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Abstract

Let G = (V,E) be a graph with no isolated vertex. A set D is called total dominating
in G if each vertex in G is adjacent to a vertex from D, and D is a minimal total
dominating set if any subset D′ ⊂ D is not a total dominating set in G. If all minimal
total dominating sets in G have the same cardinality then G is a total well dominated
graph. In this paper we study composition and decomposition of total well dominated
trees. By a reversible process we prove that any total well dominated tree can both be
reduced to and constructed from a family of three small trees.
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1 Notation

For notation and graph theory terminology we in general follow [4]. Let G = (V, E) be a
graph with vertex set V and edge set E. A dominating set of G is a set D of vertices of G
such that every vertex in V \ D is adjacent to a vertex in D. Further, if also each vertex
in a dominating set D is adjacent to a vertex from D then D is a total dominating set.
The total domination number of G, denoted by γt(G), is the minimum cardinality of a total
dominating set. A total dominating set of minimum cardinality γt(G) is called a γt-set for
G. If a total dominating set D satisfies that no proper subset of D is a total dominating
set then D is a minimal total dominatig set. The upper total domination number of a graph
G, denoted by Γt(G), is the maximum cardinality of a minimal total dominating set. If all
minimal total dominating sets in a graph G have the same cardinality the graph is called
total well dominated (or just TWD). Thus a graph G is TWD if and only if γt(G) = Γt(G).
In a TWD graph any minimal total dominating set is a γt-set. For a set D and a vertex
x ∈ D the private neighbourhood of x is defined by pn(x, D) := {y ∈ N [x]|N [y] ∩D = x}.
A vertex of degree one is called a leaf and a vertex adjacent to a leaf is called a stem.

For two vertices x and y in a graph G we denote the distance between the vertices by
dG(x, y).For S ⊆ V (G) we define dG(x, S) := mins∈S{dG(x, s)}.

If G is a graph and S is a vertex set in G, then the induced subgraph of G with vertex
set S is denoted G[S].

For k ≥ 1 let Ak be the graph with vertex set V (Ak) = {x1, x2, . . . , xk+1, x, y} and
edge set E(Ak) = {x1x2, x2x3, . . . , xkxk+1, xkx, xk+1y}. Thus Ak is the graph illustrated in
Figure 1, A1 = P4 and A2 is a K1,3 with one edge subdivided.

x1 x2 xk−2xk−1 xk+1xk

yx

Figure 1: Illustration of Ak.

Let A4 be the family of graphs with the structure illustrated in Figure 2 (a) and let A5

be the family of graphs with the structure illustrated in Figure 2(b).
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Figure 2: (a) illustrates A4 and (b) illustrates A5. In (b) the dotted line indicates that
either deg(c) = 1 or a path P3 is attached to c.

In Ai we call the vertex x1 an attachment vertex and in a graph from A4 or A5 we call
the vertex c an attachment vertex. In a path Pn a vertex with smallest degree is called an
attachment vertex.

For graphs H with attachment vertex a and G with a vertex v we define the graph
obtained by attaching H to v in G as the graph with vertex set V (G)∪ V (H) and edge set
E(G) ∪ E(H) ∪ {av}. In the obtained graph we say that H is attached at v.

2 Introduction

Total domination, treated here, is a follow-up to domination. Graphs with all minimal
dominating sets having the same cardinality are called well dominated. They form a subset
of well covered graphs, surveyed by M.D. Plummer in 1993 [7] and for girth≥ 4 characterized
by Hartnell, Finbow and Nowakowski [2, 3]. For girth ≥ 6 the family of well dominated
graphs equals the class of well covered graphs ([1]) and for girth ≥ 5 well dominated graphs
are characterized in [2, 3].

3 Decomposition/composition-rules

In this section we give the main decomposition/composition-rules that is used for total well
dominated tress. Each rule is of the kind saying that if G is a graph with some special
structure then G is TWD if and only if certain subgraphs of G are TWD. We say that the
graph is reduced by the rule (or the lemma with the rule).

It will turn out that any TWD tree by application of rules to be described in several

3



lemmas below can be reduced to a smaller TWD tree of order ≤ 6, namely to P2, P4 or
P3 ◦K1. Moreover, the rules will be invertible, so starting from these three small graphs we
can by application of the rules construct any TWD tree.

For the decomposing/composing we shall use some special vertices and admissible sets,
therefore these concepts are defined in the following.

Definition 1 Let G be a TWD graph and let v ∈ V (G). If the graph G′ = (V (G) ∪
{x}, E(G) ∪ {vx}) is TWD and γt(G) = γt(G′) then v is called a special vertex.

Thus, in a TWD graph G the vertex v is special if and only if G has a γt-set containing
v. In P6 = x1x2 · · ·x6 the vertex x3 is special.

Definition 2 Let G be a graph and let S ⊆ V (G). The set S is called admissible if
(i) neither G[S] nor G−N [S] have isolated vertices

and
(ii) ∀v ∈ S: either v is a stem in G[S] or pn(v, S ∪ (V (G)\N [S])) 6= ∅.

From the definition of an admissible set it can be seen that a set S is admissible in G if
and only if S ∪ (V (G)\N [S]) is a total dominating set in G and (S ∪ (V (G)\N [S]))\{s} is
not a total dominating set in G for any vertex s ∈ S.

Observation 1 If S is a admissible set in a graph G, then G has no isolated vertex and
for each minimal total dominating set S′ in G − N [S], the set S ∪ S′ is a minimal total
dominating set in G. I.e., an admissible set can be extended to a minimal domination set.
Also, if G is TWD then G−N [S] is TWD when S is admissible.

Lemma 1 A graph G is TWD if and only if each component of G is TWD.

Lemma 2 If a vertex v ∈ V (G) is adjacent to two leaves l1 and l2 then G is TWD if and
only if G− l1 is TWD.

Lemma 3 Let G be a graph containing two adjacent stems s1 and s2. If L denotes the
leaves adjacent to s1 or s2 and C1, . . . , Ck is the components of G − ({s1, s2} ∪ L) then G
is TWD if and only if Gi := G − {C1, C2, . . . , Ci−1, Ci+1, Ci+2 . . . , Ck} is TWD for each
i ∈ {1, . . . , k}.

Proof. The statement is trivial for k ≤ 1, so assume k ≥ 2. Since δ(G) ≥ 1 if and only if
δ(Gi) ≥ 1 for each i, 1 ≤ i ≤ k, we see that G can be totally dominated if and only each
Gi can. As v1 and v2 are stems they must be contained in any total domination set for
any of the graphs G, Gi, 1 ≤ i ≤ k. Let Di ⊆ V (Gi), 1 ≤ i ≤ k and D =

⋃k
i=1 Di. We

note that D is a total dominating set for G and, in fact, also that D is a minimal total
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dominating set for G if and only if each Di is a minimal total dominating set for Gi,∀i. We
have |D| = ∑k

i=1 |Di| − 2 · (k − 1). That implies that G is TWD if and only if Gi is TWD
for each i, 1 ≤ i ≤ k. 2

Lemma 4 Let G be a graph with a path l1s1v1v2s2l2 and assume that deg(l1) = deg(l2) = 1.
Then G is TWD if and only if G− v1v2 is TWD.

Proof. Since s1 and s2 are stems these vertices must be in all total dominating sets in G
and G− v1v2. Thus a total dominating set of G is also a total dominating set in G− v1v2

and a total dominating set of G − v1v2 is trivially a total dominating set of G. Thus the
result follows. 2

Lemma 5 Let T be a TWD tree reduced by Lemma 2, i.e., without multiple leaves, and let
s be a stem of T having valency at least 3. Then T contains another stem at distance at
most 3 from s.

Proof. Let s be a stem in T and assume that deg(s) ≥ 3 and that no other stem in T is
within distance 3 from s. Since s is adjacent to exactly one leaf l there must exists a path
P : abcsdef in T . For each vertex x from P let Cx denote the union of all components of
T − x not containing vertices from P .

Since no stem s′ 6= s is within distance 3 from s the set V (Cx)\N [x] is a total dominating
set for Cx when x ∈ {b, e}. Thus there is a minimal total dominating set Dx of Cx not
containing a vertex adjacent to x.

For x ∈ {c, d} let D+
x be a minimal total dominating set of Cx and D−

x be a minimal
total dominating set of Cx −N [x].

For x ∈ {a, f} let y be the vertex from P adjacent to x. Further let D+
x be a minimal

total dominating set of G[V (Cx) ∪ {x, y}] not containing y and D−
x be a minimal total

dominating set of G[V (Cx) ∪ {x}] not containing x.

Further let Ds be a minimal total dominating set of Cs−N [s] and let S := Ds∪Db∪De.

Now let A := {c, s, d}∪D−
a ∪D−

c ∪D−
d ∪D−

f ∪S, B := {s, d}∪D+
a ∪D+

c ∪D−
d ∪D−

f ∪S,
C := {c, s} ∪ D−

a ∪ D−
c ∪ D+

d ∪ D+
f ∪ S and D := {s, l} ∪ D+

a ∪ D+
c ∪ D+

d ∪ D+
f ∪ S.

By construction all of these sets are minimal total dominating sets, and since T is TWD
|A| = |B| = |C| = |D|. Since |A| = |B| we obtain |D−

a |+ |D−
c |+ 1 = |D+

a |+ |D+
c | and since

|A| = |C| we obtain |D−
d |+ |D−

f |+ 1 = |D+
d |+ |D+

f |. But then

|D| = 2+ |D+
a |+ |D+

c |+ |D+
d |+ |D+

f |+ |S| = 4+ |D−
a |+ |D−

c |+ |D−
d |+ |D−

f |+ |S| = |A|+1.

Thus we obtain a contradiction. 2

Lemma 6 Let G be a graph with a vertex v adjacent to two stems s1 and s2. If G is reduced
by Lemma 2, 3 and 4 then G ∼= P3 ◦K1 or G is not TWD.
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Proof. Assume G is TWD and reduced by Lemma 2, 3 and 4. Let li be a leaf adjacent to
si for i ∈ {1, 2}. First assume that A := {s1, s2, l1, l2} is a admissible set. Then there is a
minimal total dominating set D such that A ⊆ D. But then (D\{l1, l2}) ∪ {v} is a total
dominating set of smaller cardinality. Thus it can be assumed that A is not admissible and
thus s1 or s2 must be adjacent to a stem. Since G is reduced by Lemma 4 that stem must
be v, and since G is reduced by Lemma 2 and Lemma 3 we obtain that G ∼= P3 ◦K1. 2

Removing all but one attached P3 from a vertex does not change the property of being
TWD.

Lemma 7 Let G be a graph and let v ∈ V (G). If Gi is the graph obtained from G by
attaching i P3’s to the vertex v then G1 is TWD if and only if G2 is TWD.

Proof. Let v1v2v3 and u1u2u3 be the two P3’s added to G to obtain G2 and assume that
{v1v, u1v} ⊆ E(G2). Since {u2, u3} is an admissible set in G2 it follows that G1 = G2 −
N [{u2, u3}] is TWD if G2 is TWD. Now assume G1 is TWD and let D be any minimal total
dominating set in G2. Assume WLOG that dG2(v, {v1, v2, v3}∩D) ≤ dG2(v, {u1, u2, u3}∩D)
then, if u1 ∈ D we can replace it by u3, so we may assume {u2, u3} ⊆ D, u1 /∈ D.
Then D\{u2, u3} is a minimal total dominating set in G2 − NG2 [{u2, u3}] ∼= G1. Since
|D∩{u1, u2, u3}| = 2 and G1 is TWD it follows that |D| = γt(G1)+2 and thus G2 is TWD.
2

Lemma 8 Let G be a connected graph with a P4 attached at a vertex v and let H be the
graph obtained by removing the attached P4. If v is adjacent to a stem in G then G is TWD
if and only if H is TWD and v is special in H.

Proof. First assume that G is TWD and let v1v2v3v4 be the P4 attached at v such that
vv1 ∈ E(G). Since {v2, v3} and {v3, v4} are admissible sets H = G − N [{v2, v3}] is TWD,
and G − N [{v3, v4}] is TWD which proves that v is special in H. Now assume conversely
that H is TWD and v is a special vertex in H and consider a minimal total dominating
set D in G. If {v3, v4} ⊆ D then D\{v3, v4} is just a minimal total dominating set in
G − {v2, v3, v4} and since v is special we obtain |D| = 2 + γt(H) in this case. Otherwise
D∩{v1, v2, v3, v4} = {v2, v3} since v is adjacent to a stem in G. We see that D\{v2, v3} is a
minimal total dominating set in H and, as H is TWD, that |D\{v2, v3}| = γt(H), implying
that |D| = 2 + γt(H). It follows that G is TWD. 2

Lemma 9 Let G be a graph with a P2 : v1v2 attached at a nonstem v ∈ V (G) such that
vv1 ∈ E(G) and deg(v) ≥ 3. Let C1, . . . , Ck be the components of G − {v, v1, v2}. If Gi

denotes the graph G[V (Ci) ∪ {v, v1, v2}] for i ∈ {1, . . . , k} then G is TWD if and only if
G1, . . . , Gk is TWD.

Proof. Let D be a minimal total dominating set in G. If v ∈ D then v is the only vertex
that dominates v1 and it follows that D∩Gi is a minimal total dominating set in Gi. Since
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|D ∩ {v, v1, v2}| = 2 it follows that G is TWD if G1, . . . , Gk is TWD. Assume that G is
TWD, we choose an index i and we shall prove that Gi is TWD. Let Di be a minimal total
dominating set in Gi. Since v is not a stem G has a minimal total dominating set D such
that D ∩Gi = Di. If v2 ∈ Di then (D ∪ {v})\{v2} must be a minimal total dominating set
in G since G is TWD and therefore (Di ∪ {v})\{v2} must be a minimal total dominating
set in Gi. Thus it follows that Gi is TWD if all of the minimal total dominating sets in
Gi not containing v2 have the same cardinality. Assume that Di and D′

i are minimal total
dominating sets in Gi not containing v2. Since G is TWD and the sets D and (D\Di)∪D′

i

are minimal total dominating sets in G it follows that |Di| = |D′
i|. Thus Gi is TWD and

consequently G1, . . . , Gk are TWD if G is TWD. 2

Lemma 10 Let T be a tree reduced by Lemma 4 and 8 with a vertex v such that all com-
ponents of T − v except one namely C, C 6∼= P1, are components isomorphic to P4 or A2

attached at v and at least one P4 is attached at v. Let x denote the vertex from V (C)∩N [v],
let C1, . . . , Ck be the components of C −N [x] and let vi denote the vertex in Ci adjacent to
a vertex from C − Ci. Then T is TWD if and only if each of C1, . . . , Ck are TWD, vi is a
special vertex in Ci adjacent to a stem in Ci and Ci 6∼= P2.

Proof. First assume that T is TWD. Let x1x2x3x4x5 = vx6 = xx7 . . . xa be a path in T
such that x1x2x3x4 is a P4 attached at v and x4v ∈ E(G). We have x8 = vi for some i. Since
G is reduced by Lemma 8 the vertex x cannot be a stem. Neither is x7 a stem, for assume
otherwise that x7 is a stem and let D be a minimal total dominating set in the component
of T − xx7 containing x7. Since x7 is a stem, D is an admissible set in T containing x7 and
by Observation 1 all components of T −N [D] are TWD. But the component of T −N [D]
containing v is not TWD so we have a contradiction. Thus we may assume that x7 is not
a stem and therefore {v, x} is an admissible set. Since T − N [{v, x}] contains C1, . . . , Ck

as components each of these is TWD. Let Ci be the component containing x8 = vi, we
shall show that Ci has a stem adjacent to x8 and that Ci 6∼= P2. Assume otherwise that
either Ci

∼= P2 or Ci does not have a stem adjacent to x8. Let C ′ be the component of
T −xx7 containing x7. By the assumptions the set D′′ := V (C ′)\(N(x8)∩V (Ci)) is a total
dominating set for C ′. Let D′ be a minimal total dominating set of C ′ such that D′ ⊆ D′′.
Since N(x8)∩D′′ = {x7} the vertex x7 must be in D′ and D′ is an admissible set in T . But
the component of T − N [D′] containing v is not TWD. This contradiction proves that in
Ci there is a stem adjacent to x8 and that Ci 6∼= P2. Thus it just remains to prove that x8

is a special vertex in Ci. Since T is reduced by Lemma 4 and x8 is adjacent to a stem in Ci

the vertex x7 cannot be adjacent to a stem in G−Ci. Since {x1, x2, v, x} and {x1, x2, x4, v}
are admissible sets all components of C −x must be TWD and for each such component H
the graph obtained by removing the vertex adjacent to x must be TWD and have the same
total domination number as H.

Let D be a minimal total dominating set in C ′∩(C1∪C2∪· · ·∪Ci−1∪Ci+1∪Ci+2∪· · ·∪Ck)
not containing any of the vertices v1, . . . , vk. Now D∪{v, x} and D∪{x4, v} are admissible
sets and thus all components of T −N [D ∪ {v, x}] and T −N [D ∪ {x4, v}] is TWD. Since
|D ∪ {v, x}| = |D ∪ {x4, v}| we have γt(T −N [D ∪ {x4, v}]) = γt(T −N [D ∪ {v, x}]) and by
considering the components of these graphs we obtain that Ci and the graph obtained by
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attaching a P1 to x8 in Ci must be TWD and have the same total domination number, i.e.
x8 is special in Ci.

Now assume conversely that T can be constructed as described in the lemma, we shall
prove that T is TWD. Let D be a minimal total dominating set in T . Since v1, . . . , vk is
adjacent to a stem in C1, . . . , Ck the set D∩Ci is a minimal total dominating set in Ci and
if vi ∈ D then also in the graph obtained from Ci by attaching a P1 to vi. Now consider
the set D′ := D\{V (C1) ∪ · · · ∪ V (Ck)}. If D′ does not contain isolated vertices it is a
minimal total dominating set in T − V (C1) − · · · − V (Ck). Otherwise D′ contains exactly
one vertex y from N(x)\{v}, {x, v} ∩ D′ = ∅ and D′\{y} is a minimal total dominating
set in the component of T − x containing v. By considering minimal total dominating
sets not containing v in this component it can be observed that they all have cardinality
γt(T − C1 − · · · − Ck)− 1 and thus we obtain that G is TWD. 2

Corollary 1 Let T be a TWD tree reduced by Lemma 2, 3, 4, 8, 9 and 10. For any leaf v
in T we have that either T ∈ {P2, P4, P3 ◦K1} or T has the structure as one of the graphs
from Figure 3 where v is a leaf in T − T ′.

T’ T’T’

x x

(a) (b) (c)

v v

Figure 3: Illustration of structure near leaf. deg(x) ≥ 3 in (a) and (b) .

Remark. Let T be a reduced TWD tree. The only such trees with ≤ 4 vertices are P2

and P4. Let v be a leaf in T . Assume v is attached to a stem x2 with degT (x2) ≥ 3. Then
T by Lemma 5 contains another stem at distance at most 3 from x2. By Lemma 4 it cannot
be at distance 3 from x2, so the distance is 1 or 2. If the other stem is at distance 2 from
x2 then T = P3 ◦ K1 by Lemma 6. So otherwise T has two adjacent stems, one of which
is x2 with degT (x2) ≥ 3. But then we obtain from Lemma 3 that T has a subtree A2 as
described on Figure 1. Here, in Figure 3(c) we have V (A2) = {x1, x2, x3, v, y} where v is
a leaf with stem x3, degT (x3) = 2; y is a leaf with stem x2, degT (x2) ≥ 3; and x1 is the
attachment vertex in A2 to the rest of T , degT (x1) ≥2.

For the cases where v’s stem v1 has degree 2 we have by Lemma 9 that the nonleaf
neighbour to v1 has degree 2, so we obtain one of Figure 3(a) or Figure 3(b) both with
deg(x) ≥ 3 because T has no attached P5.

We shall later see that for trees with sufficiently large diameter the structure from a leaf
as a refinement of Figure 3 can be described by Figure 7.
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Lemma 11 Let G be a graph with two A2’s attached at a vertex v and let H be the graph
obtained by removing one of the attached A2 graphs. Then G is TWD if and only if H is
TWD.

Proof. Let vv1v2v3v4 and vu1u2u3u4 be paths in G such that v1 and u1 are contained in
different A2 graphs attached at v. Since {v2, v3} is a admissible set in G we obtain that
the graph H = G−N [{v2, v3}] is TWD if G is TWD. Conversely, let D be a minimal total
dominating set D in G. Since v1 and u1 cannot both be in D we may assume that v1 6∈ D.
Thus the A2 attached at v containing v1 has exactly two vertices v2, v3 from D. The set
D\{v2, v3} is then a minimal total dominating set of H = G − N [{v2, v3}]. Thus if H is
TWD then G must also be TWD. 2

Lemma 12 Let G be a graph with two A3’s attached at a nonstem v with deg(v) ≥ 3. Then
G is not TWD.

Proof. Let vv1v2v3v4v5 and vu1u2u3u4u5 be paths in G such that v1 and u1 is contained in
different A2 graphs attached at v. Let D := V (G)\{v, v1, u1} then D is a total dominating
set of G since v is not a stem and deg(v) ≥ 3. Let D′ be a minimal total dominating set
such that D′ ⊂ D. Since D′′ := (D\{v2, u2})∪{v} is a total dominating set and |D′′| < |D′|
the graph cannot be TWD. 2

Lemma 13 Let H be a graph with a path P : v1v2v3 such that deg(v1) ≥ 2, deg(v2) =
2, deg(v3) = 1. If G is the graph obtained from H by attaching an A1 to each of v1 and v3

then G is TWD if and only if H is TWD.

1v 3v 4v 5v2v

x

y

Figure 4: Illustration of G.

Proof. In the following notation is as illustrated in Figure 4. Let D be a minimal total
dominating set in G. It follows that v2 6∈ D and (D ∩ V (H)) ∪ {v2} is a minimal total
dominating set for H and |(D ∩ V (H)) ∪ {v2}| = |D| − 3. Thus G is TWD if H is TWD.

Conversely let D be a minimal total dominating set in H. Since v2 is a stem in H we
have v2 ∈ D. Consider the set D′ := (D\{v2}) ∪ {x, y, v4, v5}. This set is a minimal total
dominating set and |D′| = |D|+ 3. Thus H is TWD if G is TWD. 2
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Lemma 14 Let H be a graph and let v ∈ V (H). Now let G be a graph obtained from H by
attaching A1 and a graph from A4 to v and let G′ be the graph obtained from H by attaching
P2 to v. Then G is TWD if and only if G′ is TWD.

v2

v3 v4 v5 v6

v2

v3

v

G’G

y x

v

Figure 5: Illustration of G and G′ from Lemma 14.

Proof. In the proof of this lemma we use the notation from Figure 5. First assume that
G is TWD and let D be a minimal total dominating set of G′. Let A be the vertices at
distance 2 and 3 from v2 in G−vv2 that are not leaves. Then D′ := (D∪A∪{v6, x, y})\{v2}
is a minimal total dominating set in G. Since |D′| − |D| does not depend on the choice of
D the graph G′ is TWD if G is TWD.

Next, let D be a minimal total dominating set in G. It can be observed that the cardinality
of D∩(V (G)\(V (G′)\{v, v2, v3})) does not depend on the choice of D. If v ∈ D then v3 6∈ D.
Thus if D′ := (D∩V (G′))∪{v2} when v ∈ D and D′ := (D∩V (G′))∪{v2, v3} when v 6∈ D
then |D′|− |D| does not depend on D. Since D′ is a minimal total dominating set in G′ the
graph G is TWD if G′ is TWD. 2

Lemma 15 Let G be a graph with a nonstem v ∈ V (G) adjacent to a stem x. Assume
that a graph from A5 is attached at v. If H is the graph obtained by removing the attached
A5-graph and attaching P7 to v then G is TWD if and only if H is TWD.

Proof. Assume that G and H are as described in the lemma. For both graphs let P denote
a path v1v2 . . . v7 contained in the graph attached at v such that vv1 is an edge. Let G′ be
the component of G− vv1 (or H − vv1) containing v. Since G contains a admissible set A
such that G′ = G−N [A] and H contains a admissible set B such that G′ = H −N [B] the
graph G′ is TWD if either G or H is TWD.

10



Assume H is TWD and let D be a minimal total dominating set in G. It can easily
be observed that |D ∩ (V (G)\V (G′))| does not depend on the choice of D. Further D′ :=
D ∩ V (G′) must be a minimal total dominating set of G′. If this is not the case then v
is in D and its sole purpose is to dominate v1, so that the sets D′ ∪ {v3, v4, v6, v7} and
(D′ ∪ {v2, v3, v6, v7})\{v} are both minimal total dominating sets in H. But since H is
TWD this is a contradiction. Thus it follows that G is TWD if H is TWD. By similar
arguments it can be proven that H is TWD if G is TWD. 2

Lemma 16 Let G be a graph. If a graph from A4 and a graph from A5 are attached at
a vertex v ∈ V (G) then G is TWD if and only if the graph H obtained by removing the
attached graph from A5 is TWD.

Proof. First assume that G is TWD. It can be observed that all graphs from A5 have
a total dominating set D such that its attachment vertex is not contained in D and each
vertex from D is adjacent to exactly one vertex from D. If D is such a set in the graph
from A5 attached to v then D is an admissible set in G and thus H = G−N [D] is TWD.

Now assume that H is TWD and let D be a minimal total dominating set in G. Let G′ be
the graph from A5 attached at v. By considering G′ it can be observed that |D ∩ V (G′)| =
γt(G′). Assume first that D′′ := D ∩ H is not a minimal total dominating set in H. Let
v1 . . . v6 be a path in the attached graph from A4 such that vv1 ∈ E(G).

If v ∈ D then D′′ must dominate H but the only neighbour to v contained in D is the
vertex from N [v] ∩ V (G′). Thus v must be an isolated vertex in H[D′′], v3 ∈ D′′ and
(D′′\{v3})∪{v1} is a minimal total dominating set in H. If v 6∈ D then v is not dominated
by D′′ and v3 ∈ D. Thus (D′′\{v3}) ∪ {v1} is a minimal total dominating set in H. In all
cases |D′′| = γt(H) and we obtain that G is TWD if H is TWD. 2

Lemma 17 Let G be a graph with the structure illustrated in Figure 6 and assume N [x]
does not contain any stems and all vertices at distance two from x in G− vx is adjacent to
a stem. Let H be the component of G− xv containing x. Then G is TWD if and only if H
is TWD and x is special in H.
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Figure 6: Illustration of G.

Proof. First assume that G is TWD. Let G′ be the union of all components in G− v not
containing x. By considering G′ it can be seen that it has minimal total dominating sets
A and B such that N [A] ∩ v 6= ∅, N [B] ∩ v = ∅, |A| = |B| and for X ∈ {A, B} each vertex
from X is adjacent to exactly one vertex from X. Each of the sets A and B are admissible
in G. Thus H = G−N [A] is TWD and G−N [B] is TWD proving that x is special in H.

Now assume that H is TWD and let D be a minimal total dominating set of G. Let G′ be
the union of all the graphs fromA5 attached at v (not containing x) and let G′′ := G−V (G′).
By considering G′ it can be observed that |D ∩ V (G′)| = γt(G′). In the following we prove
that |D∩V (G′′)| does not depend on the choice of D. If v 6∈ D then let D′ := D∩V (H) and
otherwise let D′ := ((D ∩ V (H))\{v}) ∪ {y}. Since N [x] does not contain any stems and
all vertices at distance two from x in H is adjacent to a stem the set D′ must be a minimal
total dominating set for H or the graph obtained by attaching a P1 to x in H. Since we
assume that x is special in H we have |D′| = γt(H). Thus |D ∩ V (G′′)| does not depend on
the choice of D since |D∩V (G′′)| = |D′| if no P3 is attached at v and |D∩V (G′′)| = |D′|+2
if a P3 is attached at v. Thus the graph G is TWD if H is TWD. 2

4 Main Result

In this we section consider TWD trees that cannot be reduced by any of the decomposi-
tion/composition rules. Such a tree is called reduced and the following theorem proves that
{P2, P4, P3 ◦K1} is the family of reduced trees.

The idea of the proof will be to traverse a diametrical path from an end towards its center
and examine which subtrees it can, or rather cannot, have attached.
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Theorem 1 Let T be a TWD tree. Then T is reduced if and only if T ∈ {P2, P4, P3 ◦K1}.

Proof. Assume that T is a reduced TWD and T 6∈ {P2, P4, P3 ◦K1}. In the following we
consider a path P : x1 . . . xk in T such that

1. x1 is a leaf.

2. Any path xkxk−1u1u2 . . . ul in T has length at most k − 1.

3. If C is the center-vertices in T and P ′ is a path between C and x1, then V (P ) ⊆
V (C) ∪ V (P ′).

4. No path x1 . . . xkxk+1 satisfy conditions 1-3.

In the following we only say that a graph H with attachment vertex a is attached at xi

if a longest path xiau1 . . . ul where {a, u1, . . . , ul} ⊆ V (H) has length at most i − 1 and
a 6= xi−1.

The only vertex from P to which a P1 can be attached is x3. Since T cannot be reduced
it follows from Corollary 1 that a P1 is not attached at xi for i ≥ 5, because xi should
then have degree two or be adjacent to a stem of degree two as on Figure 3(c), and that
is not the case. Since T cannot be reduced Lemma 2 implies that a P1 is not attached at
x2. If a P1 is attached at x4 then T ∼= P3 ◦ K1 by Lemma 6. No vertex of P can have a
P2 attached, since it follows from Corollary 1 that a P2 cannot be attached at xi for i ≥ 5
because xi should then either have degree two or have a leaf attached, neither of which can
occur. Since T is reduced Lemma 6 implies that a P2 is not attached at x3 and Lemma 4
implies that a P2 is not attached at x4.

Now consider the vertex x4. Since T is reduced only a P3 or the graph A1 can be attached
at x4. By Lemma 4 the graph A1 cannot be attached at x4. If x3 is a stem then it follows
from Lemma 4 that a P3 is not attached at x4 and if x3 is not a stem it follows from Lemma
7 that a P3 cannot be attached at x4. Thus it can be assumed that deg(x4) = 2.

Consider the graphs that can be attached at x5. Since T is reduced only the graphs
P3, P4, A1 and A2 can be attached at x5. Since T is reduced Lemma 4 implies that x5 cannot
be adjacent to a stem if x3 is a stem, and Lemma 8 implies that x5 cannot be adjacent to a
stem if x3 is not a stem. Thus x5 is not adjacent to a stem, and therefore A1 is not attached
at x5. If a P3 : av1v2 is attached at x5 and ax5 ∈ E(T ) then {v1, v2, x2, x3, x4} is contained
in a minimal total dominating set D and D′ := (D\{x4, v2}) ∪ {a} is a total dominating
set. Since |D′| < |D| we obtain a contradiction since T is TWD, so no P3 is attached at x5.
Further, Lemma 11 implies that A2 is not attached at x5 when x3 is a stem. So we may
assume that deg(x5)=deg(x4)=2.

Since T is reduced by Lemma 10 we may assume that x3 is a stem and deg(x4)=deg(x5)=2.
I.e., for any leaf in T which is the origin of a sufficiently long path the structure near P
must be as illustrated in Figure 7 when k ≥ 6.

13



x 1

x 2x 4x 5x 6 x 3

Figure 7: Illustration of structure in T when k ≥ 6.

Consider the graphs attached at x6. Since T is reduced Lemma 13 implies that A1 is
not attached at x6 and from Lemma 12 it follows that A3 is not attached at x6. Thus only
P3, P4 and A2 can be attached at x6. If a P3 : av1v2 is attached at x6 and ax6 ∈ E(T )
then Lemma 4 implies that x6 is not adjacent to a stem and therefore {v1, v2, x4, x5} is
contained in a minimal total dominating set D. But then D′ := (D\{x5, v2}) ∪ {a} is a
total dominating set and |D′| < |D|. Since T is TWD a contradiction is obtained if a P3 is
attached at x6. So only P4’s and A2’s can be attached at x6; and, in fact, by Lemma 11 at
most one A2 can be attached to x6.

The component of T − x7 containing x1 · · ·x6 is a graph in A4 with attachment vertex
x6. Thus Lemma 14 implies that A1 cannot be attached at x7 because otherwise T could
be reduced. If a P4 : av1v2v3 is attached at x7 then Lemma 8 implies x7 is not adjacent
to a stem and thus {a, v2, v3, x7, x4} is a subset of a minimal total dominating set D. But
then D′ := (D\{a, x4}) ∪ {x6} is a total dominating set that satisfies |D′| < |D|. By using
similar arguments we obtain that A2 cannot be attached at x7.

Assume that A3 or a graph from A4 is attached at x7 and let T ′ denote this subgraph.
By considering T it follows that {x5, x4, x3, x2} is contained in a minimal total dominating
set D, but D′ := (D\{x4, x5, y}) ∪ {x6, x7} is a smaller total dominating set for a vertex
y ∈ D ∩ V (T ′) at distance two from x7. Therefore, as T is TWD it can be assumed that
only P3’s can be attached at x7 and Lemma 7 implies that at most one P3 is attached at
x7. But in fact no P3 can be attached to x7, because starting from a leaf x1 we found in
Figure 7 that degx4 = 2. We note that the component of T − x8 containing x1 · · ·x7 is a
graph in A5 with attachment vertex x7.

Consider any graph G′ obtained by attaching a graph from A5 to the center of a star K1,t

for some t ≥ 0. Since G′ is not TWD it follows there must be a component C of T −x8, not
containing the vertex x1, such that C does not contain an admissible set D that satisfies
y 6∈ D and either y ∈ N [D] or N(y) ∩ C ⊆ N [D] where y is the vertex from C adjacent to
x8. If this were not the case then the union of such admissible sets in all components of
T−x8 not containing x1 would be an admissible set D such that T−N [D] had a component
isomorphic to a graph like G′. Since T is TWD it follows from Observation 1 and Lemma
1 that this is a contradiction.

Let C be such a component and consider a path yv1v2 in C such that yx8 ∈ E(T ). Since
{v1, v2} cannot be an admissible set G−N [{v1, v2}] must have an isolated vertex. Since T
is reduced Lemma 15 implies y is not a stem and therefore v1 or v2 must be adjacent to a
stem in C−{y, v1, v2}. If v1 is adjacent to such a stem u then since T is reduced Corollary 1
shows that u must be adjacent to a stem z but then {v1, u, z} is contained in an admissible
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set in C\{y} which is a contradiction to the choice of C. Thus v2 must be adjacent to a stem
u 6= v1. Thus Corollary 1 and Lemma 7 imply that T must have the structure illustrated
in Figure 8. Let the set A be as illustrated in Figure 8. Further, let D be all vertices from
V (C)\{y} at distance at least three from A. Now A∪D is a total dominating set of C − y
and thus there is a minimal total dominating set D′ of C − y such that D′ ⊆ A ∪D. If no
A3-graph is attached at y then D′ is an admissible set in T contradicting the choice of C.
Thus we may assume that an A3 is attached at y.

x 7x 8

y

A A

A A

A A

A A

A

A

A

A

AA

A A

A

A A

A A

AA

A

Figure 8: Illustration of T .

Now consider the graphs attached at x8. Only P3, P4, A1, A2, A3 or a graph from A4∪A5

can be attached at x8. By Lemma 16 a graph from A4 is not attached at x8 and by Lemma
15 A1 cannot be attached at x8. If one of the graphs P4, A2, A3 is attached at x8 and
a denotes the attachment-vertex from such a graph, then since x8 is not adjacent to a
stem then {a, x2, x3, x4, x5, x8} is contained in a minimal total dominating set D. Further,
D′ := (D\{a, x5}) ∪ {x7} is a total dominating set. Since T is TWD none of these graphs
can be attached at x8. Thus T has the structure as the graph from Lemma 17 and since T
is reduced this is a contradiction.

Now let P be a subpath of a diametrical path in T . By the above arguments k ≤ 7 and
k ≥ 3 since T 6∼= P2. Thus there must be a graph attached at xk and the information about
graphs attached at x3, x4, x5, x6 and x7 implies that T ∈ A4.

This proves the statement since all the graphs from {P2, P4, P3 ◦K1} are reduced graphs
and Lemma 4, Lemma 10, Lemma 11 and Lemma 14 imply that no graph from A4 is
reduced. 2
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