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Abstract. We study the generation of an analytic semigroup in Lp(Rd) and the de-

termination of the domain for a class of second order elliptic operators with unbounded

coefficients in Rd. We also establish the maximal regularity of type Lq–Lp for the corre-

sponding inhomogeneous parabolic equation. In contrast to the previous literature the

coefficients of the second derivatives are not required to be strictly elliptic or bounded.

Interior singularities of the lower order terms are also discussed.

1. Introduction

Regularity properties of elliptic operators

Au(x) = div(a(x)∇u(x)) + F (x) · ∇u(x) − V (x)u(x), x ∈ R
d,

(at first defined on the test function space C∞
0 (Rd)) with unbounded coefficients on Rd

have intensively been investigated in recent years. Besides the traditional applications to

Schrödinger equations, this line of research is motivated by the fact that such operators

A arise as generators of transition semigroups in stochastic analysis. In this paper we

establish Lp–estimates for the elliptic and parabolic problems associated with A. These

estimates are closely related to the property that A with its ‘optimal’ domain

Dp = {u ∈ W 2,p
loc (Rd) : u, div(a∇u), V u ∈ Lp(Rd)}

generates a positive, contractive, and analytic C0–semigroup on Lp(Rd), 1 < p < ∞.

Since we do not assume that the coefficients of A are bounded in Rd, the classical theory

of elliptic equations does not apply. Nevertheless, nowadays many generation results

are available for elliptic operators with unbounded coefficients in Lp(Rd), including the

enormous literature on Schrödinger operators, corresponding to aij = δij and F = 0. In

particular, it is known that an extension of (A, C∞
0 (Rd)) generates a C0–semigroup on

Lp(Rd) (which is not necessarily analytic) if the dissipativity condition pV + div F ≥ 0

holds. Recent and quite general results in this direction are presented in [22] and [27]

using form methods; see also [3] for a different approach based on an approximation

procedure. However, the determination of the domain is a much more difficult question

which requires more assumptions on the coefficients. This problem is usually treated

supposing that the diffusion coefficients aij belong to C1
b (R

d) and are strictly elliptic. In
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this case the diffusion part

A0u(x) = div(a(x)∇u(x)), x ∈ R
d,

satisfies the classical Calderón–Zygmund estimates, so that D(A0) = W 2,p(Rd). In this

setting the domain of A was computed e.g. in [4], [5], [7], [24] under similar assumptions as

in the present paper; see also the references therein and in particular [8] for further results.

In these papers it was also assumed that the lower order coefficients have no singularities

inside Rd. In the case of unbounded and non–strictly elliptic aij, we are only aware of the

domain characterizations given in [17] and [18]. However, in these papers it was supposed

that the coefficients aij have a special structure. In the present paper we study diffusion

coefficients which may be unbounded or degenerate at ∞ without restrictions on their

structure, and we also allow for interior singularities of the lower order coefficients.

Let us first consider the case without interior singularities. We assume that the coef-

ficients of A satisfy the following hypotheses, where 1 < p < ∞ is given and the inner

products corresponding to the matrices a(x) are denoted by

a0(ξ, η) =

d
∑

k,l=1

akl(x)ξkηl and a0[ξ] := a0(ξ, ξ), (x ∈ R
d, ξ, η ∈ C

d).

(H1) The real-valued functions akl ∈ C1(Rd) satisfy akl = alk for k, l = 1, · · · , d and

a0[ξ] =

d
∑

k,l=1

akl(x)ξkξl > 0

for all x, ξ ∈ Rd with ξ 6= 0.

(H2) The function V : Rd → R is measurable, and there is a function U ∈ C1(Rd) such

that c0 ≤ U ≤ V ≤ c1U and a0[∇U ]
1

2 ≤ γU
3

2 + Cγ for some constants c1, c0, γ > 0

and Cγ ≥ 0.

(H3) The function F ∈ C1(Rd, Rd) satisfies |F · ξ| ≤ κU
1

2 a0[ξ]
1

2 for some constant κ > 0.

(H4) There is a constant θ < p such that θU + div F ≥ 0.

Condition (H1) already implies that an extension of (A0, C
∞
0 (Rd)) in Lp(Rd) generates

a contractive (and analytic) C0–semigroup on Lp(Rd), for all 1 < p < ∞; see e.g. the

form-method approach in [9]. Under further assumptions, the closure of (A0, C
∞
0 (Rd))

generates a contractive C0–semigroup on Lp(Rd), 1 < p < ∞. The closure is again

denoted by A0. It is not difficult to see that in this case the closure is the only generator

extending (A0, C
∞
0 (Rd)). Moreover, the domain of the closure is given by

D(A0) = {u ∈ Lp(Rd) ∩ W 2,p
loc (Rd) : div(a∇u) ∈ Lp(Rd)}

(see Lemma 2.1 below). In our paper we will assume a rather sharp condition for the

property that test functions are a core for A0, see Theorem 2.3 and Section 2.b.1 of [14]:

(H5) There is a constant τ > 0 such that

d
∑

k,l=1

akl(x)xkxl ≤ τ |x|4(log |x|)2, |x| ≥ 1.
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We refer to Remark 2.2 for further comments on hypothesis (H5).

To state our main results, we introduce the subspace

Dp := D(A0) ∩ D(V ) = {u ∈ W 2,p
loc (Rd) : u, A0u, V u ∈ Lp(Rd)}

for 1 < p < ∞. Since A0 and V are closed operators, Dp is a Banach space endowed with

the norm

‖u‖Dp
= ‖u‖p + ‖A0u‖p + ‖V u‖p.

Let us first suppose that either F = 0 (and 1 < p < ∞) or 1 < p ≤ 2. For these

cases we show in Section 2 that (A, Dp) generates an analytic semigroup in Lp(Rd), under

assumptions (H1), (H2), (H3), (H4), (H5), and (2.4).

As mentioned above, (H1) and (H5) take care of the diffusion part, and (H4) implies

the dissipativity of A. Hypothesis (H3) allows to control the drift term F · ∇u by A0u

and V u, due to the interpolation Lemma 2.6. But we point out that the drift is not a

small perturbation of A0 or A0 − V , cf. Remark 3.6 in [24].

The oscillation condition (H2) (together with the bound (2.4) on γ) plays a the central

role in the identification of the domain of A. It was already used in [11] and [12] to

show that the domain of the Schrödinger operator −∆ + V in L2(Rd) coincides with

W 2,2(Rd) ∩ D(V ) both for smooth and singular potentials. There are counterexamples

where this domain characterization fails and (H2) is true with a too large γ, see [10,

Note 22], [24, Example 3.7]. The operator ∆ − V was studied in Lp(Rd) in the papers

[25] and [26] also under assumption (H2).

We remark that in (H2) the auxiliary potential U is introduced to obtain more flexible

assumptions for V . In some applications, see e.g. Section 7 in [24], the freedom in changing

V to U turned out to be quite useful.

The arguments used in Section 2 are based on variational estimates combined with

methods from semigroup theory. In the case p > 2, the variational estimates are not

sufficient anymore to control the drift term by the diffusion part and the potential. We

employ a lengthy localization/covering procedure to overcome this difficulty and to show

Proposition 3.3 which replaces the interpolation Lemma 2.6. Unfortunately, this method

requires a stronger version of (H2) and additional estimates which control the growth and

the oscillation of the matrix a by means of the potential U :

(H2’) The function V : Rd → R is measurable, and there is a function U ∈ C1(Rd) such

that, setting

ρ(x) =
|a(x)|

1

2

U(x)
1

2

and ν(x) = inf
ξ∈Rd, |ξ|=1

d
∑

k,l=1

akl(x)ξkξl for x ∈ R
d,

the conditions

c0 ≤ U ≤ V ≤ c1U, |a(x)|
1

2 |∇U(x)| ≤ γU(x)
3

2 + Cγ, (1.1)

|a(x)| ≤ c2U(x), sup
|y−x|≤ρ(x)

|∇a(y)| ≤ c2 ν(x) |a(x)|−
1

2 U(x)
1

2 (1.2)

hold for x ∈ Rd and some constants cj, γ, Cγ ≥ 0.
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Condition (H2’) again allows to interpolate the term F · ∇u between A0u and V u. So

we can adopt the arguments from Section 2 in order to establish in Theorem 3.5 that

A with domain Dp generates an analytic semigroup also if p > 2 provided (H1), (H2’),

(H3), (H4), (H5) and (2.4) hold. If a is strictly elliptic, in addition, then the domain Dp

is continuously embedded into W 2,p(Rd), 1 < p < ∞, see Corollary 3.6.

Using certain regularizations of V and F , we can modify our approach to obtain es-

sentially the same theorems if V and F are singular at 0 and satisfy the hypotheses on

Rd \ {0}, see Section 4.

The result that A with domain D(A) = Dp generates an analytic emigroup on Lp(Rd)

has many immediate consequences for the regularity properties of the parabolic problem
{

∂tu(t, x) = Au(t, x) + f(t, x), t > 0, x ∈ Rd,

u(0, x) = ϕ(x), x ∈ Rd,
(1.3)

see e.g. [23]. For instance, the solution u belongs to W 1,q([0, T ], Lp(Rd)) and A0u, V u ∈

Lq([0, T ], Lp(Rd)) for all T > 0, if f = 0 and ϕ belongs to the real interpolation space

(Lp(Rd), Dp)1−1/q,q for some q ∈ (1,∞). If ϕ ∈ Dp, then u ∈ C1(R+, Lp(Rd)) and

A0u, V u ∈ C(R+, Lp(Rd)). In Lunardi’s monograph [23] one finds plenty of regularity

results for u if f is, e.g., Hölder continuous in time. In addition, our results yield maximal

regularity of type Lq–Lp for A, i.e., for all f ∈ Lq([0, T ], Lp(Rd)) and ϕ = 0, we have

u ∈ W 1,q([0, T ], Lp(Rd)) and A0u, V u ∈ Lq([0, T ], Lp(Rd)), see Theorems 3.7 and 4.4. We

refer to [2], [13], and [21] for comprehensive accounts of the theory of maximal regularity,

though we will not need the (quite involved) recent theorems presented in [13] and [21].

2. The cases F = 0 and 1 < p ≤ 2

In this section we prove our generation theorem in the cases F = 0 and 1 < p < ∞ or

for any F and 1 < p ≤ 2. However, some of the auxiliary results will be also valid for

p > 2 and F 6= 0.

We first show that C∞
0 (Rd) is a core for the Schrödinger operator A0 − V if (H1) and

(H5) hold. Observe that V = 0 is allowed in the next lemma.

Lemma 2.1. Assume that (H1) and (H5) hold and that 0 ≤ V ∈ Lp
loc(R

d) for some

p ∈ (1,∞). Then the operator A0 − V defined on D(A0 − V ) = {u ∈ Lp(Rd)∩W 2,p
loc (Rd) :

(A0−V )u ∈ Lp(Rd)} generates a contractive C0–semigroup on Lp(Rd). Moreover, C∞
0 (Rd)

is a core for A0 − V .

Proof. One verifies as in the proof of Theorem 2.3 of [14] that (A0 −V, C∞
0 (Rd)) possesses

a closure (denoted by A0 − V ) which generates a contractive C0–semigroup on Lp(Rd).

(In fact, at this point in [14] it is assumed that V = 0 and 1 < p ≤ 2, but the proof can

be modified in a straightforward way if V 6= 0 and/or p > 2.) It is clear that A0 − V is

a restriction of the part Amax in Lp(Rd) of the distributional operator div a∇ − V . By

standard elliptic regularity, see [1], the domain of Amax is given by

D(Amax) = {u ∈ Lp(Rd) ∩ W 2,p
loc (Rd) : div(a∇u) − V u ∈ Lp(Rd)}.
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If (I − Amax)u = 0 for some u ∈ D(Amax), then 〈u, v − div(a∇v) + V v〉 = 0 for all test

functions v, where the brackets denote the duality of Lp and Lp′ . As above, one sees that

the set of the functions v − div(a∇v) + V v with v ∈ C∞
0 (Rd) is dense in Lp′(Rd). So

we obtain that u = 0; hence, I − Amax is injective on D(Amax). This fact implies that

D(A0 − V ) = D(Amax). �

Remark 2.2. We refer the reader to [20] for more general conditions under which (A0 −

V, C∞
0 (Rd)) is essentially self-adjoint in L2(Rd). It is not difficult to generalize these

results to 1 < p < ∞. So one obtains weaker conditions than (H5) under which the above

lemma holds. However, these more general assumptions require a control of the growth

of a through the potential V and reduce to (H5) if V is bounded. Since we need Lemma

2.1 also when V = 0, i.e., for the operator A0, we are forced to retain (H5). We note that

(H5) is almost optimal for the case V = 0, see [10, Example 3.5] or [14, Section 2.b.1].

We next want to show that A is regularly dissipative, that is, for some φ ∈ (0, π/2) the

operators e±iφA are dissipative. This property is clearly equivalent to the estimate (2.3)

below (with δ = cotφ).

Proposition 2.3. Let 1 < p < ∞ and assume that (H1), (H3), and (H4) are satisfied

with U replaced by V ∈ Lp
loc(R

d). Then the operator A defined on C∞
0 (Rd) is regularly

dissipative in Lp(Rd), with angle φp > 0 only depending on p and the constants in (H3)

and (H4).

Proof. Let u ∈ C∞
0 (Rd) and, at first, 2 ≤ p < ∞. Set u∗ = u |u|p−2. Observe that

∇u∗ = u |u|p−4 ((p − 1) Re[u∇u] − i Im[u∇u]) and u∗∇u = 1
p
(∇|u|p) + i Im(u∇u)|u|p−2.

Integrating by parts and using (H4), we calculate

−Re

∫

Rd

(Au) u∗ dx = (p − 1)

∫

Rd

|u|p−4 a0[Re u∇u] dx (2.1)

+

∫

Rd

|u|p−4 a0[Im u∇u] dx +

∫

Rd

(V + 1
p
div F )|u|p dx

≥ (p − 1)b2 + c2 + (1 − θ
p
)d2,

where b2 =
∫

|u|p−4 a0[Re u∇u] dx, c2 =
∫

|u|p−4 a0[Im u∇u] dx, and d2 =
∫

V |u|p dx.

Similarly, employing the Cauchy–Schwarz inequality and (H3), we estimate
∣

∣

∣

∣

Im

∫

Rd

(Au)u∗ dx

∣

∣

∣

∣

≤ |p − 2|

∫

Rd

|u|p−4 |a0(Re(u∇u), Im(u∇u))| dx (2.2)

+

∫

Rd

|F · Im(u∇u)| |u|p−2 dx

≤ |p − 2| bc + κ

∫

Rd

V
1

2 |u|
p

2 a0[Im u∇u]
1

2 |u|
p

2
−2 dx

≤ |p − 2| bc + κbd.

Taking δp = δ such that δ2 = |p−2|2

4(p−1)
+ κ2

4(1−θ/p)(p−1)
, we see that

∣

∣

∣

∣

Im

∫

Rd

(Au)u∗ dx

∣

∣

∣

∣

≤ −δ Re

∫

Rd

(Au)u∗ dx. (2.3)
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This shows the assertion for p ≥ 2. If p ∈ (1, 2), we replace |u| by uε =
√

|u|2 + ε for

ε > 0 in the calculations involving A0. Passing to the limit as ε → 0 and using Fatou’s

lemma, one then establishes (2.1) and (2.2) (in particular, all integrands are integrable).

Thus one can deduce (2.3) as above. �

Lemma 2.4. Let 1 < p < ∞. Assume that (H1)–(H4) hold with

θ

p
+ (p − 1)γ

[

κ

p
+

γ

α

]

< 1, for some α ∈ (0, 4). (2.4)

Then, for a test function u, we have
∫

Rd

Up|u|p dx +

∫

{u6=0}

Up−1|u|p−2a0[∇u] dx ≤ cα ‖u − Au‖p
p .

If (2.4) holds with α = 4, then we obtain ‖Uu‖p ≤ c‖u − Au‖p. The constants c and cα

only depend on p and the constants in (H2)–(H4).

Proof. We assume preliminarily that (H2) is satisfied with Cγ = 0. We first consider the

case p ≥ 2. For a fixed real u ∈ C∞
0 (Rd) we set

f := −Au = −A0u − F · ∇u + V u. (2.5)

If we multiply (2.5) by Up−1u|u|p−2 and integrate by parts, we obtain as in the proof of

Proposition 2.3 the identity
∫

Rd

(V + 1
p
div F ) Up−1|u|p dx + (p − 1)

∫

Rd

Up−1|u|p−2a0[∇u] dx

= (1 − p)

∫

Rd

u |u|p−2Up−2a0(∇u,∇U) dx +
(1

p
− 1

)

∫

Rd

Up−2|u|p F · ∇U dx

+

∫

Rd

fUp−1u |u|p−2 dx. (2.6)

We introduce the quantities b2 =
∫

Up|u|p dx and d2 =
∫

Up−1|u|p−2a0[∇u] dx. The left

hand side of (2.6) is greater than (1− θ
p
)b2 +(p−1)d2 by (H2) and (H4). Employing (H2),

(H3), Hölder’s and Young’s inequalities, we estimate the right hand side of (2.6) by

(p − 1)γ

∫

Rd

|u|p−1Up−2a0[∇u]
1

2 U
3

2 dx +
(

1 −
1

p

)

γκ

∫

Rd

Up−2|u|pU
1

2 U
3

2 dx

+
(

∫

Rd

|f |p dx
)

1

p
(

∫

Rd

Up|u|p dx
)1− 1

p

≤ (p − 1)γbd +
(

1 −
1

p

)

γκb2 + ‖f‖p b2− 2

p

≤ (p − 1)γbd +
(

1 −
1

p

)

γκb2 + εb2 + cε‖f‖
p
p

Combining these facts, we arrive at
[

1 −
θ

p
−

κγ(p − 1)

p
− ε

]

b2 + (p − 1)d2 ≤ (p − 1)γbd + cε‖f‖
p
p.
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We only consider the case 0 < α < 4; the case α = 4 can be treated in the same way. If

we take a sufficiently small ε > 0 and use Young’s inequality and (2.4), we deduce
∫

Rd

Up|u|p dx +

∫

Rd

Up−1|u|p−2a0[∇u] dx ≤ c ‖f‖p
p = c ‖Au‖p

p (2.7)

for some constant cα = c > 0. In order to remove the assumption Cγ = 0, we fix a large

λ (depending on γ and Cγ) such that U + λ + 1 and V + λ + 1 satisfy (H2) with Cγ = 0

and apply the previous estimates to the operator A − λ − 1. Then
∫

Rd

Up|u|p dx +

∫

Rd

Up−1|u|p−2a0[∇u] dx

≤ c ‖(λ + 1)u − Au‖p
p ≤ c

(

‖u − Au‖p + λ‖u‖p

)p
≤ c (1 + λ)p ‖u − Au‖p

p,

by the dissipativity of A.

If p < 2, then one can verify as in the proof of Proposition 2.3 that d2 is a finite number

(taking the integral over {x ∈ R
d : u(x) 6= 0}). The claim then follows as for p ≥ 2. �

The above results allow us to treat the case F = 0, i.e., the Schrödinger operator A0−V ,

on Lp(Rd) for 1 < p < ∞.

Theorem 2.5. Let 1 < p < ∞. Assume that (H1), (H2) with γ2 < 4(p− 1)−1, and (H5)

hold. Then A0 − V with domain Dp generates a positive, analytic C0–semigroup T (·) in

Lp(Rd) such that ‖T (z)‖ ≤ 1 for | arg z| ≤ φp and some φp > 0. Test functions are a core

of A0 − V , i.e., C∞
0 (Rd) is dense in Dp.

Proof. Lemma 2.4 (with F = 0, θ = κ = 0, α = 4) shows that

‖V u‖p ≤ c ‖u − (A0 − V )u‖p (2.8)

for all test functions u, where the constant c only depends on p and the constants in (H2).

Let u ∈ Dp = D(A0) ∩ D(V ). Due to Lemma 2.1 there are test functions approximating

u in the graph norm of A0 − V . Thus Proposition 2.3 is valid for A0 − V defined on

Dp. Moreover, (2.8) holds for u ∈ Dp thanks to Fatou’s lemma. We introduce the

approximating potentials Uε = U
1+εU

and Vε = V
1+εV

, where ε > 0. Then we have

c0

1 + εc0

≤ Uε ≤ Vε ≤ c1Uε ≤
c1

ε
and a0[∇Uε]

1

2 ≤ γU
3

2

ε + Cγ . (2.9)

Let f ∈ Lp(Rd). Lemma 2.1 implies that A0 − Vε with domain D(A0 − Vε) = D(A0)

generates a contraction semigroup on Lp(Rd). Therefore there is a unique uε ∈ D(A0)

satisfying

uε − A0uε + Vεuε = f, ‖uε‖p ≤ ‖f‖p , and ‖Vεuε‖p ≤ C‖f‖p .

Here the constant C does not depend on ε due to (2.8) and (2.9). Using standard elliptic

regularity on balls B(0, r), [16, Theorem 9.11], we see that

‖uε‖W 2,p(B(0,r)) ≤ C ′
p,r ‖f‖p.

Thus there exists a sequence εn → 0 such that the functions (uεn
) converge weakly to

a function u ∈ W 2,p
loc (Rd) as n → ∞. The Rellich–Kondrachov theorem implies that a
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subsequence of (uεn
) tends strongly to u in W 1,p

loc (Rd); hence we may assume that uεn
(x) →

u(x) a.e. in Rd. Fatou’s lemma now yields

‖u‖p ≤ ‖f‖p and ‖V u‖p ≤ C‖f‖p.

Let ϕ be a test function. Then we have

∫

Rd

fϕ dx =

∫

Rd

uεn
(ϕ − A0ϕ + Vεn

ϕ) dx −→

∫

Rd

u(ϕ − A0ϕ + V ϕ) dx (n → ∞),

∫

Rd

fϕ dx =

∫

Rd

(u − A0u + V u)ϕ dx. (2.10)

So we derive

u − A0u + V u = f.

This means that u ∈ Dp since A0u = u + V u − f ∈ Lp(Rd). As a result, I − (A0 − V ) :

Dp → Lp(Rd) is surjective. The operator A0 − V with domain Dp thus generates a

contraction semigroup T (·) on Lp(Rd) in view of Lemma 2.1 and the Lumer–Phillips

theorem. Proposition 2.3 and the Lumer–Phillips theorem then imply that e±iφpA also

generate contractive C0–semigroups for some φp > 0. Hence T (·) is analytic due to [15,

Theorem II.4.9].

The last assertion immediately follows from Lemma 2.1. The positivity of A0 − V is

essentially known: One can argue as in Theorems 3.1 and 3.3 of [3] to obtain an extension

Ã of (A0 − V, C∞
0 (Rd)) which generates a positive C0–semigroup. Since test functions are

a core of our generator A, we have A = Ã, and the positivity of T (t) follows. (We note

that in [3] it was assumed that the coefficients akl are uniformly elliptic, but this does not

matter in this argument.) �

In the case 1 < p ≤ 2 the above generation result can be extended to the operator A

with F 6= 0 using the complete estimate proved in Lemma 2.4. This estimate leads to the

following weighted Gagliardo–Nirenberg estimate.

Lemma 2.6. Let 1 < p ≤ 2. Assume that the hypotheses (H1) and (H2) are satisfied and

that (2.4) holds. Then for each ε > 0 there is a constant cε (depending only on ε, p, α in

(2.4), and the constants in (H2)) such that

‖U
1

2 a0[∇u]
1

2‖p ≤ ε‖A0u‖p + cε‖V u‖p

for every test function u.

Proof. Again we first suppose that (H2) holds with Cγ = 0. The estimate (2.7) for the

case F = 0 shows that
∫

{u6=0}

Up−1|u|p−2a0[∇u] dx ≤ c (‖A0u‖p + ‖V u‖p)
p.
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Let uε =
√

|u|2 + ε for ε > 0 and denote by K the support of u. Hölder’s inequality with

the conjugate exponents 2
p

and 2
2−p

yields
∫

Rd

U
p

2 a0[∇u]
p

2 dx =

∫

K

(Up−1up−2
ε a0[∇u])

p

2 (Up up
ε)

2−p

2 dx

≤
(

∫

K

Up−1up−2
ε a0[∇u] dx

)
p

2

(

∫

K

Up up
ε dx

)1− p

2

.

Using the theorem of dominated convergence, we obtain
∫

Rd

U
p

2 a0[∇u]
p

2 dx ≤
(

∫

{u6=0}

Up−1|u|p−2a0[∇u] dx
)

p

2

(

∫

Rd

Up |u|p dx
)1− p

2

.

Combining the above estimates with (H2) and Young’s inequality, we deduce

‖U
1

2 a0[∇u]
1

2 ‖p ≤ c (‖A0u‖p + ‖V u‖p)
p

2 ‖V u‖
1− p

2

p ≤ c′ (‖A0u‖
p

2

p + ‖V u‖
p

2

p ) ‖V u‖
1− p

2

p

≤ ε ‖A0u‖p + cε ‖V u‖p .

If Cγ 6= 0, we add a large constant λ > 0 such that U + λ and V + λ satisfy (H2) with

Cγ = 0. Then the first part of the proof implies that

‖U
1

2 a0[∇u]
1

2 ‖p ≤ ‖(U +λ)
1

2 a0[∇u]
1

2‖p ≤ ε ‖A0u‖p + cε ‖(λ+V )u‖p ≤ ε ‖A0u‖p + c′ε ‖V u‖p

due to (H2). �

Proposition 2.7. Let 1 < p ≤ 2. Assume that the hypotheses (H1)–(H5) are satisfied

and that (2.4) holds. Then there are constants C, C ′ ≥ 0 depending only on p, α in (2.4),

and the constants in (H2)–(H4) such that

‖u‖p + ‖A0u‖p + ‖V u‖p ≤ C ‖u − Au‖p ≤ C ′ (‖u‖p + ‖A0u‖p + ‖V u‖p)

for every u ∈ Dp.

Proof. Let u ∈ Dp. Due to Theorem 2.5 there are test functions un such that un → u,

V un → V u, and A0un → A0u in Lp(Rd); thus we may suppose that ∇un → ∇u a.e..

Lemma 2.6 and (H3) then imply that F · ∇un → F · ∇u in Lp(Rd). So it suffices to show

the proposition for a test function u. The second asserted estimate follows directly from

Lemma 2.6 and (H3). To prove the other one, we first suppose that Cγ = 0 in (H2).

We denote by c a generic constant only depending on p, α in (2.4), and the constants

in (H2)–(H4). We have ‖V u‖p ≤ c ‖Au‖p due to (2.7) and (H2). Moreover, assumption

(H3) and Lemma 2.6 yield

‖F · ∇u‖p ≤ κ (ε ‖A0u‖p + c ‖V u‖p) ≤ κε (‖Au‖p + ‖F · ∇u‖p + ‖V u‖p) + c ‖V u‖p .

where ε := (2κ)−1. As a consequence, we have

‖F · ∇u‖p ≤ c (‖Au‖p + ‖V u‖p) ≤ c ‖Au‖p .

These inequalities further imply that

‖A0u‖p = ‖Au − F · ∇u + V u‖p ≤ c ‖Au‖p ,
9



so that ‖A0u‖+ ‖V u‖p ≤ C̃ ‖Au‖p in this case. Finally, in the general case we find again

λ > 0 such that U + λ + 1 and V + λ + 1 satisfy (H2) with Cγ = 0. Then we obtain

‖u‖p + ‖A0u‖ + ‖V u‖p ≤ ‖u‖p + C̃ ‖(1 + λ)u − Au‖p ≤ (1 + λC̃)‖u‖p + C̃ ‖u − Au‖p

≤ C ‖u − Au‖p

by the dissipativity of A. �

Theorem 2.8. Let 1 < p ≤ 2. Assume that the hypotheses (H1)–(H5) are satisfied and

that (2.4) holds. Then A with domain Dp generates a positive, analytic C0–semigroup

T (·) in Lp(Rd) such that ‖T (z)‖ ≤ 1 for | arg z| ≤ φp and some φp > 0. Test functions

are a core of A.

Proof. For t ∈ [0, 1] and u ∈ Dp we set Ltu := A0u + tF · ∇u − V u. Note that these

operators satisfy (H1)–(H5) with the same constants. Proposition 2.7 thus shows that

‖u‖Dp
≤ C ‖u − Ltu‖p

for every u ∈ Dp, with C independent of t ∈ [0, 1]. We have 1 ∈ ρ(L0) due to Theorem 2.5.

Therefore 1 ∈ ρ(L1) = ρ(A) by a continuity argument, see e.g. [16, Theorem 5.2]. As in

the proof of Proposition 2.7 we extend Proposition 2.3 to the operator A with domain

Dp. Thus the Lumer–Phillips theorem implies that the operators A and e±iφpA generate

contractive C0–semigroups for some φp > 0. So the semigroup generated by A is analytic

by [15, Theorem II.4.9]. The last assertion follows from Theorem 2.5. The positivity of

T (t) can be seen as in Theorem 2.5. �

3. The case p > 2

In the case p > 2 the elementary proof of Lemma 2.6 does not work anymore. Thus we

need a different approach to control the drift term by the diffusion part and the potential.

As in [4], [5], [24], we employ localization techniques. To that purpose we change our

hypothesis (H2) to the stronger assumption (H2’).

The following version of the Besicovitch covering theorem follows from the proof of

Lemma 2.2 in [24].

Lemma 3.1. Let k > 1 and {B(x, r(x)) : x ∈ Rd} be a collection of balls such that the

radii r(x) are uniformly bounded and σr(y) ≤ r(x) ≤ 1
σ

r(y) for a constant σ > 0 if two

balls B(x, r(x)) and B(y, r(y)) overlap. Then there exists a natural number N (depending

only on d, k, σ) and a countable covering {B(xn, 1
k
r(xn))} of Rd such that each y ∈ Rd

is contained in at most N of the balls B(xn, r(xn)).

From the proof of Proposition 3.3 we separate a lemma dealing with local perturbations

of the Calderón–Zygmund estimate. We denote the norm of Lp(B(x, r)) by ‖ · ‖p,r .

Lemma 3.2. Let x ∈ Rd, r > 0, 1 < p < ∞ and assume that q ∈ C1(B(x, r), Rd×d),

q(y) = q(y)T > 0 for y ∈ B(x, r), and 0 < νI ≤ q(x) ≤ ΛI for some numbers Λ, ν > 0.
10



Set ω = sup{|q(y)−q(x)| ; y ∈ B(x, r)}. Then there are constants c, η > 0 only depending

on d and p such that if ω
ν
≤ η and u ∈ C∞

0 (Rd) then

‖D2u‖p, r
2
≤

c

ν

(

‖ tr(qD2u)‖p,r +
1

r
‖q∇u‖p,r +

ω

r
‖∇u‖p,r +

Λ

r2
‖u‖p,r

)

.

Proof. Throughout the proof, x ∈ Rd is fixed and we write c for a generic constant only

depending on d and p. Let ν ≤ λ2
1 ≤ · · · ≤ λ2

d ≤ Λ be the eigenvalues of q(x), where λk > 0.

By the Calderón–Zygmund estimate, see [16, Theorem 9.9], we have ‖D2v‖p ≤ c ‖∆v‖p

for every test function v. Using the change of variables y 7→ y ′ = (λ−1
1 y1, · · · , λ−1

d yd), we

deduce

ν ‖∂ij v‖p ≤ λiλj ‖∂ij v‖p ≤ c
∥

∥

∥

∑

k
λ2

k ∂kkv
∥

∥

∥

p

for i, j ∈ {1, · · · , d}. There is a orthogonal matrix J such that J−1q(x)J = diag (λ2
k).

Thus another change of variables implies

ν ‖D2 v‖p ≤ c ‖ tr(q(x)D2v)‖p .

We fix u ∈ C∞
0 (Rd) and a smooth cut off function χ supported in B(x, r) such that χ = 1

on B(x, r/2), |∇χ| ≤ c/r, and |D2χ| ≤ c/r2. Then the above estimate (with v = χu)

yields

‖D2u‖p, r
2
≤ ‖D2(χu)‖p ≤ cν−1 ‖ tr(q(x)D2(χu))‖p

≤
c

ν

(

‖ tr(q(x)D2u)‖p,r +
1

r
‖q(x)∇u‖p,r +

|q(x)|

r2
‖u‖p,r

)

≤
c

ν

(

‖ tr(qD2u)‖p,r + ω‖D2u‖p,r +
1

r
‖q∇u‖p,r +

ω

r
‖∇u‖p,r +

Λ

r2
‖u‖p,r

)

. (3.1)

To get rid of ‖D2u‖p,r on the right hand side of (3.1), we shall derive an analogous estimate

in the whole space and then use a covering argument.

Observe that |q(y)| ≤ |q(x)| + ω ≤ Λ(1 + ω/ν) and (q(y)ξ|ξ) ≥ ν − ω for y ∈ B(x, r)

and |ξ| = 1. So if ω ≤ ν/2, we have ν
2
I ≤ q(y) ≤ 2ΛI for y ∈ B(x, r). We extend q to

Rd setting q(y) = q(x + r(y − x)/|y − x|) if |y − x| ≥ r so that ν
2
I ≤ q(x′) ≤ 2ΛI and

|q(y) − q(x′)| ≤ 2ω for all y, x′ ∈ Rd. As a result (3.1) holds for all centers x′ ∈ Rd. By

Lemma 3.1 there exists a countable covering {B(xn, r/2)} of R
d such that at each point

y ∈ Rd at most N of the balls B(xn, r) overlap. We then raise the estimates (3.1) with

x = xn to the pth power and sum over n. Taking the pth root, we arrive at

‖D2u‖p ≤
C ′

ν

(

‖ tr(qD2u)‖p + ω‖D2u‖p +
1

r
‖q∇u‖p +

ω

r
‖∇u‖p +

Λ

r2
‖u‖p

)

for a constant C ′ > 0 only depending on d and p. If ω/ν ≤ η := (2C ′)−1, we can eliminate

the term ‖D2u‖p on the right hand side thus obtaining

‖D2u‖p ≤
2C ′

ν

(

‖ tr(qD2u)‖p +
1

r
‖q∇u‖p +

ω

r
‖∇u‖p +

Λ

r2
‖u‖p

)

Now the assertion follows as in (3.1) using the same cut–off function. �
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Proposition 3.3. Assume that (H1) and (H2’) hold and that 1 < p < ∞. Then, for each

ε > 0, there exists a constant cε only depending on p and the constants in (H2’) such that

‖U
1

2 a0[∇u]
1

2 ‖p ≤ ε‖A0u‖p + cε‖V u‖p

for every test function u.

Proof. (1) We recall that ρ(x) = |a(x)|
1

2 U(x)−
1

2 . For x ∈ R
d and r > 0 we set

ω(x, r) = sup{|a(y) − a(x)| ; y ∈ B(x, r)}.

Let δ ∈ (0, 1). Assumption (H2’) implies that

ω(x, δρ(x))

ν(x)
≤ c2 δ (3.2)

for all x. So we can fix a number δ1 ∈ (0, 1) such that

ω(x, δρ(x))

ν(x)
≤ η (3.3)

for 0 < δ ≤ δ1, x ∈ R
d, and the constant η from Lemma 3.2. Moreover, the radii

r = r(x) := δρ(x) and the quotients ω(x, r)/ν(x) are uniformly bounded for x ∈ Rd and

0 < δ ≤ δ1 by (H2’) and (3.2). Replacing U and V by µ + U and µ + V for sufficiently

large µ = µ(γ, Cγ) > 0, we can assume that (H2’) holds with Cγ = 0. This implies that

|∇U− 1

2 (x)| ≤
γ

2
|a(x)|−

1

2 , x ∈ R
d.

For y ∈ B(x, δρ(x)), x ∈ Rd, and a suitable point z on the line segment between x and y,

we thus obtain

|U(x)−
1

2 − U(y)−
1

2 | ≤
δγ

2

|a(x)|
1

2

|a(z)|
1

2

U(x)−
1

2 ≤
δγ

2

( |a(x)|

|a(x)| − ω(x, r)

)
1

2

U(x)−
1

2

≤
δγ

2

(

1 −
ω(x, r)

ν(x)

)− 1

2

U(x)−
1

2 ≤
1

2
U(x)−

1

2 . (3.4)

In the last step we have used (3.2) and we take δ ∈ (0, δ2] for a sufficiently small δ2 ∈ (0, δ1].

This estimate yields

1
4
U(y) ≤ U(x) ≤ 9

4
U(y), y ∈ B(x, r), x ∈ R

d, (3.5)

Inequality (3.2) further implies that

|((a(x) − a(y))ξ|ξ)| ≤ ω(x, r) ≤
ω(x, r)

ν(x)
(a(x)ξ|ξ) ≤

1

2
(a(x)ξ|ξ) (3.6)

for |ξ| = 1, δ ∈ (0, δ3], and some δ3 ∈ (0, δ2]. From (3.5) and (3.6) we infer

β1 U(y)a(y) ≤ U(x)a(x) ≤ β2 U(y)a(y), y ∈ B(x, r), x ∈ R
d, (3.7)

in the sense of quadratic forms, for some constants 0 < β1 ≤ β2. Now fix δ = δ3/2 and

the corresponding radii r = r(x) = δρ(x). Due to (3.4) and (3.6), there are constants

0 < β ′
1 ≤ β ′

2 such that β ′
1 r(y) ≤ r(x) ≤ β ′

2 r(y) whenever the balls B(x, r(x)) and
12



B(y, r(y)) overlap. Thus we can apply Lemma 3.1 to the balls B(x, r(x)). We finally

observe that

|∇a(y)ξ|2 ≤ c2 U(x)ν(x) |ξ|2 ≤ c2β2 U(y) (a(y)ξ|ξ) (3.8)

for y ∈ B(x, r) and ξ ∈ Rd due to (H2’) and (3.7).

(2) In the remainder of the proof, c denotes a generic constant only depending on p and

the constants in (H2’). Fix x ∈ Rd. Let ν(x) = λ2
1 ≤ · · · ≤ λ2

d = |a(x)| be the eigenvalues

of a(x), where λk > 0. Recall that

‖∇v‖2
p ≤ c ‖v‖p ‖∆v‖p

for each test function v. As in the proof of Lemma 3.1 we deduce by two changes of

variables that

‖λj ∂jv‖
2
p ≤ c ‖v‖p

∥

∥

∥

∑

k
λ2

k ∂kkv
∥

∥

∥

p
.

Changing variables again, we obtain

‖U(x)
1

2 a(x)
1

2∇v‖2
p ≤ c ‖U(x)v‖p ‖ tr(a(x)D2v)‖p . (3.9)

We now take a smooth function χ supported in B(x, r/2) and satisfying χ = 1 on

B(x, r/4), |∇χ| ≤ c/r, and |D2χ| ≤ c/r2. Then (3.9) for v = χu, the definition of r,

and standard manipulations with positive-definite matrices imply that

‖U(x)
1

2 a(x)
1

2∇u‖2
p, r

4

≤ ‖U(x)
1

2 a(x)
1

2∇(χu)‖2
p, r

2

≤ c ‖U(x)u‖p, r
2

[

‖ tr(a(x)D2u)‖p, r
2

+
1

r
‖a(x)∇u‖p, r

2
+

|a(x)|

r2
‖u‖p, r

2

]

≤ c ‖U(x)u‖p, r
2

[

‖ tr(a(x)D2u)‖p, r
2

+ U(x)
1

2 ‖a(x)
1

2∇u‖p, r
2

+ U(x) ‖u‖p, r
2

]

.

Next we employ (3.7) and (3.5) to estimate

‖U
1

2 a0[∇u]
1

2 ‖2
p, r

4

≤ c ‖Uu‖p, r
2

[

‖ tr(aD2u)‖p, r
2

+ ω(x, r) ‖D2u‖p, r
2

+ ‖U
1

2 a0[∇u]
1

2‖p, r
2

+ ‖Uu‖p, r
2

]

.

At this point, because of (3.3), we can apply Lemma 3.2 to the restriction of a to B(x, r/2).

Consequently,

‖U
1

2 a0[∇u]
1

2‖2
p, r

4

≤ c ‖Uu‖p, r
2

[

‖ tr(aD2u)‖p, r
2

+ ‖U
1

2 a0[∇u]
1

2‖p, r
2

+ ‖Uu‖p, r
2

]

+
c ω(x, r)

ν(x)
‖Uu‖p, r

2

[

‖ tr(aD2u)‖p,r +
1

r
‖a∇u‖p,r +

ω(x, r)

r
‖∇u‖p,r

+
|a(x)|

r2
‖u‖p,r

]

.

Observe that the definition of r and (3.3) yield

ω(x, r)

r
= δ

ω(x, r)

|a(x)|
1

2

U(x)
1

2 ≤ δη
ν(x)

|a(x)|
1

2

U(x)
1

2 ≤ δη ν(x)
1

2 U(x)
1

2 .

Using these facts and again (3.7), (3.5), we arrive at

‖U
1

2 a0[∇u]
1

2‖2
p, r

4

≤ c ‖Uu‖p,r

[

‖ tr(aD2u)‖p,r + ‖U
1

2 a0[∇u]
1

2 ‖p,r + ‖Uu‖p,r

]

.
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So (3.8) yields

‖U
1

2 a0[∇u]
1

2 ‖2
p, r

4

≤ c ‖Uu‖p,r

[

‖Au‖p,r + ‖U
1

2 a0[∇u]
1

2 ‖p,r + ‖Uu‖p,r

]

.

By a standard application of Young’s inequality, we deduce

‖U
1

2 a0[∇u]
1

2‖p
p, r

4

≤ ε′ ‖Au‖p
p,r + ε′ ‖U

1

2 a0[∇u]
1

2‖p
p,r + cε′ ‖Uu‖p

p,r (3.10)

for ε′ > 0. Due to Lemma 3.1 there is a countable covering B(xn, r(xn)/4) such that

at each point y ∈ R
d at most N of the balls B(xn, r(xn)) overlap. We now sum the

inequalities (3.10) for x = xn over n. This yields

‖U
1

2 a0[∇u]
1

2 ‖p
p ≤ cε′ ‖Au‖p

p + cε′ ‖U
1

2 a0[∇u]
1

2‖p
p + c′ε′ ‖Uu‖p

p .

We conclude the proof by choosing a small ε′ > 0 and then taking the pth root. �

We can now establish the following two results exactly as Proposition 2.7 and Theo-

rem 2.8 employing Proposition 3.3 instead of Lemma 2.6.

Proposition 3.4. Let 2 < p < ∞. Assume that the hypotheses (H1), (H2’), (H3), (H4),

and (H5) are satisfied and that (2.4) holds. Then there are constants C, C ′ ≥ 0 depending

only on p, α in (2.4), and the constants in (H2’), (H3), (H4) such that

‖u‖p + ‖A0u‖p + ‖V u‖p ≤ C ‖u − Au‖p ≤ C ′ (‖u‖p + ‖A0u‖p + ‖V u‖p)

for every u ∈ Dp.

Theorem 3.5. Let 2 < p < ∞. Assume that the hypotheses (H1), (H2’), (H3), (H4),

and (H5) are satisfied and that (2.4) holds. Then A with D(A) = Dp generates a positive,

analytic C0–semigroup T (·) in Lp(Rd) such that ‖T (z)‖ ≤ 1 for | arg z| ≤ φp and some

φp > 0. Test functions are a core of A.

The above approach also shows that the graph norm of A is stronger than the norm of

W 2,p(Rd) for 1 < p < ∞, provided that a is strictly elliptic.

Corollary 3.6. Let 1 < p < ∞ and assume that the hypotheses (H1), (H2’), (H3), (H4),

and (H5) are satisfied and that (2.4) holds. We further suppose that a is strictly elliptic,

i.e. νI ≤ a for a constant ν > 0. Then Dp is continuously embedded in W 2,p(Rd).

Proof. We keep the notation introduced in the proof of Proposition 3.3 retaining the same

choices of δ and r(x) = δρ(x). Let u ∈ C∞
0 (Rd). Employing Lemma 3.2 and proceeding

as in the proof of Proposition 3.3, we obtain

‖D2u‖p, r
2
≤

c

ν

(

‖ tr(aD2u)‖p,r +
1

r
‖a∇u‖p,r +

ω(x, r)

r
‖∇u‖p,r +

|a(x)|

r2
‖u‖p,r

)

≤
c

ν

[

‖Au‖p,r + ‖U
1

2 a0[∇u]
1

2 ‖p,r + ‖Uu‖p,r

]

.

The covering argument then yields

‖D2u‖p ≤ c
[

‖Au‖p + ‖U
1

2 a0[∇u]
1

2 ‖p + ‖Uu‖p

]

≤ c
[

‖Au‖p + ‖u‖p

]

,

where we use Propositions 3.3 and 3.4 in the second inequality. �
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We further want to show that A has maximal regularity of type Lq–Lp. For that purpose

we suppose that the assumptions of Theorem 2.8 hold for p = 2 and the assumptions of

Theorem 2.8 or 3.5 hold for some p = r ≤ 2 or p = r > 2, respectively. Then the

same assumptions are valid for some ρ ∈ (1, p) or ρ ∈ (p,∞), respectively. Observe that

the semigroups generated by A on L2(Rd), Lr(Rd), and Lρ(Rd) are consistent, i.e., they

coincide on the intersection of these spaces. (In fact, since test functions are a core for A

on each space, the resolvents of A are consistent, which implies that the semigroups are

consistent.)

By rescaling, we may assume that the spectrum of A is contained in the open left half

plane. It is known that the operator A has maximal regularity of type Lq on Lr(Rd) if its

imaginary powers satisfy ‖(−A)is‖r ≤ Mea|s| for some a ∈ [0, π/2) and all s ∈ R thanks

to the Dore–Venni theorem, see e.g. [2, Theorem II.4.10.7]. If an operator B is maximal

dissipative and invertible on a Hilbert space, then ‖(−B)is‖ ≤ Meπ|s|/2 by a result due to

Kato, [19, Theorem 5]. Hence, ‖(−A)is‖2 ≤ Mea|s| for a = π/2−φ and some φ ∈ (0, π/2],

since A is regularly dissipative. Moreover, A generates a positive contraction semigroup

on Lρ(RN), so that ‖(−A)is‖ρ ≤ Mε exp((ε + π/2)|s|) for each ε > 0 and s ∈ R because

of the Coifman–Weiss transference principle, see [6, Theorem 5.8]. If we combine these

facts with the Riesz-Thorin interpolation theorem, we obtain the following result.

Theorem 3.7. Let the assumptions of Theorem 2.8 hold for p = 2 and let the assumptions

of Theorem 2.8 or 3.5 hold for some p = r ≤ 2 or p = r > 2, respectively. Let f ∈

Lq([0, T ], Lr(Rd)) and ϕ = 0, for some q ∈ (1,∞) and T > 0. Then the solution u of

(1.3) belongs W 1,q([0, T ], Lr(Rd)) and A0u, V u ∈ Lq([0, T ], Lr(Rd)).

The same conclusion holds in the setting of Theorem 2.5 if either γ < 2 and 1 < r ≤ 2

or if γ2 < 4/(r − 1) and r > 2.

4. Interior singularities

We now consider singularities of the lower order coefficients, again assuming that (H1)

and (H5) hold and that 1 < p < ∞. For simplicity we suppose that F, V, and U satisfy

(H2), (H3), and (H4) on Rd \ {0} and that (2.4) is true. Then Dp = D(A0)∩D(V ) is still

dense in Lp(Rd) since Dp contains C∞
0 (Rd \ {0}). In addition, we require that

U(x) → ∞ as x → 0. (4.1)

As before, we may assume without loss of generality that (H2) holds with Cγ = 0. Since

a is uniformly elliptic in a neighborhood of 0, we can rewrite (H2) as |∇U− 1

2 | ≤ γ1 in a

neighborhood of the origin and for a suitable γ1 > 0. Then (4.1) yields

U(x) ≥ γ1|x|
−2 as x → 0. (4.2)

So our methods only apply to strongly singular potentials. Of course, some weaker singu-

larities can easily be handled by perturbation arguments based on Sobolev embeddings.

However, the whole picture seems to be quite complicated even for Schrödinger operators

in L2(Rd), see [11], [12]. We further note that for sufficiently small γ1 in (4.2) and aij = δij

the space C∞
0 (Rd\{0}) is a core for A0−V = ∆−V due to Theorem 4.1 in [26]. Since the
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resulting upper bound for γ differs from our smallness condition (2.4), we do not invoke

the results from [26]. Therefore, C∞
0 (Rd\{0}) could be not a core of the operators studied

below, in general.

As in the proof of Theorem 2.5 we introduce the approximating potentials Vε = V
1+εV

and

Uε = U
1+εU

, where ε ∈ (0, 1]. Observe that both functions can be extended continuously

by setting V (0) = U(0) = 1/ε. Moreover, Uε belongs to C1(Rd) with ∇Uε(0) = 0 due to

(4.2). One can check as in (2.9) that (H2) holds for Uε and Vε with constants independent

of ε ∈ (0, 1]. We further define Fε = (1 + εU)−3/2F and Fε(0) = 0. Because of

|Fε · ξ| = (1 + εU)−3/2 |F · ξ| ≤ κ (1 + εU)−3/2 U
1

2 a0[ξ]
1

2 ≤ κ U
1

2

ε a0[ξ]
1

2

for ξ ∈ R
d, Fε and Uε satisfy hypothesis (H3) with the same constant. This estimate also

shows that the function Fε belongs to C1(Rd, Rd). Then we obtain

div Fε = (1 + εU)−3/2 div F − 3ε
2

(1 + εU)−5/2 ∇U · F

≥ −θU(1 + εU)−1 − 3
2
κγεU2(1 + εU)−2 ≥ −(θ + 3

2
κγ)Uε .

Hence Fε and Uε fulfill (H4) with a uniform constant if in addition

θ + 3
2
κγ < p. (4.3)

In view of (2.4) this condition holds automatically if p > 5/2.

As a consequence, Lemmas 2.4 and 2.6 and Propositions 2.3 and 2.7 hold for the

operators

A(ε) = A0 + Fε · ∇ − Vε, 0 < ε ≤ 1,

with uniform constants. Observe that in this case Dp = D(A0) since Vε is bounded.

We first consider the Schrödinger case F = Fε = 0. By approximation, Proposition 2.3

is true for A0 − Vε defined on D(A0). Let u ∈ D(A0)∩D(V ). Then Vεu → V u in Lp(Rd)

as ε → 0 by monotone convergence, and thus Proposition 2.3 holds for A0 − V defined

on D(A0)∩D(V ). Arguing as in Theorem 2.5, we then establish the following result. (In

(2.10) one has to use ϕ ∈ C∞
0 (Rd \ {0}).)

Theorem 4.1. Let 1 < p < ∞. Assume that (H1) and (H5) hold and that U and V

satisfy (H2) with γ2 < 4(p − 1)−1 on Rd \ {0}. Moreover, let (4.1) and (4.3) be true.

Then A0 − V with domain Dp generates an analytic C0–semigroup T (·) in Lp(Rd) such

that ‖T (z)‖ ≤ 1 for | arg z| ≤ φp and some φp > 0.

In a second step we treat the full operator A for the case 1 < p ≤ 2. For u ∈ D(A0)

there are un ∈ C∞
0 (Rd) such that un → u and A0un → A0u in Lp(Rd). Using Lemma 2.6

and (H3) for Uε and Fε, we see that Fε · ∇un → Fε · ∇u in Lp(Rd) as n → ∞. Thus

Proposition 2.3 holds for A(ε) defined on D(A0). Next, we take u ∈ D(A0)∩D(V ). Then

Vεu → V u in Lp(Rd) as ε → 0. Further, Fε · ∇u converges to F · ∇u pointwise for x 6= 0,

and |Fε · ∇u| ≤ |F · ∇u|. Fatou’s Lemma, (H3), and Lemma 2.6 show that

‖F · ∇u‖p ≤ lim inf
ε→0

‖Fε · ∇u‖p = lim inf
ε→0

lim
n→∞

‖Fε · ∇un‖p

≤ c lim inf
ε→0

lim
n→∞

(‖A0un‖p + ‖Vεun‖p) = c (‖A0u‖p + ‖V u‖p).
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As a consequence, Fε · ∇u → F · ∇u in Lp(Rd) by dominated convergence. Combining

these facts, we see that the conclusions of Propositions 2.3 and 2.7 are valid for A defined

on D(A0)∩D(V ). Now one can proceed as in the proof of Theorem 2.8 to derive the next

result.

Theorem 4.2. Let 1 < p ≤ 2. Assume that (H1) and (H5) hold and that U , V , and F

satisfy (H2), (H3), and (H4) with (2.4) on Rd \ {0}. Moreover, let (4.1) and (4.3) be

true. Then A with D(A) = Dp generates an analytic C0–semigroup T (·) in Lp(Rd) such

that ‖T (z)‖ ≤ 1 for | arg z| ≤ φp and some φp > 0.

Finally we deal with the complete operator A for p > 2, now assuming (H2’) on Rd\{0}

instead of (H2). Again (1.1) (and thus (H2)) are satisfied by Uε, Vε, and akl with uniform

constants. But (1.2) is false for Uε if the diffusion coefficients are unbounded. So it is

not clear a priori whether we can extend Proposition 3.3 to Uε with uniform constants.

However, we can almost prove this fact by additional arguments, see (4.5). We write c

(cη) for a generic constant only depending on p, α in (2.4), and the constants in (H2’),

(H3), and (H4) (and on η > 0). Take u ∈ D(A0) ∩ D(V ) and a smooth function χ with

support in B(0, 2) such that 0 ≤ χ ≤ 1 and χ = 1 on B(0, 1). Then we have

‖U
1

2

ε a0[∇u]
1

2‖p = ‖U
1

2

ε

{

a0[∇(χu)] + a0[∇((1 − χ)u)] + 2a0(∇(χu),∇((1 − χ)u))
}

1

2 ‖p

≤ c ‖U
1

2

ε a0[∇(χu)]
1

2‖p + c ‖U
1

2

ε a0[∇((1 − χ)u)]
1

2 ‖p

≤ c ‖U
1

2

ε a0[∇(χu)]
1

2‖p + c ‖U
1

2 a0[∇((1 − χ)u)]
1

2 ‖p .

To estimate the first summand in the last line, we extend the diffusion coefficients akl

from B(0, 2) to ãkl ∈ C1
b (R

d) such that ãkl = ãlk are strictly elliptic. Now we can apply

Proposition 2.3 of [24] and obtain, for each η > 0,

‖U
1

2

ε a0[∇(χu)]
1

2‖p ≤ η ‖A0(χu)‖p + cη ‖Uε(χu)‖p

(In fact, Proposition 2.3 of [24] is stated for test functions, but by approximation it

also holds for χu since Uε is bounded.) For the second summand, we extend U from

Rd \ B(0, 1) to Ũ ∈ C1(Rd) such that Ũ is strictly positive. Then we are in a position

to use Proposition 3.3 (which can be extended to D(A0)∩D(Ũ) by approximation, using

Theorem 2.5), and obtain

‖U
1

2 a0[∇((1 − χ)u)]
1

2‖p ≤ η ‖A0((1 − χ)u)‖p + cη ‖U((1 − χ)u)‖p

for each η > 0. Thus we deduce

‖U
1

2

ε a0[∇u]
1

2‖p ≤ cη [‖A0u‖p + ‖a0(χ,∇u)‖p + ‖a0(1 − χ,∇u)‖p]

+ c ‖u‖p + cη ‖Uεχu‖p + cη ‖U(1 − χ)u‖p

≤ cη ‖A0u‖p + cη ‖U
1

2

ε a0[∇u]
1

2 ‖p + cη ‖Uεχu‖p + cη ‖U(1 − χ)u‖p ,

17



where we have used that Uε is uniformly bounded from below for ε ∈ (0, 1]. So we arrive

at the desired estimate

‖U
1

2

ε a0[∇u]
1

2 ‖p ≤ cη ‖A0u‖p + cη ‖U(1 − χ)u‖p + cη ‖Uεχu‖p (4.4)

≤ cη ‖A0u‖p + cη ‖Uu‖p (4.5)

for sufficiently small η > 0 and all 0 < ε ≤ 1 and u ∈ D(A0)∩D(V ). (Note that we have

U , and not Uε, on the right hand side.) Combined with (H3), this inequality yields

‖Fε · ∇u‖p ≤ κ ‖U
1

2

ε a0[∇u]
1

2 ‖p ≤ cκη ‖A0u‖p + cηκ ‖Uu‖p (4.6)

for u ∈ D(A0) ∩ D(V ), 0 < ε ≤ 1, and small η > 0. We further define

fε := u − A0u − Fε · ∇u + V u.

Let 0 < ε′ ≤ ε ≤ 1. Because of Uε′ ≥ Uε, the coefficients akl, Uε′, Vε′, and Fε satisfy (H1),

(H2), (H3), (H4), and (H5) with uniform constants. Lemma 2.4 now yields

‖Vε′u‖p ≤ c ‖u − A0u − Fε · ∇u + Vε′u‖p (4.7)

for test functions u and a constant not depending on ε and ε′. Let u ∈ D(A0) such that

V (1−χ)u ∈ Lp(Rd) (where χ and Ũ are chosen as above). By Theorem 2.5 applied to Ũ ,

there are test functions un such that A0un → A0u, U(1−χ)un → U(1−χ)u, and un → u

in Lp(Rd). Estimate (4.4) and (H3) thus show (4.7) for such u. Letting ε′ → 0, we then

derive ‖V u‖p ≤ c ‖fε‖p for u ∈ D(A0) ∩ D(V ). So we conclude that

‖A0u‖p ≤ ‖fε‖p + ‖u‖p + ‖Fε · ∇u‖p + ‖V u‖p ≤ c ‖fε‖p + 1
2
‖A0u‖p

taking a sufficiently small η in (4.6). As a consequence,

‖u‖p + ‖A0u‖p + ‖V u‖p ≤ C ‖fε‖p ≤ C ′ (‖u‖p + ‖A0u‖p + ‖V u‖p) (4.8)

for constants independent of ε ∈ (0, 1] and u ∈ D(A0) ∩ D(V ). Since Fε · ∇u → F · ∇u

pointwise, Fatou’s lemma and (4.6) imply

‖F · ∇u‖p ≤ lim
ε→0

‖Fε · ∇u‖p ≤ cκη ‖A0u‖p + cηκ ‖Uu‖p . (4.9)

Hence, Fε · ∇u → F · ∇u in Lp(Rd) as ε → 0 by the theorem of dominated convergence.

Thus we can let ε → 0 in (4.8) and obtain the assertion of Proposition 2.7 in the present

situation. We can extend Proposition 2.3 for A(ε) to u ∈ D(A0) ∩ D(V ) as we extended

(4.7). Since Fε · ∇u → F · ∇u and Vεu → V u in Lp(Rd) as ε → 0, Proposition 2.3 is then

also valid for A defined on D(A0)∩D(V ) Now the next theorem can be shown exactly as

Theorem 2.8.

Theorem 4.3. Let p > 2. Assume that (H1) and (H5) hold and that U , V , and F satisfy

(H2’), (H3), and (H4) with (2.4) on Rd \ {0}. Moreover, let (4.1) and (4.3) be true.

Then A with D(A) = Dp generates an analytic C0–semigroup T (·) in Lp(Rd) such that

‖Tp(z)‖ ≤ 1 for | arg z| ≤ φp and some φp > 0.
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In order to extend Theorem 3.7, let the assumptions of Theorem 4.2 hold for p =

2 and let the assumptions of Theorem 4.2 or 4.3 hold for some p = r ≤ 2 or p =

r > 2, respectively. In view of the proof of Theorem 3.7, we have to show that A

generates positive and consistent semigroups on L2(Rd) and Lp(Rd). This is true for

r ≤ 2, since then the theory of Section 2 applies to A(ε) and A(ε)u → Au as ε → 0

for u ∈ D(A0) ∩ D(V ). Thus positivity and consistency follows from the Trotter–Kato

theorem, [15, Theorem III.4.8]. The same argument works in the case F = 0 for all

r ∈ (1,∞). If r > 2, we still have T (t) ≥ 0 on L2(Rd), so that it remains to verify that

the semigroups on Lr(Rd) and L2(Rd) coincide for f ∈ L2(Rd) ∩ Lr(Rd). Consider again

the operator Ltu = A0u−V u+tF ·∇u, 0 ≤ t ≤ 1. Note that the resolvent of A0−V = L0

is consistent. For small t > 0 and large λ ∈ ρ(L0), we have

R(λ, Lt) = R(λ, L0)
∞

∑

k=0

[tF · ∇R(λ, L0)]
n.

Due to (4.9), this expansion implies that the resolvent of Lt is consistent. By finitely

many iterations of this argument, we derive the consistency of the resolvent of L1 = A,

whence the consistency of the semigroups follows.

Theorem 4.4. Let the assumptions of Theorem 4.2 hold for p = 2 and let the assumptions

of Theorem 4.2 or 4.3 hold for some p = r ≤ 2 or p = r > 2, respectively. Then the

semigroups T (t) are positive. Let f ∈ Lq([0, T ], Lr(Rd)) and ϕ = 0, for some q ∈ (1,∞)

and T > 0. Then the solution u of (1.3) belongs W 1,q([0, T ], Lr(Rd)) and A0u, V u ∈

Lq([0, T ], Lr(Rd)).
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