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TRIGONOMETRIC BASES FOR MATRIX WEIGHTED Lp-SPACES

MORTEN NIELSEN

ABSTRACT. We give a complete characterization of 2π-periodic matrix weights W for
which the vector-valued trigonometric system forms a Schauder basis for the matrix
weighted space Lp(T;W ). Then trigonometric quasi-greedy basis for Lp(T;W ) are
considered. Quasi-greedy bases are systems for which the simple thresholding approx-
imation algorithm converges in norm. It is proved that such a trigonometric basis can
be quasi-greedy only for p = 2, and whenever the system forms a quasi-greedy basis,
the basis must actually be a Riesz basis.

1. INTRODUCTION

A (periodic) matrix weight is a function W : T → CN×N taking values in the set
of strictly positive definite Hermitian forms. For technical reasons, we shall always
assume that both W and W−1 are integrable. The associated weighted space Lp(T;W ),
1≤ p < ∞, is the set of measurable (vector-)functions f : T→ CN satisfying

(1.1) ‖f‖p
Lp(T;W ) :=

∫
T
|W 1/pf|p dx < ∞,

where | · | denotes the Euclidean norm on CN . One can easily verify that Lp(T;W ) is a
Banach space for 1 < p < ∞, and a Hilbert space for p = 2 with norm induced by the
inner product

(1.2) 〈f,g〉L2(T;W ) :=
∫

T
〈W f(t),g(t)〉`2(CN) dt.

In this paper we study certain stability properties of a vector valued trigonometric sys-
tem in Lp(T;W ) in terms of properties of the weight W . The trigonometric system is
defined in a straightforward way. Let {e j}N

j=1 denote the standard basis for CN . Then

we simply define e j
k(t) := e−2πikte j, t ∈ R, and let

(1.3) T := {e j
k | j = 1,2, . . . ,N;k ∈ Z}.

For the trivial constant weight W := Id, it is easy to verify that T forms a (Schauder)
basis for Lp(T; Id), 1 < p < ∞, and an orthonormal basis for L2(T; Id), which can be
deduced from the scalar case. It is also well-known from the scalar unimodular case that
the trigonometric system cannot be unconditional in Lp(T) except in the Hilbert space
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case p = 2. This follows from Orlicz’ Theorem, see [21]. However, when we consider
T in a space with a matrix weight W with e.g. unbounded spectrum on T, it is not so
obvious what happens. In the scalar case, the seminal paper by Hunt, Muckenhoupt,
and Wheeden [9] demonstrates that the trigonometric system is stable in weighted Lp
spaces precisely when the weight satisfies a so-called Muckenhoupt Ap condition. An
application of the results in [9] to Schauder bases problems related to Gabor systems
was recently studied by Heil and Powell [8] for p = 2.

The main contribution of the present paper is to give a complete characterization of
matrix weights W for which T forms a Schauder basis for Lp(T;W ). The Schauder
basis property turns out to be equivalent to W satisfying a so-called Muckenhoupt Ap
matrix condition. Furthermore, we prove that T can only be a quasi-greedy basis for
Lp(T;W ) when p = 2. Quasi-greedy bases are systems for which the simple threshold-
ing approximation algorithm converges in norm. Moreover, we also show that whenever
T is quasi-greedy in L2(T;W ), then the basis must actually be a Riesz basis.

To motivate the study of the vector valued system T , let us mention one important
application where problems on stability of T in Lp(T;W ) arise naturally. For a finitely
set of functions { fk}N

k=1 in L2(R), the associated shift invariant space S is given by

S := Span{ fk(·− l)|l ∈ Z,k = 1,2, . . . ,N} ⊂ L2(R).

A natural question to pose is whether B := Span{ fk(·− l)|l ∈Z,k = 1,2, . . . ,N} forms a
basis for S. Here basis can mean merely a Schauder basis, or a stronger condition such
as unconditional or Riesz bases. The Schauder basis case was settled by Nielsen and
Šikić [15] in the single generator case (i.e., N = 1). The finitely generated shift invariant
case was settle by the present author in [13], where it is proved that the system B forms
a Schauder basis for S precisely when T forms a basis for L2(T;G), with G the N×N
Gram matrix given by

Gi, j := ∑
k∈Z

f̂i(·− k) f̂ j(·− k),

where the Fourier transform is given by f̂ (ξ ) :=
∫
R f (t)e−2πitξ dt. Moreover, T forms

a basis for L2(T;G) precisely when G is a Muckenhoupt A2 matrix weight, a notion that
will be discussed in details below.

The structure of the paper is as follows. In Section 2, we impose an ordering on T
and define associated partial sum operators. Then we study boundedness properties of
these operators on Lp(T;W ), and the main result of Section 2 shows that T forms a
Schauder basis for Lp(T;W ) precisely when the weight W satisfies a Muckenhoupt Ap
matrix condition. In Section 3 we study conditions on the weight W that will make T a
so-called quasi-greedy basis for Lp(T;W ). Quasi-greedy bases are Schauder bases for
which approximations obtained by thresholding converge in norm. It is proved in Sec-
tion 3 that T can be quasi-greedy in Lp(T;W ) only when p = 2, and in the affirmative
case, the system is actually a Riesz basis. Section 4 concludes the paper with a selection
of examples.
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2. TRIGONOMETRIC SCHAUDER BASES FOR Lp(T;W )

In this section we characterize Schauder basis properties of T in Lp(T;W ) in terms
of properties of the matrix weight W : T → CN×N . The main result is that T is a
Schauder basis for Lp(T;W ) precisely when W is a so-called Muckenhopt Ap matrix
weight. We thus obtain Schauder bases for a large class of weighted spaces in the vector
valued setting. In the scalar case, the paper by Hunt, Muckenhoupt, and Wheeden [9]
contains the first proof that the trigonometric system is stable in weighted Lp spaces pre-
cisely when the weight satisfies a suitable Muckenhoupt condition. The connection to
Schauder bases was made precise by Heil and Powell [8] in the case of p = 2. The con-
nection between Schauder bases for shift invariant spaces and the trigonometric system
was established by Nielsen and Šikić [15].

Let us begin by making some observations about the system T in Lp(T;W ). For
p = 2, we notice that whenever W,W−1 ∈ L1, then (W−1e j

k,e
j
k)k, j is a bi-orthogonal

system in L2(T;W ) in the sense that

〈W−1e j
k,e

j′
k′〉L2(T;W ) :=

∫
T
〈WW−1e j

k,e
j′
k′〉`2(CN) dt = δk,k′δ j, j′.

This fact insures that we can define partial sum operators associated with a fixed order-
ing of T which we will describe now. First we choose the ordering ρ : N→ Z of Z
given by

{0,−1,1,−2,2, . . .}.
Then we induce an ordering η : N→ {1,2, . . . ,N}×Z as follows. For m ∈ N we write
m− 1 = kN + r, 0 ≤ r < N, and define η(m) := (r + 1,ρ(k + 1)). Moreover, we let
e(η(m)) := eρ(k+1)

r+1 . With the ordering in place, we can consider the partial sum opera-
tors defined by

(2.1) Sn(f) :=
n

∑
s=1
〈f,W−1e(η(s))〉L2(T;W )e(η(s)).

With the partial sum operators defined by (2.1), we can obviously study their bounded-
ness properties in L2(T;W ). Moreover, we claim that (2.1) can be made to make sense
for f ∈ Lp(T;W ), 1 < p < ∞ with one additional assumption. The standing assumption
W ∈ L1 ensures that e j

k ∈ Lp(T;W ) for 1 < p < ∞, so we focus on the dual element
W−1e j

k. We recall that the dual space to Lp(T;W ), induced by the inner product given
by (1.2), is Lp′(T;W ), with 1/p+1/p′ = 1, see [6]. We have,

‖W−1e j
k‖Lp′(T;W ) =

(∫
T
|W 1/p′−1(t)e j

k(t)|p
′
dt
)1/p′

=
(∫

T
|W−1/p(t)e j

k(t)|p
′
dt
)1/p′

.

Hence, if we make the assumptions that W,W−p′/p ∈ L1, then (2.1) is well-defined for
f ∈ Lp(T;W ). Notice that this assumption is compatible with the definition of the Ap
class below, see Definition 2.1.
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It turns out that boundedness of (2.1) in Lp(T;W ) is closely related to a study of cer-
tain singular integral operators on Lp(T;W ) related to the vector valued Hilbert trans-
form. The vector-valued Hilbert transform was studied in the seminal paper by Treil and
Volberg [19], and this was later generalized to other types of singular integral operators
by Goldberg [6]. Treil and Volberg showed that the correct condition to impose on W to
obtain boundedness is the so-called Muckenhoupt Ap condition.

The Muckenhoupt Ap-condition for matrix weights was introduced by Nazarov, Treı̆l′
and Volberg in [12, 20] to study boundedness properties of the vector-valued Hilbert
transform. Here we follow Roudenko [16] and give an equivalent and more direct defi-
nition of matrix Ap weights. It is proved in [16] that the following definition is equiva-
lent to the Ap condition considered in [12, 20]. We let I denote the family of all open
intervals on R.

Definition 2.1. Let 1 < p < ∞, and let p′ denote the conjugate exponent to p, i.e.,
1
p + 1

p′ = 1. Let W : T→CN×N be a matrix weight. We say that W belongs to the matrix

Muckenhoupt class Ap provided W,W−p′/p are integrable, and

(2.2) A(p,W ) := sup
I∈I

∫
I

(∫
I

∥∥W 1/p(x)W−1/p(t)
∥∥p′ dt
|I|
)p/p′ dx

|I| < ∞.

Remark 2.2. One can verify that W ∈ Ap if and only if W−p′/p ∈ Ap′ , see [16].

We can now state the main result of this section characterizing boundedness of the
partial sum operators {Sm}m given by (2.1) in terms of an Ap condition on the matrix
weight. A variation of Proposition 2.3 valid in the simpler scalar valued case can be
found in [15].

Proposition 2.3. Let 1 < p < ∞, and let W : T → CN×N be a matrix weight with
W,W−min(1,p′/p) ∈ L1, where p′ is the dual exponent to p, i.e., 1

p + 1
p′ = 1. Then the

partial sum operators {Sm}m given by (2.1) are uniformly bounded on Lp(T;W ) if and
only if W ∈ Ap. Equivalently, the system T given by (1.3) is a Schauder basis for
Lp(T;W ) if and only if W ∈ Ap.

Before we can give the proof of Proposition 2.3, we need to state a few auxiliary
results. The Hilbert transform H is defined on L2(T) by

H( f )(x) := p.v.
∫

T
f (t)cot(π(x− t))dt.

We lift H to a linear operator on L2(T;W ) for any N ×N matrix weight W on T by
letting it act coordinate-wise, i.e.,

(Hf)i := H( fi), i = 1, . . . ,N; f ∈ L2(T;W ).

The fundamental result by Treil and Volberg [19], see also [18], is the following.

Theorem 2.4 ( [19]). Let W : T→ CN×N be a matrix weight, and let 1 < p < ∞. Then
the Hilbert transform extends to a bounded operator on Lp(T;W ) if and only if W ∈ Ap.
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We recall that the univariate Dirichlet kernel DK is given by

(2.3) DK(t) =
sin2π(K +1/2)t

sinπt
, K ≥ 1,

and for f ∈ Lp(T), we have

f ∗DK :=
∫

T
f (t)DK(·− t)dt =

K

∑
k=−K

f̂ (k)e2πik·.

We lift f ∗DK to an operator on Lp(T;W ) by letting it act coordinate-wise.
We have the following immediate corollary to Theorem 2.4.

Corollary 2.5. Let 1 < p < ∞, and let W : T→ CN×N be a matrix weight satisfying
W,W−min(1,p′/p) ∈ L1, with p′ the dual exponent to p, i.e., 1

p + 1
p′ = 1. Then the partial

sum operators f→ f∗DK are uniformly bounded on Lp(T;W ) if and only if W ∈ Ap.

Proof. Suppose W ∈Ap. We let P+ denote the Riesz projection onto H2 for f ∈L2(T;W ).
Recall that P+ = 1

2(I + iH + S0), where S0 is the orthogonal projection onto constant
vectors. It follows that P+ is bounded on Lp(T;W ) since H is bounded on Lp(T;W )
according to Theorem 2.4, and S0 is bounded on Lp(T;W ) according to [6, Proposition
2.1]. Notice that f→ fe2πiM· is a unitary mapping on Lp(T;W ), just as in the scalar case.
Then we observe that

f∗DK = e−2πiK·P+(e2πiK·f)− e2πi(K+1)·P+(e−2πi(K+1)·f),

and the uniform boundedness of f→ f∗DK follows.
Now, suppose f→ f ∗DK are uniformly bounded on Lp(T;W ). Then we notice that

for f a vector of trigonometric polynomials,

P+(f) = e2πiK·[(e−2πiK·f)∗DK],

for K large. It follows that P+ extends to a bounded operator on Lp(T;W ), and con-
sequently, the Hilbert transform H is bounded on Lp(T;W ) and W ∈ Ap by Theorem
2.4. �

With Corollary 2.5 at our disposal, we can now prove Proposition 2.3.

Proof of Proposition 2.3. First, suppose the partial sum operators {Sm}m given by (2.1)
are uniformly bounded on Lp(T;W ). We notice that S(2L+1)N(f) = f∗DL, so f→ f∗DK
are uniformly bounded on Lp(T;W ) and W ∈ Ap by Corollary 2.5.

Now, suppose W ∈ Ap. Given m ∈ N, we choose K sufficiently large such that

Sm(f) = f∗DK +R(f),

where R(f) contains at most 2N−1 terms of the type

〈f,W−1e j
k〉L2(T;W )ek

j.
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However, notice that1

‖〈f,W−1e j
k〉L2(T;W )ek

j‖Lp(T;W ) ≤ |〈f,W−1e j
k〉L2(T;W )|‖ek

j‖Lp(T;W )

≤ ‖f‖Lp(T;W ) · ‖W−1e j
k‖Lq(R;W ) · ‖ek

j‖Lp(T;W )

. ‖f‖Lp(T;W ).

This, together with the uniform boundedness of f→ f ∗DK from Corollary 2.5, shows
that the partial sum operators {Sm}m given by (2.1) are uniformly bounded on Lp(T;W ).

Finally, we notice that uniform boundedness of {Sm}m on Lp(T;W ) is equivalent
to T being a Schauder basis for Lp(T;W ) provided that T is complete in Lp(T;W ),
see [11]. Suppose T is not complete. Then the Hahn-Banach theorem provides a non-
zero g ∈ Lq(T;W ), 1/p+1/q = 1, such that for all j,k,∫

T
〈Wg(t),ek

j(t)〉`2(CN) dt = 0.

However, one checks that g =W−1/qf for some f∈Lq(T; Id), so Wg =W 1/pf∈Lp(T; Id).
Hence, each entry of the vector W 1/pf is in Lp(T), and the completeness of the trigono-
metric system in Lp(T) implies that W 1/pf = 0 a.e. This implies g = 0, which is a con-
tradiction, and consequently T is complete in Lp(T;W ). This completes the proof. �

3. BEYOND SCHAUDER BASES: QUASI-GREEDY BASES

Proposition 2.3 tells us that T defined by (1.3) is a Schauder basis for Lp(T;W )
if and only if W ∈ Ap. In this section, we explore what happens when we impose
slightly stronger conditions on T . The condition we have in mind is quasi-greediness.
A quasi-greedy basis is a quasi-normalized Schauder basis for which the thresholding
approximation algorithm converges, see Definition 3.1 below.

The main result of this paper stated as Theorem 3.8 below is that T can be quasi-
greedy in Lp(T;W ) only for p = 2, and we completely characterize the weights W ∈
A2(T) for which T is quasi-greedy in L2(T;W ). It turns out that T is quasi-greedy in
L2(T;W ) precisely when the spectrum of W is bounded and bounded away from zero
on T so, in particular, a quasi-greedy system T in L2(T;W ) is always a Riesz-basis.

We begin by introducing some notation and recalling some necessary results on quasi-
greedy bases. First we give the precise definition of a quasi-greedy system in a Banach
space X . A biorthogonal system is a family (xn,x∗n)n∈N⊂X×X∗ such that x∗n(xn) = δn,m.
We fix a biorthogonal system (xn,x∗n)n∈N with spann(xn) dense in X . We assume that the
system is quasi-normalized, i.e., infn ‖xn‖X > 0 and supn ‖x∗n‖X∗ < ∞. For each x ∈ X
and m ∈ N, we define

Gm(x) := ∑
n∈A

x∗n(x)xn,

1The notation A . B means that there exists a constant c (independent of any significant parameters)
such that A≤ cB. We use A� B whenever A. B and B. A.
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where A is a set of cardinality m satisfying |x∗n(x)| ≥ |x∗k(x)| whenever n ∈ A and k 6∈ A.
Whenever A is not uniquely defined, we arbitrarily pick any such set. The definition of
Gm leads directly to the definition of a quasi-greedy system, see [10].

Definition 3.1. A quasi-normalized biorthogonal system (xn,x∗n)n∈N ⊂ X × X∗, with
spann(xn) dense in X , is called a quasi-greedy system provided

(3.1) ‖Gm(x)‖X . ‖x‖X , ∀x ∈ X .

If the system is also a Schauder basis for X , we will use the term quasi-greedy basis.

Remark 3.2. It is straightforward to check that an unconditional basis is also quasi-
greedy, but the converse statement is false. There exist conditional quasi-greedy bases,
see [10].

Remark 3.3. In was proved by Wojtaszczyk in [22] that a system is quasi-greedy if and
only if for each x ∈ X , the sequence Gm(x) converges to x in norm. In particular, if a
Schauder basis is not quasi-greedy, then there exists x0 ∈ X such that the Gm(x0) fails to
converge to x0. Put another way, approximations obtained by decreasing rearrangements
are not norm convergent.

Let us explain our strategy to obtain information about the weight W . We are going
to probe the weight with very special vector functions induced by the Dirichlet kernel
and its translates. The Dirichlet kernel has two important properties that we will use
extensively: It has unimodular coefficients relative to the trigonometric system, and its
powers (properly normalized) form approximations to the identity.

The first result we state is due to Wojtaszczyk [22], see also [5]. It shows that quasi-
greedy bases are unconditional for constant coefficients. Below in Lemma 3.7 we will
use this fact to estimate the norm of vector functions induced by, e.g., the Dirichlet
kernel.

Lemma 3.4. Suppose {bk}k∈N is a quasi-greedy basis in a Banach space X. Then there
exist constants 0 < c1 ≤ c2 < ∞ such that for every choice of signs εk = ±1 and any
finite subset A⊂ N we have

(3.2) c1
∥∥∑

k∈A
bk
∥∥

X ≤
∥∥∑

k∈A
εkbk

∥∥
X ≤ c2

∥∥∑
k∈A

bk
∥∥

X .

For our purpose, Lemma 3.4 is not quite enough. When we consider translates of the
Dirichlet kernel, we need to be able to handle arbitrary unimodular complex coefficients
and not only ±1 as covered by Lemma 3.4. For that purpose, we need to use some facts
about the Banach space geometry of Lp(T;W ). For the definition of type and cotype of
a Banach space we refer to, e.g., [21, Chap. III]. We also recall that the scalar valued
Lp(T) has type 2 for 2≤ p < ∞ and cotype 2 for 1 < p≤ 2, see [21, Chap. III]. These
properties are inherited by Lp(T;W ) as the following Lemma shows.

Lemma 3.5. Let W : T→ CN×N be an integrable matrix weight. The Banach space
Lp(T;W ) has type 2 for 2≤ p < ∞, and cotype 2 for 1 < p≤ 2.
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Proof. We focus on the type claim, so we assume that 2 ≤ p < ∞. Let r1,r2, . . . be the
Rademacher functions on [0,1) defined by rk(t) = sign(sin(2kπt)), and let {fk}∞

k=1 be
an arbitrary sequence of functions from Lp(T;W ). We use [f]i to denote the i’te entry of
the vector f. Then by repeated use of the fact that any two norms on RN are equivalent,
and the fact that Lp(T) has type 2, we obtain for any K ∈ N,

∫ 1

0

∥∥∥∥ K

∑
k=1

rk(t)fk

∥∥∥∥
Lp(T;W )

dt =
∫ 1

0

(∫
T

∣∣∣∣ K

∑
k=1

rk(t)W 1/p(x)fk(x)
∣∣∣∣pdx

)1/p

dt

�
∫ 1

0

( N

∑
i=1

∫
T

∣∣∣∣ K

∑
k=1

rk(t)[W 1/p(x)fk(x)]i

∣∣∣∣pdx
)1/p

dt

�
N

∑
i=1

∫ 1

0

(∫
T

∣∣∣∣ K

∑
k=1

rk(t)[W 1/p(x)fk(x)]i

∣∣∣∣pdx
)1/p

dt

.
N

∑
i=1

[ K

∑
k=1

(∫
T

∣∣[W 1/p(x)fk(x)]i
∣∣pdx

)2/p]1/2

�
[ N

∑
i=1

K

∑
k=1

(∫
T

∣∣[W 1/p(x)fk(x)]i
∣∣pdx

)2/p]1/2

�
[ K

∑
k=1

( N

∑
i=1

∫
T

∣∣[W 1/p(x)fk(x)]i
∣∣pdx

)2/p]1/2

�
( K

∑
k=1
‖fk‖2

Lp(T;W )

)1/2

.

The claim about cotype follows from a slight modification of the above estimate. We
leave the details for the reader. �

The next Lemma gives a simple embedding result for the weighted Lp-spaces.

Lemma 3.6. Suppose W ∈ L1 is a matrix weight. Then for 1≤ p < q < ∞ we have the
continuous embedding Lq(T;W ) ↪→ Lp(T;W ).

Proof. First notice that for 0 < α < 1, ‖W (t)α‖1/α = ‖W (t)‖, so
∫
T ‖W (t)α‖1/α dt < ∞.

Now suppose 1≤ p < q < ∞ and f ∈ Lp(T;W ). Then, using Hölder’s inequality,∫
T
|W 1/p(t)f(t)|p dt =

∫
T
|W 1/p−1/qW 1/q(t)f(t)|p dt

≤
∫

T
‖W 1/p−1/q(t)‖p · |W 1/q(t)f(t)|p dt

≤
(∫

T
‖W 1/p−1/q(t)‖qp/(q−p) dt

)(q−p)/q(∫
T
|W 1/q(t)f(t)|q dt

)p/q
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.
(∫

T
|W 1/q(t)f(t)|q dt

)p/q

.

This proves the claim. �
We now combine the previous lemmata to prove the following result, which can be use
to estimate the Lp(T;W )-norm of expansions with unimodular coefficients relative to
T provided T is quasi-greedy.

Proposition 3.7. Let W ∈ L1 be a matrix weight. Suppose that T := {e j
k} defined

by (1.3) is a quasi-greedy system in Lp(T;W ) for some 1 < p < ∞. Then there exist
constants 0 < c1 ≤ c2 < ∞ such that for every finite unimodular sequence {α j

k}( j,k)∈F ⊂
C, F ⊂ {1, . . . ,N}×Z, and every vector v ∈ CN , we have

(3.3) c1(max
j
|v j|)L1/2 ≤

∥∥∥∥ ∑
( j,k)∈F

v jα j
k e j

k

∥∥∥∥
Lp(T;W )

≤ c2(max
j
|v j|)(#F)1/2,

where L := min j #{k ∈ Z : α j
k 6= 0}.

Proof. We begin by proving the upper estimate. An easy application of the triangle
inequality yields

(3.4)
∥∥∥∥ ∑

( j,k)∈F
v jα j

k e j
k

∥∥∥∥
Lp(T;W )

≤ (max
j
|v j|)∑

j

∥∥∥∥ ∑
k:( j,k)∈F

α j
k e j

k

∥∥∥∥
Lp(T;W )

.

For technical reasons we define a new scalar sequence {β j
k } by

β j
k =

{
α j

k , ( j,k) ∈ F,

1, ( j,k) ∈ ({1, . . . ,N}×Z)\F.

Now observe that {β j
k e j

k} j∈{1,...,N},k∈Z is also a quasi-greedy system in Lp(T;W ). In
fact, the greedy approximation operator G̃m for {β j

k e j
k} j∈{1,...,N},k∈Z is identical to the

approximation operator Gm for {e j
k} j∈{1,...,N},k∈Z. This follows from the trivial obser-

vation that if fψ
k is the dual element to e j

k, then β j
k f j

k is the dual element to β j
k e j

k, since
|β ψ

k |= 1.
According to Lemma 3.5, Lp(T;W ) has Rademacher cotype 2 for 1 < p≤ 2 and type

2 for 2 ≤ p < ∞. Let us first suppose 2 ≤ p < ∞. Then, for any sequence {f`}`∈N ⊂
Lp(T;W ), we have the uniform estimate∫ 1

0

∥∥∥∥ n

∑̀
=1

r`(t)f`
∥∥∥∥

Lp(T;W )
dt = Avgε`=±1

∥∥∥∥ n

∑̀
=1

ε`f`
∥∥∥∥

Lp(T;W )

.C
( n

∑̀
=1
‖f`‖2

Lp(T;W )

)1/2

,(3.5)
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where {r`}`∈N is the sequence of Rademacher functions on [0,1), see Lemma 3.5. We
use (3.5), together with Lemma 3.4 applied to the quasi-greedy system {β j

k e j
k}, to obtain∥∥∥∥ ∑

k:( j,k)∈F
α j

k e j
k

∥∥∥∥
Lp(T;W )

� Avgε j
k =±1

∥∥∥∥ ∑
k:( j,k)∈F

ε j
k [β j

k e j
k]
∥∥∥∥

Lp(T;W )

.
(

∑
k:( j,k)∈F

‖β j
k e j

k‖2
Lp(T;W )

)1/2

.
√

#F .(3.6)

The estimates (3.6) and (3.4) prove the upper estimate in (3.3).
We turn to the lower estimate in (3.3). Pick an index j′ such that |v j′| = max j |v j|.

Now we use the fact that the system {β j
k e j

k} is quasi-greedy to conclude that for every
ε > 0,

(1+ ε)|v j′|
∥∥∥∥ ∑

k:( j′,k)∈F
α j′

k e j′
k

∥∥∥∥
Lp(T;W )

≤ Q
∥∥∥∥(1+ ε)v j′ ∑

k:( j′,k)∈F
α j′

k e j′
k + ∑

j, j 6= j′
v j ∑

k∈Z
α j

k e j
k

∥∥∥∥
Lp(T;W )

,(3.7)

where Q is the quasi-greedy constant in Lp(T;W ) for {β j
k e j

k} j∈{1,...,N},k∈Z. We let ε →
0+ to conclude that

(3.8) |v j′|
∥∥∥∥ ∑

k:( j′,k)∈F
α j′

k e j′
k

∥∥∥∥
Lp(T;W )

≤ Q
∥∥∥∥ ∑

( j,k)∈F
v jα j

k e j
k

∥∥∥∥
Lp(T;W )

.

Let L := min j∈{1,...,N} #{k ∈ Z : α j
k 6= 0}. Then, since L2(T;W ) has both type and

cotype 2, and Lp(T;W ) ↪→ L2(T;W ) by Lemma 3.6,

√
L� Avg

ε j′
k =±1

∥∥∥∥ ∑
k:( j′,k)∈F

ε j′
k [β j′

k e j′
k ]
∥∥∥∥

L2(T;W )

. Avg
ε j′

k =±1

∥∥∥∥ ∑
k:( j′,k)∈F

ε j′
k [β j′

k e j′
k ]
∥∥∥∥

Lp(T;W )
(3.9)

�
∥∥∥∥ ∑

k:( j′,k)∈F
α j′

k e j′
k

∥∥∥∥
Lp(T;W )

.

This together with (3.8) shows that

(max
j
|v j|)L1/2 .

∥∥∥∥ ∑
( j,k)∈F

v jα j
k e j

k

∥∥∥∥
Lp(T;W )

.

which is the lower estimate in (3.3).
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Let us sketch the modifications needed to prove the result in the case 1 < p < 2. The
lower estimate in (3.3) now follows from (3.8) and the fact that Lp(T;W ) has cotype 2
(which reverses the estimates in (3.6)). For the upper estimate, we use (3.4) and modify
(3.9) using L2(T;W ) ↪→ Lp(T;W ). �

With Proposition 3.7 at our disposal, we can now state and prove the main result of
this paper. Theorem 3.8 shows that T fails to be quasi-greedy in Lp(T;W ), p 6= 2. This
generalizes what is known about the trigonometric system in Lp(T). Temlyakov [17]
proved that T fails to be a quasi-greedy basis for Lp(T), 1 ≤ p ≤ ∞, p 6= 2. This
negative result was also proved independently by Córdoba and Fernández [3] and by
Wojtaszczyk [22].

We need the following notation. For a positive matrix W , we let λ (W ) and Λ(W )
denote the smallest, resp. largest, eigenvalue of W .

Theorem 3.8. Let W : T→ CN×N be a weight with W,W−1 ∈ L1. Suppose T is a
quasi-greedy basis for Lp(T;W ) for some 1 < p < ∞. Then p = 2, W ∈ A2, and there
exists a positive constant C such that

(3.10) C−1 ≤ λ (W (·))≤ Λ(W (·))≤C, a.e.

Proof. Suppose T is a quasi-greedy basis for Lp(T;W ) for some 1 < p < ∞. Then, in
particular, T is a Schauder basis for Lp(T;W ) and W ∈ Ap by Proposition 2.3.

We now turn to a proof of (3.10) and the fact that we must have p = 2. Let L ⊆ T
denote the common set of Lebesgue points for the entries in W 1/p. We notice that L
has full measure. Pick u ∈L , and let v := v(u) ∈ CN be an `2-normalized eigenvector
corresponding to the smallest eigenvalue of W 1/p(u). We use the Dirichlet kernel

DK(t) := ∑
k∈Z:|k|≤K

e2πikt , K ∈ N,

to create the vector functions

τK(·) := DK(u−·)v, K ∈ N.

Notice that DK(u−·) is a trigonometric polynomial with exactly 2K + 1 non-zero uni-
modular coefficients. Moreover, one easily checks that uniformly in K, ‖DK‖p

Lp(T) �
K p−1.

Since v is normalized in `2, we have maxi |vi| ≥ 1/
√

N. We use this fact together with
Proposition 3.7 to obtain the estimate,

‖τK‖Lp(T;W ) � K1/2,

uniformly in K and u ∈ Td . Next we observe that

|DK(u−·)|p
‖DK‖p

Lp(T)
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is an approximation to the identity at u, which implies that

(3.11)
∫

T
|W 1/p(t)v|p |DK(u− t)|p

‖DK‖p
Lp(T)

dt→ |W 1/p(u)v|p = λ (W 1/p(u))p = λ (W (u)),

as K→ ∞, where we used that v ∈ CN is `2-normalized. At the same time,

(3.12)
1

‖DK‖p
Lp(T)

∫
T
|W 1/p(t)v|p|DK(u− t)|p dt =

‖τK‖p
Lp(T;W )

‖DK‖p
Lp(T)

� K p/2

K p−1 ,

uniformly in K and u ∈ Td . Now, let us consider the possible values of p. If 2 < p <
∞, then obviously K1−p/2 → 0 as K → ∞, and we deduce from (3.11) and (3.12) that
λ (W (t)) = 0 a.e., which is a contradiction (recall, W is strictly positive a.e.). Also, if
1 < p < 2, then K1−p/2→ ∞ as K → ∞, and equations (3.11) and (3.12) show that W
has unbounded spectrum a.e. which is another contradiction.

Thus the only possible value is p = 2, and it follows from (3.11) and (3.12) that
there exists a constant c > 0 such that c≤ σmin(W (t)) a.e. To get the upper estimate for
Λ(W (t)), we repeat the argument with w∈CN , a normalized eigenvector corresponding
to the largest eigenvalue of W (u). Hence, the estimate (3.10) holds true. �

We conclude this section by the following straightforward Corollary to Theorem 3.8.

Corollary 3.9. Let 1 < p < ∞, and let W : T→CN×N be a weight with W,W−p′/p ∈ L1,
1/p + 1/p′ = 1. Suppose T is a quasi-greedy basis for Lp(T;W ). Then T is a Riesz
basis for L2(T;W ).

Proof. This follows directly from (3.10), see e.g. [4, 14]. �

4. SOME EXAMPLES

Let us conclude this paper by considering some examples.

Example 4.1. We consider

W (t) :=
[|t|α1 0

0 |t|α2

]
, t ∈ [−1/2,1/2).

It is easy to check, using the scalar Ap-condition, that W ∈Ap provided−1 < α j < p−1,
j = 1,2, see e.g. [7, Chap. 9]. For example, pick 0 < α j < p−1, then T forms a condi-
tional Schauder basis for Lp(T;W ). The basis is only conditional since the spectrum of
W is not bounded from below. This can be fixed by considering W ′ = W + εId, ε > 0.
T forms a Riesz basis for L2(T;W ′).

A more intricate example is the following.

Example 4.2. Let us consider the following matrix weight introduced by Bownik [2].
For t ∈ [−1/2,1/2) we define

W (t) = U(t)∗
[

1 0
0 b(t)

]
U(t), U(t) =

[
cosα(t) −sinα(t)
sinα(t) cosα(t)

]
,
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where α(t) = sign(t)|t|δ ,b(t) = |t|ε , with −1 < ε < 1, and δ satisfying −2δ ≤ ε ≤
2δ . Then W (t) ∈ A2, see [2]. Thus, T forms a Schauder basis for L2(T;W ), but we
also notice that the spectrum of W (t) is not bounded away from zero, so according to
Theorem 3.8, T is not quasi-greedy in L2(T;W ). We also mention that it is a general
fact that A2⊆Ap for 2≤ p < ∞, see [6], so in this case T forms a (conditional) Schauder
basis for Lp(T;W ), for 2≤ p < ∞.

We conclude with the following variation on Example 4.2.

Example 4.3. Let W be defined as in Example 4.2. Let us try to “pull back” T to the
unweighted setting. We notice that any g ∈ L2(T;W ) can be written g = W−1/2f, with
f ∈ L2(T; Id). Hence, the expansion of g ∈ L2(T;W ) can be re-written

Sm(g) =
m

∑
n=1

∫
T
〈W (t)g(t),W−1(t)e(η(n))(t)〉`2dt e(η(n))

=
m

∑
n=1

∫
T
〈f(t),W−1/2(t)e(η(n))(t)〉`2dt e(η(n)),

which shows that W 1/2Sm(g)→ f in L2(T; Id). It follows that {W 1/2e(η(n))}∞
n=1 is

a conditional Schauder basis for L2(T; Id) with corresponding bi-orthogonal system
{W−1/2e(η(n))}∞

n=1. This example can be considered a vector-valued analog to the
example of Babenko of a conditional Schauder basis for L2(T), see [1].
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