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Abstract

The following result of convex analysis is well–known [2]: If the func-
tion f : X → [−∞, +∞] is convex and some x0 ∈ core (dom f) satisfies
f(x0) > −∞, then f never takes the value −∞. From a corresponding
theorem for convex functions with values in semi–linear spaces a variety
of results is deduced, among them the mentioned theorem, a theorem of
Deutsch and Singer on the single–valuedness of convex set–valued maps
as well as a result on the compact–valuedness of convex set–valued maps.
We also discuss the possibility of embedding the image points of such a
convex function into a linear space.
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1. Introduction

Semi–linear structures naturally occur in optimization and analysis. In many
cases, semi–linear structures can be considered as convex cones in linear spaces.
However, the concept of a convex cone is not appropriated in important cases,
since it is not possible to find a linear space in which the semi–linear structure
is a convex cone. Therefore, we start introducing the concept of a semi–linear
space. We define convexity and convex functions with values in partially ordered
semi–linear spaces and prove a basic principle for such functions. Then we show
that this principle is the common basis for a variety of well–known assertions.
Some other conclusions of the principle seem to be new.

We state a simple condition implying that the embedding of a semi–linear
space into a linear space is not possible. However, the principle tells us that in
the special case of a convex set–valued map the image points are, essentially,
part of a linear structure. This could be the basis of a duality theory of convex
set–valued maps, different to Tanino’s [13] approach. As in [6] we understand
the map as a function into a semi–linear space rather than a set–valued map
into a linear space.
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2. Preliminaries

The concept of a semi–linear space and similar concepts were already consid-
ered, for instance, in [4] (almost linear spaces) and in [5]. In some of the cited
references the axioms slightly differ from ours.

Let X be a set. On X let an addition + : X × X → X, a multiplication
· : R+ ×X → X with non–negative reals and some neutral element 0X ∈ X be
defined such that for all x, u, z ∈ X and real α, β ≥ 0 the following axioms are
satisfied:

(S1) (x+ u) + z = x+ (u+ z);
(S2) 0X + x = x;
(S3) x+ u = u+ x;
(S4) α · (β · x) = (αβ) · x;
(S5) 1 · x = x;
(S6) α · (x+ u) = α · x+ α · u;
(S7) 0 · x = 0X .

Then, X is called a semi–linear space. Compare [1, page 141] for a special case
and note that the concept of almost linear spaces of [4] additionally involves the
multiplication with negative reals. The axioms imply that the neutral element
is unique and α · 0X = 0X for all α ≥ 0.

In the remainder of this section let X be a semi–linear space. A subset
C ⊂ X is said to be convex if x, u ∈ C implies λ · x + (1 − λ) · u ∈ C for all
λ ∈ [0, 1] and a subset K ⊂ X is said to be a cone if x ∈ K implies α · x ∈ K
for all α > 0.

Proposition 2.1 A subset {x} ⊂ X, consisting of exactly one element x ∈ X,
is convex if and only if the ”second distributive law” holds, i.e.

(S8) ∀α, β ∈ R+ : α · x+ β · x = (α+ β) · x.

Proposition 2.2 Let Xc ⊂ X be the set of all points of X for which the second
distributive law (S8) holds. Then Xc is a convex cone in X with 0X ∈ Xc.

Examples of semi–linear spaces. (1) Every linear space V .
(2) Every convex cone C ⊂ X of a semi–linear space with 0X ∈ C.
(3) The collection P̂(X) (P(X)) of all (nonempty) subsets of X with the

following operations: A,B ∈ P(X), α ∈ R+, A + B := {a+ b| a ∈ A, b ∈ B},
α ·A := {α · a| a ∈ A}, α · ∅ := ∅ if α > 0, 0 · ∅ := 0.

(4) Let V be a topological linear space. The space F̂(V ) (F(V )) of all
(nonempty) closed subsets of V , where the addition is defined as A + B :=
cl {a+ b| a ∈ A, b ∈ B} and the multiplication as in the previous example.

(5) The spaces P̂c(X), Pc(X), F̂c(V ) and Fc(V ) (compare (3), (4), and
Proposition 2.2).

(6) Let V be a separated topological linear space. The spaces Ĉ(V ) ⊂ F̂(V ),
(C(V ) ⊂ F(V )) of all (nonempty) compact subsets of V where the operations
are defined as in (3).
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(7) The spaces Ĉc(V ) ⊂ Ĉ(V ), (Cc(V ) ⊂ C(V )) of all (nonempty) convex
compact subsets of V where the operations are defined as in (3).

(8) The space K(X) of all cones K ⊂ X with 0X ∈ K, and the space
K̂(X) := K(X) ∪ {∅} where the operations are defined as in (3).

(9) The space of extended reals R? := R ∪ {−∞} ∪ {∞} with the extended
operations: x+(−∞) = (−∞)+x = −∞ for all x ∈ R?\{∞}, x+∞ = ∞+x =
∞ for all x ∈ R?, α · ±∞ = ±∞ for all α > 0 and 0 · ±∞ = 0 (compare [12]).

(10) The space of extended reals R� := R∪ {−∞}∪ {∞} with the extended
operations: x+∞ = ∞+x = ∞ for all x ∈ R�\{−∞}, x+(−∞) = (−∞)+x =
−∞ for all x ∈ R� and the multiplication as above.

Note that a subset {x} ⊂ X consisting of exactly one element x ∈ X can
be a cone in X, even if x 6= 0X . Such an element x ∈ X with x = α · x for all
α > 0 is called a vertex. Of course, the neutral element 0X is a vertex in every
semi–linear space X, therefore a vertex x 6= 0X is called a nontrivial vertex.
Let A and B be two nonempty subsets of a semi–linear space X. We say A is
stronger than B, in short A � B, if a ∈ A , b ∈ B implies a+ b ∈ A. If there is
some x̂ ∈ X such that {x̂} � X, then x̂ is called the strongest element of X. It
can be shown that the strongest element of a semi–linear space X, if it exists, is
a vertex and is uniquely defined. Moreover, the union of all vertexes is a convex
cone in X. The following proposition underlines the advantage of considering
semi–linear spaces instead of convex cones of linear spaces.

Proposition 2.3 A semi–linear space having a nontrivial vertex cannot be em-
bedded into a linear space.

Proof. Suppose the contrary, i.e. there exists a linear space L such that X is a
convex cone in L with a vertex x̂ 6= 0X . Then there must be an inverse element
x̄ and we have x̂+ x̄ = 0L. It follows 0L = x̄+ x̂ = x̄+ 2 · x̂ = (x̄+ x̂) + x̂ = x̂
which contradicts the assumption. �

The preceding proposition shows that a lot of important examples of semi–
linear spaces, for instance the spaces of the Examples (3) to (10), cannot be
treated as convex cones in a linear space. A sufficient condition for embedding
a semi–linear space into a linear space is discussed in Radström [10, Theorem
1].

In the following, let the semi–linear space X be equipped with a partial
ordering ≤ (i.e. a reflexive, transitive and antisymmetric relation on X). We
say (X,≤) (shortly X) is a partially ordered semi–linear space if it holds

x1 ≤ x2, x3 ≤ x4 ⇒ α · (x1 + x3) ≤ α · (x2 + x4) (1)

for all x1, x2, x3, x4 ∈ X and all α ≥ 0.

Proposition 2.4 Let X be a partially ordered semi–linear space. Then the
largest (smallest) element of X, if it exists, is a vertex.
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Proof. Let x̂ be the largest element of X, i.e. x ≤ x̂ for all x ∈ X. For given
α > 0, condition (1) yields α ·x ≤ α · x̂ for all x ∈ X. Given any u ∈ X, we have
x := 1/α · u ∈ X. Hence for all α > 0 and all u ∈ X it holds u ≤ α · x̂, i.e. α · x̂
is the largest element of X. Since the largest element of a partially ordered set
is uniquely defined we get α · x̂ = x̂ for all α > 0. The proof for the smallest
element is analogous. �

Since a linear space cannot have any nontrivial vertex, the preceding result
means that a partially ordered linear space cannot be order complete (a par-
tially ordered set is said to be order complete if every subset has supremum
and infimum [14]). However, every Dedekind complete partially ordered semi–
linear space (a partially ordered set is said to be Dedekind complete if every
subset which is bounded above (below) has a supremum (infimum) [14]) can
be extended to an order complete partially ordered semi–linear space. To see
this extend the space by a new element defined to be the largest (smallest) and
strongest one and, after this, extend the space by a second new element defined
to be the smallest (largest) and strongest one (compare Examples (9) and (10)).

Examples of partially ordered semi–linear spaces.
(11) Every partially ordered linear space.
(12) The spaces of the Examples (3) to (8) equipped with the partial order-

ings ⊂ and ⊃ of set inclusion.
(13) The extended reals of Examples (9) and (10) with the usual ≤ relation.

Now we are able to give the definition of a convex function. Let (Y,≤
) be a partially ordered semi–linear space and C ⊂ X. The set epi f :=
{(x, y) ∈ C × Y | f(x) ≤ y} is called epigraph of f . A function f : C → (Y,≤) is
said to be convex if its epigraph epi f is a convex subset of X × Y . In this case,
C must be convex. It is an easy task to show that a function f : C → (Y,≤) is
convex if and only if for all λ ∈ [0, 1] and all x, u ∈ C it holds

f(λ · x+ (1− λ) · u) ≤ λ · f(x) + (1− λ) · f(u).

A convex function f : C → Y , defined on a subset C ⊂ X, can be extended
to the whole space X, if (Y,≤) has a largest element ŷ which is simultaneously
the strongest element of Y . In this case, the extension f̂ : X → Y , defined by
f̂(x) := f(x) if x ∈ C and f̂(x) = ŷ elsewhere, is convex. Moreover, the set
dom f := {x ∈ C| f(x) 6= ŷ} is called the effective domain of f . In the spaces
of the Examples (3) to (8), equipped with the relation ⊃, we have ŷ = ∅, if
the empty set belongs to the space. If we take instead the relation ⊂, we have
ŷ = X (respectively ŷ = V ) if the empty set does not belong to the space.

It is well–known that in the special case of a function f : U → (P(V ),⊃),
where U and V are linear spaces, f is convex if and only if its ”graph” G(f) :=
{(u, v) ∈ U × V | v ∈ f(u)} is a convex subset of U × V .
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3. A basic principle and its conclusions

The following theorem is the essential part of a lot of assertions concerning
convex functions (and maps). It states that under certain assumptions to the
semi–linear structure and to the ordering structure, a convex function cannot
attain values in a certain cone of its partially ordered semi–linear image space.

In this section, let X be a linear space and C ⊂ X. The core or the algebraic
interior of a subset A ⊂ X is denoted by coreA (compare [7]). As usual, for
f : C → (Y,≤) and A ⊂ C we define f(A) := {y ∈ Y | ∃x ∈ A : y = f(x)}.

Theorem 3.1 Let (Y,≤) be a partially ordered semi–linear space, S ⊂ Y a
cone, f : C → (Y,≤) a convex function and A ⊂ C such that S � f(A). If
there exists x0 ∈ coreA such that f(x0) 6≤ s for all s ∈ S, then f(x) 6∈ S for all
x ∈ C.

Proof. Assume f(x) ∈ S. Since x0 ∈ coreA, we find some x′ ∈ A such that
x0 = λx′ + (1 − λ)x for some λ ∈ (0, 1). The convexity of f yields f(x0) ≤
λ · f(x′) + (1 − λ) · f(x) =: s. Since S is a cone in Y and λ > 0, S � f(A)
implies S � λ · f(A). Consequently, we have s ∈ S. Hence f(x0) ≤ s and s ∈ S
contradicting the assumption. This means f(x) 6∈ S for all x ∈ C. �

The first corollary is a classical result for convex functions with values in the
extended reals R? of Example (9). Note that, for instance, in [11] other calculus
rules in the extended reals are used, but the same result is valid.

Corollary 3.2 Let f : C → (R?,≤) be a convex function. If some point
x0 ∈ core (dom f) satisfies f(x̄) > −∞, then f never takes the value −∞.

Proof. S = {−∞}, A = dom f . �

In the following result, we set ker f = {x ∈ C| f(x) = 0Y }.

Corollary 3.3 Let f : C → R be a convex function. If x0 ∈ core ker f , then
f(x) ≥ 0 for all x ∈ C.

Proof. S = {y ∈ R| y < 0}, A = ker f . �

With aid of the principle it is easy to obtain a vector–valued variant of the
preceding assertion. Therein, bdK = clK \ intK denotes the boundary of K.

Corollary 3.4 Let (Y,≤K) be a separated topological linear space partially or-
dered by a closed pointed convex cone K ⊂ Y containing 0Y and having a
nonempty interior, f : C → (Y,≤K) a convex function. If f takes values
in −bdK on an algebraically open subset of C, then f never takes values in
−intK.

Proof. S = −intK, A = f−1(−bdK) �

In vector optimization optimality conditions of the following type occur [8, The-
orem 7.6]: If x̄ ∈ S is a weakly minimal solution of the vector optimization
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problem minx∈S f(x) of [8, page 153] and if f : S → (Y,≤K) has a directional
variation f ′(x̄) : S−{x̄} → (Y,≤K) with respect to −coreK [8, Definition 2.14],
then

∀x ∈ S : f ′(x̄)(x− x̄) 6∈ −coreK. (2)

If the directional variation f ′(x̄) : S−{x̄} → (Y,≤K) is convex and takes values
in −bdK on an algebraically open set, and if intK 6= ∅ (in particular this
implies coreK = intK), then, by Corollary 3.4, the optimality condition (2) is
satisfied.

The following corollary is a result of Deutsch and Singer [3] on the single–
valuedness of a convex set–valued map. In [3] a further conclusion, namely f
must be affine on dom f , is drawn and applications to metric projections and
adjoints of set–valued maps are discussed.

Corollary 3.5 Let V be a linear space and let f : C → (P̂(V ),⊃) be convex.
If f is single–valued in some point of x0 ∈ core (dom f), then f is single–valued
everywhere in dom f .

Proof. S = {”nonsingletons”}, A = dom f . �

Corollary 3.6 Let V be a separated topological linear space and f : C →
(F̂(V ),⊃) be convex. If f is compact–valued at some point x0 ∈ core (dom f),
then f is compact–valued everywhere in dom f .

Proof. S = {”noncompacts”}, A = dom f . �

The following result of Zamfirescu [15] was published in the framework of a
generalization of the mentioned result of Deutsch and Singer to so–called star–
shaped functions. The same generalization could be done for all the assertions
given here.

Corollary 3.7 Let V = Rn and let f : C → (P̂(V ),⊃) be convex. Then
dim f(x), as a function of x, is constant on core (dom f) and not larger else-
where.

Proof. Let x0 ∈ core (dom f) with dim f(x0) = k, S = {v ⊂ V | dim v > k},
A = dom f . Then the theorem yields dim f(x) ≤ k for all x ∈ C. Now suppose
there is some x1 ∈ core (dom f) such that dim f(x1) = m < k. Applying
the theorem again we obtain dim f(x) ≤ m < k for all x ∈ C contradicting
dim f(x0) = k. �

Corollary 3.8 Let Z be a semi–linear space and let f : C → (K̂(Z),⊃) be
convex. Then f is constant on core (dom f).

Proof. Let x0 ∈ core (dom f) with f(x0) = k0, S = {k ∈ K(Z)| k 6⊂ k0},
A = dom f . Then the theorem yields f(x) ⊂ k0 for all x ∈ C. Now suppose
there is some x1 ∈ core (dom f) with f(x1) = k1 ( k0. Applying the theorem
again we obtain f(x) ⊂ k1 ( k0 for all x ∈ C contradicting f(x0) = k0. �

6



Let V be a locally convex space and V ∗ its topological dual. As usual,
δ∗( · |A ) : V ∗ → R?, δ∗(v∗|A ) = sup {〈v∗, a〉 | a ∈ A} is the support function
of a convex set A ⊂ V . For A,B ∈ Fc(V ) (compare Example (5), in particular
A,B 6= ∅) it holds

∀v∗ ∈ V ∗ : δ∗(v∗|A+B ) = δ∗(v∗|A ) + δ∗(v∗|B ) (3)

and for A ∈ Fc(V ) and α ≤ 0 we have

∀v∗ ∈ V ∗ : δ∗(v∗|α ·A ) = α · δ∗(v∗|A )

Hence, the map which assigns every A ∈ Fc(V ) its support functions is a ho-
momorphism into the semi–linear space Ψ of all functions ψ : V ∗ → R ∪ {∞},
where the semi–linear operations are defined pointwise. Using a separation the-
orem, for instance [9, page 25], it can easily be seen that this homomorphism
is injective, i.e. we have an embedding. Moreover, it is clear that functions
ψ : V ∗ → R ∪ {∞} having the same effective domain can considered to be
a linear space L. Let A ⊂ Fc(V ) having the following property: The support
functions of all A ∈ A have the same effective domain. Then A can be embedded
into a linear space.

The following corollary tells us that the values of a convex function f : C →
(F̂(V ),⊃) have essentially the same effective domain.

Corollary 3.9 Let f : C → (F̂(V ),⊃) be convex. Then x 7−→ dom δ∗( · | f(x) )
is constant on core (dom f).

Proof. The convexity of f implies f(x) ⊃ λf(x) + (1 − λ)f(x) for all λ ∈
[0, 1]. Hence f(x) is a convex subset of V for all x ∈ dom f . Define K0 :=
dom δ∗( · | f(x0) ) for some x0 ∈ core (dom f), S := {c ∈ Fc(V )| dom δ∗( · | c ) 6⊃
K0} and A := dom f . Obviously, S is a cone in F(Y ).

Let s ∈ S and c ∈ f(A). Then we have dom δ∗( · | s ) 6⊃ K0 and since c 6= ∅
we have δ∗( · | c ) > −∞. Since s and c are nonempty, (3) is valid and it follows
s+ c ∈ S, i.e. the assumption S � f(A) is satisfied.

For all s ∈ S we have f(x0) 6⊃ s. Indeed, assuming that s̄ ⊂ f(x0) for
some s̄ ∈ S we obtain δ∗( · | s̄ ) ≤ δ∗( · | f(x0) ) and hence dom δ∗( · | s̄ ) ⊃
dom δ∗( · | f(x0) ) = K0. This contradicts the definition of S. The theorem
yields f(x) 6∈ S for all x ∈ C. This means dom δ∗( · | f(x) ) ⊃ K0 for all x ∈ C.

Assuming that dom δ∗( · | f(x1) ) = K1 ) K0 for some x1 ∈ core (dom f)
and applying the same procedure we get dom δ∗( · | f(x) ) ⊃ K1 for all x ∈ C,
in particular, dom δ∗( · | f(x0) ) ⊃ K1 ) K0 contradicting the definition of K0.
Hence x 7−→ dom δ∗( · | f(x) ) is constant on core (dom f). �

From the previous corollary and the considerations above, we may conclude
that the set f(core (dom f)) ⊂ F(V ) can be embedded into a linear space L,
even though F(V ) cannot be embedded (compare Proposition 2.3). Note that
for different functions f : C → F̂(V ) with the same X, C ⊂ X and V the
linear space L can be different, in particular, the neutral element of L does not
coincides with the neutral element of F̂(V ), in general.
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