
a specified vertex of some graph. By attaching a Cn-unit to v, we mean adding a (disjoint)
copy of an n-cycle and identifying any one of its vertices with v. By attaching a key-unit to
v, we mean adding a (disjoint) copy of a 4-cycle and joining with an edge one of its vertices
to v. Let G denote the family of all graphs that can be obtained from a connected graph
F by attaching to each vertex v of F a G8-unit, a C5-unit, a C8-unit, or if dF (v) ≥ 2, a
key-unit. A graph in the family G with one key-unit, one C5-unit and one G8-unit that is
obtained from a complete graph F = K3 on three vertices is illustrated in Figure 4.
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Figure 4: A graph in the family G.

If G ∈ G, then each key-unit and each C5-unit of G contributes two to γ(G), five to |V (G)|,
one to k1(G− L), and zero to k2(G− L), while each C8-unit and each G8-unit contributes
three to γ(G), eight to |V (G)| and zero to k1(G − L) + k2(G − L). Thus, if G ∈ G has
order n with a key-unit, b C5-units, c C8-units, and d G8-units, then n = 5(a+ b)+8(c+d),
k1(G− L) = a+ b and γ(G) = 2(a+ b) + 3(c+ d) = ψ(G).
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