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Abstract

The aim of this paper is to develop a conjugate duality theory for convex set–valued
maps. The basic idea is to understand a convex set–valued map as a function with values
in the space of closed convex subsets of Rp. The usual inclusion of sets provides a natural
ordering relation in this space. Infimum and supremum with respect to this ordering
relation can be expressed with aid of union and intersection. Our main result is a strong
duality assertion formulated along the lines of classical duality theorems for extended
real–valued convex functions.
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1 Introduction

Set–valued optimization problems have been investigated by many authors, see Jahn [8] and
the references therein. Furthermore, set–valued maps naturally occur in vector optimization.
Tanino [18] gave a nice summary of the theory of conjugate duality in vector optimization
using set–valued maps. In Hamel et al. [6] a set–valued approach is used to solve the problem
of the duality gap in linear vector optimization in the case b = 0.

Optimization with set relations provides a quite different approach to set–valued opti-
mization. The main idea is to understand the set–valued objective map f : X ⇒ Y as a
function f : X → P̂(Y ) into the space P̂(Y ) of all subsets of Y . This space is provided
with an appropriate ordering relation. Kuroiwa [11] used such ordering relations in order to
formulate corresponding optimization problems. In Jahn [8], these relations are called KN
partial orderings because the basic idea can be already found in Nishnianidze [16]. Jahn [8]
designated the KN partial ordering approach to be promising in set–valued optimization.

In this paper we will investigate convex problems in this context. It turns out that the
KN partial ordering can be replaced by the usual inclusion of sets in order to describe all
the relevant assertions in the paper’s framework. This is due to the fact that the KN partial
orderings are not antisymmetric, in general. In order to obtain antisymmetry it is necessary
to switch to equivalence classes. Choosing appropriate representatives of these equivalence
classes is the same thing as using the usual inclusion of sets instead of the KN partial orderings.
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A more detailed discussion can be found in [14]. Infimum and supremum with respect to the
relation ”inclusion of sets” are expressed via union and intersection. We develop a set–valued
conjugate duality theory, based on the relation ”inclusion of sets”, and we proceed completely
analogous to the scalar theory of conjugate duality. This work is organized as follows.

In the next section we investigate the structure of the objective function’s image space,
namely the space of closed convex subsets of Rp. We observe that this space is not a linear
space. Moreover, it is not possible to embed this space into a linear space. However, as we will
see in the third section, certain subsets of this space can be embedded. Essentially, a convex
function only attains values in such a subset. This ensures the linearity of the image spaces
which is usually needed in duality theory. Furthermore, it is necessary to observe whether
infimum and supremum are changed while the embedding procedure. We observe that the
infimum is not changed, but the supremum is so. At the first glance, this problem seems
to be asymmetric in this sense. With aid of the concept of oriented sets, due to Rockafellar
[1], the symmetry can be re–established. For the details we also refer to [14]. In Section 4
we develop the duality theory. Weak and strong duality assertions will be proved. The last
section is devoted to some examples.

As for prerequisites, the reader is expected to be familiar with Rockafellar’s ”Convex
Analysis” [1]. Up to a few exceptions, we frequently use the notation therein. The following
notations are not in accordance with Rockafellar’s book. The symbol ⊕ does not mean the
direct sum, because it will get an other meaning. If A is a real m × n matrix, rg A :=
{Ax ∈ Rm| x ∈ Rn} denotes the range of A and AT is the transposed matrix. Further we
write Rn

+ := {x ∈ Rn| ∀i ∈ {1, ..., n} : xi ≥ 0}, Rn
− := −Rn

+ and R+ := R1
+.

The main results of this paper were announced in [13].

2 The structure of the image space

Throughout the paper, Y stands for the Euclidian space Rp, where p is a positive integer.
The space of all nonempty closed convex subsets of Y is denoted by F(Y ). For simplicity of
notation, we write F instead of F(Y ). In F we introduce an addition ⊕ : F ×F → F and a
multiplication with nonnegative real numbers · : R+ ×F → F , defined by

∀A,B ∈ F : A⊕B := cl (A + B) = cl {a + b| a ∈ A, b ∈ B} ,

∀A ∈ F , α ≥ 0 : α A := α · A := {α a| a ∈ A} .

Clearly, both operations are well–defined and for all A,B, C ∈ F and all α, β ∈ R+ the
following calculus rules hold true:

(S1) (A⊕B)⊕ C = A⊕ (B ⊕ C), (S2) {0} ⊕A = A,
(S3) A⊕B = B ⊕A, (S4) α (β A) = (αβ) A,
(S5) 1 ·A = A, (S6) α (A⊕B) = α A⊕ α B,
(S7) 0 ·A = {0}, (S8) α A⊕ β A = (α + β) A.
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In Hamel [5], a set (W,⊕, ·) is called a conlinear space if the axioms (S1)–(S7) are satisfied. In
this manner F is conlinear space where, additionally, the second distributive law (S8) holds
true. For further concepts of this type refer [5], [10] and the references therein. It is easy
to see that F is not a linear space, since the axiom of the existence of an inverse element
is violated. Moreover, it is not possible to embed F into a linear space. Indeed, assuming
there is an injective homomorphism j (an embedding) from F into a linear space L. Given a
nonempty closed convex cone K ⊆ Y such that K 6= {0} we have K ∈ F and K = K ⊕K.
Hence j(K) = j(K) + j(K) 6= 0. Then there must be an inverse element l ∈ L of j(K), i.e.
j(K) + l = 0. It follows 0 = j(K) + l = j(K) + l + j(K) = j(K), a contradiction.

Although, F is not a linear space nor can it be embedded into a linear space, its structure
is rich enough to define the concept of convexity and that of a cone. A subset A ⊆ F is said
to be convex if A,B ∈ A implies that λA + (1− λ)B ∈ A for all λ ∈ [0, 1]. A subset A ⊆ F
is said to be a cone if A ∈ A implies that αA ∈ A for all α > 0.

Rockafellar [1, Section 39] introduced the concept of orientation of convex sets in Rp.
A convex set A which is identified with its convex indicator function δ( · |A) is said to be
supremum oriented and a convex set A which is identified with the concave function −δ( · |A)
is called infimum oriented. This concept will play a crucial role in our theory. Thus we
introduce the following notation: The space F? is defined to be the space of all nonempty
closed convex subset of Y having supremum orientation. By F� we denote the space of all
nonempty closed convex subset of Y having infimum orientation. If not stated otherwise,
the orientation is not changed while manipulating sets. For instance, this means F? and F�

are conlinear spaces, the recession cone of a supremum (infimum) oriented set is supremum
(infimum) oriented, and so on.

Let K ⊆ Y be a nonempty closed convex cone. The set FK ⊆ F is defined to be the set
of all elements A ∈ F with 0+A = K. If these sets additionally have an orientation we write
F?

K and F�
K , respectively.

Proposition 2.1 FK is a convex cone in F .

Proof. Let A,B ∈ FK . It remains to show 0+(A ⊕ B) = K. This is a consequence of [1,
Corollary 9.1.1.] if we can verify the following condition: If z1 ∈ 0+A and z2 ∈ 0+B such that
z1 + z2 = 0, then z1 belongs to the lineality space of A and z2 belongs to the lineality space of
B. Indeed, we have 0+A = 0+B = K and the lineality spaces of A and B are equal, namely
0+A∩ (−0+A) = 0+B ∩ (−0+B) = K ∩ (−K). Hence the mentioned condition is satisfied. �

Note that [1, Corollary 9.1.1.] also implies that in FK ⊆ F the addition ⊕ reduces to the
usual Minkowski addition +, i.e. the closure operation is superfluous.

The space F is now equipped with one of the reflexive, transitive and antisymmetric
relations ⊇ and ⊆. We establish standard relations, in dependence of the orientation of the
members of the space. In fact, let the standard relation be ⊇ in the space F? and ⊆ in F�.
Both these standard relations should have the meaning of ”less or equal”. This identification
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makes it easier to distinguish between convex and concave functions with values in F (which
will be defined below).

We observe the following relation between the conlinear structure and the ordering struc-
ture in (F ,⊇) and (F ,⊆).

∀A,B, C, D ∈ F , ∀α ∈ R+ : A ⊇ B, C ⊇ D ⇒ α (A⊕ C) ⊇ α (B ⊕D).

In [5], a conlinear space equipped with a partial ordering and satisfying the latter condition
is called a partially ordered conlinear space. This means our spaces F? and F� (with its
standard relations) are partially ordered conlinear spaces.

We now repeat some concepts with respect to partially ordered sets, see for instance [19].
Moreover, we illustrate some crucial facts according to these concepts by simple examples.
If (W,≤) is a partially ordered set, V is a subset of W and the point w0 ∈ W satisfies
v ≤ w0 for all v ∈ V , then w0 is called an upper bound of V . The subset V is now said to be
bounded above. The definitions of bounded below and lower bound are analogous. Note that
the boundedness depends on the ”basis set” W . For instance, letting W = R, ordered by the
usual ordering ≤, the open interval V = (0, 1) is bounded. If we take instead W = (0, 1),
then the same set V = (0, 1) is not bounded. If w0 ∈ W is an upper bound of V such that
w0 ≤ w̄ for any other upper bound w̄ ∈ W of V , then w0 is called least upper bound or
supremum of V and is denoted by supV . If V has a supremum then it is uniquely defined.
This is an easy consequence of the antisymmetry of the relation ≤. The greatest lower bound
or infimum is defined analogously and denoted by inf V . Supremum and infimum of a set
V ⊆ W also depend on the ”basis set” W as the following example shows. As above, let
W = R and V = (0, 1). Then supV = 1. If we have W = {r ∈ R| r < 1 ∨ r ≥ 2} instead,
supV = 2. In the case where W = {r ∈ R| r < 1 ∨ r > 2}, the supremum of V does not exist.
A partially ordered set W is said to be order complete if every subset of W has supremum
and infimum. If W is order complete and V = ∅, then sup V = inf W and inf V = supW .
The set W is called Dedekind complete if every nonempty subset of W which is bounded
above (bounded below) has a supremum (infimum). Note that for Dedekind completeness an
one–sided condition is already sufficient, this means W is Dedekind complete if and only if
every nonempty subset of W which is bounded above has a supremum [19, Theorem 1.4]. An
element w̄ ∈ W is called the largest element of (W,≤) if w ≤ w̄ for all w ∈ W . The smallest
element is defined analogously. If (W,≤) has a largest (smallest) element, then it is uniquely
defined. The examples given above motivate the following theorem.

Theorem 2.2 Let (W,≤) and (W ?,≤?) be Dedekind complete partially ordered sets with
W ? ⊆ W and such that ≤ and ≤? coincide on W ?. Denote the supremum (infimum) of a
subset V ⊆ W with respect to (W,≤) by supV (inf V ) and the supremum (infimum) of a
subset V ⊆ W ? with respect to (W ?,≤?) by sup? V (inf? V ). Then it holds.

(i) ∅ 6= V ⊆ W ? bounded above ⇒ supV ≤ sup? V ,
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(ii) ∅ 6= V ⊆ W ? bounded below ⇒ inf? V ≤ inf V .

Under the additional assumption supV ∈ W ? it even holds equality in (i). The same is true
in (ii) if inf V ∈ W ?.

Proof. (i) By hypothesis, the set V ⊆ W ? is bounded above (with respect to (W ?,≤?)).
Hence V ⊆ W is bounded above (with respect to (W,≤)). Since V is nonempty and (W,≤)
and (W ?,≤?)) are Dedekind complete, supV and sup? V exist. Of course, sup? V ∈ W ?

is an upper bound of V with respect to (W,≤). By the definition of the supremum we
get supV ≤ sup? V . (ii) Analogous. The second statement follows immediately from the
definition of supremum and infimum. �

Let us apply the concepts introduced above to the spaces F? and F�.

Proposition 2.3 The spaces F? and F� are Dedekind complete and the infimum and supre-
mum can be expressed as follows:

(i) ∅ 6= A ⊆ F? bounded above ⇒ supA =
⋂

A∈A A,

(ii) ∅ 6= A ⊆ F? ⇒ inf A = cl conv
⋃

A∈A A,

(iii) ∅ 6= A ⊆ F� ⇒ supA = cl conv
⋃

A∈A A,

(iv) ∅ 6= A ⊆ F� bounded below ⇒ inf A =
⋂

A∈A A.

Proof. (i) Set S :=
⋂

A∈A A. Let Ā be an upper bound of A, i.e. A ⊇ Ā for all A ∈ A.
Hence S 6= ∅. Of course, S is convex and closed. Thus, S belongs to F?. For all A ∈ A we
have A ⊇ S, i.e. S is an upper bound of A. Let S̄ ∈ F? be another upper bound of A, i.e.
for all A ∈ A it holds A ⊇ S̄, then it follows

⋂
A∈A A ⊇ S̄, i.e. S ⊇ S̄.

(ii) Set I := cl conv
⋃

A∈A A. Of course, I ∈ F?. For all A ∈ A we have I ⊇ A, i.e. I

is a lower bound of A. Let Ī ∈ F? be another lower bound of A, i.e. for all A ∈ A it holds
Ī ⊇ A, then it follows Ī ⊇

⋃
A∈A A. Since Ī is closed and convex, we obtain Ī ⊇ I. The same

reasoning applies to (iii) and (iv). �

In many situations, it is convenient to extend a Dedekind complete partially ordered set by
a smallest or largest element in order to obtain an order complete set. In F? there already
exists a smallest element, namely Y ∈ F?. Therefore, we extent the space F? only by a largest
element. Intuitively, we denote this element by ∅. Then we have A ⊇ ∅ for all A ∈ F . This
new element is also provided with an orientation, in this case with supremum orientation.
Addition and multiplication with this new element are defined as:

∀A ∈ F ∪ {∅} : A⊕ ∅ = ∅ ⊕A = ∅, ∀α > 0 : α · ∅ = ∅, 0 · ∅ = {0} .

The resulting order complete conlinear space is denoted by F̂?. In the same way the space
F� is extended by a smallest (infimum oriented) element ∅ and the resulting order complete
conlinear space is denoted by F̂�.
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In every order complete partially ordered conlinear space (W,⊕, · ,≤) it is evident that

inf(A+ B) ≥ inf A⊕ inf B and sup(A+ B) ≤ supA⊕ supB, (1)

where A+ B := {A⊕B| A ∈ A, B ∈ B}. In general, it does not hold equality in (1).

Example 2.4 Let Y = R2, K = R2
+, B(x̄, r) :=

{
x ∈ R2| ‖x− x̄‖ ≤ r

}
, A,B ⊆ F?,

A :=
{
{(0, 1)T }+ K, {(1, 0)T }+ K

}
, B :=

{
B
(
(0, 0)T , 1

)
+ K

}
. Then, supA ⊕ supB =(

({(0, 1)T } + K) ∩ ({(1, 0)T } + K)
)

+
(
B
(
(0, 0)T , 1

)
+ K

)
= B

(
(1, 1)T , 1

)
+ K. However,

sup(A+B) = sup
{
B
(
(0, 1)T , 1

)
+K, B

(
(1, 0)T , 1

)
+K

}
=
(
B
(
(0, 1)T , 1

)
+K

)
∩
(
B
(
(1, 0)T , 1

)
+

K
)

= K ) B
(
(1, 1)T , 1

)
+ K. Hence sup(A+ B) 6= supA⊕ supB.

However, for the infimum in F? and supremum in F�, (1) holds even with equality.

Proposition 2.5 For nonempty sets A,B ⊆ F? and C,D ⊆ F� it holds

inf(A+ B) = inf A⊕ inf B and sup(C +D) = sup C ⊕ supD.

Proof. For nonempty subsets A,B ⊆ Y it holds conv A + conv B = conv (A + B), see for
instance [9]. Furthermore, it is easy to check that cl (cl A + clB) = cl (A + B). Hence, we
conclude cl (cl conv A + cl conv B) = cl conv (A + B). This yields

inf(A+ B) Prop. 2.3= cl conv
⋃

C∈A+B
C = cl conv

⋃
A∈A, B∈B

(A⊕B)

≤ cl conv
⋃

A∈A, B∈B
(A + B) = cl conv

( ⋃
A∈A

A +
⋃

B∈B
B

)

= cl

(
cl conv

⋃
A∈A

A + cl conv
⋃

B∈B
B

)
Prop. 2.3= inf A⊕ inf B.

By (1) (or directly) we deduce equality. The second part is completely the same. �

The following definitions of convex and concave functions are clear having in mind that
both the standard relation ⊇ in F? and ⊆ in F� have the meaning of ”less or equal”. Let X

be a linear space and C ⊆ X convex. A function f : C → F̂? is said to be convex if

∀λ ∈ [0, 1], ∀x, u ∈ C : f(λ · x + (1− λ) · u) ⊇ λ f(x)⊕ (1− λ) f(u). (2)

However, if a function f : C → F̂� satisfies (2) it is said to be concave. Analogously, a
function f : C → F̂? is concave and a function f : C → F̂� is convex if the following dual
condition is satisfied:

∀λ ∈ [0, 1], ∀x, u ∈ C : f(λ · x + (1− λ) · u) ⊆ λ f(x)⊕ (1− λ) f(u). (3)

At the first glance, a convex function f : C → F̂? does not subsume the important case of
an extended real–valued convex function. In Example 4.3 below, however, we will see that
extended real–valued problems are equivalent to special set–valued problems.
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Up to now, all the operations used did not influence the orientation of a set. We want to
express the change of the orientation of a set as follows: Given an oriented set A we denote
by �A the same set, but with opposite orientation. As usual, the negative of a convex set A

is defined as
−A := {y ∈ Y | − y ∈ A} .

By convention, if A is an oriented set, this operation does not manipulate the orientation of
A. In contrast to this, we introduce a second concept of a negative of a convex set which
does so. Given an oriented set A we define �A being the set −A, but with the opposite
orientation. Instead of two signs, we now have four signs, namely +,−,�,�. Obviously, the
following assertions hold true:

A = � � A = � � A, −A = � � A = � � A,

�A = + � A = −� A, �A = + � A = −� A.

Clearly, an expression is independent of the order of the signs. Note that � and � are signs
but not operations. This means, we must be careful with adding elements A ∈ F? with
elements B ∈ F�, up to now such an operation is not defined (later it will be defined for
special cases). Nevertheless, we write A � B := A + (�B) and A � B := A + (�B), if these
expressions are defined, i.e. A and B have opposite orientation. If ∅? is the largest element
in F̂? and ∅� is the smallest element in F�, then let us use the convention �∅� = ∅?. Thus
we obtain the well–known convexity–concavity dualism also for convex functions with values
in F̂ . A function f : C → F̂? is convex (concave) if and only if �f : C → F̂� is concave
(convex). For a given set A ⊆ F̂? and using the notation �A := {�A| A ∈ A}, it can be
easily shown (Proposition 2.3) that

� inf A = sup�A and � supA = inf �A. (4)

A further motivation for the usage of the sign � will be given in the next section.

3 Embedding the space F into a set of linear spaces

Embedding of spaces of convex sets into linear spaces was investigated by R̊adström [17]. For
further details, also compare [2] and the references therein.

The aim of this section is to embed the convex cone FK ⊆ F into a partially ordered linear
space. In dependence of the orientation of the members of FK we use different embedding
maps. This procedure allows us to re–interprete the inverse element of the embedding map’s
image of a member of FK as an element of F−K having opposite orientation.

The following lemma is a refinement of [1, Theorem 13.1]. It is shown that only the set
ri (0+A)◦ = ri ((0+A)◦) (instead of the whole space Rp) is essential for the description of a
nonempty closed convex set via its support function.
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Lemma 3.1 Let A be a nonempty closed convex subset of Rp. Then

A =
⋂

y∗∈ri (0+A)◦

{y ∈ Y | 〈y∗, y〉 ≤ δ∗ (y∗|A )} .

Proof. As a consequence of [1, Theorem 14.2] we have cl dom δ∗( · |A ) = (0+A)◦, compare
[7, Theorem 2.2.4], too. Together with [1, Theorem 6.3] this yields

ri (0+A)◦ = ri cl dom δ∗( · |A ) ⊆ dom δ∗( · |A ) ⊆ (0+A)◦. (5)

By [1, Theorem 13.1] and (5) we obtain

A =
⋂

y∗∈Rp

{
y ∈ Y | 〈y∗, y〉 ≤ δ∗ (y∗|A )

}
=

⋂
y∗∈(0+A)◦

{
y ∈ Y | 〈y∗, y〉 ≤ δ∗ (y∗|A )

}
.

It remains to show

Y1 :=
⋂

y∗∈(0+A)◦

{
y ∈ Y | 〈y∗, y〉 ≤ δ∗ (y∗|A )

}
=

⋂
y∗∈ri (0+A)◦

{
y ∈ Y | 〈y∗, y〉 ≤ δ∗ (y∗|A )

}
=: Y2.

The inclusion Y1 ⊆ Y2 is obvious. In order to show Y2 ⊆ Y1 let y ∈ Y2 be arbitrarily chosen.
It holds 〈y∗, y〉 ≤ δ∗ (y∗|A ) for all y∗ ∈ ri (0+A)◦. Let ȳ∗ ∈ (0+A)◦ and y∗ ∈ ri (0+A)◦, then
λȳ∗ + (1− λ)y∗ ∈ ri (0+A)◦ for all λ ∈ [0, 1) (compare [1, Theorem 6.1]). It follows

〈λȳ∗ + (1− λ)y∗, y〉 ≤ δ∗ (λȳ∗ + (1− λ)y∗|A ) ≤ λ δ∗ (ȳ∗|A ) + (1− λ)δ∗ (y∗|A ) .

By virtue of (5) we deduce that δ∗ (y∗|A ) < +∞. Letting λ → 1 we obtain 〈ȳ∗, y〉 ≤
δ∗ (ȳ∗|A ), i.e. y ∈ Y1. �

With aid of the preceeding lemma we are able to give an equivalent characterization of the
partially ordered conlinear spaces F?

K and F�
K (the axioms (S1) – (S8) are satisfied, if we

replace {0} by K, i.e. K is the neutral element). Let Γ?
K be the space of all positively

homogeneous concave functions from riK◦ into R and let Γ�K be the space of all positively
homogeneous convex functions from riK◦ into R. The spaces Γ?

K and Γ�K are conlinear
spaces, with respect to the addition and multiplication with nonnegative real numbers, defined
pointwise using the corresponding operation in R. Moreover, Γ?

K and Γ�K , equipped with the
ordering relation ≤ defined pointwise using the usual ≤ relation in R, are partially ordered
conlinear spaces.

Theorem 3.2 Let Y = Y ∗ = Rp and let K ⊆ Y be a nonempty closed convex cone. Then
the following assertions hold true:

(i) There exists a bijective map j? : F?
K → Γ?

K such that for all A,B ∈ F?
K and all positive

real numbers α > 0:

(a) j?(A + B) = j?(A) + j?(B), (b) j?(αA) = αj?(A),

(c) j?(K) = 0Γ?
K
, (d) A ⊇ B ⇔ j?(A) ≤ j?(B).
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(ii) There exists a bijective map j� : F�
−K → Γ�K such that for all A,B ∈ F�

−K and all
positive real numbers α > 0:

(a) j�(A + B) = j�(A) + j�(B), (b) j�(αA) = αj�(A),

(c) j�(−K) = 0Γ�K
, (d) A ⊆ B ⇔ j�(A) ≤ j�(B).

Proof. (i) Consider the map j? which assigns every A ∈ F?
K the negative support function

of the set A ⊆ Y , restricted to the set riK◦ ⊆ Y ∗. More precisely γA = j?(A) is defined
as γA : riK◦ → R ∪ {±∞}, γA(y∗) := −δ∗(y∗|A ). Of course, j? is a function. Moreover,
j? is a function from F?

K into Γ?
K . Indeed, let A ∈ F?

K . Since A is nonempty, we have
δ∗(y∗|A ) > −∞ for all y∗ ∈ Y ∗. With aid of (5) we obtain δ∗(y∗|A ) < +∞ for all y∗ ∈ riK◦.
Hence γA = j?(A) only attains values in R. Since support functions are sublinear and ri K◦ is a
convex cone, γA = j?(A) is positively homogeneous and concave on ri K◦. Hence j?(A) ∈ Γ?

K .
j? : F?

K → Γ?
K is injective. Indeed, let A,B ∈ F?

K such that j?(A) = j?(B). Note that A

and B are nonempty, closed, convex and 0+A = 0+B = K. Lemma 3.1 yields A = B.
j? : F?

K → Γ?
K is surjective. Indeed, given an element γ ∈ Γ?

K . Define d : Y ∗ → R∪{+∞}
as

d(y∗) :=

{
−γ(y∗) if y∗ ∈ riK◦

+∞ else.

Then d is convex, positively homogeneous, not identically +∞ and d > −∞. With aid of [1,
Corollary 13.2.1.] we conclude cl d is the support function of the nonempty closed convex set

Aγ :=
⋂

y∗∈ri K◦

{y ∈ Y | 〈y∗, y〉 ≤ d(y∗)} =
⋂

y∗∈ri K◦

{y ∈ Y | 〈y∗, y〉 ≤ −γ(y∗)} .

Applying [1, Corollary 8.3.3.], taking into account the considerations in [1, page 62] and
applying Lemma 3.1 it follows

0+Aγ =
⋂

y∗∈ri K◦

0+ {y ∈ Y | 〈y∗, y〉 ≤ d(y∗)} =
⋂

y∗∈ri K◦

{y ∈ Y | 〈y∗, y〉 ≤ 0} = K.

By definition, we have j?(Aγ)(y∗) = −cl d(y∗) for all y∗ ∈ riK◦. With aid of [1, Theorem
7.4.] we have cl d(y∗) = d(y∗) for all y∗ ∈ riK◦. Hence j?(Aγ) = γ.

(i)(a) and (i)(b) follow from elementary properties of the supremum in R, compare [1, page
113], too. (i)(c) follows from the definition of the polar cone and of the support function.
(i)(d) is a consequence of [1, Corollary 13.1.1].

(ii) Define j�(A) := −j?(�A) and use (i). �

We now extend the space F?
K by a largest (supremum oriented) element ∅ in the same way as

described in Section 2. The resulting space is denoted by F̂?
K . We also extend the space Γ?

K

by a largest element +∞, which is defined to be a function from riK◦ into R ∪ {+∞} which
is identically +∞. Analogously, we define the spaces F̂�

−K and Γ̂�K using smallest elements ∅
(infimum oriented) and −∞, respectively.

9



Corollary 3.3 Theorem 3.2 remains valid if F?
K , F�

−K , Γ?
K and Γ�K are replaced by F̂?

K ,
F̂�
−K , Γ̂?

K and Γ̂�K , respectively.

Proof. Extend the isomorphisms j? and j� of Theorem 3.2 using the conventions j?(∅) = +∞
and j�(∅) = −∞, respectively. �

The following proposition collects some simple auxiliary assertions.

Proposition 3.4 Let A,B, K ⊆ Rp be nonempty closed convex sets and let K additionally
be a cone. Then the following statements hold true:

(i) A ⊆ B implies 0+A ⊆ 0+B.

(ii) 0+(A⊕B ⊕K) = K implies 0+(A⊕K) = 0+(B ⊕K) = K.

(iii) If A ⊆ F? is nonempty and K := 0+(inf A), then 0+(A⊕K) = K for all A ∈ A.

Proof. (i) Let A ⊆ B. [1, Corollary 8.3.3.] yields 0+A = 0+(A ∩ B) = 0+A ∩ 0+B ⊆ 0+B.
(ii) Let a ∈ A and b ∈ B. Then we have {a}+ {b}+ K ⊆ {a}+ B ⊕K ⊆ A⊕B ⊕K. By (i)
it follows K ⊆ 0+(B ⊕K) ⊆ K. Hence 0+(B ⊕K) = K and, analogously, 0+(A⊕K) = K.
(iii) Let a ∈ A ∈ A. By [1, Theorem 8.1] we have {a}+ K ⊆ A⊕K ⊆ (inf A)⊕K = inf A.
By (i) it follows K ⊆ 0+(A⊕K) ⊆ K. �

Corollary 3.5 Let A ⊆ F? be nonempty with K := 0+(inf A) and let j? : F?
K → Γ?

K the
isomorphism of Theorem 3.2. Then it holds

j?
(

inf
A∈A

(A⊕K)
)

= inf
A∈A

j? (A⊕K) .

Proof. Let Ā ∈ A be arbitrarily given. With Proposition 3.4 (iii) we obtain 0+(Ā⊕K) = K,
i.e. Ā⊕K ∈ F?

K . With aid of Theorem 3.2 (i)(d) we get

∀Ā ∈ A : inf
A∈A

(A⊕K) ⊇ Ā⊕K

⇒ ∀Ā ∈ A : j?
(

inf
A∈A

(A⊕K)
)
≤ j?

(
Ā⊕K

)
⇒ j?

(
inf

A∈A
(A⊕K)

)
≤ inf

A∈A
j?
(
A⊕K

)
.

On the other hand, Theorem 3.2 yields

∀Ā ∈ A : inf
A∈A

j?(A⊕K) ≤ j?(Ā⊕K)

⇒ ∀Ā ∈ A : (j?)−1 inf
A∈A

j?(A⊕K) ⊇ Ā⊕K

⇒ (j?)−1 inf
A∈A

j?(A⊕K) ⊇ inf
A∈A

(A⊕K)

⇒ inf
A∈A

j?(A⊕K) ≤ j?
(

inf
A∈A

(A⊕K)
)
. �
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Let ΓK be the space of all positively homogeneous (and not necessarily convex or concave)
functions γ : ri K◦ → R. Let ΓK be equipped with an addition and a scalar multiplication,
defined pointwise using the corresponding operation in R, and with an ordering relation ≤,
defined pointwise using the usual ≤ relation in R. Then the space ΓK is a partially ordered
linear space. Theorem 3.2 yields that (F?

K ,⊇) and (F�
−K ,⊆) are isomorphic to convex cones in

the partially ordered linear space (ΓK ,≤). Let j? : F?
K → ΓK be the injective homomorphism

which embeds F?
K into ΓK and let j� : F�

−K → ΓK be the injective homomorphism which
embeds F�

−K into ΓK . Then it easily follows that

∀A ∈ F?
K : j?(A) + j�(�A) = 0, ∀A ∈ F�

−K : j�(A) + j?(�A) = 0. (6)

In this sense �A can be regarded as the ”inverse element” of a nonempty closed convex set A.
However, this does not imply that F?

K ∪ F�
−K is a linear space, because it is not a conlinear

space.
The next Proposition tells us that the supremum and infimum in ΓK coincide, respectively,

with the supremum and infimum taken pointwise.

Proposition 3.6 The space (ΓK ,≤) is Dedekind complete. For ∅ 6= A ⊆ (ΓK ,≤) it holds

A bounded above ⇒ ∀y∗ ∈ riK◦ :
(
sup
γ∈A

γ
)
(y∗) = sup

γ∈A

(
γ(y∗)

)
,

A bounded below ⇒ ∀y∗ ∈ riK◦ :
(
inf
γ∈A

γ
)
(y∗) = inf

γ∈A

(
γ(y∗)

)
.

Proof. The proof is immediate. �

We introduce the following notation: Let A ⊆ (Γ?
K ,≤). Clearly, it follows A ⊆ (ΓK ,≤). We

write inf?A and sup?A if A is considered to be subset of (Γ?
K ,≤) and we write inf A and

supA if A is considered to be subset of (ΓK ,≤). Analogously, we define inf�A and sup�A
for a subset A ⊆ (Γ�K ,≤) ⊆ (ΓK ,≤). Theorem 2.2 yields the following implications:

∅ 6= A ⊆ (Γ?
K ,≤) bounded below ⇒

?
inf A ≤ inf A, (7)

∅ 6= A ⊆ (Γ�K ,≤) bounded below ⇒
�

inf A ≤ inf A, (8)

∅ 6= A ⊆ (Γ?
K ,≤) bounded above ⇒ supA ≤ ?

supA, (9)

∅ 6= A ⊆ (Γ�K ,≤) bounded above ⇒ supA ≤ �
supA. (10)

The following proposition shows (7) and (10) are even satisfied with equality.

Proposition 3.7 If A ⊆ (Γ?
K ,≤) is nonempty and bounded below and B ⊆ (Γ�K ,≤) is

nonempty and bounded above, then inf?A = inf A and sup� B = supB, respectively.

Proof. Taking into account Theorem 2.2 it remains to show that inf A ∈ Γ?
K and supB ∈ Γ�K ,

respectively. This is true because the pointwise infimum (supremum) over a set of concave
(convex) functions is concave (convex). �

The following example shows that, in general, (8) is not satisfied with equality.
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Example 3.8 Let Y = R2, K = R2
+, A ⊆ Γ?

K , A = {γ1, γ2}, where

∀y∗ ∈ int R2
− : γ1(y∗) = −

〈
y∗, {(0, 1)T }

〉
= −y∗2, γ2(y∗) = −

〈
y∗, {(1, 0)T }

〉
= −y∗1.

Then, we have supA = γ̄, where γ̄ : int R2
− → R is given by γ̄(y∗) = maxi=1,2 {γi(y∗)} =

max {−y∗2,−y∗1}. However, we have sup?A = γ̂, where γ̂ : int R2
− → R is given by

γ̂(y∗) = −δ∗
(

y∗
∣∣∣∣({(0, 1)T }+ R2

+

)
∩
(
{(1, 0)T }+ R2

+

))
= −

〈
y∗, {(1, 1)T }

〉
= −(y∗1 + y∗2).

Thus, supA 6= sup?A.

An analogous example could be given to show that, in general, (9) does not hold with equality.
We close this section with some auxiliary assertions.

Lemma 3.9 Let Y = Rp and let K ⊆ Y be a nonempty closed convex cone which is not a
linear subspace of Rp. Then it holds:

(y ∈ riK ∧ y∗ ∈ riK◦) ⇒ 〈y, y∗〉 < 0.

Proof. Assume the contrary. Taking into account the definition of the polar cone this means
there exists ȳ ∈ riK and ȳ∗ ∈ riK◦ such that 〈ȳ, ȳ∗〉 = 0. It follows

∀y ∈ K : 〈y, ȳ∗〉 = 0. (11)

Assuming that (11) is not true, there is some ỹ ∈ K such that 〈ỹ, ȳ∗〉 < 0. Since ȳ ∈ riK
there exists some µ > 1 such that ŷ := µȳ+(1−µ)ỹ ∈ K. Hence 〈ŷ, ȳ∗〉 > 0 which contradicts
ȳ∗ ∈ K◦.

With aid of (11) we obtain −ȳ∗ ∈ K◦. Since K◦ is a convex cone and ȳ∗ ∈ K◦∩ (−K◦) we
have K◦ = K◦+{−ȳ∗}. With ȳ∗ ∈ riK◦ we conclude 0 ∈ riK◦+{−ȳ∗} = ri (K◦+{−ȳ∗}) =
riK◦. This implies linK◦ = aff K◦ = K◦, i.e. K◦ is a linear subspace of Rp. From this we
deduce that the bipolar cone K◦◦ is also a linear subspace of Rp. The bipolar theorem [1,
Theorem 14.1] yields K = K◦◦, i.e. K a is linear subspace of Rp, a contradiction. �

Proposition 3.10 Let X = Rn and let f : X → F̂? be convex. If x0 ∈ ri dom f , then
0+f(x) ⊆ 0+f(x0) for all x ∈ dom f .

Proof. Note that dom f is convex. Let x ∈ dom f be arbitrarily given and, by hypothesis,
x0 ∈ ri dom f . By [1, Theorem 6.4], there exists µ > 1 such that x̄ := µx0 +(1−µ)x ∈ dom f .
Set λ := 1/µ ∈ (0, 1). The convexity of f yields f(x0) ⊇ λf(x)⊕(1−λ)f(x̄). Since x̄ ∈ dom f

we can choose some ȳ ∈ f(x̄), hence f(x0) ⊇ λf(x) + (1 − λ) {ȳ} := C. By hypothesis,
f(x) ⊆ Rp is a nonempty closed convex set for each x ∈ dom f . Therefore Proposition 3.4 (i)
yields 0+C ⊆ 0+f(x0). With aid of [1, Theorem 8.1] we conclude that 0+C = 0+f(x), hence
0+f(x) ⊆ 0+f(x0). �
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In this form, the preceeding proposition will be used in the proof of the duality theorem.
Moreover, as an easy consequence (see [12] for analogous assertions) we obtain that x 7−→
0+f(x) must be constant on ri dom f . In view of Theorem 3.2, this means that, with respect
to the set ri dom f , the values of a convex function f : X → F̂? can be embedded into a linear
space.

4 Conjugate Duality

Let X = X∗ = Rn, U = U∗ = Rm, Y = Rp and let f : X → F̂? be a function. Recall that
both the standard relation ⊇ in F̂? the standard relation ⊆ in F̂� have the meaning of ”less
or equal”. Therefore we will write ≤ instead of ⊇ and ⊆ in order to emphasize the analogy
of our statements to the well–known scalar case. So, the interpretation of ≤ depends on the
orientation of the sets being compared.

Let c ∈ Y and let {c} be infimum oriented. A function f∗c : X∗ → F̂�, defined by

f∗c (x∗) := sup
x∈X

{〈x∗, x〉 · {c}� f(x)}

is said to be the conjugate of f with respect to c. From (1) we conclude that f∗c is convex
(even if f is not). As an easy consequence of the definition of f∗c we obtain the Fenchel–Young
inequality

∀x ∈ X, x∗ ∈ X∗, c ∈ Y : f∗c (x∗) ≥ 〈x∗, x〉 · {c}� f(x). (12)

For functions f : X → F̂? and h : X → F̂? it is evident that(
∀x ∈ X : f(x) ≤ h(x)

)
⇒

(
∀x∗ ∈ X∗,∀c ∈ Y : f∗c (x∗) ≥ h∗c(x

∗)
)
. (13)

It follows the main result of this paper, a duality theorem for functions with values in the
space of closed convex subsets of Y = Rp.

Theorem 4.1 (Duality theorem) For given functions f : X → F̂? and g : U → F̂?, a
linear map A : X → U and a vector c ∈ Y , let

p : X → F̂? and dc : U∗ → F̂?

be defined, respectively, by

p(x) = f(x)⊕ g(Ax) and dc(u∗) = �
(
f∗c (AT u∗)⊕ g∗c (−u∗)

)
.

These functions satisfy the weak duality inequality

Dc := sup
u∗∈U∗

dc(u∗) ≤ inf
x∈X

p(x) =: P. (14)

Furthermore, let f and g be convex, let

0 ∈ ri (dom g −A dom f) (15)

and, in dependence of K := 0+P , let the element c ∈ Y be chosen as follows:
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(i) c ∈ riK, if K ( Y is not a linear subspace of Y or K = Y ,

(ii) c ∈ Y \K, if K ( Y is a linear subspace of Y ,

Then, we have strong duality, i.e. Dc = P .

Proof. Let x ∈ X, u∗ ∈ U∗ and c ∈ Y be arbitrarily given and set u := Ax. With aid of
the Fenchel–Young inequality (12) we obtain the weak duality inequality (14) as follows:

dc(u∗) = �
(
f∗c (AT u∗)⊕ g∗c (−u∗)

)
≤

(
f(x) �

〈
AT u∗, x

〉
· {c}

)
⊕
(
g(Ax) � 〈−u∗, Ax〉 · {c}

)
=

(
f(x)⊕ g(Ax)

)
� 〈u∗, Ax〉 · {c}� 〈u∗, Ax〉 · {c} = p(x).

The proof of the strong duality assertion is organized as follows. We start with case (i). Then
we show that case (ii) is a consequence of case (i).

(i) In case of K = Y there is nothing to prove because the strong duality immediately
follows from the weak duality assertion. Therefore, let K ( Y be not a linear subspace of Y

and let c ∈ riK. Proposition 2.5 yields

P = P + 0+P = P + K = inf
x∈X

p(x) + K = inf
x∈X

(p(x)⊕K).

By Proposition 3.4 we know that f(x)⊕K ∈ F?
K for all x ∈ dom f . The analogous assertion

for g is more complicated. With the same arguments we can only conclude that g(u)⊕K ∈ F?
K

for all u ∈ dom g∩rg A. With aid of (15) and [1, Theorem 6.6] we obtain the existence of some
u0 ∈ ri dom g ∩ ri (A dom f) ⊆ ri dom g ∩ rg A, this means u0 ∈ ri dom g and 0+(g(u0)⊕K) =
K. Proposition 3.10 yields that 0+(g(u)⊕K) ⊆ K for all u ∈ dom g. Hence g(u)⊕K ∈ F?

K

for all u ∈ dom g. Define the functions f̄ : X → F̂?
K and ḡ : U → F̂?

K by f̄ := f ⊕ K and
ḡ := g ⊕K, respectively. By Corollary 3.5 and Corollary 3.3 we obtain

j?(P ) = j?
(

inf
x∈X

(
p(x)⊕K

))
= inf

x∈X
j?
(
p(x)⊕K

)
= inf

x∈X

{
j? ◦ f̄(x) + j? ◦ ḡ(Ax)

}
.

Corollary 3.3 yields that (j? ◦ f̄) : X → Γ̂?
K and (j? ◦ ḡ) : U → Γ̂?

K are convex. In Proposition
3.7 it is shown that the infimum of a bounded subset of F?

K does not change while embedding
F?

K into the linear space ΓK . As shown in Proposition 3.6 the infimum of a subset of ΓK can
be calculated pointwise for all y∗ ∈ riK◦. Hence, we can write

∀y∗ ∈ riK◦ : j?
(
P
)
(y∗) = inf

x∈X

{(
f̄y∗(x)

)
+
(
ḡy∗(Ax)

)}
, (16)

where the extended real–valued functions f̄y∗ : X → R ∪ {+∞} , f̄y∗(x) := j?
(
f̄(x)

)
(y∗)

and ḡy∗ : U → R ∪ {+∞} , ḡy∗(u) := j?
(
ḡ(u)

)
(y∗) are convex for all y∗ ∈ riK◦. Clearly,

for all y∗ ∈ riK◦ it holds dom f = dom f̄y∗ and dom g = dom ḡy∗ . Hence, (15) implies that
0 ∈ ri (dom ḡy∗ − A dom f̄y∗) for all y∗ ∈ riK◦. A scalar duality theorem, for instance [3,
Theorem 3.3.5], now yields that

∀y∗ ∈ riK◦ : j?
(
P
)
(y∗) = sup

u∗∈U∗

{
−f̄∗y∗(A

T u∗)− ḡ∗y∗(−u∗)
}

. (17)
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By hypothesis, we have given c ∈ riK, where the set {c} is understood to be infimum oriented.
Hence � {c}+ K ∈ F?

K . Let y∗ ∈ riK◦. Since K is not a linear space, Lemma 3.9 yields that
〈y∗, c〉 < 0. Hence there exists αy∗ > 0 such that 〈αy∗y

∗, c〉 = −1. By the definition of j? in
the proof of Theorem 3.2 this can be rewritten as

∀t ∈ R : j?
(
� {t · c}+ K

)
(αy∗y

∗) = −〈αy∗y
∗, t · c〉 − sup

y∈K
〈αy∗y

∗, y〉 = t (18)

For all y∗ ∈ riK◦ and α := αy∗ > 0 we have

α j?
(
P
)
(y∗)

Def. Γ?
K= j?

(
P
)
(αy∗)

(17)
= sup

u∗∈U∗

{
−f̄∗αy∗(A

T u∗)− ḡ∗αy∗(−u∗)
}

Def. Conjugate= sup
u∗∈U∗

{
inf
x∈X

{
−
〈
AT u∗, x

〉
+ f̄αy∗(x)

}
+ inf

u∈U
{〈u∗, u〉+ ḡαy∗(u)}

}
(18)
= sup

u∗∈U∗

{
inf
x∈X

{
j?
(
�
{
−
〈
AT u∗, x

〉
· c
}

+ K
)
(αy∗) + j?f̄(x)(αy∗)

}
+ inf

u∈U

{
j?
(
� {〈u∗, u〉 · c}+ K

)
(αy∗) + j?ḡ(u)(αy∗)

}}
Cor. 3.3, Pr. 3.6,3.7= sup

u∗∈U∗

{
j?

(
inf
x∈X

{
�
〈
AT u∗, x

〉
{c}+ f̄(x)

})
(αy∗)

+ j?

(
inf
u∈U

{
� 〈−u∗, u〉 {c}+ ḡ(u)

})
(αy∗)

}
(4)
= sup

u∗∈U∗

{
j?

(
� sup

x∈X

{〈
AT u∗, x

〉
{c}� f̄(x)

})
(αy∗)

+ j?

(
� sup

u∈U

{
〈−u∗, u〉 {c}� ḡ(u)

})
(αy∗)

}
Cor. 3.3, Pr. 3.6, (9)

≤ j?

(
sup

u∗∈U∗

{
� sup

x∈X

{〈
AT u∗, x

〉
{c}� f̄(x)

}
⊕ � sup

u∈U

{
〈−u∗, u〉 {c}� ḡ(u)

}})
(αy∗)

Def. Conjugate= j?

(
sup

u∗∈U∗

{
�f̄∗c (AT u∗)⊕�ḡ∗c (−u∗)

})
(αy∗)

Def. Γ?
K= α j?

(
sup

u∗∈U∗

{
�f̄∗c (AT u∗)⊕�ḡ∗c (−u∗)

})
(y∗).

Since y∗ ∈ riK◦ was arbitrarily chosen and α > 0 in the last quantity, Theorem 3.2 implies

P ≤ sup
u∗∈U∗

{
�f̄∗c (AT u∗)⊕�ḡ∗c (−u∗)

}
.

Note that K is a nonempty closed convex cone, hence 0 ∈ K. In case of supremum orientation,
this means K ≤ {0}. It follows that f̄(x) ≤ f(x) for all x ∈ X and ḡ(u) ≤ g(u) for all u ∈ U .
By (13), we deduce that f̄∗c (x∗) ≥ f∗c (x∗) for all x∗ ∈ X∗ and c ∈ Y and ḡ∗c (u

∗) ≥ g∗c (u
∗) for

all u∗ ∈ U∗ and c ∈ Y . Hence, for all u∗ ∈ U∗ we have

�f̄∗c (AT u∗)⊕�ḡ∗c (−u∗) ≤ �f∗c (AT u∗)⊕�g∗c (−u∗).
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Taking the supremum over all u∗ ∈ U∗ we obtain

P ≤ sup
u∗∈U∗

{
�f̄∗c (AT u∗)⊕�ḡ∗c (−u∗)

}
≤ sup

u∗∈U∗

{
�f∗c (AT u∗)⊕�g∗c (−u∗)

}
= Dc.

Together with the weak duality inequality this yields P = Dc.
(ii) Let K ( Y be a linear subspace of Y and let c ∈ Y \ K. Consider the supremum

oriented set B := � {c}R+. We define a new objective function as p̃ : X → F̂?, p̃(x) := p(x)+
B = f(x)⊕(g(Ax)+B). By Proposition 2.5, we have P̃ := infx∈X p̃(x) =

(
infx∈X p(x)

)
+B =

P + B. With aid of [1, Corollary 9.1.2] we conclude that K̃ := 0+P̃ = 0+P + B = K + B.
Clearly, K̃ is not a linear space and c ∈ ri K̃. It is an easy task to show that g̃ : U → F̂?,
g̃ := g + B is convex and (15) remains true for this new problem. Hence, by part (i) of this
theorem, we have strong duality for this new problem. Let us calculate the conjugate function
g̃∗c : U∗ → F̂� for the function g̃. By the definition of the conjugate and by Proposition 2.5 it
follows

g̃∗c (u
∗) = sup

u∈U
{〈u, u∗〉 {c}� (g(u) + B)}

= sup
u∈U

{(
〈u, u∗〉 {c}� g(u)

)
� B

}
= g∗c (u

∗)⊕�B.

Hence, the dual objective function d̃ : U∗ → F̂? for the problem infx∈X p̃(x) is given by

d̃c(u∗) = �f∗c (AT u∗)⊕�g∗c (−u∗)⊕B.

With aid of (1) and since 0 ∈ B we deduce

d̃c := sup
u∗∈U∗

d̃c(u∗) ≤ sup
u∗∈U∗

dc(u∗)⊕B = Dc ⊕B ≤ Dc.

The strong duality assertion for the problem infx∈X p̃(x) yields P +B = P̃ ≤ Dc. Analogously
(replace B by −B) it follows P −B ≤ Dc. Hence, we obtain (P + B) ∩ (P −B) ≤ Dc.

We next show that P ≤ (P + B) ∩ (P − B). By the definition of the space F , P is a
convex subset of Y . Let y ∈ (P + B)∩ (P −B) be given. This means y = p1 + r1c = p2− r2c

for some elements p1, p2 ∈ P and real number r1, r2 ≥ 0. If r1 + r2 = 0 there is nothing to
prove. For r1 + r2 > 0 it follows

y =
r2

r1 + r2
y +

r1

r1 + r2
y =

r2

r1 + r2
(p1 + r1c)+

r1

r1 + r2
(p2− r2c) =

r2

r1 + r2
p1 +

r1

r1 + r2
p2 ∈ P.

Hence, P ⊇ (P + B) ∩ (P −B), this means P ≤ (P + B) ∩ (P −B).
Together we have shown that P ≤ Dc. Taking into account the weak duality assertion it

follows P = Dc and the theorem is also proven for the case (ii). �

We next express the preceeding theorem by conventional notations. Although the analogy to
the scalar theory is more difficult to see, this form is more convenient for applications. Let
f : Rn ⇒ Rp be a set–valued map. As usual, the set gr f = {(x, y) ∈ Rn × Rp| y ∈ f(x)} is
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called the graph of f . We say f has closed (convex) values if f(x) ⊆ Rp is closed (convex) for
all x ∈ Rn. Clearly, if f has a closed (convex) graph, then f has closed (convex) values. The
opposite implication is not true, in general. The map f has closed values and a convex graph
if and only if f can be interpreted as convex function f : Rn → F̂?.

Corollary 4.2 For given set–valued maps f : Rn ⇒ Rp and g : Rm ⇒ Rp, a linear map
A : Rn → Rm and a vector c ∈ Rp, we have⋃

x∈Rn

{f(x) + g(Ax)} ⊆
⋂

u∗∈Rm

{ ⋃
x∈Rn

{
f(x)−

〈
AT u∗, x

〉
{c}
}

+
⋃

u∈Rm

{
g(u) + 〈u∗, u〉 {c}

}}
.

If, furthermore, f and g have convex graphs and closed values and satisfy the condition 0 ∈
ri (dom g−A dom f) and, in dependence of K := 0+(cl

⋃
x∈X

(
f(x)+g(Ax)

)
, the vector c ∈ Rp

is chosen as in Theorem 4.1, we have strong duality, i.e.

cl
⋃

x∈Rn

{f(x) + g(Ax)} =
⋂

u∗∈Rm

cl
{ ⋃

x∈Rn

{
f(x)−

〈
AT u∗, x

〉
{c}
}

+
⋃

u∈Rm

{
g(u)+ 〈u∗, u〉 {c}

}}
.

Proof. For all u∗ ∈ Rm, we have⋃
x∈Rn

{f(x) + g(Ax)} =
⋃

x∈Rn

{
f(x)−

〈
AT u∗, x

〉
{c}+ g(Ax) + 〈u∗, Ax〉 {c}

}
⊆

⋃
x∈Rn

{
f(x)−

〈
AT u∗, x

〉
{c}
}

+
⋃

u∈Rm

{g(u) + 〈u∗, u〉 {c}} .

Taking the intersection over all u∗ ∈ Rm we obtain the weak duality inclusion.
Let f and g have convex graphs and closed values. This means f and g can be interpreted

as convex functions f : Rn → F̂? and g : Rm → F̂?. The expression infx∈X {f(x)⊕ g(Ax)}
in Theorem 4.1 has the meaning of cl conv

⋃
x∈X cl {f(x) + g(Ax)}. We next show that this

expression can be simplified in the present case, namely

inf
x∈X

{f(x)⊕ g(Ax)} = cl
⋃

x∈X

{f(x) + g(Ax)} . (19)

The set P :=
⋃

x∈X cl {f(x) + g(Ax)} is convex. Indeed, let y1, y2 ∈ P . Hence there exist
xi ∈ X (i = 1, 2) such that yi ∈ cl

(
f(xi) + g(Axi)

)
. For all λ ∈ [0, 1] it follows

λy1 + (1− λ)y2 ∈ λ cl
(
f(x1) + g(Ax1)

)
+ (1− λ) cl

(
f(x2) + g(Ax2)

)
= cl

(
λf(x1) + (1− λ)f(x2) + λg(Ax1) + (1− λ)g(Ax2)

)
⊆ cl

(
f(λx1 + (1− λ)x2) + g(A(λx1 + (1− λ)x2))

)
⊆ P.

We show that cl
⋃

x∈X cl p(x) = cl
⋃

x∈X p(x), where p(x) = f(x) + g(Ax). Clearly, we have
cl
⋃

x∈X cl p(x) ⊇ cl
⋃

x∈X p(x). Let ȳ ∈
⋃

x∈X cl p(x). Then there exists some x̄ ∈ X and a
sequence yi → ȳ such that yi ∈ p(x̄) ⊆

⋃
x∈X p(x). Hence ȳ ∈ cl

⋃
x∈X p(x). This means we

have
⋃

x∈X cl p(x) ⊆ cl
⋃

x∈X p(x) and taking the closure on both sides the desired assertion
follows. Together we obtain (19).
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By analogous arguments the right–hand side of the strong duality equality equals the
expression supu∗∈U∗ �f∗c (AT u∗)⊕�g∗c (−u∗) in Theorem 4.1. Hence, this equality holds true.
�

In the next example we show that the duality theorem for extended real–valued convex func-
tions (which was used in the proof) follows from the set–valued duality theorem by a simple
reformulation of the problem.

Example 4.3 Let f : Rn → R ∪ {+∞} and g : Rm → R ∪ {+∞} be convex functions
satisfying the condition 0 ∈ ri (dom g − A dom f). A given extended real–valued problem
P = infx∈Rn

(
f(x) + g(Ax)

)
can be rewritten as P = inf

⋃
x∈Rn

(
{f(x)} + {g(Ax)} + R+

)
.

Consider the inner (set–valued) problem. It is easy to see that (15) is satisfied for this problem.
If P is finite, we have K = R+. Hence the choice c = 1 is possible in order to obtain strong
duality by Corollary 4.2. With some simple calculations (using Corollary 4.2) we obtain
P = inf

⋃
x∈Rn

(
{f(x)} + {g(Ax)} + R+

)
= inf

⋂
u∗∈Rm

({
−f∗(AT u∗)

}
− {g∗(−u∗)} + R+

)
,

where f∗ and g∗ are the classical conjugate functions of f and g. It is an easy task to show
that inf

⋂
u∗∈Rm

({
−f∗(AT u∗)

}
−{g∗(−u∗)}+ R+

)
= supu∗∈Rm

(
−f∗(AT u∗)− g∗(−u∗)

)
. The

latter expression is exactly the classical dual problem for the extended real-valued problem.

Optimization problems with set relations naturally occur in vector optimization (see for in-
stance [15], [4]) and in set–valued optimization in the sense of [8]. Let p : X → Y ∪ {+∞}
or p : X ⇒ Y , and let C ⊆ Y be a closed convex and pointed (C ∩ −C = {0}) cone. Usually
one asks for the set Eff [P ;C] of efficient points of the set P :=

⋃
x∈X p(x) with respect to

C. Using the set–valued duality assertions of Corollary 4.2, this problem can be equivalently
expressed as

Eff
[ ⋃

x∈X

p(x);C
]

= Eff
[ ⋂

u∗∈U∗

dc(u∗);C
]
.

In this manner it is also interesting to investigate the relation to duality assertions in vector
optimization, for instance those of Tanino [18]. For this, we refer to forthcoming papers.

5 Some special cases

We consider the problem of minimizing a convex function f : X → F̂? with respect to a
nonempty closed convex set D ⊆ X. This problem can be formulated as follows.

inf
x∈X

(
f(x) + g(Ax)

)
,

where A : X → X is the identity map, and g : X → F̂? is the ”set–valued indicator function”,
defined as

g(x) :=

{
{0} if x ∈ D

∅ else.

18



The conjugate function g∗c : X∗ → F� of g can be understood as ”set–valued support function”
of the set D. It is given by

g∗c (x
∗) = cl

⋃
x∈D

{〈x∗, x〉 {c}} =
[
−δ∗(x∗,−D), δ∗(x∗, D)

]
· {c} .

As a special case for the function f , let us consider f(x) = {C · x} where C is a real p × n

matrix. An easy computation shows that

f∗c (x∗) =
⋃

x∈X

{
(c · (x∗)T − C) · x

}
=
(
c · (x∗)T − C

)
· Rn.

In the special case of X = Y = Rn and C := I being the n × n unit matrix, Corollary 4.2
yields the following dual description of a nonempty closed convex set D ⊆ Rn. If 0+D is not
a linear subspace of Rn, for all c ∈ ri (0+D) it holds

D =
⋂

x∗∈Rn

(
(I − (x∗)T · c) · Rn +

[
−δ∗(x∗,−D), δ∗(x∗, D)

]
· {c}

)
. (20)

Moreover, if 0+D is a linear subspace of Rn, (20) is valid for all c ∈ Rn \ 0+D. Note that in
(20) the constraint qualification (15) is superfluous, see Remark 5.1 below.

We next turn to the case of linear inequality constraints. Let A be an m× n matrix and
b ∈ Rm a given vector. We write u ≤ v if v − u ∈ Rm

+ . Consider the problem

inf
x∈D

{Cx} , D = {x ∈ X| Ax ≥ b} . (21)

Recall that infx∈D {Cx} has the meaning of cl conv
⋃

x∈D {Cx} =
⋃

x∈D {Cx} =: C ·D. We
introduce g : U → F̂? as

g(u) :=

{
{0} if u ≥ b

∅ else.

Thus, (21) can be rewritten as infx∈X

(
f(x) + g(Ax)

)
. Some simple calculations yield

g∗(u∗) =
⋃
u≥b

{〈u∗, u〉 {c}} =
⋃
u≥0

{〈u∗, u + b〉 {c}}

=
{
c · (u∗)T · b

}
+
⋃
u≥0

{〈u∗, u〉 {c}} =
{
c · (u∗)T · b

}
+ h(u∗),

where

h(u∗) :=
⋃
u≥0

{〈u∗, u〉 {c}} =


{c} · R− if u∗ ∈ Rm

− \ {0}
{c} · R+ if u∗ ∈ Rm

+ \ {0}
{0} if u∗ = 0
{c} · R else.

Note that h(u∗) = −h(−u∗), hence, the dual objective function is given by

dc(u∗) = (C − c · (A∗ · u∗)T ) · Rn +
{
c · (u∗)T · b

}
+ h(u∗).
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By Theorem 4.1 we obtain the following strong duality assertion. Let K := 0+(C · D). If
there exists some x ∈ X such that Ax ≥ c, then, respectively, for all c ∈ riK if K is not a
linear space and for all c ∈ Y \K if K is a linear subspace of Y it is true that

C ·D =
⋂

x∗∈X∗

((
C − c · (AT · u∗)T

)
· Rn +

{
c · (u∗)T · b

}
+ h(u∗)

)
. (22)

Remark 5.1 In Theorem 4.1 (duality theorem) we suppose the constraint qualification (15).
In the proof of this theorem we use this condition two times. First, it is used to show that
0+(g(u)⊕K) ⊆ K for all u ∈ dom g. In all the examples of this section this is given directly.
Secondly, we use (15) in order to obtain the corresponding condition for the scalar problems
(16). If all these problems are polyhedral, (15) can be replaced by dom g ∩ Adom f 6= ∅,
compare e.g. [3, Corollary 5.1.9]. Hence, in (20) and (22) the constraint qualification reduces
to D 6= ∅.
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