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Abstract

The aim of the paper is to derive approximate saddle point assertions for a general class of
vector-valued approximation problems using a generalized Lagrangean. We derive neces-
sary and sufficient conditions for approximate saddle points, estimate the approximation
error and study the relations between the original problem and saddle point assertions
under regularity assumptions.

1 Introduction

In our paper we consider a general class of vector-valued approximation problems which
contains many practically important special cases and introduce the concept of approximately
efficient elements of this problem. Approximate solutions of optimization problems are of
interest from the numerical as well as the theoretical point of view. Especially, numerical
algorithms only generate approximate solutions if we stop them after a finite number of
steps. Moreover, the solution set may be empty in the general noncompact case whereas
approximate solutions exist under very weak assumptions.

Valyi [8], [9] developed Hurwiz-type saddle point theorems for different types of approx-
imately efficient solutions of vector optimization problems. The aim of the present paper is
to derive approximate saddle point assertions for vector-valued location and approximation
problems using a generalized Lagrangean.

We introduce a generalized saddle function for the vector-valued approximation problem
and different concepts of approximate saddle points. Furthermore, we derive necessary and
sufficient conditions for approximate saddle points, estimate the approximation error and
study the relations between the original problem and saddle point assertions under regularity
assumptions.

2 Terminology and notations

All topological linear spaces that will occur throughout the paper are over the field R of
real numbers. If U and W are topological linear spaces, then L(U,W ) denotes the set of all
continuous linear mappings from U into W . The topological dual spaces of a topological linear
space U is denoted by U∗. If U is a locally convex Hausdorff space, then we write Uσ and
Uτ for U under the weak topology σ(U,U∗) and the Mackey topology τ(U,U∗), respectively.
Furthermore, σ − intS denotes the interior of a set S ⊂ Uσ etc.
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A nonempty subset KW of a linear space W is said to be a convex cone if

KW + KW ⊆ KW and αKW ⊆ KW for all α ∈ [0,∞[.

A convex cone KW is called pointed if KW ∩ (−KW ) = {0}. If KW is a convex cone in a
topological linear space W , then the set

K∗
W := {λ ∈ W ∗ | ∀k ∈ KW : λ(k) ≥ 0}

is called the dual cone of KW .
Given a convex cone KW in a linear space W , a binary relation ≤ can be introduced in

W by setting x ≤ y if y − x ∈ KW . It is easy to see that this relation ≤ is an ordering on
W with respect to which W is an ordered linear space. A mapping f of a linear space U into
the ordered linear space W is called sublinear if

f(αu1) = αf(u2) and f(u1 + u2) ≤ f(u1) + f(u2)

for all u1, u2 ∈ U and all α ∈ [0,∞[.
Given two topological linear spaces U and W , where W is ordered by a convex cone KW , we

say that the pair (U,W ) has the Hahn-Banach extension property if for each sublinear mapping
f : U → W the following assertion holds: For each u0 ∈ U there exists an Y ∈ L(U,W ) such
that

∀u ∈ U : f(u) ∈ Y (u) + KW and f(u0) = Y (u0).

In the following we list some sufficient conditions ensuring that the pair (U,W ) has the Hahn-
Banach extension property (cf. [13]): Assume that U and W are locally convex Hausdorff
spaces and

(A1) U is a weakly compactly generated space,

(A2) the convex cone KW of W is closed and τ − intK∗
W 6= ∅,

(A3) the sublinear map f is continuous at 0 as a map from U to Wσ.

Remark. (i) The assumption (A1) holds if, for example, U is a separable Banach space or a
reflexive normed space. Furthermore, it is easily verified that (A3) holds if (A2) holds and f

is order bounded above in some 0-neighborhood of U .
(ii) For example, the assumptions (A1), (A2) and (A3) are satisfied in the special case

that U and W are finite-dimensional Euclidean spaces and KW is any pointed closed convex
cone in W . Indeed, if KW is pointed, then the dual cone K∗

W has nonempty interior and,
since each sublinear functional λ ◦ f with λ ∈ K∗

W , is continuous on the finite dimensional
Euclidean space U and int K∗

W is nonempty, f must be continuous itself.

Let M be a subset of a topological linear space W , and let w0 be a point in W . Given
a subset K of W and an element e ∈ W , the point w0 is called a (K, e)–minimal (resp.
(K, e)–maximal) point of M if w0 ∈ M and

(w0 − e−K) ∩M ⊆ {w0 − e} (resp. (w0 + e + K) ∩M ⊆ {w0 + e}).
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The set consisting of all (K, e)–minimal (resp. (K, e)–maximal) points of M is denoted by
Min(M,K, e) (resp. Max(M,K, e)). If e is the origin of W , then the (K, e)–minimal (resp.
(K, e)–maximal) points of M are simply called K–minimal (resp. K–maximal) points of M

and their set is denoted by Min(M,K) (resp. Max(M,K)).
Given a function λ ∈ W ∗ and an element e ∈ W , the point w0 is called a (λ, e)–minimal

(resp. (λ, e)– maximal) point of M if w0 ∈ M and for all w ∈ M it holds λ(w0)−λ(e) ≤ λ(w)
(resp. ∀w ∈ M : λ(w) ≤ λ(w0) + λ(e)).

The set consisting of all (λ, e)–minimal (resp. (λ, e)–maximal) points of M is denoted by
Min(M,λ, e) (resp. Max(M,λ, e)). If e is the origin of W , then the (λ, e)–minimal (resp.
(λ, e)– maximal) points of M are simply called λ–minimal (resp. λ–maximal) points of M

and their set is denoted by

Min(M,λ) (resp. Max(M,λ)).

Let M and N be nonempty sets, let W be a topological linear space, and let Φ be a mapping
from M×N into W . Given a subset K of W and an element e ∈ W , a point (x0, y0) ∈ M×N

is said to be a (K, e)–saddle point of Φ with respect to M ×N if the following conditions are
satisfied:

Φ(x0, y0) ∈ Min ({Φ(x, y0) | x ∈ M},K, e) ; (1)

Φ(x0, y0) ∈ Max ({Φ(x0, y) | y ∈ N},K, e) . (2)

Given a function λ ∈ W ∗ and an element e ∈ W , a point (x0, y0) ∈ M × N is said to be a
(λ, e)– saddle point of Φ with respect to M ×N if the following conditions are satisfied:

Φ(x0, y0) ∈ Min ({Φ(x, y0) | x ∈ M}, λ, e) ; (3)

Φ(x0, y0) ∈ Max ({Φ(x0, y) | y ∈ N}, λ, e) . (4)

3 Formulation of the vector-valued approximation problem

In the whole paper we suppose that W is a locally convex Hausdorff space partially ordered
by the closed, pointed and convex cone KW ⊆ W ; X, U and V are reflexive Banach spaces;
the pair (U,W ) has the Hahn-Banach extension property; A : X → U , B : X → V and
C : X → W are continuous linear mappings; f : U → W is a continuous sublinear mapping;
A ⊆ U , X ⊆ X and KV ⊆ V are closed, pointed and convex cones and b ∈ V . Defining
F : A×X → W by

F (a, x) := C(x) + f(a−A(x)),

and
S := {(a, x) ∈ U ×X | a ∈ A, x ∈ X , B(x)− b ∈ KV },

we consider the following vectorial approximation problem

(P(KW )) Compute the set Min(F [S],KW ).
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4 Approximate saddle point theorems

Proceeding as in [6] and [1], we define the mapping L : U ×X ×L(U,W )×L(V,W ) → W by

L(a, x, Y, Z) := C(x) + Y (a−A(x)) + Z(b−B(x)).

When three of the four variables a ∈ U , x ∈ X, Y ∈ L(U,W ) and Z ∈ L(X, W ) are fixed,
then the corresponding partial mappings

L(., x, Y, Z), L(a, ., Y, Z), L(a, x, ., Z), L(a, x, Y, .)

are affine. This property distinguishes our mapping L from the Lagrangean mapping usually
associated with the problem (P (KW )) (see e.g. [9]).

In what follows we consider L as a function of two variables (a, x) and (Y, Z), and inves-
tigate approximate saddle points of L with respect to (A×X )× (Y ×Z), where Y and Z are
given by

Y := {Y ∈ L(U,W ) | ∀u ∈ U : f(u) ∈ Y (u) + KW }. (5)

and

Z := {Z ∈ L(V,W ) | Z[KV ] ⊆ KW },

respectively. For short, we set D := (A×X )× (Y × Z).

Theorem 1 Let λ be a functional in K∗
W \ (−K∗

W ), let e be an element in KW , and let
(a0, x0, Y0, Z0) be an element in D. Then (a0, x0, Y0, Z0) is a (λ, e)–saddle point of L with
respect to D if and only if the following conditions are satisfied:

(i) L(a0, x0, Y0, Z0) ∈ Min({L(a, x, Y0, Z0) | (a, x) ∈ A× X}, λ, e);

(ii) B(x0)− b ∈ KV ;

(iii) λ ◦ Y0(a0 −A(x0)) + λ ◦ Z0(b−B(x0)) ≥ λ ◦ f(a0 −A(x0))− λ(e).

The proof can be found in [1].

Theorem 2 Let (W, ‖·‖) be a Banach space, L(U,W ) be reflexive, λ ∈ K∗
W \(−K∗

W ), e ∈ KW ,
and let (a0, x0) ∈ S be a (λ, e)–minimal point of F [S]. If {(a, x) ∈ S | B(x̄)− b ∈ intKV } 6= ∅
and Y is bounded, then there exist mappings Y0 ∈ Y and Z0 ∈ Z such that (a0, x0, Y0, Z0) is
a (λ, e)–saddle point of L with respect to D.

Proof. We consider the scalarized Lagrangean defined by

Lλ(a, x, Y, v∗) := λ ◦ C(x) + λ ◦ Y (a−A(x)) + v∗(b−B(x))

over D′ := (A×X )×(Y×K∗
V ). We show that for this scalarized Lagrangean the assumptions

(H1), (H2) and (H3∗) of Theorem 49.B.(3)(ii) in [12] are fulfilled. Obviously, the assumptions
(H1) and (H2) of this theorem are true. In order to show (H3∗), we consider a sequence
{(Y n, v∗n)} ⊂ Y × K∗

V with ‖(Y n, v∗n)‖ → ∞ if n → ∞. Since Y n ∈ Y for all n and Y is
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bounded, there is a constant α > 0 such that ‖Y n‖ ≤ α for all n. Thus we have ‖v∗n‖ → ∞ if
n →∞. Next we choose a point (ā, x̄) ∈ S with B(x̄)− b ∈ intKV .
From B(x̄)− b ∈ intKV it follows the existence of a δ ∈ (0,∞) such that v∗(b−B(x̄)) ≤ −δ

for all v∗ ∈ K∗
V with ‖v∗‖ = 1. So, we have

Lλ(ā, x̄, Y n, v∗n) = λ ◦ C(x̄) + λ ◦ Y n(ā−A(x̄)) + v∗n(b−B(x̄))

≤ λ ◦ C(x̄) + α‖λ‖‖ā−A(x̄)‖ − δ‖v∗n‖
n→∞−→ −∞,

which proves (H3∗). By applying the above mentioned theorem, we conclude that there exist
Y0 ∈ Y and v∗0 ∈ K∗

V satisfying

inf
(a,x)∈A×X

Lλ(a, x, Y0, v
∗
0) = sup

(Y,v∗)∈Y×K∗
V

inf
(a,x)∈A×X

Lλ(a, x, Y, v∗),

and
inf

(a,x)∈A×X
sup

(Y,v∗)∈Y×K∗
V

Lλ(a, x, Y, v∗) = sup
(Y,v∗)∈Y×K∗

V

inf
(a,x)∈A×X

Lλ(a, x, Y, v∗).

With aid of the Hahn-Banach extension property we conclude that

sup
(Y,v∗)∈Y×K∗

V

Lλ(a, x, Y, v∗) = λ ◦ F (a, x) whenever (a, x) ∈ S.

From this we deduce that

sup
(Y,v∗)∈Y×K∗

V

Lλ(a0, x0, Y, v∗) = λ ◦ F (a0, x0)

≤ inf
(a,x)∈A×X

λ ◦ F (a, x) + λ(e)

= inf
(a,x)∈A×X

sup
(Y,v∗)∈Y×K∗

V

Lλ(a, x, Y, v∗) + λ(e)

= sup
(Y,v∗)∈Y×K∗

V

inf
(a,x)∈A×X

Lλ(a, x, Y, v∗) + λ(e)

= inf
(a,x)∈A×X

Lλ(a, x, Y0, v
∗
0) + λ(e).

This yields the following inequalities:

∀(Y, v∗) ∈ Y ×K∗
V : Lλ(a0, x0, Y, v∗)− λ(e) ≤ Lλ(a0, x0, Y0, v

∗
0); (6)

∀(a, x) ∈ A× X : Lλ(a0, x0, Y0, v
∗
0) ≤ Lλ(a, x, Y0, v

∗
0) + λ(e). (7)

Finally, we have to show that for v∗0 ∈ K∗
V , v ∈ V and λ ∈ K∗

W \ (−K∗
W ) there is a mapping

Z ∈ Z such that v∗0(v) = λ ◦ Z(v). Since λ ∈ K∗
W \ (−K∗

W ) we can choose k ∈ KW such that
λ(k) > 0. Define the mapping Z0 : V → W by

Z0(v) :=
v∗0(v)
λ(k)

k.
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Then we have Z0 ∈ L(V,W ). Since v∗0(v) ≥ 0 for all v ∈ KV , we conclude that Z0[KV ] ⊆ KW ,
i.e., Z0 ∈ Z. Furthermore, we obtain

∀v ∈ V : λ ◦ Z0(v) =
v∗0(v)
λ(k)

λ(k) = v∗0(v).

Consequently, (6) and (7) yield the desired assertion.

Remark. In Theorem 2 we assume that L(U,W ) is reflexive. In order to give sufficient
conditions for this assumption we use the following assertion given by [2, VIII,4,Theorem
4]: If U and W are Banach spaces and one of them has the approximation property (cf. [2,
VIII,3, Definition 1], then L(U,W ) is reflexive if and only if U and W are reflexive and each
member of L(U,W ) is compact. For example, L(U,W ) is reflexive in the following two cases:

(i) U is a reflexive Banach space and W is a finite dimensional Euclidian space;

(ii) U = lq and W = lp , where 1 < p < q < ∞ (compare [2, VIII,4,Corollary 5]).

Let us discuss sufficient conditions for the boundedness of the set Y in Theorem 2. There-
fore we recall the concept of absolute-monotone norms (cf. [11]). Let (W,≤) be an ordered
normed space. The norm ‖.‖a is said to be absolute-monotone on W if for w,w′ ∈ W ,
−w ≤ w′ ≤ w implies ‖w′‖ ≤ ‖w‖. The set Y is bounded (with respect to the norm in
L(U,W )) if the following conditions are satisfied:

(i) The norm ‖.‖ of W is equivalent to an absolute-monotone norm ‖.‖a on W .

(ii) There exists some continuous sublinear map g : U → W with

∀u ∈ U,α ∈ R : g(αu) = |α|g(u), (8)

such that f(u) ≤ g(u) for all u ∈ U .

Indeed, let us show that the assumptions of the Banach-Steinhaus Theorem (e.g. [Werner(1995)])
are satisfied. Since U is a Banach space and W is a normed space it remains to show that
the following pointwise boundedness assumption is satisfied

∀u ∈ U : sup
Y ∈Y

‖Y (u)‖ < ∞. (9)

Indeed, for arbitrary u ∈ U we have −g(u) ≤ −f(u) ≤ −Y (u) = Y (−u) ≤ f(−u) ≤ g(−u) =
g(u). Hence, ‖Y (u)‖a ≤ ‖g(u)‖a for all Y ∈ Y. Since g is continuous in zero, we have
‖g(u)‖ < ∞, hence (9) holds. The Banach-Steinhaus theorem yields the boundedness of Y.

For instance, if W has finite dimension and the ordering cone KW ⊂ W is closed convex
and pointed, then the first condition (i) is satisfied. Indeed, in this setting we can find a cone
K̄W ⊃ KW , which is again closed convex and pointed but additionally has nonempty interior.
Let B be a base of KW , in particular, B is closed, bounded, convex, 0 6∈ B and KW = [0,∞[·B.
Thus we can find ε > 0 such that by adding the closed (and compact) ball B(0, ε) we obtain
a closed, bounded and convex set B̄ε := B + B(0, ε) with 0 6∈ B. Define K̄W := [0,∞[·B̄ε.
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Taking k ∈ int K̄W we can construct a neighborhood U of zero by U := (k−K̄W )∩(−k+K̄W ).
The norm ‖.‖a defined by ‖w‖a := inf{α > 0 : w ∈ αU} is absolute-monotone. Indeed, let
−w ≤ w′ ≤ w be given. Then we can find some α > 0 such that w ∈ αU . It follows
w′ ∈ −w + KW ⊂ α(−k + K̄W ) + KW ⊂ −αk + K̄W + K̄W ⊂ −αk + K̄W ⊂ α(−k + K̄W ).
Analogously we obtain w′ ∈ α(k − K̄W ). Hence w′ ∈ αU . Taking the infimum over α > 0
yields ‖w′‖a ≤ ‖w‖a. Of course in a finite dimensional space the norm ‖.‖a is equivalent to
the norm ‖.‖ of W .

Condition (ii) is satisfied in many applications because f itself often satisfies property (8).

Theorem 3 Let K̃W be a pointed convex cone in W satisfying K̃W ⊇ KW , let e be an element
in KW , and let (a0, x0, Y0, Z0) be an element in D. Then (a0, x0, Y0, Z0) is an (K̃W , e)–saddle
point of L with respect to D if and only if the following conditions are satisfied:

(i) L(a0, x0, Y0, Z0) ∈ Min({L(a, x, Y0, Z0) | (a, x) ∈ A× X}, K̃W , e);

(ii) B(x0)− b ∈ KV ;

(iii) Y0(a0 −A(x0)) + Z0(b−B(x0)) /∈ f(a0 −A(x0))− e− (K̃W \ {0}).

Proof. Necessity. Condition (i) follows from (1) in the definition of a (K̃W , e)–saddle point.
In order to prove (ii) and (iii), we argue similarly as in the proof of necessity of Theorem 1.
First, we suppose that B(x0) − b /∈ KV . Then we apply the strict separation theorem and
conclude that there is a functional µ ∈ K∗

V such that µ(B(x0) − b) < 0. Let k be a point
chosen from KW \ {0}. By means of µ and k we define the mapping Z : V → W by

Z(v) :=
µ(v)

µ(b−B(x0))
(e + k) + Z0(v).

Obviously, Z belongs to Z. Taking in account that KW ⊆ K̃W , we also see

(Z − Z0)(b−B(x0)) = e + k ∈ e + (KW \ {0}) ⊂ e + (K̃W \ {0}).

This result implies that

L(a0, x0, Y0, Z) = L(a0, x0, Y0, Z0) + (Z − Z0)(b−B(x0))

⊂ L(a0, x0, Y0, Z0) + e + (K̃W \ {0}),

which contradicts

L(a0, x0, Y0, Z0) ∈ Max({L(a0, x0, Y, Z) | (Y, Z) ∈ Y × Z}, K̃W , e). (10)

Therefore, condition (ii) must be satisfied. Next we apply (10) again and conclude that

L(a0, x0, Y, Z) /∈ L(a0, x0, Y0, Z0) + e + (K̃W \ {0}) (11)

for every (Y, Z) ∈ Y ×Z. By specializing (Y, Z) in (11), we obtain (iii). Indeed, from (11) it
follows that for any mapping Y ∈ Y with the property Y (a0 − A(x0)) = f(a0 − A(x0)) and
for Z = 0 the relation

f(a0 −A(x0)) /∈ Y0(a0 −A(x0)) + Z0(b−B(x0)) + e + (K̃W \ {0})
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holds. This means that (iii) is true.
Sufficiency. (i) is equivalent to (1) in the definition of a (K̃W , e)– saddle point. We have to
proof that (2) also holds. To this end we suppose that there is a pair (Y, Z) ∈ Y × Z such
that

L(a0, x0, Y, Z) ∈ L(a0, x0, Y0, Z0) + e + (K̃W \ {0}).

Then we have

Y (a0 −A(x0)) + Y (b−B(x0)) ∈ Y0(a0 −A(x0)) + Z0(b−B(x0)) + e + (K̃W \ {0})

which implies that

Y (a0 −A(x0)) + Z(b−B(x0)) + KW

⊆ Y0(a0 −A(x0)) + Z0(b−B(x0)) + e + KW + (K̃W \ {0})
⊆ Y0(a0 −A(x0)) + Z0(b−B(x0)) + e + (K̃W \ {0}).

But on the other hand, from (5) f(a0−A(x0)) ∈ Y (a0−A(x0))+KW and (ii) Z(B(x0)−b) ∈
KW it follows that

f(a0 −A(x0)) ∈ Y (a0 −A(x0)) + Z(b−B(x0)) + Z(B(x0)− b) + KW

⊆ Y (a0 −A(x0)) + Z(b−B(x0)) + KW + KW

⊆ Y (a0 −A(x0)) + Z(b−B(x0)) + KW .

Consequently, we have

f(a0 −A(x0)) ∈ Y0(a0 −A(x0)) + Z0(b−B(x0)) + e + (K̃W \ {0}),

which contradicts (iii).

Corollary 4 Let K̃W be a pointed convex cone in W satisfying K̃W ⊇ KW , let e be an
element in KW , and let (a0, x0, Y0, Z0) ∈ D be a (K̃W , e)–saddle point of L with respect to D.
Then the following assertions are true:

(j) (a0, x0) ∈ S;

(jj) Y0(a0 −A(x0)) /∈ f(a0 −A(x0))− e− (K̃W \ {0});

(jjj) Z0(b−B(x0)) /∈ −e− (K̃W \ {0}).

Proof. Obviously (j) results from (ii) in Theorem 3. In order to prove (jj) and (jjj), we note
that (11) implies

∀Y ∈ Y ∀Z ∈ Z : Y (a0 −A(x0)) + Z(b−B(x0))

/∈ Y0(a0 −A(x0)) + Z0(b−B(x0)) + e + (K̃W \ {0}). (12)

By setting in (12) a Y ∈ Y with the property Y (a0 − A(x0)) = f(a0 − A(x0)) and Z = Z0,
we obtain (jj); while by setting Y = Y0 and Z = 0 in (12), we obtain (jjj).
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Remark. Item (jjj) in Corollary 4 can be interpreted as a condition of approximate com-
plementary slackness for Z0 and b − B(x0). Namely, we have Z0(b − B(x0)) ∈ −KW

and Z0(b − B(x0)) /∈ −e − (K̃W \ {0}). Hence, Z0(b − B(x0)) is contained in the set
(−KW \ [−e − K̃W ]) ∪ {−e}. In the case of a finite dimensional space W this is a bounded
set if we claim K̃W ⊃ (6=)KW . Putting e = 0, this relation implies the well-known condition

Z0(b−B(x0)) = 0.

Theorem 5 Let K̃W be a pointed convex cone in W satisfying K̃W ⊇ KW , let e be an element
in KW , and let (a0, x0, Y0, Z0) ∈ D be a (K̃W , e)–saddle point of L with respect to D. Then
(a0, x0) is a (K̃W , ē)–minimal point of F [S], where

ē := e + f(a0 −A(x0))− Y0(a0 −A(x0))− Z0(b−B(x0))

is the approximation error.

Proof. According to property (j) in Corollary 4, we have (a0, x0) ∈ S. We suppose that
there is a (a, x) ∈ S such that

F (a, x) ∈ F (a0, x0)− ē− (K̃W \ {0}).

This means that
F (a, x) ∈ L(a0, x0, Y0, Z0)− e− (K̃W \ {0}).

Hence we have
F (a, x)−KW ⊆ L(a0, x0, Y0, Z0)− e− (K̃W \ {0}).

But, on the other hand, in view of

f(a−A(x))− Y0(a−A(x))− Z0(b−B(x)) ∈ KW + KW ⊆ KW ,

we have

L(a, x, Y0, Z0) = F (a, x)− [f(a, x)− Y0(a−A(x))− Z0(b−B(x))]

∈ F (a, x)−KW .

Consequently, it results that

L(a, x, Y0, Z0) ∈ L(a0, x0, Y0, Z0)− e− (K̃W \ {0}),

which contradicts condition (i) in Theorem 3.

Theorem 6 Let (W, ‖·‖) be a Banach space and let L(U,W ) be reflexive. We assume the
existence of a feasible point (ā, x̄) ∈ S with B(x̄)− b ∈ intKV . Moreover, we suppose that Y
is bounded. Let K̃W be a pointed convex cone in W satisfying int (K̃W ) ∪ {0} ⊇ cl KW , let e

be an element in KW , and let (a0, x0) ∈ S be a (K̃W , e)–minimal point of F [S]. Then there
exist operators Y0 ∈ Y and Z0 ∈ Z, such that (a0, x0, Y0, Z0) is a (KW , e)–saddle point of L

with respect to D.

Proof. Under the given assumptions there exists some λ ∈ intK∗
W (cf. Theorem 5.11 in

[3]) such that (a0, x0) belongs to Min(F [S], λ, e). Theorem 2 implies the existence of a pair
(Y0, Z0) ∈ Y×Z such that (a0, x0, Y0, Z0) is a (λ, e)–saddle point of L with respect to D. From
the strict KW –monotonicity of λ, we can conclude that (a0, x0, Y0, Z0) is also a (KW , e)–saddle
point of L with respect to D.
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