
Efficiency of Thr ead-parallel Java Programsfr om Scientific Computing

HolgerBlaar, MatthiasLegeler, ThomasRauber

Institut für Informatik,UniversiẗatHalle-Wittenberg, 06099Halle (Saale),Germany
E-mail:

�
blaar,legeler,rauber � @informatik.uni-halle.de

Abstract

Many applicationsfrom scientificcomputingcan bene-
fit from object-orientedprogrammingtechniquesbecause
of their flexibleandmodularprogramdevelopmentsupport.
Ontheotherhand,acceptableexecutiontimecanoftenonly
be reached by using a parallel machine. We investigate
thesupportof Javafor parallel execution.By usingJava’s
threadmechanismwe studyhow basicnumericalmethods
canbeexpressedin parallel andwhich overheadis caused
by threadmanagement.We considerimplementationsthat
differ in scheduling, synchronization,and the management
of threads.We obtainsomeguidelinesto organizea multi-
threadedJavaprogramto getbestperformance.

1 Intr oduction

Many applicationsfrom scientificcomputingcanbenefit
from object-orientedprogrammingtechniques,sincethey
allow a flexible andmodularprogramdevelopment.Often,
theseapplicationsarecomputation-intensive,sothesequen-
tial executiontime is quite large. Thereforeit is profitable
to usea parallelmachinefor theexecution.But up to now,
noparallelobject-orientedprogramminglanguagehasbeen
establishedasa standard.

Java is a popularlanguageandhassupportfor a paral-
lel executionintegratedinto the language.Hence,it is in-
terestingto investigatetheusefulnessof Java for executing
scientificprogramsin parallel. To supportsuchan investi-
gation,we have performedseveral testswith basicnumeri-
cal methodswhich we describein this paper. In particular,
we addressthe questionshow the numericalcomputations
canbeexpressedin parallelusingthethreadmechanismof
Java, which overheadis causedby the threadmanagement
andwhichpossibilitiestheprogrammerhasto influencethe
parallel execution. We considerseveral implementations
of the numericalmethodswhich differ in threadmanage-
ment, threadsynchronization,and threadschedulingand
comparetheresultingperformance.As platform,we usea
SunE5500anda E10000system.Theinvestigationsresult

in someguidelineshow theprogrammershouldorganizehis
multi-threadedJava programto getthebestperformance.

There are many projects that considerthe usefulness
of Java for high-performancescientificcomputing. Many
of theseactivities are united in the Java GrandeForum
(www.javagrande.org) which includesprojects that
areexploring the useof Java for high-performancescien-
tific and numericalcomputing[1, 4] and groupsthat are
developingsuggestionsfor future Java extensionslike ex-
tensionsto therepresentationof floating-pointnumbersand
complex numbersand multidimensionalarray representa-
tions. Otheractivities include projectsto extend Java for
high-performanceparallelor distributedcomputinglike the
Titaniumproject[11] or theJavaPartyproject[9]. An MPI-
likeAPI for Java (MPJ)hasbeenproposedin [3].

The rest of the paperis organizedas follows: Section
2 describesseveralaspectsof thread-parallelprogramming
with Java anddiscusseshow theprogrammercaninfluence
theparallelexecution.Section3 considerstheoverheadof a
multi-threadedexecutionof programs.Section4 describes
experimentswith differentversionsof Javaprogramsimple-
mentingbasicnumericalalgorithms. Section5 concludes
thepaper.

2 Java threadparallelism and scheduling

Thread creation: In contrastto mostotherprogramming
languageswheretheoperatingsystemanda specificthread
library like Pthreads[2] or C-Threadsare responsiblefor
the threadmanagement,Java hasa direct supportfor mul-
tithreadingintegratedin the language,see,e.g., [8]. The
java.lang packagecontainsa threadAPI consistingof
theclassThread andtheinterfaceRunnable. Thereare
two basicmethodsto createthreadsin Java.

Threadscan be generatedby specifying a new class
which inheritsfrom Thread andby overridingtherun()
methodin the new classwith the codethat shouldbe ex-
ecutedby the new thread. A new threadis then created
by generatingan object of the new classand calling its
start() method.

An alternative way to generatethreads is by using

the interfaceRunnable which containsonly the abstract
methodrun(). The Thread classactually implements
theRunnable interfaceand,thus,a classinheriting from
Thread also implementsthe Runnable interface. The
creationof a threadwithout inheriting from the Thread
classconsistsof two steps:At first, a new classis speci-
fied which implementstheRunnable interfaceandover-
ridestherun() methodwith thecodethatshouldbeexe-
cutedby the thread.After that, an objectof the new class
is generatedandis passedasanargumentto theconstructor
methodof theThread class.Thenew threadis thenstarted
by calling the start() methodof the Thread object.
A threadis terminatedif the last statementof therun()
methodhasbeenexecuted. An alternative way is to call
theinterrupt() methodof thecorrespondingThread
object. The methodsetPriority(int prio) of the
Thread classcanbeusedto assignapriority levelbetween
1 and10 to a threadwhere10 is the highestpriority level.
Thepriority of athreadis usedfor theschedulingof theuser
level threadsby thethreadlibrary, seebelow.

Thread synchronization: The threadsof one program
have a commonaddressspace. Thus,accessto the same
datastructureshave to be protectedby a synchronization
mechanism. Java supportssynchronizationby implicitly
assigninga lock to eachobject. The easiestway to keep
a methodthread-safeis to declareit synchronized. A
threadmustobtain the lock of an objectbeforeit canex-
ecuteany of its synchronized methods. If a thread
haslockedanobject,no otherthreadcanexecuteany other
synchronized methodof this objectat thesametime.

An alternative synchronizationmechanismis provided
by thewait() andnotify() methodsof theObject
classwhich alsosupportsa list of waiting threads. Since
every object in the Java systeminherits directly or indi-
rectly from the Object class,it is also an Object and
hencesupportsthis mechanism.When a threadcalls the
wait() methodof anobject,it is addedto thelist of wait-
ing threadsfor thatobjectandstopsrunning.Whenanother
threadcallsthenotify() methodof thesameobject,one
of the waiting threadsis woken up andis allowed to con-
tinue running. Thesebasicsynchronizationprimitivescan
be usedto realizemore complex synchronizationmecha-
nismslike barriers,conditionvariables,semaphores,event
synchronization,andmonitors,see,e.g.,[8].

Scheduling of Java threads: Threadcreationand man-
agementareintegratedinto the Java languageandruntime
systemandarethusindependentof aspecificplatform.The
mappingof the threadsthat are generatedby a userpro-
gram (userlevel threads)to the kernel threadsof the op-
eratingsystemdependson the implementationof the Java
Virtual Machine(JVM). The mostflexible multithreading

model is the many-to-many modelwhich is, e.g., realized
in SOLARIS Native Threadsprovided by the SOLARIS 2.x
operatingsystem.This modelallows many threadsin each
userprocess.The threadsof every processaremappedby
thethreadslibrary to thekernelthreadsof theoperatingsys-
tem which are thenmappedto the differentprocessorsof
the target machineby the schedulerof the operatingsys-
tem. The intentionof this two-layerthreadmodelis to de-
coupletheschedulingandmanagementof userthreadsfrom
thekernel[7]. Userthreadshave their own priority scheme
andarescheduledwith a separateschedulingthreadthat is
automaticallycreatedby thethreadslibrary.

SOLARIS scheduling: The SOLARIS Native Threadsli-
brary useslightweight processes(LWPs) to establishthe
connectionbetweentheuserthreadsandthekernelthreads.
Theuserthreadsof aprocessaremappedto theLWPsby the
SOLARIS threadslibrary. Thereis apoolof LWPsavailable
for the mappingof userthreadsto kernelthreads.If there
aremore runninguserthreadsin a processthanavailable
LWPs, userthreadsmust wait either until new LWPs are
addedto thepoolor until oneof therunningLWPsis freed.
Any Java threadmay run on any LWP. When a threadis
readyto run, theuser-level schedulerassignsanLWP from
thepool to it. TheLWPwill continueto run thethreaduntil
eithera threadat a higherpriority becomesrunnableor the
threadblocksona synchronization.

Each LWP is mappedto a kernel thread which are
mappedby theschedulerof theoperatingsystemto thepro-
cessors.Thenumberof LWPsis controlledby the threads
library of SOLARIS 2.x andis automaticallyadaptedto the
numberof user threadsgeneratedby the program. One
way to influencethe numberof LWPsdirectly is by using
thefunctionthr setconcurrency (int n) to add�
new LWPsto thepool of availableLWPs. This function is
providedby the SOLARIS threadslibrary which canbeac-
cessedvia theJavaNative Interface(JNI). A new LWPwill
executea specificfunction in the threadslibrary that looks
for runnablethreadsin the library’s queue.If noneexists,
theLWP blockson a timedconditionvariable.If thetimer
expires(which takesfive minutesby default) andtheLWP
hasnot executeda userthread,theLWP will terminate[7].
Theschedulingof theuserthreadsby thethreadslibrary can
be influencedindirectly by settingtheprioritiesof theuser
threads,(seeabove): a threadat a givenpriority level does
not run unlessthereareno higher-priority threadswaiting
to run.

Solaris usesschedulingclassesand priorities for the
scheduling of the kernel threads (and their associated
LWPs). The following classesaresupported:timesharing
(priorities 0–59), interactive (0–59), system(60–99) and
real-time(100–159).Highervaluesmeanhigherpriorities.
Usually, LWPsaregeneratedwith timesharepriority. The

2

exact priorities of the LWPsaresetby SOLARIS 2.x. The
programmercangivehintsto raiseor lower thepriority of a
process(affectingall its kernelthreads)usingtheprioc-
ntl() command.It canbeobservedthatprocesseswith a
largenumberof LWPsgeta higherpriority thanotherpro-
cesses.

The difficulty of experimentswith Java threadslies in
the fact that the schedulingis not underthe control of the
programmer. Whenstartinga thread-parallelprogram,it is
not clearwhich threadwill beassignedto which LWP and
whichLWPwill beexecutedonwhichprocessor. Thenum-
berof LWPscanbesetto aspecificvalue,but theoperating
systemcanadaptthis numberduring the executionof the
program.Thenumberof processorsusedfor theexecution
of a programis completelyunderthecontrolof theoperat-
ing systemandcanvary during the executionof a thread-
parallelJava program.

3 Runtime of multi-thr eadedprograms

For measuringthe runtime of a parallel application,
java.lang.System provides a method current-
TimeMillis() to obtainthe real time (wall clock time)
of anapplicationin milliseconds,sothetime measurement
canbeinfluencedby otherapplicationsrunningon thesys-
tem. The user and systemCPU time of an application
can be obtainedby using the C function times() from
<sys/times.h> via the JNI. For a parallelapplication,
this providesthe accumulateduserandsystemCPU time
UCT� on all processors,i.e., to computethe actualparal-
lel CPUtime, thesevalueshave to bedividedby thenum-
ber of processorsused. As explainedabove, the number
of processorsusedfor a parallelapplicationcannoteasily
be determinedand can also vary during the executionof
a program. Information on the numberP� of processors
usedfor anapplicationcanbeobtainedwith theUnix top
command,but this only workswith a significanttime delay
anddoesnot provide reliableinformationfor parallelexe-
cutionswith a small executiontime. Thus, the following
canbeconcluded:

� The sequentialuserandsystemCPU time UCT� can
beobtainedaccuratelywith thetimes() function.

� TherealtimeRT canbeobtainedquiteaccuratelywith
currentTimeMillis(), thus we can computea
speedup�	�	
�� UCT��
 RT which providesgoodre-
sults on an unloadedsystemand can be considered
asa lower boundon the speedupthat hasreally been
achieved by a specific programrun. We use these
speedupsin thefollowing, sinceit is themostreliable
information,even if we have not alwaysbeenableto
useanunloadedsystem.

Table 1. Thread overhead in milliseconds.
#LWPs= 10 #LWPs= 100 #LWPs= 1000

ULT ���
���

�	

�	�
 ���
�	�

�	

���
 ���
�	�

�	

�	�
1000 0.37 0.47 0.39 0.59 0.47 1.00

5000 0.30 0.44 0.35 0.43 0.29 0.82
10000 0.30 0.42 0.32 0.44 0.31 0.75

� Using UCT� , a speedupvalue can be computedby
����� UCT�������
 UCT� , but this speedupvaluecan
bequiteunreliable,if thevalueof ��� is unreliable.In
the following, we give ��� for mostapplications,but
we must point out that the value might be too small
becauseof thetimedelayof thetop command.

Overhead of thread execution: Thecreationandmanage-
mentof Java threadsis completelyunderthecontrolof the
threadslibrary anddoesnot involve the operatingsystem.
To get an impressionof the overheadof creating,manag-
ing, anddeletinga thread,we haveperformedruntimetests
onaSUN-EnterpriseE5500with 12336MHz UltraSPARC
processors.Table1 shows the time (userCPU time UCT)
for theexecutionof a specificnumberof userlevel threads
(ULT) executinganemptyrun() methodwith 10 dummy
parameters.Thetestshave beenperformedwith JDK 1.2.1
andSOLARIS 2.6(SunOS5.6).

For the real-timemeasurements,we tried to usean un-
loadedsystemto avoid theinfluenceof otherprocessesrun-
ning on the system. The following observationscan be
made:

� The userCPU time UCT for threadoverhead,which
alsoincludesthe schedulingof the userthreads,usu-
ally lies between0.3 ms and 0.4 ms, independently
from thenumberof userthreadsandLWPs.

� The real time for threadoverhead,which also takes
thetime for theschedulingof theLWPsinto account,
increaseswith thenumberof LWPs.

This indicatesthat the schedulingof the userthreadsdoes
not causea significantoverheadwhereastheschedulingof
the LWPscausesruntimecoststhat increaseconsiderably
with thenumberof LWPs,sincetheoperatingsystemis in-
volved. This suggeststo adjustthenumberof LWPsto the
numberof processorsavailable.

4 Thread-parallel executionof numerical al-
gorithms in Java

In this section,we give a short descriptionof thread-
parallel implementationsof several standardnumerical

3

computationsin Java. The implementationsare basedon
basicclasseslike Vector or Matrix containingthe un-
derlying datastructuresandinitializations. The numerical
methodsarerealizedasrun()-methodsof separateclasses
which inherit from the baseclasses. The runtime exper-
imentshave beenperformedon a SUN EnterpriseE5500
with 12 336MHz UltraSPARC processors,JDK 1.2.1and
SOLARIS 2.6(SunOS5.6).Themachinewasnotunloaded,
sojobsof otheruserswererunningandcouldinfluencethe
timemeasurements.

4.1 Matrix multiplication

Table 2 shows the resulting runtime in secondsand
speedupvaluesfor themultiplicationof two matricesof size
1000 � 1000.ULT denotesthenumberof userlevel threads
usedfor the execution. LWP is the numberof LWPsgen-
eratedby callingthr setconcurrency() or automati-
cally assignedby thethreadlibrary. � � denotesthenumber
of requestedprocessorsby theuserprocess.��� is the av-
eragenumberof processorsassignedto the executinguser
processmeasuredby top. RT discribesthe real time in
seconds,and � �	
 denotesthespeedupcomputedby � �	
 =
UCT� /RT whereUCT� is the userCPU time of the corre-
spondingsequentialprogramin Java without threads.The
executionof the computationsis distributedamonga spe-
cific numberof threadswhereeachthreadis responsiblefor
the computationof a row block of the resultmatrix, i.e., a
row-blockwisedistribution of thecomputationsof therows
of theresultmatrixamongthethreadsis used.

Table 2. Thread-parallel execution of a matrix
multiplication.

ULT LWP � � ��� RT � �	

1 1 1 1.0 381 0.9
4 4 4 3.9 95 3.8
8 8 8 6.8 54 6.6

12 12 12 7.8 42 8.5
16 16 12 8.5 38 9.4
26 26 12 8.5 34 10.5

Theresultsin Table2 andfurtherruntimetestsallow the
following observations:

� If thenumberof LWPsis not explicitly setby theJava
program,thethreadlibrary createsfor eachJavathread
anLWP, until afixedupperboundis reached(26onthe
SunE5500).

� The speedupis increasingwith the numberof LWPs.
This effect can be observed, even if the numberof

LWPsis gettinglarger thanthe numberof processors
of theparallelsystem,i.e.,evenif thereis anadditional
overheadfor theschedulingof theLWPsby thesched-
uler of the operatingsystem. This effect can be ex-
plainedby thefactthatprocesseswith a largernumber
of LWPsget a largerpriority andcanthereforebene-
fit from thepriority-basedschedulingof theoperating
system.

� If the number of user threads is smaller
than the number of LWPs requested by
thr setconcurrency(), the thread library
only createsoneLWPfor eachuserthread.

4.2 GaussianElimination

Gaussianeliminationis a popularmethodfor the direct
solutionof linearequationsystems������ [5]. For a sys-
tem of size � , the methodperforms � stepsto convert the
system���!�" to a system#��$�&% with an uppertrian-
gularmatrix # . Eachstep ' performsa division operation
which dividesrow ' by its diagonalelementfollowed by
�)(!' eliminationoperationsmodifying rows '+*-,/.1020203�
with row ' . Theeliminationoperationscanonly bestarted
after theprecedingdivision operationhasbeencompleted.
Hence,a synchronizationhasto be usedbetweenthe di-
vision operationand the eliminationoperationsof step ' .
Similarly, step '4*5, canonly bestartedafter theelimina-
tion operationsof theprecedingstephave beencompleted,
makinganothersynchronizationnecessary. After the gen-
erationof theuppertriangularsystem#��6�!% , thesolution
vector � is determinedby a backwardsubstitution.

We have implementedseveralJava versionsof thisalgo-
rithm with pivoting differing in thespecificthreadcreation
andthesynchronizationof thethreads[6].

Synchronization by thread creation: Step ' , ,+78':95�
is parallelizedby generatinga numberof threadsand as-
signingeachthreada contiguousblockof rowsof theelim-
inationsubmatrix.For thedivision operation,a smallnum-
berof threadsis usedin asimilar way. At theendof thedi-
visionoperationandtheeliminationphaseof step' , thecre-
atedthreadsareterminatedandsynchronizedby ajoin()
operation,sothenecessarysynchronizationsareperformed
by threadtermination. Thus,it canbe guaranteedthat the
operationsof the previous eliminationstepare completed
beforethenext eliminationstepstarts.

Figure1 showsthecorrespondingprogramfragment.�;
denotestheMatrix � with theright sidevector of thelin-
earsystemto solve. In therunmethodof theclassElimi-
nationThread theeliminationstepsarecarriedout. Ta-
ble 3 shows someresultsof our testswith a linear system
of size �<�=,?>/@/@ . Thesamenotationasin Table2 is used.

4

Thread thE[] = new Thread[ne];
// array for threads (elimination step)
//...
for (int k=0; k<n; k++) {

// division step
// ...
A[k,k] = 1;
for (int i=k+1; i<ne; i++) {
thE[i] = new EliminationThread(Ab,k,i);
thE[i].setPriority(Thread.MAX_PRIORITY);
thE[i].start(); } //starts the run method

// of the elimination thread class
for (int i=k+1; i<ne; i++) {
try {thE[i].join();} // synchronization

catch (...) {} }
}

Figure 1. Gaussian elimination with sync hro-
nization by thread creation (code fragment).

The division stephasnot beenparallelized,sincea paral-
lelizationreducestheattainedspeedups.

Table 3. Gaussian elimination with sync hro-
nization by thread creation.

ULT � � ��� RT � �	

1 1 1.0 187 0.7
4 4 3.1 59 2.4
8 8 4.4 42 3.3

12 12 4.7 42 3.3
16 12 5.3 38 3.7
20 12 5.3 38 3.7
40 12 5.2 47 3.0

The executiontimes and speedupsshow that synchro-
nizationby threadcreationonly leadsto a limited speedup,
sincethe overheadfor threadcreationandwaiting time in
eachstepis quitelargecomparedto thecomputationalwork
of eachstep.

Synchronization by active waiting: For this version,the
threadsarecreatedat the beginningof the modificationof
�A�B�C andeachthreadis assignedto a numberof rows
whosecomputationsit hasto perform. The assignmentof
rows to threadscanbe performedblockwiseor cyclically.
For � rows and D threads,the blockwiseschemeassigns
rows EF�3�
 DG.202010�.1HIE�*J,LK��3�
 DM(:, to threadnumberE , if we
assumethat � is amultiple of D . For thecyclic scheme,rowN

is assignedto thread
NPO4QSR D . For the blockwiseassign-

ment,a threadis terminatedassoonastherowsassignedto
it aremodified,i.e., thenumberof ULTs is decreasingdur-
ing thecomputation.For thecyclic assignment,thenumber
of ULTs is constantduringmostof thecomputation.Only

during the modificationof the last D rows the numberof
ULTs is decreasing.

Thesynchronizationbetweenthedivisionoperationsand
theeliminationoperationsof astep' is arrangedby usinga
bitvectorbv with aflagfor eachrow indicatingwhetherthe
division operationfor this row hasbeencompleted(true)
or not (false). The threadsexecutingthe corresponding
divisionoperationsettheflagafterthecompletionof theop-
eration.Beforestartingtheeliminationoperationsof step' ,
all participatingthreadsreadbv[k] iteratively until it has
thevaluetrue. Table4 showssometestswith anequation
systemof size �T�-,?>/@/@ with thesamenotationasin Table
3.

For up to 8 ULTs,acyclic assignmentof rowsto threads
leadsto slightly betterspeedupvaluesthana blockwiseas-
signment,mainly becauseof a better load balance. For
a larger numberof ULTs, a blockwiseassignmentof the
rows to the ULTs leadsto betterspeedupvalues,mainly
becauseof smallerwaiting timesat synchronizationpoints:
Thethreadperformingthedivision operationof a row also
performsthedivision operationsof thefollowing rows and
hasto performlesseliminationoperationsthantheremain-
ing threads. Therefore,this threadwill completethe fol-
lowing division operationusuallybeforethe other threads
have completedtheir eliminationoperations.In this case,
no waiting time is requiredat the synchronizationpoints.
For a cyclic assignment,eachthreadhasto performnearly
the samenumberof eliminationoperations.The division
stepof neighboringrowsareperformedbydifferentthreads.
Thus, it caneasilyhappenthat a threadhascompletedits
eliminationoperationsbeforethethreadthat is responsible
for thedivisionoperationhascompletedthisoperation.The
resultingwaiting times may reducethe attainedspeedups
considerably. On the other hand, there are more ULTs
thanprocessors;so after the terminationof a ULT U , an-
otherULT canbe assignedto the correspondingLWP and
canthusrun on the processorthat hasexecutedU before.
Hence,loadbalancingdoesnotplay a dominantrole.

Table 4. Gaussian elimination with sync hro-
nization by active waiting.

#WVXU � � cyclic blockwise
�P� Y�U � �	
 �P� Y�U � �	

1 1 1.0 150 0.9 1.0 150 0.9
4 4 3.4 36 3.9 2.5 49 2.8
8 8 5.4 24 5.8 3.6 26 5.3

12 12 8.0 39 3.6 4.0 17 8.2
16 12 4.4 16 8.7
20 12 4.4 14 9.9
40 12 5.8 16 8.7

5

Barrier synchronization: The synchronization is
achievedwith anobjectbarr of theBarrier class.The
barrierobject is initialized for the numberof participating
threads.At thesynchronizationpointsrequired,eachthread
entersthe barrierby calling barr.waitForRest(int
n). The last thread entering causesthe releaseof the
barrier and all waiting threadscan continue execution.
Someruntimeresultsareshown in Table5 (problemsize
���Z,L>[@�@). Thesmallspeedupvaluescanbeexplainedby
the fact that eachthreadhasto wait for all other threads
at the synchronizationpoints, not only for the one thread
performingthe division operation.Thus,the delayof one
of thethreadscaneasilycauseall otherthreadsto wait.

Table 5. Gaussian elimination with barrier
sync hronization.

#\VXU ��� cyclic blockwise
�P� Y�U � �	
 ��� Y;U � �	

1 1 1.0 150 0.9 1.0 151 0.9
4 4 3.1 42 3.3 2.3 54 2.6
8 8 3.1 40 3.5 2.8 42 3.3

12 12 3.4 36 3.9 3.1 37 3.8
16 12 3.6 33 4.2 3.4 34 4.1
20 12 3.6 34 4.1 3.4 33 4.2
40 12 4.0 40 3.5 3.6 33 4.2

Event semaphore: The synchronizationis achieved by
creatinganobjectof theEventSemaphore classfor each
row of theequationsystem.Beforestartinganelimination
step,eachthreadwaits for the completionof the preced-
ing division stepby calling a methodWaitForEvent().
Thethreadthatperformsthisdivisionstepsetstheeventby
callingSetEvent(), thuswakingup all waiting threads.

Table 6. Gaussian elimination with sync hro-
nization by event semaphores.

#\VXU � � cyclic blockwise
� � Y�U �	�	
 � � Y;U �	�	

1 1 1.0 152 0.9 1.0 152 0.9
4 4 3.0 40 3.5 2.5 51 2.7
8 8 3.5 33 4.2 3.4 25 5.6

12 12 3.8 26 5.3 3.8 19 7.3
16 12 4.2 24 5.8 4.2 17 8.2
20 12 4.2 23 6.0 4.3 15 9.3
50 12 4.1 30 4.6 4.7 12 11.6

A correspondingprogramfragmentis shown in Figure

EventSemaphore sVec[]=
new EventSemaphore[Ab.row];

for (int i=0; i<Ab.row; i++)
sVec[i] = new EventSemaphore(false);

...
Thread th[] = new Thread[nth];
CPUsupport.setConcurrency(lwp);
for (int i=0; i<nth; i++) {

th[i] = ElimEvSem(Ab, i, range, sVec);
th[i].setPriority(Thread.MAX_PRIORITY);
th[i].start();

}
for (int i=0; i<nth; i++) {

try {th[i].join();}
catch (...) {}

}
...
// run method
public void run() {

for (int i=0; i<range[curr_th][1]; i++) {
if (i!=0) {
if (i<range[curr_th][0]+1)

sVec[i-1].waitForEvent();
... // perform elimination step

}
}
if (i>range[curr_th][0]-1) {

... // perform division step
sVec[i].setEvent();

}
}

Figure 2. Gaussian elimination with sync hro-
nization by event semaphores (code frag-
ment).

2. Theblocksof therowsof A areaccessibleby therange
arrayusingthecorrespondingthreadwith thecurrentthread
numbercurr th.

Table 6 presentssomeruntime resultswith linear sys-
tems of size �]�^,L>[@/@ . The synchronizationby event
semaphoreshassimilarpropertiesasthesynchronizationby
activewaiting. In particular, thethreadsexecutingthemod-
ification operationareonly waiting for the onethreadthat
executesthedivision operationandnot for all threadsasit
wasthe casefor barriersynchronization.Synchronization
by eventsemaphoresleadsto slightly betterspeedupvalues
assynchronizationby active waiting especiallyfor a larger
numberof ULTs, sincea waiting threadcanbe suspended
while waiting for theeventto occur.

4.3 Jacobiand Gauß-SeidelRelaxation

JacobiandGauß-Seidelrelaxationareiterative methods
for the solutionof a linear equationsystem�A�_�` . The
solutionof this systemcanbe approximatedby iteratively
computingapproximationvectors��acb�d accordingto

e � acb�fPghd �BiT� ajbGd *J

6

for '+�-,/.lkm.201020 . e and i areappropriatematricesthatare
computedfrom � [5]: Let V bethelower triangularsubma-
trix of � , # betheuppertriangularsubmatrixof � andn be
thediagonalmatrix thatcontainsthediagonalentriesof � ,
soit is �B�5#o*JVp*qn . JacobiandGauß-Seideliterations
differ in thedefinitionof

e
and i . For Jacobi,

e �r(An ,
i]��(sHtV�*u#\K is used,for Gauß-Seidel

e �=(sHvnr*$VwK
and ix�y(;# . Thus,Jacobiusesfor the computationof
eachcomponentof ��acb�fPghd thepreviousapproximationvec-
tor whereasGauß-Seidelusesthemostrecentinformation,
i.e., for the computationof � acbGf�ghdz all components� acbGfPg3d{
for |}9 N , whichhavepreviouslybeencomputedin thesame
approximationstepareused.

For this reason,Jacobirelaxationcan be easily paral-
lelizedfor distributedmemorymachines(DMMs), because
dataexchangeneedsto beperformedonly attheendof each
approximationstep. On the other hand,Gauß-Seidelre-
laxationis consideredto be difficult to be parallelizedfor
DMMs, sinceadataexchangehasto beperformedafterthe
computationof eachcomponentof theapproximationvec-
tor. At theendof eachtimestepof aJacobior Gauß-Seidel
iteration,all participatingthreadsneedto besynchronized,
sothatthenext iterationis executedwith thecurrentvalues
of theiterationvector. Thus,abarriersynchronizationis ap-
propriatefor separatingthetimesteps.For theGauß-Seidel
iteration,additionalsynchronizationsneedto beperformed
within thetimestepsto ensurethatalwaysthenewestvalues
of the componentsof the iterationvectorsareused. Here,
barriersynchronization,activewaitingor eventsemaphores
canbeused.

Tables7 – 9 show the resultingperformancecharacter-
istics. As example,a systemof �r��~�@/@�@ equationshas
beenused.Theparallelimplementationsdiffer in thesyn-
chronizationmechanismsused:synchronizationby thread
creationand barrier synchronizationfor the synchroniza-
tion betweentimesteps,andbarriersynchronization,active
waitingandeventsemaphorefor thesynchronizationwithin
time stepsfor Gauß-Seideliteration. Not all areshown in
theTables.

Table 7. Jacobi iteration with sync hronization
by thread creation and barrier s.

#\VXU � � threadcreation barrier
� � Y�U �	�	
 � � Y;U �	�	

1 1 1.0 261 0.9 1.0 236 1.0
2 2 1.9 132 1.8 1.9 119 2.0
4 4 3.4 75 3.2 3.2 76 3.2
8 8 4.0 72 3.3 3.1 85 2.8

12 12 4.9 62 3.9 2.9 100 2.4
16 12 4.8 66 3.7 2.9 108 2.2

Table 8. Gauß-Seidel iteration with sync hro-
nization by thread creation and barrier s, ac-
tive waiting within iteration steps.

#WVXU � � threadcreation barrier
�P� Y�U � �	
 �P� Y�U � �	

1 1 0.9 58 0.9 1.0 58 0.9
2 2 1.6 30 1.8 1.6 31 1.8
4 4 2.5 20 2.7 2.5 21 2.6
7 7 4.6 36 1.5 5.2 70 0.8

Table 9. Gauß-Seidel iteration with sync hro-
nization by thread creation and barrier s,
loose sync hronization within iteration steps

#WVXU �P� threadcreation barrier
� � Y�U ���	
 � � Y�U �	�	

1 1 1.0 54 1.0 1.0 54 1.0
2 2 2.0 28 2.0 2.0 27 2.0
4 4 3.4 16 3.4 3.8 14 3.9
8 8 5.7 10 5.5 6.3 9 6.1

12 12 6.9 8 6.8 6.5 8 6.8
16 12 7.2 7 7.8 7.2 8 6.8

Tables7 and8 show thatfor up to 4 threads,all variants
leadto goodspeedupvalues.For 4 threads,thespeedupval-
uesfor the Jacobiiterationareslightly higherthanfor the
Gauß-Seideliteration,mainlybecauseof theadditionalsyn-
chronizationoperationswithin thetime stepsfor theGauß-
Seideliteration.

For a larger number of threads, the speedupvalues
areonly increasingslightly (Jacobi)or are even dropping
(Gauß-Seidel).This canbeexplainedby thelargesynchro-
nizationoverheadof threadcreationor barriersynchroniza-
tion that hasalreadybeenobserved for Gaussianelimina-
tion.

Loose synchronization: Moreover, wehave implemented
avariantwith aloosesynchronizationmethodthatsynchro-
nizestheexecutingthreadsonly for theconvergencetestof
the iteration,but not for the swappingfrom the old to the
new iterationvector. For a Jacobirelaxation,this may re-
sult in a threadaccessinga part of the iterationvectorthat
hasalreadybeenupdatedby anotherthreadinsteadof ac-
cessingthe entriesof the previous iteration. This behavior
doesnot affect the correctnessof the resultingapproxima-
tion andmay even leadto a fasterconvergence.Table10
shows that for a largernumberof threads,thevariantwith
theloosesynchronizationyieldssatisfactoryspeedups.

7

Table 10. Jacobi and Gauß-Seidel iteration
with loose sync hronization between and
within iteration steps.

#\VXU � � Jacobi Gauß-Seidel
� � Y;U �	�	
 � � Y�U �	�	

1 1 1.0 54 1.0 1.0 54 1.0
2 2 2.0 27 2.0 2.0 27 2.0
4 4 3.7 15 3.7 3.8 14 3.9
8 8 5.4 10 5.5 5.9 9 6.1

16 12 7.0 7 7.8 6.6 7 7.8
40 12 7.7 6 9.1 7.1 6 9.1

General observations: Considering the relation Y �� #\VXU
 � Vw��� betweenthenumberof ULTs andLWPs,
the following can be observed for all numericalmethods
considered:up to a specificrelation Y������ , the speedups
areincreasingwith thevalueof Y , but startingwith Y����G� ,
increasingvaluesof Y lead to decreasingspeedups.The
reasonfor thiseffect lies in thefactthatupto Y ���G� , thede-
creaseof theexecutiontime becauseof a betterparalleliza-
tion outperformsthe increasein the overheadfor thread
management,but startingwith Y ���G� , this effect reverses.
Thespecificvalueof Y ���G� dependsontheapplicationcon-
sideredandthespecificsynchronizationmechanismused.

5 Conclusions

Theexperimentsdescribedin this articleshow thatboth
thesynchronizationmethodandtheassignmentof compu-
tationsto threadsplay animportantrole for obtaininggood
speedupsfor basicnumericalmethods.Both the mapping
andsynchronizationhaveto bechosencarefullyandhaveto
fit together. Moreover, the experimentswith the Gaussian
eliminationshow the interestingfact that for thread-based
computationsit mightbebeneficialto useacompletelydif-
ferent mappingof computationsto threadsthan for other
programmingmodels. For a distributed addressspace,a
double-cyclic mappingof rows andcolumnsto processors
usuallyleadsto thebestspeedups[10], whereasablockwise
distributionis notcompetitivebecauseof abadloadbalanc-
ing. For the thread-parallelexecutionin Java, theopposite
behavior couldbeobserved. The reasonfor this lies in the
fact that the assignmentof threadsto processorsis more
flexible thantheexecutionof message-passingprocesseson
processorsandthatthesynchronizationof thethreadsplays
animportantrole for theresultingexecutiontime.

Acknowledgement

WethanktheUniversityof Colognefor providing access
to theirE5500andE10000systems.

References

[1] R.F. Boisvert,J.Moreira,M. Philippsen,andR. Pozo.
Java andNumericalComputing. IEEE Computingin
ScienceandEngineering, 3(2):18–24,2001.

[2] D. R. Butenhof. Programmingwith POSIXThreads.
Addison-Wesley Longman,Inc., 1997.

[3] B. Carpenter, V. Getov, G. Judd, A. Skjellum, and
G. Fox. MPJ: MPI-like messagepassingfor Java.
Concurrency:PracticeandExperience, 12(11):1019–
1038,2000.

[4] G.C. Fox andW. Furmanski. Java for parallel com-
puting and as a generallanguagefor scientific and
engineeringsimulationandmodeling. Concurrency:
PracticeandExperience, 9(6):415–425,1997.

[5] G. Golub and C. Van Loan. Matrix Computations.
JohnHopkinsUniversityPress,1989.

[6] M. Legeler. Untersuchungenzur Implementierung
Thread-parallelerAlgorithmen auf Shared-Memory-
Rechnern.Master’s thesis,Martin-Luther-Universiẗat
Halle-Wittenberg,2000.

[7] J. Mauro andR. McDougall. Solaris internals: core
kernelcomponents. SunMicrosystemsPress,2001.

[8] S. Oaksand H. Wong. Java Threads. O’Reilly &
Associates,Inc., 1999.

[9] M. PhilippsenandM. Zenger. JavaParty– Transparent
RemoteObjectsin Java. Concurrency: Practiceand
Experience, 9(11):1225–1242, 1997.

[10] T. RauberandG. Rünger. Deriving Array Distribu-
tionsby OptimizationTechniques.Journal of Super-
computing, 15:271–293,2000.

[11] K. Yelick, L. Semenzato,G. Pike, C. Miyamoto,
B. Liblit, A. Krishnamurthy, P. Hilfinger, S. Graham,
D. Gay, P. Colella,andA. Aiken. Titanium: A High-
PerformanceJava Dialect. In ACM 1998 Workshop
on Java for High-PerformanceNetworkComputing,
Stanford, 1998.

8

