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SUMMARY

Multi-body dynamics may be considered as integration platform for simulation in vehicle system dynamics.
In the present report we discuss classical numerical simulation techniques of multi-body dynamics, their use
in multi-body system simulation packages and extensions to typical problems of vehicle system dynamics
like continuous and discrete controllers and multi-physical applications.

1. INTRODUCTION

Model based simulation in vehicle system dynamics relies on advanced methods for
model setup, robust and efficient numerical solution techniques and powerful simula-
tion tools for industrial applications.

Most frequently the mechanical components are described by rigid or flexible
multi-body system models that interact with electrical, hydraulic and other system
components [1, 2], see also [3] for a summary of recent developments and [4] for a
comprehensive overview on methods and algorithms that are tailored to industrial sim-
ulation packages. The first systematic treatment of numerical problems and numerical
methods in multi-body dynamics from the viewpoint of vehicle system dynamics is
the monograph of Eich–Soellner and Führer [5], see also [6].

In its simplest form the equations of motion of a multi-body system are given by a
non-linear second order system of ordinary differential equations (ODEs) of moderate
dimension that may be solved numerically by standard methods.

The structure of the model equations gets more complicated if the multi-body sys-
tem has kinematically closed loops [7]. Multi-body system models of wheel suspen-
sions may be considered as a typical example in road vehicle simulation. The complex
kinematics is modelled by constraints, the resulting model equations form a second
order differential-algebraic equation (DAE).

Robust and efficient DAE time integration methods are the backbone of state-of-
the-art multi-body system simulation software. Another important issue in simulation
is the handling of discrete controllers that are beyond the classical time continuous
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world of mechanics.
Advanced multi-body system simulation packages have been open to multi-

disciplinary applications for a long time. The classical approach to the integration
of hydraulic and electrical system components in multi-body models are special force
elements with time continuous or time discrete inner state variables [3].

Alternatively, novel modelling and simulation techniques for multi-physical tech-
nical systems may be used in more complex multi-disciplinary applications. Here, the
multi-disciplinary aspect is considered by universal modelling languages like Mod-
elica [8] or by the coupling of several mono-disciplinary simulation packages in a
co-simulation environment [9].

In the present report we give an overview on classical and more advanced simu-
lation algorithms in vehicle system dynamics that are closely related to multi-body
numerics and multi-body system simulation packages.

The material is organized as follows: Basic simulation algorithms in multi-body
system analysis are summarized in Section 2. In Section 3 we discuss the general struc-
ture of model equations including closed-loop systems, inner state variables of force
elements and time discrete sub-systems. Special DAE time integration methods for
the robust and efficient numerical solution of these model equations are presented in
Section 4. Finally, in Section 5 we focus on algorithms and tools for multi-disciplinary
applications.

Throughout the present report the analysis of distributed physical phenomena like
the elastic deformation of car components or the temperature field in disk brakes is
restricted to low-dimensional modal approximations.

2. BASIC SIMULATION ALGORITHMS

If a mechanical multi-body system is described by a minimum set of generalized co-
ordinates y(t) ∈ R

ny the equations of motion form a second order ODE

M(y)ÿ(t) = f(y, ẏ, t) (1)

with the symmetric, positive definite mass matrix M(y) containing mass and inertia
properties of all bodies and the vector of applied and gyroscopic forces f(y, ẏ, t)
[7, 10].

Despite its implicit structure Eq. (1) can be solved numerically with a complex-
ity that grows only linearly with the number N of bodies in the system. These
O(N)–formalisms exploit the topology of the multi-body system to evaluate the right-
hand side M−1(y)f(y, ẏ, t) for given t, y, ẏ (explicit formalisms, e. g. [11, 12]) or
the residual r(y, ẏ, a, t) := M(y)a − f(y, ẏ, t) for given t, y, ẏ, a (residual for-
malisms, e. g. [13]) efficiently.

In contrast to structural dynamics the standard time integration methods of multi-
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body dynamics are not tailored to the second order structure of (1) since additional
first order equations have to be considered frequently in practical applications, see
Section 3. With the velocity vector v := ẏ the equations of motion get the state space
form

ẋ(t) = ϕ(x, t) with x(t) :=
(

y(t)
v(t)

)
, ϕ(x, t) :=

(
v

[M−1f ](y, v, t)

)
. (2)

Static analysis The computation of static equilibria is often the first step in the anal-
ysis of a multi-body system model. They define, e. g., the working point for the lin-
earization of (1) and provide initial values for the dynamical simulation. An equilib-
rium position y∗ is determined by the equilibrium conditions ẏ = ÿ = 0 at t = t0:

0 = f(y∗,0, t0) . (3)

Eqs. (3) form a system of ny non-linear equations for the ny unknowns y∗ that
is solved by Newton’s method [14] being available as free software in a num-
ber of implementations that meet the demands on robustness and efficiency in
engineering applications, see, e. g., the results of the MINPACK project [15] at
http://www.netlib.org/minpack.

Other static analysis methods are closely related to the equilibrium problem (3): the
computation of nominal forces in vehicle dynamics [5] and the trimming of aircraft
models in aeronautics [16]. In both applications the actual values of some parameters
θ ∈ R

nθ in the force elements are left undefined in the model setup: f = f(y, ẏ, t; θ).
Later, these parameters are adjusted to meet equilibrium conditions

0 = f(y0,0, t0; θ∗) (4)

for a pre-defined position y0 of the multi-body system. The actual values θ∗ of nom-
inal forces or trim parameters are important criteria for the evaluation of a vehicle or
aircraft design.

Eq. (4) has the same mathematical structure as the classical equilibrium problem (3)
and could in principle be solved again by Newton’s method. However, in practical ap-
plications the system (4) is often underdetermined. Following the approach of Leven-
berg and Marquardt, (4) may be substituted by

‖f(y0,0, t0; θ∗)‖2 + α‖θ∗‖2 → min

to guarantee uniqueness of θ∗. Here, α > 0 denotes a small scalar regularization pa-
rameter [17].

Linearization The linearization of the equations of motion (1) is the key to the lin-
ear stability analysis near an equilibrium and to other methods of linear system
analysis [2]. Writing the right hand side of (1) as f(y, ẏ, u(t)) with system inputs
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u(t) ∈ R
nu the linearization at an equilibrium y = y∗, ẏ = 0, u = 0 yields

M ¨̄y = −D ˙̄y − Kȳ + Bu(t) (5)

with

M = M(y∗), D = −∂f

∂ẏ
(y∗,0,0), K = −∂f

∂y
(y∗,0,0), B =

∂f

∂u
(y∗,0,0).

The Jacobians ∂f/∂y, ∂f/∂ẏ and ∂f/∂u are approximated by classical finite dif-
ferences [14]. We obtain for the i-th column of ∂f/∂y(

∂f

∂y
(y∗,0,0)

)
·,i

≈ f(y∗ + ∆ · ei,0,0) − f(y∗,0,0)
∆

(6)

with the i-th unit vector ei and a small scalar parameter ∆ that satisfies 0 < |∆| � 1.
The numerical effort for the linearization (5) is dominated by the difference approx-

imations (6) with a total of 2ny + nu + 1 evaluations of f that require 2ny + nu + 1
evaluations of each force element in the multi-body system model. Substantial sav-
ings are achieved by the simultaneous difference approximation of several columns of
∂f/∂y, ∂f/∂ẏ and ∂f/∂u that requires some graph theoretical preparations based
on the topology of the multi-body system [18, 4].

Time Integration The state space form (2) of the equations of motion may be inte-
grated by any standard ODE solver [19]. Explicit Runge–Kutta methods like the 5th
order method of Dormand and Prince (free FORTRAN code DOPRI5 [20] and Mat-
lab’s default ODE solver ode45) and predictor–corrector methods of Adam’s type
(free FORTRAN code LSODE at http://www.netlib.org/odepack and Matlab solver
ode113) proved to be favourable in non-stiff applications.

More frequently, the model equations in vehicle system dynamics appear to be stiff
[19, 21] because of stiff springs and strongly damping force elements in most multi-
body vehicle models. Backward differentiation formulae (BDF, also: Gear’s method)
are the most often used time integration methods for stiff technical systems. Starting
from initial values x0 = x(t0) the numerical solution is obtained time step by time
step solving

1
hn

kn∑
j=0

αn,jxn+1−j = ϕ(xn+1, tn+1) (7)

w. r. t. xn+1 ≈ x(tn+1), ( n = 0, 1, . . . ).
In (7) the stepsize of time step tn → tn+1 is denoted by hn := tn+1 − tn. The

parameter kn defines the order of the method, 1 ≤ kn ≤ 6, and αn,j are the BDF
coefficients that are determined by kn and by the stepsizes hn, hn−1, . . . [19]. The
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well known backward Euler method
1
hn

(xn+1 − xn) = ϕ(xn+1, tn+1)

is a special case of (7), kn = 1.
For given state vectors xn+1−j ≈ x(tn+1−j), ( j = 1, . . . , k ) the BDF equa-

tions (7) define xn+1 implicitly as solution of the system of nx non-linear equations

0 = Φ(x) :=
αn,0

hn
x − ϕ(x, tn+1) +

1
hn

kn∑
j=1

αn,jxn+1−j . (8)

The application of Newton’s method to (8) yields

x
(l+1)
n+1 := x

(l)
n+1 − J−1 · Φ(x(l)

n+1) , ( l ≥ 0 ) (9)

with an initial guess x
(0)
n+1 that is obtained by polynomial extrapolation of xn,

xn−1, . . . . In (9), matrix J approximates the Jacobian of (8):

J ≈ ∂Φ
∂x

(x(l)
n+1) =

αn,0

hn
Iny

− ∂ϕ

∂x
(x(l)

n+1, tn+1) . (10)

Typically, the approximation of ∂ϕ/∂x by finite differences according to (6) dom-
inates the overall computing time in the dynamical simulation because of the large
number of function evaluations of ϕ that require the evaluation of all force elements
in the multi-body system and the computation of [M−1f ](y, v, t) by the O(N)–
formalism, see (2). Therefore these time consuming re-evaluations of the Jacobian J
have to be avoided as far as possible [19, 4].

In practical computations stepsize hn and order kn are adapted automatically
to meet the user defined error tolerances. The combination of stepsize and or-
der control with the algorithms for Newton’s method (9) and for the Jacobian re-
evaluations results in a fairly complicated structure of state-of-the-art BDF solvers.
Free FORTRAN codes are LSODE at http://www.netlib.org/odepack and DASSL
at http://www.netlib.org/ode. The Matlab BDF solver is ode15s.

From the viewpoint of multi-body dynamics the solver DASSL [22] is especially
interesting because of its interface in residual form

0 = F (x, ẋ, t) (11)

that is a generalization of (2) with F (x, ẋ, t) = ẋ − ϕ(x, t) and optionally allows
also the use of very efficient residual formalisms [13]:

x(t) :=
(

y(t)
v(t)

)
, F (x, ẋ, t) :=

(
ẏ − v

M(y)v̇ − f(y, v, t)

)
.

Furthermore, DASSL may also be used in the time integration of closed loop systems,
see Section 4 below.
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BDF for (11) have the form

0 = F (xn+1,
1
hn

kn∑
j=0

αn,jxn+1−j , tn+1) (12)

with the Jacobian

J ≈ αn,0

hn

∂F

∂ẋ
(x, ẋ, t) +

∂F

∂x
(x, ẋ, t) (13)

instead of (10). To keep the efficiency of classical BDF solvers in the application to
multi-body systems DASSL’s standard algorithm for Jacobian re-evaluation has to be
modified to exploit the special block structure of ∂F /∂ẋ, see [4, 23]:

Explicit formalism:
∂F

∂ẋ
=

(
Iny

0
0 Iny

)
, residual formalism:

∂F

∂ẋ
=

(
Iny

0
0 M

)
.

3. GENERAL STRUCTURE OF MODEL EQUATIONS

The numerical methods that are discussed in Section 2 may be extended from the equa-
tions of motion (1) to more complex model equations that are typical of applications
in vehicle system dynamics.

Flexible multi-body systems The elastic deformation of flexible bodies is not covered
by the classical equations of motion (1) of rigid multi-body systems. In the mov-
ing frame of reference formulation [24, 25, 26] the configuration �u(�x, t) of a flexible
body (.)(i) in R

3 is represented by the gross motion of a body fixed reference frame
with coordinates y

(i)
r (t) and the (small) elastic deformation �w(�x, t) w. r. t. this refer-

ence configuration:

�u(i)(�x, t) = �r(y(i)
r (t)) + �w(i)(�x, t) . (14)

Following a Ritz approach a low-dimensional modal approximation of �w(i)(�x, t) is
used:

�w(i)(�x, t) ≈
σi∑

j=1

q
(i)
j (t) �w

(i)
j (�x) . (15)

In general, the σi modes �w
(i)
j are selected based on a finite element analysis of the

flexible body (.)(i). Typical ansatz functions �w
(i)
j are eigenmodes in the frequency

range up to 50 . . . 100 Hz, static modes and frequency response modes [26, 27].
With (14) and (15) the equations of motion for flexible multi-body systems get the

basic structure (1) with a coordinate vector y(t) that contains the generalized coor-
dinates of rigid bodies and the elastic coordinates y

(i)
r (t) and ( q

(i)
1 (t), . . . , q

(i)
σi (t) )
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of flexible bodies. M(y) and f(y, ẏ, t) are extended by the modal mass, damping
and stiffness matrices and by the coupling terms between gross motion and elastic
deformation �w, see [25, 28]. In industrial applications these data are generated auto-
matically using standardized interfaces to finite element tools [29].

Today, the selection of an appropriate set of modes { �w
(i)
1 , . . . , �w

(i)
σi } still relies

much on engineering intuition. Algorithms for (semi-)automatic mode selection are a
topic of active research, see [27] for a criterion that is based on a linear error analysis,
[28] for a more general approach that could be used in an adaptive mode selection
strategy and [30] for the use of thermal response modes in thermoelastic applications.

Recently, the moving frame of reference formulation has been extended to a modal
multifield approach that considers elastic deformation as well as electrostatic fields
in piezo-elements and spatial temperature distributions in thermoelastic problems like
the thermal deformation of disk brakes [30].

Inner state variables Frequently, force elements in multi-body system models de-
scribe engineering systems that have their own, internal dynamics (dynamical force
elements [5]). Typical examples include hydraulic components, control devices and
advanced tyre models. From the mathematical viewpoint these force elements are
characterized by inner state variables. Elements like hydraulic components have time
continuous state variables c(t) with state equations

ċ(t) = d(c, y, ẏ, t) . (16)

The internal dynamics of discrete controllers is characterized by time discrete state
variables r with r = rj in the sampling interval [Tj , Tj+1) and

rj+1 = k(rj , rj−1, . . . ,y, ẏ, Tj+1) . (17)

In most applications the sampling points are equally spaced: Tj = j · ∆t, typical sam-
pling rates are in the range of ∆t = 1 ms . . . 10 ms.

In the multi-body system, these force elements contribute to the force vector f
in (1):

f = f(y(t), ẏ(t), c(t), rj , t) if t ∈ [Tj , Tj+1) . (18)

With (17) and (18) the equations of motion are not longer continuous in time but
form a hybrid system with continuous and discrete components. In the dynamical
simulation the variable order, variable stepsize integrators of Section 2 may be used
only within a single sampling interval [Tj , Tj+1]. At t = Tj+1 the integration has to be
stopped, the discrete variables r are updated according to (17) and the time integration
may be continued for t ∈ [Tj+1, Tj+2].

The frequent re-initializations of the ODE solvers have a very negative effect on
their performance that is compensated in part by an adapted algorithm for Jacobian
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re-evaluations [4]. Alternatively, special Runge–Kutta type methods are proposed for
a more efficient re-initialization after the sampling point Tj+1, see [31].

Time events The discontinuous changes (17) of state variables are special time
events [19]. The term “time event” refers to a discontinuity (“event”) in state vari-
ables or model equations at an isolated time t = T ∗ during simulation. For model
equations (1) with f = f(y, ẏ, c, rj , u(t); θ) typical time events result from switch-
ing processes with jumping system inputs u(t) and from contact problems including
stick-slip phenomena with force elements that change their force parameters θ or even
their internal structure during simulation (unilateral force elements, varying friction
coefficients θ, . . . [5, 32]).

For switching inputs u(t) the time T ∗ is known in advance but, in general, T ∗ has
to be determined during simulation. State-of-the-art ODE solvers locate time events
automatically using switching functions that have to be provided in addition to the
model equations (1), see [5, 22].

In case of a time event the time integration is stopped at t = T ∗, system variables
y, c, rj and system parameters θ are updated (if necessary) and the simulation is
continued after a re-initialization of the solver. Again, frequent time events may slow
down the time integration substantially.

Kinematically closed loops In the setup of multi-body system models it is important
to select an appropriate set of coordinates y. For tree structured systems joint coor-
dinates y that describe the degrees of freedom in the joints of the multi-body system
form a minimum set of generalized coordinates resulting in equations of motion in
ODE form (1).

If, however, the multi-body system has kinematically closed loops then the joint
coordinates y are not longer independent of each other. Loop closing joints restrict
the system’s configuration to joint coordinates y satisfying ng constraints

0 = g(y, t) . (19)

Coordinate partitioning methods [7, 33] locally select a sub-set of linearly indepen-
dent joint coordinates and compute the remaining (dependent) joint coordinates solv-
ing the system of non-linear equations (19). From the numerical viewpoint it proved
to be more favourable to keep all joint coordinates in the equations of motion that get
the form

M(y) ÿ(t) = f(y, ẏ, t) − G	(y, t)λ , (20a)

0 = g(y, t) (20b)

with constraint forces −G	(y, t)λ that are determined by the constraint matrix
G(y, t) := (∂g/∂y)(y, t) and the Lagrangian multipliers λ(t) ∈ R

ng , see [12]. The
common assumption rankG(y, t) = ng (Grübler condition) excludes redundant con-
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straints (20b). Eqs. (20) form a second order differential-algebraic equation (DAE), the
descriptor form of the equations of motion [22].

The descriptor form is not restricted to joint coordinates y. Using absolute (Carte-
sian) coordinates y any joint results in a constraint (20b). The resulting equations of
motion (20) have a much larger dimension than in the joint coordinate case but M(y),
∂f/∂y, ∂f/∂ẏ, G	 are sparse matrices with a structure that reflects the topology of
the multi-body system [34]. The counterpart to O(N)–formalisms that eliminate re-
dundant coordinates in a joint coordinate formulation [11, 12] are topological solvers
for the absolute coordinate formulation that allow an efficient elimination of redundant
coordinates in (9), see [34, 31].

In DAE terminology the descriptor form (20) is an index-3 system, see [21, 22].
The constraints (20b) imply additional restrictions on the state variables y(t) and λ(t).
These hidden constraints are obtained by differentiation of (20b):

0 =
d
dt

g(y(t), t) =
∂g

∂y
(y, t) · dy

dt
(t) +

∂g

∂t
(y, t)

= G(y, t) ẏ(t) + g(I)(y, t) , (21a)

0 =
d2

dt2
g(y(t), t) = G(y, t) ÿ(t) + g(II)(y, ẏ, t) (21b)

with functions g(I), g(II) that summarize higher order derivatives of g and the partial
derivatives w. r. t. t. The solution of (20) has to satisfy the constraints (20b) on position
level as well as the hidden constraints (21) on velocity and acceleration level.

Initial values y0, ẏ0, λ0 have to be consistent with all these constraints:

0 = g(y0, t0) , 0 = G(y0, t0) ẏ0 + g(I)(y0, t0) ,

0 = G(y0, t0) ÿ0 + g(II)(y0, ẏ0, t0)
(22)

with M(y0) ÿ0(t) = f(y0, ẏ0, t0) − G	(y0, t0)λ0.
The computation of consistent initial values y0, ẏ0, λ0 is part of the initializa-

tion in the time integration of (20). If initial values y0,ij
are given for ny − ng inde-

pendent position coordinates yij
, ( j = 1, . . . , ny − ng ), the remaining initial values

y0,ij
, ( j = ny − ng + 1, . . . , ny ) are uniquely determined by (22) and may be com-

puted by Newton’s method. Furthermore, (22) defines systems of linear equations for
the initial values ẏ0,ij

, ( j = ny − ng + 1, . . . , ny ) of ng dependent velocity compo-
nents and for the initial values λ0.

Advanced DAE models The descriptor form (20) is linear w. r. t. λ. This structural
property is lost if the model has friction forces that depend on the constraint forces
−G	λ. The resulting force vector f = f(y, ẏ, λ, t) has to satisfy the generalized
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Fig. 1. Formulation of contact conditions using surface parameters s as additional algebraic variables.

Grübler condition

rank G(y, t) = rank
(
G(y, t) M−1(y)

(∂f

∂λ
(y, ẏ, λ, t) − G	(y, t)

))
= ng (23)

to guarantee the unique solvability of (20).
Another extension of (20) shows the large potential of DAE formulations in view

of user-friendly algorithms for model setup. Consider rigid bodies (.)(i) and (.)(j) that
are in contact. To formulate the contact conditions parametrizations s(i), s(j) ∈ R

2

of the body surfaces are introduced. Then the position of the points �P (i) on the sur-
face of Body (.)(i) in R

3 is determined by the position and orientation of this body,
i. e., by the multi-body system coordinates y, and by the surface parameter s(i):
�P (i) = �P (i)(y, s(i)), see Fig. 1.

If both bodies are strictly convex then there is a uniquely defined contact point
�P (i)(y, s(i)) = �P (j)(y, s(j)) that belongs to the surfaces of both bodies. The contact
point is characterized by the condition that the normal vector of Body (.)(i) at �P (i)

is parallel to the normal vector of Body (.)(j) at �P (j), see [12]. This geometrical
condition defines implicitly the contact point coordinates s = (s(i), s(j)) as solution
s = s(y, t) of a non-linear system

0 = h(y, s, t) (24)

with non-singular Jacobian ∂h/∂s, see [5, 6].
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Contact and friction forces act at the contact point. Furthermore, the contact point
coordinates s = s(y, t) are used in the formulation of the contact condition

0 = �P (i)(y, s(i)) − �P (j)(y, s(j)) (25)

that defines constraints 0 = g(y, t) in (20). In a classical implementation each evalu-
ation of g(y, t) would require the solution of (24) to get the contact point coordinates
s = s(y, t) that have to be inserted in the contact condition (25).

As an alternative, the DAE framework allows to add simply the non-linear equa-
tions (24) to the equations of motion (20) and to append the contact conditions (25)
directly to the constraints:

M(y) ÿ(t) = f(y, s, ẏ, λ, t) − G	(y, s, t)λ , (26a)

0 = h(y, s, t) , (26b)

0 = g(y, s, t) . (26c)

With this formulation, the solution of (24) w. r. t. s = s(y, t) is left to the DAE solver
[4, 6]. Note, that the constraint matrix is now

G(y, s, t) =
D
Dy

g(y, s(y, t), t) =
[∂g

∂y
+

∂g

∂s

∂s

∂y

]
(y, s, t)

=
[ ∂g

∂y
− ∂g

∂s

(∂h

∂s

)−1 ∂h

∂y

]
(y, s, t) (27)

because of

0 =
D
Dy

h(y, s(y, t), t) =
[∂h

∂y
+

∂h

∂s

∂s

∂y

]
(y, s, t) . (28)

From the mathematical viewpoint, Eq. (24) is just a special case of algebraic equa-
tions

0 = b(w, y, ẏ, λ, t) (29)

with variables w(t) ∈ R
nb that are defined implicitly by (29) if ∂b/∂w is non-

singular. The mathematical modelling of force elements may be simplified substan-
tially using such auxiliary variables w. A typical example is the modelling of joint
friction, see [4] for a detailed discussion.

With variables w the force vector in (26) gets the general form f =
f(y, s, ẏ, λ, w, t) and the Jacobian ∂f/∂λ in the generalized Grübler condition (23)
has to be substituted by[∂f

∂λ
− ∂f

∂w

( ∂b

∂w

)−1 ∂b

∂λ

]
(y, s, ẏ, λ, w, t) .
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Summary Based on the multi-body system approach the model equations in vehicle
system dynamics are formulated as hybrid system of differential-algebraic equations

M(y) ÿ(t) = f(y, s, ẏ, c, rj , λ, w, t) − G	(y, s, t)λ , (30a)

ċ(t) = d(c, y, s, ẏ, rj , λ, w, t) . (30b)

0 = b(w, y, s, ẏ, c, rj , λ, t) , (30c)

0 = h(y, s, rj , t) , (30d)

0 = g(y, s, rj , t) (30e)

with t ∈ [Tj , Tj+1) and discrete state equations

rj+1 = k(rj , rj−1, . . . ,y, s, ẏ, c, λ, w, Tj+1) . (31)

The continuous part (30) of the model equations forms an index-3 DAE with a com-
plex but characteristic structure that will be exploited in the numerical solution, see
Section 4.

It is important that the contact point coordinates s in the constraints (30e) are de-
fined by an equation that is independent of ẏ and λ, see (30d). Otherwise the model
equations would not have been solvable unless strong additional regularity conditions
were satisfied.

4. DAE TIME INTEGRATION IN VEHICLE SYSTEM DYNAMICS

The time integration of DAE model equations (30) is based on classical ODE methods
combined with index reduction and projection techniques. The time integration meth-
ods will be discussed in detail for DAEs (20) that are re-written as first order systems
in residual form (11) with

x(t) =

⎛
⎝ y(t)

v(t)
λ(t)

⎞
⎠, 0 = F (x, ẋ, t) =

⎛
⎝ ẏ − v

M(y)v̇ − f(y, v, t) + G	(y, t)λ
g(y, t)

⎞
⎠. (32)

At the end of the section we will come back to DAEs of the more general form (30).
Throughout the present section a benchmark problem from railway vehicle dynam-

ics is used to illustrate the numerical problems in DAE time integration. The model
describes a rigid wheelset with conic wheels moving with constant speed along a
straight track. Starting with a small initial lateral displacement y the wheelset oscil-
lates in lateral direction, see Fig. 2. This so called hunting motion is a well known
phenomenon in railway vehicle dynamics.

The equations of motion are formulated in DAE form (26) with the position co-
ordinates y(t) ∈ R

6 of the wheelset that correspond to its six degrees of freedom.
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]
Fig. 2. Lateral displacement y of a rigid wheelset performing a hunting motion.

Two constraints (26c) guarantee permanent contact between the two wheels and the
rails [6]. Exploiting symmetries in the geometry of wheel and rail the contact point
between a single wheel and the rail may be described by a scalar position coordinate
s(t) resulting in two equations (26b) that determine implicitly s = (sl, sr)	 ∈ R

2 for
the contact point coordinates on left and right wheel [35].

DAE time integration by ODE methods Eqs. (32) suggest to apply BDF (12) and other
ODE methods straightforwardly to the time integration of DAEs. Simple test problems
like (32) with M = Iny

, f = 0 and linear constraints

0 = g(y, t) = Cy − z(t)

show that this approach fails in general: According to (20a) and (21b) we
get ÿ(t) = −C	λ and Cÿ(t) = z̈(t) resulting in Lagrangian multipliers λ(t) =
−(CC	)−1z̈(t). The BDF solution xn = (yn, vn, λn)	 satisfies (12) and hence also

0 = g(yn, tn) = Cyn − z(tn) , ( n > 0 )

since the constraints (20b) are part of the residual F in (32). A simple computation
shows that the application of backward Euler method to (32), i. e., BDF (12) with
kn = 1, yields

λn+1 =
hn + hn−1

2hn
λ(tn+1) + O(hn) + O(

h2
n−1

hn
) .

For varying stepsizes the numerical solution λn+1 is completely wrong since it does
not converge to the analytical solution λ(tn+1) if hn → 0 and hn−1 is fixed, see
also [36].

For some higher order methods convergence can still be guaranteed [21] but the
errors in the numerical solution are typically substantially larger than in the ODE case.
This is illustrated by simulation results for the hunting motion of the rigid wheelset in
Fig. 2. In this application, the BDF integrator DASSL applied to (26) fails completely.
As an alternative the implicit Runge–Kutta solver RADAU5 was used in the numerical
tests [21]. For RADAU5, experience shows that the error of the numerical solution in



M. ARNOLD 14

10
−8

10
−6

10
−4

10
−2

10
−8

10
−6

10
−4

10
−2

Error bound  TOL

E
rr

or
 in

 y
  [

m
]

RADAU5, κ = 0.03

10
−8

10
−6

10
−4

10
−2

10
−8

10
−6

10
−4

10
−2

Error bound  TOL

E
rr

or
 in

 y
  [

m
]

RADAU5, κ = 10−5

Fig. 3. ODE solver RADAU5 applied to the differential-algebraic equations of motion (20) of a rigid
wheelset.

ODE applications is usually kept well below the user-defined error tolerances TOL.
But in the application to DAE (26) the relative error remains even for extremely small
error bounds always in the size of 0.1 . . . 1.0 %. As a typical example, the left plot of
Fig. 3 shows the error in the lateral displacement y for various values of TOL.

To analyse these unsatisfactory results of RADAU5 we modify one of the internal
parameters of the solver. BDF (12) and implicit Runge–Kutta methods define xn+1

as solution of a system of non-linear equations. In the practical implementation this
system is solved iteratively by Newton’s method that is stopped if the iteration error is
less than κ · TOL. In this stopping criterion the user-defined error tolerance for time
integration (TOL) is scaled by a constant κ ≤ 1 that is a free control parameter of the
solver. Default values are κ = 0.33 in DASSL [22] and κ = 0.03 in RADAU5 [21].

The right plot of Fig. 3 shows that the error in time integration is reduced drastically
and remains now roughly below the error bounds if κ is set to the very small value
κ = 10−5. The comparison of left and right plot in Fig. 3 illustrates that the direct
application of RADAU5 to DAEs (26) makes the solver very sensitive w. r. t. (small)
iteration errors in Newton’s method.

An analytical perturbation analysis for (32) shows that the errors in yn, vn and
λn are of size O(θ) + O(θ2/h2), O(θ/h) and O(θ/h2), respectively, if the er-
rors in the constraints (20b) are bounded by some small positive constant θ � 1,
see [37]. Note, that these error bounds grow unboundedly for decreasing time step-
size h := minm hm.

This error amplification is typical of the direct application of ODE solvers to
DAE (32). It may be considered as discrete analogue of corresponding error bounds
O(maxt ‖θ(t)‖) + O(maxt ‖θ̇(t)‖2), O(maxt ‖θ̇(t)‖) and O(maxt ‖θ̈(t)‖) for the
analytical solution y(t), v(t) and λ(t) of (32) with perturbed constraints

θ(t) = g(y(t), t)

and maxt ‖θ(t)‖ � 1, see [37].
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For perturbations like θ(t) = ε sin ωt that oscillate with small amplitude ε � 1
and high frequency ω 
 1 the errors in the solution (y(t), v(t), λ(t)) are much larger
than the perturbation itself since ‖θ̇(t)‖ = O(ωε), ‖θ̈(t)‖ = O(ω2ε). A mechanical
interpretation of these results is the well known fact that high frequency kinematic
excitations θ(t) in loop closing joints may cause large joint and constraint forces in a
multi-body system.

Index reduction and projection In the direct application of ODE methods to DAE (32)
the robustness of the solvers may be improved substantially by small values of κ that
result in (very) small iteration errors in Newton’s method, see the right plot of Fig. 3.
On the other hand values of κ that are less than 10−3 increase the number of Newton
steps per time step substantially and may slow down the ODE solver dramatically.

Instead of applying ODE solvers directly to (32) it proved to be much more ad-
vantageous to transform the equations of motion analytically before time integration.
These analytical transformations are guided by the perturbation analysis. In (20) the
Lagrangian multipliers λ(t) are defined implicitly by the constraints (20b). Differ-
entiating these constraints 0 = g(y(t), t) twice the acceleration constraints (21b) are
obtained that define together with ÿ(t) = M−1(y)(f − G	λ), see (20a), the system
of linear equations

0 = −[GM−1G	](y, t) λ + [GM−1f ](y, ẏ, t) + g(II)(y, ẏ, t) (33)

for the Lagrangian multipliers λ(t). The r = 2 differentiation steps introduce the large
error terms O(‖θ̈(t)‖) and O(θ/h2) in the analytical and numerical solution, respec-
tively. In DAE terminology the system (20) forms a DAE of index r + 1 = 3 that is
called the index-3 formulation of the equations of motion [22].

For consistent initial values satisfying (22) the solution of the equations of mo-
tion (20) remains unchanged if the constraints (20b) on position level are substituted
by the constraints (21a) on velocity level since

g(y(t), t) = g(y0, t0)︸ ︷︷ ︸
=0, see (22)

+
∫ t

t0

d
dt

g(y(τ), τ)︸ ︷︷ ︸
=0, see (21a)

dτ = 0 . (34)

From the numerical viewpoint the index-2 formulation (20a)/(21a) of the equations of
motion is attractive because only r = 1 differentiation of the velocity constraints (21a)
is necessary to get the system (33) of linear equations defining λ(t).

With a perturbation θ(t) in the velocity constraints (21a) the error terms for
this index-2 DAE are of size O(maxt ‖θ(t)‖ ‖θ̇(t)‖) for y(t), v(t) and of size
O(maxt ‖θ̇(t)‖) for λ(t). The error bounds for the numerical solution are O(θ) +
O(θ2/h) for yn, vn and O(θ/h) for λn. They are smaller by the (small) factor h than
the corresponding error bounds for the original index-3 DAE (20a,b), see [37]. Apply-
ing RADAU5 with the standard setting κ = 0.03 to the wheelset example of Fig. 2 in
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Fig. 4. Drift-off effect in the dynamical simulation of the rigid wheelset of Fig. 2 resulting in an increasing
distance gr(y, t) between the right wheel and the rail, i. e., in an increasing error in the constraints
0 = g = (gl, gr)	 that are defined by the contact conditions for left and right wheel.

index-2 formulation (20a)/(21a) the error of the numerical solution is kept well below
the user-defined error tolerances TOL.

In the same way the index-1 formulation (20a)/(21b) of the equations of motion is
obtained substituting (20b) by the constraints (21b) on acceleration level. The error
bounds for λ(t) and λn are slightly improved to O(maxt ‖θ(t)‖) and O(θ), respec-
tively. BDF and implicit Runge–Kutta solvers applied to the index-1 formulation are
as robust and efficient as in the classical ODE case.

In DAE terminology the substitution of the constraints (20b) by one of its time
derivatives is called index reduction. Index reduction by differentiation improves the
solver’s robustness substantially but suffers in long-term simulations from the drift-off
effect that is illustrated by Fig. 4.

Because of (34) the analytical solution of the index-2 formulation satisfies the orig-
inal constraints (20b) exactly for all t ≥ t0. In the numerical solution the integrand
(dg/dt)(y(τ), τ) in (34) is still bounded by a small constant ε > 0 but it does not
vanish identically. Therefore, the error in (20b) may increase linearly in time t:

‖g(yn, tn)‖ ≤ ‖g(y0, t0)‖ +
∫ tn

t0

ε dt = ε · (tn − t0) ; (35)

the numerical solution yn drifts off the manifold { (η, t) : g(η, t) = 0 } that is de-
fined by the constraints (20b) on position level. The error bound ε summarizes dis-
cretization and round-off errors and the iteration errors of Newton’s method.

For the index-1 formulation a quadratic error growth ‖g(yn, tn)‖ ≤ ε · (tn − t0)2

has to be expected since the constraints (20b) on position level are substituted by
their second derivatives (21b). Practical experience shows that the actual value of ε
depends on the solver and on the user-defined error tolerances TOL. In general, how-
ever, there is always a linear drift in the time integration of the index-2 formulation
and a quadratic drift for the index-1 formulation, see Fig. 4 for a typical example.
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…

Fig. 5. Time integration with projection steps for DAEs (20) with g = g(y).

An early attempt to avoid both the numerical problems for the index-3 formula-
tion (20) and the drift-off effect in the index-2 and index-1 formulation goes back to
the work of Baumgarte [38] who substituted the constraints (20b) by a linear combi-
nation of all three constraints (20b), (21a) and (21b). Because of the problems to select
suitable coefficients for this linear combination (Baumgarte coefficients) the practical
use of Baumgarte’s approach is restricted to small scale models, see also [39].

Today, it is state-of-the-art to avoid the drift-off effect by projection techniques [40,
41]. During the time integration of the index-2 formulation the residual ‖g(yn, tn)‖
in the constraints (20b) is monitored. If the residual exceeds some user-defined small
error bound ε > 0 then yn is projected onto the manifold {η : g(η, tn) = 0 } and
the time integration is continued with the projected position coordinates ŷn instead
of yn, see Fig. 5.

Mathematically, the projection defines a minimization problem

‖η − yn‖ → min
{η :g(η,tn)=0 }

(36)

that can be solved efficiently by simplified Newton iterations to get ŷn, see [41].
For the index-1 formulation the projection of both yn and vn helps to avoid the

drift in the constraints (20b) and (21a) on position and velocity level [40].

Gear–Gupta–Leimkuhler formulation In the complex applications of vehicle system
dynamics the use of classical explicit projection methods like (36) is restricted to
Runge–Kutta and other one-step methods since the efficient implementation in ad-
vanced BDF solvers with order and stepsize control is non-trivial.

Instead of implementing explicit projection steps in the solver the equations of
motion (20) are reformulated in a way that contains implicitly the projection onto
the constraint manifold {η : g(η, tn) = 0 }. The Gear–Gupta–Leimkuhler formu-
lation (or stabilized index-2 formulation) of the equations of motion considers the
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constraints (20b) and (21a) on position and velocity level simultaneously [42]:

ẏ(t) = v − G	(y, t)µ ,

M(y) v̇(t) = f(y, v, t) − G	(y, t)λ ,

0 = g(y, t) ,

0 = G(y, t)v + g(I)(y, t) .

(37)

The increasing number of equations is compensated by a correction term −G	µ with
auxiliary variables µ(t) ∈ R

ng . The correction term vanishes identically for the ana-
lytical solution (µ(t) ≡ 0) and remains in the size of the user-defined error tolerances
TOL for the numerical solution.

Eqs. (37) form an index-2 DAE that may be solved robustly and efficiently by
BDF [42] and implicit Runge–Kutta methods [21]. However, the error estimates in
classical ODE solvers tend to overestimate the local errors in the algebraic compo-
nents λ, µ of DAE (37), see [36]. Therefore the components λ and µ should not be
considered in the automatic stepsize control of BDF solvers [43]. For implicit Runge–
Kutta solvers the error estimates for λ and µ are scaled by the small factor hn.

The efficient evaluation of the correction term G	(y, t)µ for given µ, y, t is non-
trivial since multi-body formalisms evaluate matrix-vector products G	λ and Gv
with O(N) complexity but do not evaluate the matrix G(y, t) itself.

The key to the efficient solution of (37) was found in the analysis of a special class
of overdetermined DAEs [44] that are closely related to DAEs (37), see [45]. BDF
solvers and implicit Runge–Kutta solvers for DAEs (11) approximate the Jacobian
(αn,0/hn)(∂F /∂ẋ) + (∂F /∂x) to compute xn+1 iteratively by Newton’s method,
see (9) and (13). In (37) this Jacobian has a 4 × 4 block structure reflecting the four
equations in (37) and the partitioning x = (y, v, λ, µ)	. Block (3, 1) is an approxima-
tion of (∂g/∂y)(y, t) = G(y, t), its transpose may be used to get the matrix-vector
product G	µ. This algorithm was implemented in the BDF solver ODASSL [44] that
exploits furthermore the special structure of (37) to compute µn+1 more efficiently
than in the standard DASSL implementation.

Advanced DAE models The numerical algorithms for DAE time integration that we
discussed in detail for classical constrained mechanical systems with equations of
motion (20) may be applied as well to the more complex hybrid differential-algebraic
model equations (30)/(31) that are typical of vehicle system dynamics.

In the model equations in residual form (32) the vector x(t) is now given by
x = (y, s, v, c, λ, w)	. Time events and the discrete state equations (31) are handled
by the methods that are known from ODE theory, see Section 2.

The differential equations (30b) and the algebraic equations (30c) and (30d) are
added to the residual F (x, ẋ, t). As a consequence, the BDF solution xn+1 of (30)
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satisfies the non-linear equations (30d) exactly:

0 = h(yn+1, sn+1, rj , tn+1) ,

see (12). The BDF solution sn+1 coincides with the function value s(yn+1, tn+1) of
the function s(y, t) that is implicitly defined by

0 = h(y, s(y, t), rj , t)

if ∂h/∂s is non-singular, see (24) and (30d). BDF compute for a given geometric
configuration y of the multi-body system the contact point coordinates s exactly up
to the (small) iteration errors in Newton’s method. The same result may be shown for
the algebraic variables w in (30c).

With the regularity assumptions of Section 3 the model equations (30) form an
index-3 DAE. Index reduction and projection techniques have to be applied. It is im-
portant to note that the non-linear equations (30c) and (30d) may be solved directly
w. r. t. the algebraic variables w and s. In contrast to the constraints (30e) the non-
linear equations (30c) and (30d) do not imply hidden constraints on the state variables
like (21).

The index reduction is based on time derivatives of the constraints 0 = g(y, s, t).
It does not involve any derivatives of the non-linear equations 0 = b(w, . . .) and
0 = h(y, s, t). The hidden constraints on the level of velocity coordinates are

0 =
d
dt

g(y(t), s(t), t) = G(y, s, t) v + g(I)(y, s, t)

with matrix G of (27) since ṡ(t) is a linear function of ẏ(t) = v(t) that may be ob-
tained differentiating 0 = h(y(t), s(t), t) implicitly w. r. t. t, see also (28).

Using a rather general concept of DAE index reduction [46] the Gear–Gupta–
Leimkuhler formulation (37) is generalized to complex DAE models (30), see [47].
Here, the Gear–Gupta–Leimkuhler formulation (37) is extended by (30b,c,d). To com-
pensate the simultaneous consideration of the constraints on position level and the
hidden constraints on velocity level there is, as before, just one correction term. It has
to be added to the kinematic equations ẏ(t) = v that get the form

ẏ(t) = v − G	(y, s, t)µ

with the constraint matrix G of (27) and auxiliary variables µ(t) ∈ R
ng . Again, the

correction term vanishes identically for the analytical solution and remains in the size
of the user-defined error tolerances TOL for the numerical solution.

For this extended system the Jacobian J in (13) has a 7 × 7 block structure with
(∂g/∂y), (∂g/∂s), (∂h/∂s), (∂h/∂y) as blocks (6, 1), (6, 2), (5, 2) and (5, 1), re-
spectively. In a modified version of the BDF solver ODASSL these blocks are used for
the efficient evaluation of the correction term G	µ with matrix G of (27), see [48].
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Summary The robust and efficient dynamical simulation in vehicle system dynamics
may be based on DAE time integration methods with DASSL like BDF solvers that
are applied to the Gear–Gupta–Leimkuhler formulation of the model equations. The
approach is used successfully in industrial multi-body system simulation packages [4].

5. ALGORITHMS AND TOOLS FOR THE SIMULATION OF
MULTI-PHYSICAL PROBLEMS

Typical applications of vehicle system dynamics are far beyond the field of classical
multi-body analysis. Nevertheless, the methods and software tools of multi-body dy-
namics have been used very successfully as integration platform for large, complex
models in vehicle system dynamics including mechanical, hydraulic and electronic
components.

Alternatives are general purpose simulation tools like Simulink and modelling lan-
guages for complex physical systems like ACSL or Modelica1. Furthermore, the cou-
pling of two or more mono-disciplinary simulation tools from different fields of appli-
cation has been proved to be very useful in industrial applications (simulator coupling
or co-simulation).

Extensions of multi-body system simulation packages In the early days of industrial
multi-body system simulation the focus was on specialized force elements with or
without inner state variables c and rj , see Section 3 and [3].

Today, it might be even more important to embed the dynamical simulation of the
mechanical system components efficiently in process chains for the simulation of the
overall behaviour of engineering systems. Fig. 6 shows typical bi-directional interfaces
between specialised simulation tools. The interfaces are used for data exchange in the
pre- and post-processing of dynamical simulation.

The simulation of flexible multi-body systems relies on the interfaces to finite el-
ement (FE) tools of structural dynamics. The interface from FE tool to multi-body
system tool provides mass, damping and stiffness data for the pre-processing of
modes �w(i) in the Ritz ansatz (15), see [29]. The interface from multi-body system
tool to FE tool supports the post-processing of multi-body system simulation data.
Load vectors are transferred to the fatigue analysis in standard FE tools [50].

Modal reduction techniques are also used successfully in the analysis of certain
aerodynamic effects. For this close coupling of computational fluid dynamics (CFD)
and (flexible) multi-body dynamics the classical interfaces between FE tools and
multi-body system tools have been extended by an interface to CFD tools [16].

1Matlab, Simulink and Real-Time Workshop are trademarks of The MathWorks, Inc., ACSL is a trademark
of The AEgis Technologies Group, Inc., and Modelica is a trademark of the Modelica Association.
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Fig. 6. Integrated virtual design using multi-body system simulation software and its bi-directional inter-
faces, see [49].

The interfaces between CAD and multi-body system tools support an efficient and
fail-safe model setup using the geometrical data of CAD models. The opposite inter-
face transfers all relevant geometrical modifications of the multi-body system model
automatically back to the CAD model [51].

Controller synthesis is a central problem in many applications of vehicle system
dynamics. Close links between the methods and tools for the dynamical simulation of
mechanical components and the tools of Computer aided control engineering (CACE)
are therefore essential. Fig. 7 summarizes a number of typical interfaces between
multi-body system software and CACE tools.

Already in the early nineties the increasing complexity of controllers in mecha-
tronic system components motivated the integration of multi-body system models in
CACE tools starting with the export of the system matrices A, B, C and D describ-
ing the linearized equations of motion, see (5). Later, this interface was extended by
the export of FORTRAN source code for non-linear equations of motion (2). In both
cases the time integration for the full system including multi-body system model and
controller is performed in the CACE tool.

Since the solvers of CACE tools are not tailored to the differential-algebraic model
equations (30) it is often more attractive to perform the time integration of the full
system including the controller in the multi-body system tool. State-of-the-art CACE
tools support this approach by a code export interface. A typical example is the Real-
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Fig. 7. Typical interfaces between multi-body system tools and CACE tools [52].

Time Workshop of The MathWorks, Inc., that generates and executes stand-alone
C code for developing and testing algorithms modelled in Simulink.

As an alternative to code export the tools of multi-body system analysis and CACE
may be coupled as well by a function call interface that evaluates during time inte-
gration repeatedly the right hand sides of the model equations for various given input
data, see [52] for a more detailed discussion. The last row of Fig. 7 refers to the co-
simulation interface that will be discussed below.

General purpose simulation tools and modelling languages Using interfaces between
well developed mono-disciplinary simulation tools the experienced engineer may
study multi-physical problems without leaving his usual software environment. Latest
new developments of the powerful specialized tools are immediately available and the
access to highly developed specialized solvers is straightforward.

Alternative approaches resolutely focus on the multi-domain aspect of complex
multi-physical applications. The most widespread general purpose simulation tool
from system theory is Simulink that has been developed as platform for multi-domain
simulation and model-based design of dynamic systems. It has a block-diagram user
interface for model setup and a number of toolboxes for special fields of application
like SimMechanics and SimDriveline.

The different concepts behind specialized multi-body system tools on the one hand
and general purpose simulation tools from system theory on the other is illustrated by
the screenshots of user interfaces in Fig. 7.

The increasing complexity of industrial multi-physical applications results in a re-
vival of modelling languages that are designed to bundle the experience of specialists
from various engineering domains. Modern modelling languages like Modelica [53]
are object oriented and do not follow the classical input–output scheme of traditional
block-oriented tools (non-causal modelling).
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Instead of classical ODE model equations the model equations get the form of
differential-algebraic equations. Modelica is a rapidly developing non-proprietary
modelling language that covers a wide range of applications like electrical circuits, ve-
hicle dynamics, hydraulic and pneumatic systems and automotive powertrains, see [8]
and the actual material at the Modelica website [53] for more details of this ongoing
development.

Simulator coupling Specialized mono-disciplinary tools and general purpose tools
follow completely different strategies for the setup of multi-physical models and for
the formulation of model equations. They have, however, in common that the full set
of model equations is solved numerically in one simulation tool by one solver.

The modular structure of coupled multi-physical problems may also be exploited
explicitly by coupling two or more well-established mono-disciplinary tools for model
setup and for time integration (simulator coupling or co-simulation). In this way the
subsystems are handled by different solvers and each solver is tailored to the corre-
sponding subsystem.

The communication between subsystems is restricted to discrete synchronization
points Tj . For each subsystem all necessary information from other subsystems has to
be provided by interpolation or — if data for interpolation have not yet been computed
— by extrapolation from t ≤ Tj to the actual macro step Tj → Tj+1.

From the viewpoint of a multi-body system tool the coupling variables to other sim-
ulation tools may be considered as a special type of discrete variables rj in (31): In the
multi-body system tool the values of the coupling variables rj are kept constant during
the whole macro step Tj → Tj+1. For all other simulation tools in the co-simulation
environment the update formula (31) involves the time integration from the synchro-
nization point t = Tj to the synchronization point t = Tj+1 to get rj+1 = k(. . .).

As a typical example of simulator coupling Fig. 8 shows simulation results for
a heavy duty truck with semi-active suspensions [54]. The truck is modelled as a
multi-body system with 41 bodies and 64 (mechanical) degrees of freedom. There are
semi-active dampers in the axle suspension and in the cabin suspension that are con-
trolled by an extended groundhook concept and by the skyhook law, respectively. Both
controllers are modelled in Simulink and should be optimized to minimize dynamic
road-tyre forces and to maximize comfort.

In this application the code export interfaces, see Fig. 7, are not attractive since the
multi-body system model contains closed loops resulting in constraints (30e) that can
not be handled by the standard solvers of Simulink. On the other hand structure and
parameters of the controllers are modified during the optimization process. It is there-
fore much more convenient to keep the controllers in Simulink instead of exporting
their C code.

In [54], the problem was solved successfully by co-simulation of Simulink and the
multi-body system tool SIMPACK [4]. The SIMPACK solver numerically integrates
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Fig. 8. Semi-active truck suspensions: Vertical acceleration of the cabin (ISO filtered) [54].

the mechanical part of the model, the control part is integrated in Simulink. The co-
simulation sampling frequency is set to 200 Hz resulting in a constant macro stepsize
H = Tj+1 − Tj = 5.0 ms.

SIMPACK and Simulink run in two parallel processes. At the synchronization
points Tj the controller outputs, i. e., the electrical signals defining the damper char-
acteristics, are sent from Simulink to SIMPACK using inter process communication
(IPC). By the same IPC interface Simulink gets the actual vertical position, velocity
and acceleration of truck chassis and cabin as controller input from SIMPACK. When
the data exchange is completed the solvers of Simulink and SIMPACK separately per-
form the macro step Tj → Tj+1. Co-simulation continues with the data exchange at
synchronization point Tj+1 and so on.

The robust and reliable co-simulation contributed to the successful optimization of
the controller design. A comparison of a truck with passive dampers and a truck with
optimized semi-active dampers shows that the ride comfort is improved substantially,
see the right plot of Fig. 8 for the simulation of a typical driving maneuver [54].

This case study illustrates that co-simulation techniques allow the convenient sim-
ulation and optimization of coupled problems in a classical software environment.
Practical experience shows, however, that the coupling of different solvers may oc-
casionally result in numerical instability. Furthermore, interpolation and extrapolation
introduce additional discretization errors. The macro stepsize H has to be selected
carefully. In typical standard applications stability and accuracy may be guaranteed if
H is in the range between 0.1 ms and 10 ms.

For certain classes of coupled problems the instability phenomenon has been anal-
ysed in great detail. Several modifications of the co-simulation techniques help to im-
prove their stability, accuracy and robustness also for larger macro stepsizes [55, 56].

Summary Complex multi-physical applications in vehicle system dynamics are be-
yond the field of multi-body dynamics. Successful simulation strategies use data in-
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terfaces or co-simulation interfaces between mono-disciplinary tools or models that
are generated by general purpose simulation tools or modelling languages.
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