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Abstract 

For the study of peri-implant tissue differentiation, a repeated sampling 
bone chamber has been developed. Mathematical models that describe 
tissue differentiation help to gain insight into the processes taking place 
in the chamber. We consider here the numerical solution of a taxis-
diffusion-reaction partial differential equation model. The general 
approach is the method of lines and we pay special attention to transfer 
qualitative features of the solution to the numerical approximation. These 
features are the conservation of mass principle and the nonnegativity of 
concentration values. This is achieved by following the finite volume 
idea and by employing positivity preserving spatial discretisations, 
respectively. An instructive example is given. The time integration is 
performed with ROWMAP, a suitable implicit time integration method 
with time step size control. Alltogether this yields a reliable and efficient 
numerical solution technique. A numerical simulation of the tissue 
differentiation process in the chamber is presented and discussed. 

 

 

 

1 Introduction 
 

Identifying and understanding the processes involved in bone growth and 
(re)modelling is an active research theme with profound clinical applications, e.g. 
for optimizing the treatment of bone fractures and the osseointegration of 
implants, alongside its importance in unravelling aspects of the development and 
growth of the human skeleton. The processes involved in embryonic skeletal 
development, in postnatal bone growth, and in fracture healing (in case of 
moderate fracture gap size and stability) are in many aspects very similar. In 
particular the aggregation of mesenchymal stem cells, their subsequent 
chondrification, i.e. the formation of cartilage, and finally ossification are shared 
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in all three cases [Vortkamp et al. 1998]. Out of the three examples, fracture 
healing provides the best opportunity to study the processes in an experimentally 
controllable environment. However, the reproducibility of animal experiments is 
still rather low since their outcome is often considerably site-specific and species-
specific [Carter 1984, Bertram and Swartz 1991]. A repeated sampling bone 
chamber (Fig. 1) has been developed [Duyck et al. 2004] that enables the re-
petition of experiments at the same site in the same animal and hence overcomes 
the above restriction. Reliable repetition of experiments also allows for an 
improved validation of mathematical models and opens up the possibility of 
parameter estimation in the processes under study. Numerical simulation of the 
processes in the bone chamber in turn contributes to a better understanding of the 
experimentally observed phenomena and helps to gain insight into the 
mechanisms that are very hard to investigate experimentally [Geris et al. 2004]. 

 

 
Fig. 1:  Left: picture and composition-drawing of the bone chamber. After insertion of the 
outer bone chamber (1) in the rabbit’s proximal tibia, there is a healing period of six 
weeks during which bone ingrowth is inhibited by a teflon inner chamber (7). After six 
weeks this inner chamber is removed and replaced with an inner chamber (3), a teflon 
bearing (5) and an implant (6). Tissue can grow through the perforations (2) into the free 
space (4) of the bone chamber. Right: axisymmetric model of the bone chamber (upper), 
and simplified FD/FV-model of the tissue (3) inside the chamber (lower). 

 

Different mathematical models aim to describe the influence of different 
mechanical and biological parameters on bone tissue differentiation at different 
levels. The mechanoregulatory models developed by Prendergast et al. [1997] and 
Claes et al. [1999] describe the influence of mechanical loading on tissue 
differentiation on a continuum scale (macro level). In every element of the 
continuum finite element model, variables representing the local mechanical 
environment are calculated and based upon their values, the parameters of the 
mathematical models are adjusted. The biological model developed by Bailón-
Plaza and van der Meulen [2001] also aims to simulate the tissue differentiation in 
fracture healing on a macro scale, taking only biological parameters into account. 

In vitro studies show that in order to induce any cellular response by direct 
mechanical deformation of bone cells, deformations need to be one to two orders 
of magnitude larger than the bone tissue strains normally experienced by the 

 2



whole bone [You et al. 2001]. You and co-workers [2001] developed a model that 
links the loading on the whole bone to the loading that is sensed by individual 
cells. This way tissue differentiation can be linked to events happening at a 
cellular (micro) level. 

One order of magnitude down (subcellular level), links have been established 
between integrin-mediated cell adhesion (which is central to cell survival, 
differentiation and motility) and biochemical and biophysical cues such as ligand 
spatial arrangement and matrix rigidity, which in turn are central to the 
governance of cell responses to the external environment [Koo et al. 2001]. 
Incorporation of these underlying processes in the mathematical models would 
result in a highly mechanistic model that describes bone tissue differentiation 
from the macro to the nano scale. The down-side of such a model is the very high 
number of unknown parameters and variables, of which most cannot be validated 
experimentally. 

The study presented here focuses on the macro-level and looks into the effect of 
biological factors on bone tissue differentiation as described by the model of 
Bailón-Plaza and van der Meulen [2001]. In contrast to that work, which 
considers a ‘normal’ fracture, here, bone ingrowth into the bone chamber is 
considered. We present the model equations in Section 2.1, and our numerical 
approach to their solution in Section 2.2. In Section 2.3, we discuss the spatial 
discretisation of the linear advection equation, which is obtained as a very 
simplified version of the full model. Here we also make clear why we cannot be 
content with standard discretisations for the full model but need to use suitable 
schemes. Finally, in Section 3, we present some simulation results, compare with 
experimental observation, and give some concluding remarks. 

 

2 Methods 
 

2.1 Mathematical model 
 

The mathematical model of tissue differentiation by Bailón-Plaza and van der 
Meulen [2001] is a partial differential equation (PDE) system of taxis-diffusion-
reaction (TDR) type whose solution describes the evolution of seven quantities: 
mesenchymal (cm), chrondocyte (cc) and osteoblast (cb) cell densities, connective 
tissue/cartilage (mc) and bone (mb) matrix densities, and chondrogenic (gc) and 
osteogenic (gb) growth factor concentrations in time (t) and 2D space (x, y). The 
model is a two-dimensional simplification of the actual three-dimensional process 
and accounts for many of the important events in fracture healing including 
haptokinetic and haptotactic mesenchymal cell migration depending on the matrix 
densities, space-limited cell proliferation as well as environment-dependent cell 
differentiation, growth factor and matrix production and degradation (Fig. 2). The 
model equations are given by 
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The actual form of the functions describing the diffusion coefficient d(mc, mb), the 
taxis rate v( , , ,c b cm m m m∇ ∇ ) and the reactions ri (…) can be found in Bailón-
Plaza and van der Meulen [2001]. The above equations show the general structure 
of the model equations and the interdependence of the seven quantities described 
by the model. In particular, the special form of the equation for cm, which includes 
a taxis term driven by the matrix densities, is evident. 

 

 
Fig. 2:  Schematic representation of the mathematical model of Bailón-Plaza and van der 
Meulen [2001]. 
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The set of parameter values is adapted from Bailón-Plaza and van der Meulen 
[2001]. The temporal parameters are scaled according to [Bailón-Plaza and van 
der Meulen 2003] to account for the difference in time scale of the differentiation 
process in rat (for which the model has been developed) and rabbit. The value of 
the initial concentration of mesenchymal cells, the chondrocyte proliferation and 
replacement rate and the cartilage degradation rate are adjusted to represent the 
situation in the bone chamber more accurately. The spatial domain, as depicted in 
Fig. 1 (lower right), represents a cut through the bone chamber. A time-limited 
inflow of mesenchymal cells and growth factors, via prescribed concentration 
values, through the chamber perforation in the outer wall and the bottom 
(number 2 in Fig. 1) is assumed. The bottom boundary of the domain is a 
symmetry line and there and on all remaining boundary parts no flow conditions 
apply. Initially a low fibrous tissue matrix concentration is assumed in the domain 
and all remaining quantities are assumed to be zero. 

 

2.2 Simulation approach 
 

The seven concentrations appearing in the mathematical model (1) are non-
negative by nature. This qualitative property of the solution should be inherited by 
numerical approximations of the concentrations and hence must be obeyed by the 
algorithms employed in their computation. This is one essential aspect of a 
reliable numerical simulation. Many standard numerical techniques fail in this 
respect and therefore special attention is required. Furthermore, the PDE system 
(1) is derived based on the principle of mass conservation and this should be 
respected by the numerical algorithms as well. Finite volume techniques, as they 
are employed in this approach, are designed to automatically ensure this property. 
Besides those qualitative properties, other important aspects are efficiency and 
sufficient accuracy of the numerical scheme. The simulation technique described 
below meets all these requirements.  

Reliable numerical methods for TDR models have been investigated extensively 
in Gerisch [2001], see also [Gerisch and Chaplain 2004]. The techniques 
developed there are adapted to the specific system at hand here. This involves a 
generalisation to the more complex (non-rectangle) geometry of the bone 
chamber. The general approach taken is the method of lines (MOL) which 
consists of three substeps. 

 

(A) Selection of a spatial grid. The spatial domain is covered by a block-
structured, rectangular grid. With each grid cell a time-dependent (spatial) average 
concentration value for each of the seven solution quantities is associated. The 
aim of the following two steps is the computation of the temporal evolution of 
these average concentrations. 

 

(B) Spatial discretisation, i.e. approximation of the spatial derivatives of the 
PDE system in all grid cells by using the average concentration values in 
neighbouring grid cells (finite volumes approach). This leads to the so called 
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MOL-ODE, that is a system of coupled ordinary differential equations (ODEs) 
describing the temporal evolution of the average concentrations in the grid cells. 
The dimension of this system is the number of grid cells times the number of 
equations in the PDE system. In order to obtain a sufficient accuracy in the spatial 
discretisation a suitably fine grid is required, leading, in our case, to a MOL-ODE 
of dimension about 300000. One important characteristic of the selected spatial 
discretisation is the requirement that the resulting ODE admits only nonnegative 
solutions whenever the initial data is nonnegative. This is in agreement with one 
of the algorithmic objectives formulated above. The requirement leads to 
conditions on the discretisations employed for taxis, diffusion, and reaction terms. 
These are easily met for the reaction terms (pointwise evaluation) and the 
discretisation of the diffusion term (standard second-order central differences). 
However, the discretisation of the taxis term is not straightforward under these 
conditions and upwinding techniques with nonlinear limiter functions (van Leer 
limiter) are employed in order to satisfy them. Section 2.3 demonstrates by means 
of an example the necessity of such a special taxis discretisation. A more detailed 
discussion of the spatial discretisation can be found in Gerisch [2001]. 

 

(C) Time integration of the MOL-ODE, i.e. approximations to the solution of the 
MOL-ODE, as obtained in substep (B), are computed at discrete time points. Due 
to the enormous size of the MOL-ODE this requires very efficient numerical 
techniques. As a rule, ODE systems arising from the discretisation of PDEs 
involving diffusion terms are referred to as stiff systems and call for implicit time 
integration schemes. Furthermore, the method employed should have an 
automatic time step size control, which ensures that the error caused in each time 
step (local error) is below a user-prescribed tolerance while at the same time using 
as little computational effort (time) as possible. Such a method is implemented in 
the efficient and reliable code ROWMAP [Weiner et al. 1997] which is used for 
the simulations described here.  

 

The numerical scheme described above has been implemented in a simulation tool 
in the FORTRAN programming language. This tool allows the user to run 
simulations interactively as well as automatically and to adapt the model 
parameters, model equations and boundary conditions in a straightforward way.  
 
2.3 Illustration of the special taxis discretisation 
 

In order to illustrate point (B) above more clearly and to give a motivation for the 
special taxis discretisation employed, a gross simplification of the equation for cm 
of the model (which contains the taxis term) is considered here. Restrictions are 
made to one spatial dimension (x), diffusion and reaction are neglected 
completely, and the taxis function v( , , ,c b cm m m mb∇ ∇ ) is replaced by a positive 
constant a. This results in the linear advection equation  

( , ) ( , ) 0u t x u t xa
t x

∂ ∂
+ ⋅ =

∂ ∂
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with constant velocity a. Given an initial profile u0(x) at time zero, the exact 
solution is given by u(t, x) = u0 (x – at), that is the initial profile is advected 
unchanged to the right with velocity a. Now the numerical solution of this 
problem is investigated. Consider N grid cells (finite volumes) of equal length h 
covering the spatial domain and denote the ith cell by Vi = [xi – h, xi ]. Let ui (t) be 
the average of u(t,x) on Vi. The temporal evolution of ui(t) is then exactly 
described by the equation  

( ) ( ) ( ), ,i i
i

a u t x a u t x h
u t

h
⋅ − ⋅ −⎡ ⎤⎣′ = − ⎦  .                   (2) 

Here a·u(t, xi) is the flux (or flow of material) through xi at time t. The aim is to 
compute approximations Ui (t) of the exact cell averages ui (t). To this end we 
must find a computable estimate F(t, xi ) of the flux a·u(t,xi ) on the cell interfaces. 
This is achieved by letting the numerical flux F(t, xi ) depend on the (computable) 
approximations …,Ui-1 (t), Ui (t), Ui+1 (t), … of the exact cell averages in neigh-
bouring grid cells only. This allows to replace the exact equation (2) by the 
approximation 

( )
( ) ( ), ,i i

i

F t x F t x h
U t

h
− −⎡ ⎤⎣ ⎦′ = −  . 

Using this approach for each of the N grid cells (with some special treatment near 
the boundary of the domain) the MOL-ODE system of dimension N is obtained. 
This completes substep (B) of the method of lines. In the following we discuss the 
choice of the numerical flux F(t, xi). 

One simple choice for the numerical flux is motivated by the underlying physics 
of the flow: the flow comes from the left (upstream) and therefore the flux can be 
approximated by F(t, xi) = a·Ui(t). This results in the ODE 

( ) ( ) ( )1i i
i

a U t U t
U t

h
−−⎡ ⎤⎣ ⎦′ = −  . 

The resulting scheme is a first-order accurate approximation of the linear 
advection equation and called the first-order upwind method. Applying this 
method to a nonnegative initial profile u0 (x) leads to a nonnegative numerical 
solution without oscillations, but one recognizes a considerable smearing out of 
the profile, see Fig. 3 (left column). This diffusive character of the scheme, which 
can be analysed rigorously, can be reduced by decreasing the interval length h and 
hence, at the same time, increasing the dimension N of the MOL-ODE system. 
However, an extremely fine grid is required in order to resolve steep gradients 
accurately and this is in general prohibitively expensive in terms of computing 
time for the subsequent solution of the MOL-ODE, i.e. substep (C). Therefore it is 
more advisable to seek a more accurate approximation of the advection equation. 
This can be achieved by approximating the fluxes on cell interfaces with F(t, xi) = 
a· (Ui+1 (t) + Ui (t)) / 2, i.e. by using the averages on both sides of the cell interface 
at xi. This leads to 

( ) ( ) ( )1 1

2
i i

i

a U t U t
U t

h
+ −−⎡ ⎤⎣ ⎦′ = −  ,  
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which is known as the second-order central approximation of the linear advection 
equation. Applying this scheme to a smooth nonnegative initial profile results in a 
much improved numerical solution compared to the first-order scheme, see Fig. 3 
(upper row, middle plot). However, if the initial profile contains steep fronts – as 
they are often present in models from evolutionary biology including the one 
considered in this work – then the weaknesses of the central scheme become 
apparent: although no diffusive character of the scheme is present, a dispersive 
character can be observed that leads to unphysical oscillations in the solution and 
subsequently negative concentration values, see Fig. 3 (lower row, middle plot). 
This is clearly unacceptable because if reactions are present in the model then 
negative (concentration) values might render them unstable. Setting negative 
solution values to zero is no general option either since this interferes with the 
mass balances and hence can have a critical influence on steady states of the 
system. 
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Fig. 3:  Solutions of the linear advection equation with velocity a = 1 at time t = 1. The 
dashed lines are exact solutions and the solid lines are numerical approximations. The 
length of each grid cell in the numerical scheme is h = 1 / 75. The initial profile is a

 both approaches is what seems to be desirable: 
igh accuracy in smooth regions of the solution and no negative solution values or 
scillations anywhere. This can be achieved. To this end a flux approximation is 

 
smooth wave (upper row) or a block (lower row). The discretisation of the advective term 
is first-order upwind (left column), second-order central (middle column), and limited 
with van Leer limiter (right column). 

 

A combination of the properties of
h
o
considered of the form  

( ) ( ) ( ) ( )( )1
1( , )i i i i iF t x a U t L r U t U t−

⎛ ⎞= + −
2⎜ ⎟

⎝ ⎠
 , 
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with a smoothness monitor function ri of the solution defined by  

1

1( ) ( )i
i iU t U t−

( ) ( )i iU t U t
r + −
=  

and a so-called limiter function L(r). Note that ri s negative at local maxima or 
minima of the solution and about one in smooth regions. Observe further that for 
L(r ) = 0 the first-order upwind flux is recovered whereas for L(r ) = r  the 

−

 i

i i i
second-order central flux is obtained. From the discussion above it is clear that 
L(ri ) should be about one in smooth regions of the solution but close to or even 
zero in regions where a higher-order discretisation leads to negative solution 
values or oscillations. So the task of the limiter function is to smoothly switch 
between a first-order and a higher-order scheme depending on the local behaviour 
of the problems solution. This can be achieved, for instance, by choosing the van 
Leer limiter function  

( )
r r

L r
1 r
+

=
+

 . 

The result of this approach can be seen in Fig (right column). A nonnegative 
solution without oscillations is obtained and the solution is smeared out only 
locally around local maxima or minima where the limiter selects the diffusive 

h 2001]. The 

4. The upper part of the figure 
mesenchymal cell density (upper), 

oncentration of the fibrous tissue/cartilage extracellular matrix (ECM, middle) 

. 3 

first-order upwind discretisation. Hence there is a good qualitative and quan-
titative agreement of the numerical solution and the exact solution.  

The approach described above can be generalised to the full TDR system (1) 
describing tissue differentiation in the bone chamber and was used for the 
simulations reported in Section 3. Details can be found in [Gerisc
excellent textbook by Hundsdorfer and Verwer [2003] discusses many more 
computational aspects, also in the context of biomedical applications. 

 

3 Results, discussion and future research 
 

Examples of the solution output are shown in Fig. 
hows three snapshot sequences of the s

c
and concentration of bone ECM (lower). A wave of mesenchymal cells travels 
through the chamber in eight days. In the presence of the chondrogenic growth 
factor, these precursor cells differentiate into chondrocytes. When the cell density 
cc is sufficiently high, the chondrocytes start depositing the cartilage matrix, 
filling the entire chamber with high density cartilage by day 30. When the 
cartilage density has reached a critical value (representing the chondrocytes 
maturation) the endochondral replacement process under the influence of the 
osteogenic growth factor will start. At day 60 the chamber is filled with a bony 
ECM. This endpoint result is in qualitative agreement with the experimental 
observations showing a lot of bone in the chamber after 12 weeks (84 days). The 
lower part of Fig. 4 shows the evolution of the percentage of the chamber filled 
with fibrous tissue/cartilage ECM (left) and bone ECM (right). It clearly shows 
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the process of endochondral replacement starting from a chamber filled with 
cartilage around day 40 and ending around day 60 with a chamber entirely filled 
with a bone ECM. 

 
Fig. 4:  Upper: simulation snapshots of the wave of mesenchymal cell density (cm), the 
density of fibrous tissue/cartilage ECM (mc) and bone ECM (mb). Lower: percentage of
the chamber occupied by fibrous tissue/cartilage ECM (mc - left) and bone ECM (mb - 
right). 
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A simulation of the tissue differentiation model for 12 weeks with the algorithm 
escribed takes about 40 minutes computation time on a standard PC with Intel 

 4 processor. This is very efficient taking into account that the dimension 
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