
Efficient corrector iteration for DAE time

integration in multibody dynamics

M. Arnold a,1, A. Fuchs b, C. Führer c

aMartin–Luther–University Halle–Wittenberg, Department of Mathematics and
Computer Science, Institute of Numerical Mathematics, D - 06099 Halle (Saale),

Germany
bDLR German Aerospace Center, Institute of Robotics and Mechatronics,

P.O. Box 1116, D - 82230 Wessling, Germany
cLund University, Numerical Analysis, Center for Mathematical Sciences,

P.O. Box 118, SE - 221 00 Lund, Sweden

Abstract

Efficient time integration is a key issue in computational multibody dynamics. Im-
plicit time integration methods for stiff systems and constrained systems require
the solution of a system of nonlinear equations in each time step. The nonlinear
equations are solved iteratively by Newton type methods that are tailored to the
structure of the equations of motion in multibody dynamics. In the present paper
we discuss classical and recent methods for reducing the numerical effort in the
application to multibody systems that are modelled in joint coordinates. The meth-
ods have been implemented in an industrial multibody system simulation package.
Results of numerical tests for two benchmark problems from vehicle dynamics are
presented.

Key words: Multibody dynamics, DAE time integration, Corrector iteration

1 Introduction

Complex mechanical systems with components that undergo large motions
may be studied efficiently by the methods and software tools of multibody
dynamics [1]. Furthermore, multibody system models provide an integration

URLs: http://www.mathematik.uni-halle.de/~ arnold/ (M. Arnold),
http://www.maths.lth.se/na/staff/claus/ (C. Führer).
1 Corresponding author.

Preprint submitted to Comp. Meth. Appl. Mech. Eng. 11 November 2004

platform for the multi-domain analysis of mechatronic systems in robotics and
vehicle system dynamics [2,3]. The backbone of multibody system simulation
packages are specialized numerical solution methods that are tailored to the
structure of the nonlinear equations of motion [4].

In the present paper we study the time integration of multibody systems that
are described by joint coordinates. Each component of the vector of position
coordinates p(t) corresponds to one degree of freedom of a joint in the multi-
body system. For tree structured multibody systems these joint coordinates
form a minimal set of coordinates. The equations of motion are [1]

M(p, u(t)) p̈(t) = Ψ(p, ṗ, u(t)) (1)

with the time dependent external excitations u(t), the symmetric, positive
definite mass matrix M(p, u(t)) containing mass and inertia properties of all
bodies and the vector of applied and gyroscopic forces Ψ(p, ṗ, u(t)).

Exploiting the topology of the multibody system the right hand side of (1)
may be evaluated with a complexity that grows linearly with the number N
of bodies (multibody formalisms) [1,5]. Explicit formalisms, see, e. g., [5,6],
evaluate for given t and for given vectors p, v the expression

ϕ(p, v, u(t)) := M−1(p, u(t)) Ψ(p, ṗ, u(t)) (2)

with O(N) complexity. Residual formalisms [7] evaluate for given t and given
vectors p, v, a the residual

Φ(p, v, a, u(t)) := M(p, u(t)) a−Ψ(p, ṗ, u(t)) (3)

with O(N) complexity.

In industrial applications the numerical effort of the time integration methods
is often dominated by the computing time for the evaluations of ϕ and Φ in (2)
and (3). Each evaluation of ϕ or Φ involves the full multibody formalism and
the evaluation of all force elements in the multibody system that define the
actual function value of the force vector Ψ(p, ṗ, u(t)).

If the multibody system has kinematically closed loops then the joint coor-
dinates p(t) are not longer independent of each other. Loop closing joints
restrict the configuration of the system to joint coordinates p(t) satisfying ng

constraints

0 = g(p, u(t)) . (4)

In the equations of motion the constraints (4) are coupled to the dynamical
equations (1) by constraint forces −G>(p, u(t)) λ with the constraint matrix
G(p, u(t)) := (∂g/∂p)(p, u(t)) and Lagrange multipliers λ(t) ∈ Rng , see [5]:

2

M(p, u(t)) p̈(t) = Ψ(p, ṗ, u(t))−G>(p, u(t)) λ , (5a)

0 = g(p, u(t)) . (5b)

Explicit and residual formalisms have been extended to the differential-alge-
braic equations of motion (5), see [5,7]. Typical problem dimensions in indus-
trial applications are p(t) ∈ Rnp , λ(t) ∈ Rng with np = 10 . . . 100, ng ≤ 10 for
the simulation of a vehicle component and np = 200 . . . 1000, ng = 10 . . . 50
for a detailed full vehicle model in automotive and railway engineering.

Standard time integration methods for differential-algebraic equations (DAEs)
are used for the numerical solution of (5), see Section 2. The methods are
implicit and require in each time step the iterative solution of a system of
nonlinear equations by Newton’s method (corrector iteration).

The corrector iteration is the most time consuming part of time integration. If
joint coordinates are used then the numerical effort is typically dominated by
the evaluation of Jacobian matrices of the right hand sides in (5). In Section 3
we present three novel algorithms for the efficient re-evaluation and update
of Jacobian matrices during time integration. They are tailored to large scale
applications and to the semi-explicit structure of the equations of motion (5).

All three algorithms have been implemented in an industrial multibody system
tool. In Section 4 we report on practical experience in test problems from
railway and automotive engineering. The algorithms proved to be reliable and
efficient. The overall computing time for the dynamical simulation is typically
reduced by more than 50%.

2 Time integration of constrained mechanical systems

The equations of motion (5) are solved numerically by DAE time integration
methods. In this section we discuss the application of the DAE integrator
DASSL [8] with focus on the corrector iteration and the approximation of
Jacobian matrices by standard finite differences.

2.1 DAE time integration methods for constrained mechanical systems

In DAE terminology the equations of motion (5) have index 3, see [8,9]. The
constraints 0 = g(p, u(t)) in (5b) imply additional restrictions on the state
variables that have to be considered in time integration for reasons of numer-
ical stability [8,9].

3

Differentiating (5b) w. r. t. t we obtain the equation

0 =
d

dt
g(p(t), u(t)) =

∂g

∂p
(p(t), u(t)) · dp

dt
+

∂g

∂u
(p(t), u(t)) · du

dt

that results in a hidden constraint for the velocity coordinates v(t) := ṗ(t) :

0 = G(p, u(t)) v + g(I)(p, u(t), u̇(t)) (6)

with g(I)(p, u, u̇) := (∂g/∂u)(p, u) u̇. The right hand side of (6) is evaluated by
the multibody formalism, see [10].

There are various stabilization and projection methods to exploit the hidden
constraint (6) for a numerically stable time integration of the equations of
motion [4,9,11]. In the framework of an industrial multibody system tool the
approach of Gear et al. [12] is especially useful because it may be implemented
without any modifications of the multibody formalism.

In the Gear–Gupta–Leimkuhler formulation (or stabilized index-2 formulation)
of the equations of motion the DAE (5) is rewritten as first order system and
the constraints (5b) and (6) on position and velocity level are considered
simultaneously:

ṗ(t) = v −G>(p, u(t)) η , (7a)

M(p, u(t)) v̇(t) = Ψ(p, v, u(t))−G>(p, u(t)) λ , (7b)

0 = G(p, u(t)) v + g(I)(p, u(t), u̇(t)) , (7c)

0 = g(p, u(t)) . (7d)

The increasing number of equations is compensated by a correction term
−G>(p, u) η with auxiliary variables η(t) ∈ Rng . The correction term vanishes
identically for the analytical solution (η(t) ≡ 0) and remains in the size of the
user-defined error tolerances TOL for the numerical solution.

For the application of general purpose DAE time integration methods the
Gear–Gupta–Leimkuhler formulation (7) is written in residual form

F (y(t), ẏ(t), u(t)) = 0 (8)

with the vector of unknowns y := (p, v, λ, η)> ∈ Rny and the residual

F (y, ẏ, u(t)) :=

ṗ− v + G>(p, u(t)) η

M(p, u(t)) v̇ −Ψ(p, v, u(t)) + G>(p, u(t)) λ

G(p, u(t)) v + g(I)(p, u(t), u̇(t))

g(p, u(t))

(9)

4

that may be evaluated with O(N) complexity by residual formalisms [7], see
also (3).

For explicit multibody formalisms [5,6,10] the residual F in (8) has the form

F (y, ẏ, u(t)) :=

ṗ− v + G>(p, u(t)) η

v̇ − (M(p, u(t)))−1
(
Ψ(p, v, u(t))−G>(p, u(t)) λ

)
G(p, u(t)) v + g(I)(p, u(t), u̇(t))

g(p, u(t))

. (10)

One of the simplest methods for the time integration of general DAEs in
residual form (8) is the backward Euler method

F (yn+1,
yn+1 − yn

hn

, u(tn+1)) = 0 (11)

that defines for a given yn ≈ y(tn) the numerical solution yn+1 ≈ y(tn+1) in
time step tn → tn+1 as solution of a system of ny nonlinear equations. In (11)
the time stepsize is denoted by hn := tn+1 − tn.

In practical applications DAE (8) is solved by k-step backward differentiation
formulae (BDF, also: Gear’s method) that generalize the first order backward
Euler method (11) to higher order, see [8]:

F (yn+1,
1

hn

kn∑
j=0

αn,jyn+1−j, u(tn+1)) = 0 . (12)

The parameter kn defines the order of the method and the BDF coefficients
αn,j, (1 ≤ kn ≤ 6; j = 0, 1, . . . , kn).

In (12) the numerical solution yn+1 ≈ y(tn+1) depends on the kn previous
values yn+1−j, (j = 1, . . . , kn) and has to be computed as solution y of the
system of ny nonlinear equations

F (y, αy + β, u(tn+1)) = 0 (13)

with α := αn,0/hn and the vector

β :=
1

hn

kn∑
j=1

αn,jyn+1−j

that is defined by the kn previous solution vectors yn−(kn−1), . . . , yn. In the
special case kn = 1 we have the backward Euler method (11) with α = 1/hn

and β = −yn/hn.

5

The BDF integrator DASSL [8] is one of the most frequently used DAE inte-
grators in technical simulation. It is free software that can be downloaded at
http://www.netlib.org/ode.

DASSL implements BDF (12) with order and stepsize control. The systems of

nonlinear equations (13) are solved iteratively starting with a predictor y
(0)
n+1

that is obtained by polynomial extrapolation of yn−(kn−1), . . . , yn. In the cor-
rector iteration a simplified Newton method is used to improve the numerical
solution y

(m)
n+1 iteratively:

y
(m+1)
n+1 = y

(m)
n+1 − J̄−1F (y

(m)
n+1, αy

(m)
n+1 + β, u(tn+1)) , (m ≥ 0) , (14)

see [8,13]. The matrix J̄ approximates the Jacobian

J(t, y) :=
d

dy
F (y, αy + β, u(t)) = α

∂F

∂ẏ
(y, αy + β, u(t)) +

∂F

∂y
(y, αy + β, u(t))

(15)
of the nonlinear system (13).

In DASSL, the approximation J̄ of the Jacobian J is selected carefully be-
cause of its dominating influence on the convergence speed of the corrector
iteration (14). In the application to multibody systems that are modelled in
joint coordinates the computation of J̄ is often the most time consuming part
of time integration.

2.2 Jacobian evaluation by finite differences

If the Jacobian J(t, y) in (15) is not supplied by the user then DASSL ap-
plies a standard finite difference approximation J̄ = (j̄ir) to approximate J
columnwise by difference quotients [13]. This classical approach requires ny +1
function evaluations of F : the nominal value F 0 := F (y, αy + β, u(t)) and ny

perturbed function values

F r := F (y + δrer, α(y + δrer) + β, u(t)) , (r = 1, . . . , ny)

with the rth unit vector er and small increments δr ∈ R \ {0}. The difference
approximation J̄(t, y) of J(t, y) is given by

j̄ir :=
F r

i − F 0
i

δr

, (i, r = 1, . . . ny). (16)

The increments δr must be selected such that the difference between the ap-
proximated and the exact Jacobian can be neglected. This error consists of
an approximation error O(|δr|), and roundoff errors in the evaluation of F 0

6

and F r that are of size O(ε/|δr|) with the machine precision ε. A typical value
of δr is

δr = max(|yr|, 4
√

ε)
√

ε , (17)

see [13].

The standard finite difference approximation (16) is robust. Its main drawback
is, however, the large computational effort for ny +1 function evaluations of F .

2.3 Efficient Jacobian updates in DASSL

Often, the difference approximations of the Jacobian cause a dominating part
of the numerical effort in time integration. Therefore, the time consuming re-
evaluations of J̄ are avoided in the corrector iteration of DASSL as long as
possible keeping one and the same approximation J̄ over several time steps.

Typically, the re-use of old Jacobian approximations will slow down the con-
vergence of the corrector iteration. This undesired effect is compensated by
the modified corrector iteration

y
(m+1)
n+1 = y

(m)
n+1 − cJ̄−1F (y

(m)
n+1, αy

(m)
n+1 + β, u(tn+1)), (18)

with a scalar scaling factor c that is selected such that an optimal rate of
convergence is achieved [14], see also (14).

By this implementation of Newton’s method DASSL avoids frequent re-eval-
uations of the iteration matrix without slowing down the convergence of cor-
rector iteration too much. A new difference approximation of J is computed
only if

a) the corrector iteration fails to converge,
b) the speed of convergence is too slow, or
c) the parameter α changes drastically, see (15).

3 Adapted approximation of the Jacobian

The efficiency of time integration in dynamical simulation is improved by
several methods for reducing the computational effort in the approximation
of the Jacobian J . It is due to the special structure of J that a remarkable
saving of computing time can be attained.

7

3.1 Difference approximation of sparse Jacobians

Difference approximations of sparse Jacobians require typically substantially
less function evaluations than the standard finite differences (16). The struc-
ture of sparse Jacobians is exploited, e. g., by “Algorithm TOMS 618” of the
Transactions on Mathematical Software that has originally been developed
for the difference approximation of sparse Jacobians and Hessians in optimiza-
tion [15].

Algorithm TOMS 618 makes explicit use of the sparsity structure Σ of the
Jacobian J = (jir) that has to be provided as input parameter of the algorithm:

Σ(J) := { (i, r) : jir 6= 0 } .

The important observation is that one perturbed function value F r ∈ Rny

in (16) gives ny elements of the Jacobian. If the Jacobian is dense then the
ny elements j̄ir of column r are obtained. For sparse Jacobians the incre-
ment δrer is slightly modified to approximate all non-zero elements of a whole
group of columns using just one perturbed function value F [k] ∈ Rny , see (20)
below.

To explain this procedure in more detail, let us look at the following example:

J =

?

?

?

0

0

?

0

?

0

0

?

?

0

?

?

0

?

0

?

0

0

?

0

0

0

0

0

?

?

0

0

0

?

0

0

0

⇒

? 0

? 0

? 0

0 ?

0 ?

? 0︸ ︷︷ ︸
group1

0 ? 0

? 0 0

0 0 ?

0 ? 0

? 0 0

? 0 0︸ ︷︷ ︸
group2

0

?

?

0

?

0︸︷︷︸
group3

(19)

The sparsity structure Σ(J) is indicated by stars ’?’ for the non-zero elements.
With the nominal function value F 0 = F (y, αy + β, u(t)) and only one per-
turbed function value

F {2,4,6} = F (y+δ{2,4,6}
y , α(y+δ{2,4,6}

y)+β, u(t)) with δ{2,4,6}
y := δ2e2+δ4e4+δ6e6

all three non-zero elements of the 2nd column (j22 ≈ (F
{2,4,6}
2 − F 0

2)/δ2, j52 ≈
(F

{2,4,6}
5 − F 0

5)/δ2, j62 ≈ (F
{2,4,6}
6 − F 0

6)/δ2), both non-zeros of the 4th column

(j14 ≈ (F
{2,4,6}
1 − F 0

1)/δ4, j44 ≈ (F
{2,4,6}
4 − F 0

4)/δ4) and the non-zero element

of the 6th column (j36 ≈ (F
{2,4,6}
3 − F 0

3)/δ6) are approximated simultaneously.

8

Algorithm TOMS 618 uses methods of graph theory to assign the ny columns
of J to nk ≤ ny groups such that each column belongs to one and only one
group and in each group there is at most one non-zero entry per row. A
partitioning of the columns of J with this property is called consistent with the
difference approximation of J . In (19) we have nk = 3 groups with columns 1
and 5 in group 1, columns 2, 4 and 6 in group 2 and column 3 in group 3.

Formally, the consistent partitioning is described by a function

γ : { 1, . . . , ny } → { 1, . . . , nk }

with γ(r) = k if the r-th column of J belongs to the k-th group. The parti-
tioning is consistent if for all column indices r1, r2 ∈ { 1, . . . , ny } with r1 6= r2

the condition

(i, r1) ∈ Σ(J), (i, r2) ∈ Σ(J) ⇒ γ(r1) 6= γ(r2)

is satisfied for all row indices i = 1, . . . , ny. In (19) we have γ(1) = γ(5) = 1,
γ(2) = γ(4) = γ(6) = 2 and γ(3) = 3.

Algorithm TOMS 618 computes a difference approximation J̄(t, y; Σ) of the
Jacobian J(t, y) using nk + 1 function evaluations of F instead of the ny + 1
function evaluations in the standard approach (16). The nk + 1 function eval-
uations are F 0 := F (y, αy + β, u(t)) and

F [k] := F (y + δ[k]
y , α(y + δ[k]

y) + β, u(t)) with δ[k]
y :=

∑
{ r : 1≤r≤ny , γ(r)=k }

δrer ,

(k = 1, . . . , nk). Here, er denotes again the rth unit vector and δr is chosen
according to (17). We obtain

J̄(t, y; Σ) =
(
j̄ir(Σ)

)ny

i,r=1
with j̄ir(Σ) :=

F

[γ(r)]
i − F 0

i

δr

if (i, r) ∈ Σ ,

0 if (i, r) /∈ Σ .

(20)

The sparsity structure Σ(J) is completely defined by the topology of the multi-
body system and by the input–output relations of the force elements. In in-
dustrial multibody system simulation both the topology of the system and the
input–output relations of all library elements are known. Practical experience
shows, however, that it is fairly complicated to trace the non-zero elements of
the Jacobian resulting from user-defined force elements.

A more fail-safe alternative is the use of estimates Ω of the sparsity pattern
Σ(J). At the beginning of time integration the Jacobian J(t0, y0) is approx-
imated once by standard finite differences (16) and Ω is initialized with the

9

sparsity structure of this difference approximation: Ω := Σ
(
J̄(t0, y0)

)
. In the

following, the difference approximations of the Jacobian are computed apply-
ing Algorithm TOMS 618 with the estimated sparsity structure Ω, see (20):

J(t, y) ≈ J̄(t, y; Ω) .

Force elements, that are not active from the very beginning of dynamical sim-
ulation make it necessary to update the estimated sparsity pattern Ω during
time integration whenever the convergence of the corrector iteration is too slow
and the difference approximation J̄(t, y; Ω) itself has been updated recently.

In that case one full difference approximation J̄(t, y) is evaluated by standard
finite differences (16) involving ny + 1 function evaluations. The difference
approximation J̄(t, y) is scanned for additional potential non-zero elements:

Ω := Ω ∪ Σ
(
J̄(t, y)

)
.

Afterwards, the time integration is continued with sparse difference approxi-
mations according to Algorithm TOMS 618 with the updated estimate Ω of
the sparsity structure.

It is important to note that Algorithm TOMS 618 with the exact sparsity
pattern Σ(J) results in a difference approximation J̄(t, y; Σ(J)) in (20) that is
exactly equal to the standard finite difference approximation J̄(t, y) in (16).
The application of Algorithm TOMS 618 with an estimated sparsity pattern Ω
may, however, result in a different difference approximation J̄(t, y; Ω). Practi-
cal experience has shown that the corrector iteration will nevertheless converge
sufficiently fast if the estimated sparsity pattern Ω is regularly updated as de-
scribed above, see also the results of numerical tests in Section 4 below.

3.2 Partitioned evaluation of Jacobians

There is an algorithmic detail of general purpose DAE integrators like DASSL
that can make them substantially slower than classical integrators for ordinary
differential equations (ODEs). Rewriting an ODE in residual form (8) we get

ẏ(t) = ϕ(y, u(t)) ⇔ F (y, ẏ, u(t)) = 0 with F (y, ẏ, u) := ẏ − ϕ(y, u) (21)

and the Jacobian J in (15) has the simpler form J = αIny − (∂ϕ/∂y). Strong
changes of α that enforce in the general DAE case an update of the full
Jacobian J , see (15), may be handled much more conveniently in the ODE
case as long as ∂ϕ/∂y varies only slightly:

10

J(tnew, ynew) = αnewIny −
∂ϕ

∂y
(ynew, u(tnew)) ,

≈αnewIny −
∂ϕ

∂y
(yold, u(told)) = (αnew−αold)Iny +J(told, yold).

If the Jacobian J(told, yold) at some previous time t = told was approximated
by J̄old then the actual Jacobian J(tnew, ynew) may be approximated by

J̄new := J̄old + (αnew − αold)Iny , (22)

i. e., the Jacobian approximation J̄ is updated by the cheap matrix addi-
tion (22) avoiding completely the time consuming evaluation of the Jacobian
∂ϕ/∂y of the right hand side ϕ in ODE (21). This Jacobian update strategy
is implemented in all standard stiff ODE solvers, see, e. g., [9].

Generalizing (22) to DAEs (8) we get the partitioned Jacobian update

J̄new := J̄old+αnew
∂F

∂ẏ
(ynew, αynew+β, u(tnew))−αold

∂F

∂ẏ
(yold, αyold+β, u(told))

(23)
for DAEs. This partitioned update handles the entries ∂F/∂ẏ and ∂F/∂y in J
separately, see (15), and avoids the time consuming re-evaluations of ∂F/∂y.
In the DAE case the partitioned update is attractive only, if ∂F/∂ẏ has a
simple structure.

If the equations of motion of a constrained mechanical system are evaluated
by explicit multibody formalisms, the update formula (23) simplifies to

J̄new := J̄old + (αnew − αold)

 I2np 02np×2ng

02ng×2np 02ng×2ng

 , (24)

see (10).

For linear equations of motion the Jacobian ∂F/∂y, that involves the partial
derivatives of all force elements, has to be evaluated only once at the beginning
of time integration. Later, the Jacobian approximation J̄ is updated by the
cheap matrix addition (24).

For nonlinear equations of motion the partitioned Jacobian evaluation (24) is
attractive whenever α varies strongly and ∂F/∂y remains nearly unchanged.
Strong changes of α result typically from strongly varying time stepsizes in
the beginning of time integration and at discontinuities. The partitioned eval-
uation (24) is not applicable if ∂F/∂y changed substantially. In that case a
full difference approximation of J has to be computed by the methods of
Sections 2.2 and 3.1, see (16) and (20).

11

The partitioned Jacobian update (23) may be combined as well with the resid-
ual formalism. Here, the multibody formalism has to be modified to evaluate
the mass matrix M(p, u(t)) as additional output parameter. For the equations
of motion (9) the Jacobian update (23) has the form

J̄new := J̄old+αnew

Inp 0 0

0 M(pnew, u(tnew)) 0

0 0 0

−αold

Inp 0 0

0 M(pold, u(told)) 0

0 0 0

 .

(25)

3.3 Multibody system models with dominating external excitations

Recently, the partitioned evaluation (24) was extended to mildly nonlinear
models with dominating external time excitations u(t), see [16]. This impor-
tant problem class involves many models with rheonomic joints.

Fig. 1. Rear axle on top of a stamp [17].

A typical example is illustrated by Fig. 1 showing a test rig for rear axles.
One of the wheels is on top of a stamp that moves up and down to study the
frequency response of the rear axle. This model has an approximately linear
behaviour. With the partitioned update formula (24) of Section 3.2 one expects
only a few difference approximations (16) or (20) during time integration.

A more detailed analysis shows, however, that the partitioned evaluation (24)
is not successful here since some entries of (∂F/∂y)(y, ẏ, u(t)) vary strongly
because of the periodically moving stamp that is modelled as a rheonomic
joint with periodic time excitation u(t). The time dependent entries of the

12

Jacobian J make the time integration inefficient because periodic changes of
u(t) require frequent difference approximations of J . Therefore the partitioned
evaluation (24) has to be extended by an additional update of time-dependent
entries of J̄ .

The new Jacobian J(tnew, ynew) is rewritten as

J(tnew, ynew) = αnew

 I 0

0 0

 +
∂F

∂y
(ynew, ẏnew, u(tnew))

= J(told, yold) + (αnew − αold)

 I 0

0 0

 +

+
∂F

∂y
(ynew, ẏnew, u(tnew))− ∂F

∂y
(yold, ẏold, u(told)).

Taylor expansion up to some second order derivatives gives

∂F

∂y
(ynew, ẏnew, u(tnew)) =

∂F

∂y
(yold, ẏold, u(told)) +

+
nu∑
i=1

∂

∂ui

∂F

∂y
(yold, ẏold, u(told))(ui(tnew)− ui(told)) + R

with a remainder term R of second order which can be neglected in the mildly
nonlinear case. The new update formula for the approximation J̄ is

J̄new := J̄old + (αnew − αold)

 I 0

0 0

 +

+
nu∑
i=1

∂

∂ui

∂F

∂y
(y0, ẏ0, u(t0)) · (ui(tnew)− ui(told)).

(26)

The first line in (26) is equivalent to the partitioned evaluation (24) in Sec-
tion 3.2. The additional update of time dependent entries in J requires the
approximation of nu second order derivatives ∂2F/∂ui∂y, (i = 1, . . . , nu) by
finite differences. These partial derivatives ∂2F/∂ui∂y are not calculated at
every update of the Jacobian. It is sufficient to evaluate them once at the
beginning of integration.

Note, that (26) is tailored to explicit multibody formalisms with equations of
motion (10). The extension to equations of motion (9) resulting from resid-
ual formalisms would require substantial additional numerical effort for the
evaluation of ∂M/∂ui.

13

Fig. 2. Train carriage passing an S-shaped line change.

4 Numerical experiments

The industrial multibody system simulation package SIMPACK 2 offers finite
difference approximations (16) and (20) for dense and sparse Jacobians, re-
spectively, and the cheap Jacobian updates (24) and (25) for the partitioned
evaluation of J̄ , see [10]. In Section 4.1 these algorithms will be compared in
the application to a railway model.

In Section 4.2 we discuss the extended partitioned evaluation method (26)
applied to a simplified benchmark problem and to an approximately linear
automotive model in a SIMPACK developer version [16].

4.1 Dynamical simulation of a train carriage passing an S-shaped line change

Fig. 2 shows the multibody system model of a train carriage passing an S-
shaped line change. It will be used as test problem throughout the present
section. The model has np = 41 position coordinates describing the car body,
the two bogies and the four wheelsets. A quasi-elastic model for wheel-rail
contact [18] results in ng = 8 constraints corresponding to eight wheels of four
wheelsets in two bogies, see Fig. 2. The carriage crosses the line change with
constant speed, the integration ranges from 0 s to 15 s.

In the dynamical simulation of the train carriage the numerical effort is dom-

2 SIMPACK is a trademark of INTEC GmbH, see http://www.simpack.com .

14

inated by the evaluation of Jacobians J . Because of 2np + 2ng = 98 the Ja-
cobian is of size 98× 98. The maximum number of non-zero elements for
t ∈ [0 s, 15 s] is nnz = 1620 � 982, the Jacobian is sparse.

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

nz = 1620

Fig. 3. Sparsity structure of J .

Fig. 3 shows the sparsity structure of J with rows 1 . . . 41 corresponding to
the kinematic equations (7a). Below we will discuss in more detail the sparsity
structure of rows 42 . . . 82 that correspond to the dynamical equations (7b).
The last 16 rows result from the constraints (7c) and (7d) on velocity and
position level.

The dynamic equations (7b) reflect the topology of the model. The present
example has a clearly visible modular structure since there is no direct coupling
between front and rear bogie. Rows 42 . . . 82 of Fig. 3 illustrate this structure
in more detail. There are variables describing

a) the car body (rows 42 . . . 46),

b) the front bogie (rows 47 . . . 52) and the rear bogie (rows 65 . . . 70)

c) and the front and rear wheelsets (rows 53 . . . 64 and 71 . . . 82).

In rows 42 . . . 46 the non-zero entries result from the dynamics of the car body
itself (columns 1 . . . 5 and 42 . . . 46) and from the dynamical interaction of
car body and bogies (columns 6 . . . 11, 24 . . . 29, 47 . . . 52 and 65 . . . 70).

15

There is no direct connection between car body and wheelsets. Hence, the
corresponding elements of the Jacobian vanish identically (columns 12 . . . 23,
30 . . . 41, 53 . . . 64 and 71 . . . 82).

A comparison of (19) and Fig. 3 shows that this sparse Jacobian J is a perfect
candidate for a groupwise finite difference approximation. A typical group is
given by columns 54 and 72, i. e., by the combination of a column from a
front wheelset with a column from a rear wheelset, since there is no direct
dynamical interaction between these two bodies. On the other hand a column
from the front bogie cannot build a group with a column from the rear bogie
because both are directly connected to the car body.

The number nk of groups in a consistent partitioning of the columns of J is
minimized by Algorithm TOMS 618 applying methods from graph theory to
the estimated sparsity pattern Ω, see Section 3.1. For the present example the
number of groups does not exceed nk = 46 during time integration. Instead of
ny + 1 = 99 function evaluations for the standard finite difference approxima-
tion (16) the adapted difference approximation (20) needs only nk + 1 = 47
function evaluations to approximate the sparse Jacobian J .

Figs. 4 and 5 illustrate the consistent partitioning for the train carriage ex-
ample. Algorithm TOMS 618 combines columns 8, 32 and 89 to group 1.
Group 2 consists of columns 12, 31 and 86, group 3 is defined by column 5
and column 90, group 4 contains columns 19, 78, 83 and 87, and so on.

Substantial savings of computing time are also achieved by the partitioned
Jacobian evaluations (24) and (25). Furthermore, the special structure of the
Gear–Gupta–Leimkuhler formulation (7) may be exploited to avoid the dif-
ference approximation of the last ng = 8 columns of J that correspond to the
correction term −G>η, see [11,19,20]. Therefore the standard finite difference
approximation (16) requires only ny + 1− 8 = 91 function evaluations of F in
the present example.

The results for the test problem are shown in Table 1 for the explicit formal-
ism (10) (explicit, see [10]) and for the residual formalism (9) (residual,
see [7]). In both cases the tolerances are set to RTOL = 10−4 (relative error) and
ATOL = 10−4 (absolute error). The abbreviations used in the table are defined
as follows:

dense standard finite differences (16)

sparse finite differences (20) for sparse Jacobians

(Algorithm TOMS 618)

part. partitioned evaluation (24) and (25)

cpu cpu-time

#fc number of function calls (total)

16

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

nz = 1620

Fig. 4. Consistent partitioning of the columns of J in Algorithm TOMS 618.

group 1 group 2 group 3 group 4 . . .

Fig. 5. Groups of the columns of Jacobian J in Algorithm TOMS 618.

17

dense sparse part. cpu #fc #fcw #Je percent

ex
pl

ic
it

? 18.86 9739 2179 84 100.0%

? 14.78 7178 2166 103 78.4%

? ? 11.03 4759 2509 25 58.5%

? ? 10.59 4605 2288 43 56.2%

re
si

du
al

? 18.59 10473 2193 92 100.0%

? 13.55 6992 2152 100 72.9%

? ? 10.33 4739 2386 24 55.6%

? ? 9.63 4415 2226 40 51.8%

Table 1
Numerical tests for a train carriage passing an S-shaped line change.

#fcw number of function calls without counting those

for the evaluation of the Jacobian

#Je number of difference approximations of the Jacobian

percent percentage of cpu-time compared to standard DASSL

The number #Je of finite difference approximations of the Jacobian J and the
computing time cpu are of special interest.

Comparing the two columns #fc and #fcw, i. e., the number of function calls
with and without the ones that are needed for evaluating the Jacobian, demon-
strates the large computational effort for the finite difference approximations
of J . The table shows that the adapted algorithms for Jacobian approxima-
tion and Jacobian update reduce the cpu-time significantly. The best results
are achieved by combining the finite difference approximation (20) for sparse
matrices with the partitioned Jacobian updates (24) and (25). Total savings of
up to 50% are obtained. The differences between explicit multibody formalism
and residual formalism are negligible.

At first glance it might be surprising that the total number of Jacobian eval-
uations is typically slightly increased if Algorithm TOMS 618 is applied to
evaluate the finite difference approximation (20) of sparse Jacobians. The rea-
son is the use of estimated sparsity patterns Ω instead of the exact sparsity
patterns Σ(J), see Section 3.1. In this example the estimated sparsity pat-
tern Ω has to be updated several times during time integration. Nevertheless
the overall cpu-time is decreased substantially by Algorithm TOMS 618 since
the sparse difference approximations (20) are much cheaper than the standard
difference approximations (16).

18

4.2 Multibody systems with dominating external time excitations

In this section we consider in detail the use of the extended partitioned Ja-
cobian update (26) for a simple benchmark problem and for a test problem
from automotive engineering. In the application to automotive engineering the
overall computing time is reduced by more than 50% combining adapted finite
difference approximations and (extended) partitioned updates of the Jacobian.

4.2.1 Benchmark: Chain of mathematical pendulums

Fig. 6 shows a chain of mathematical pendulums consisting of N + 1 point
masses mi = 1.0 kg that are connected by massless rods of length li = 1.0 m
and move under the influence of gravity. The state of the chain is described by
the angles αi between rod “i” and the y−axis, see Fig. 6. From the viewpoint
of multibody dynamics the angle αi may be considered as a coordinate that
characterizes the degree of freedom in “joint” i.

Fig. 6. Chain of pendulums.

The first mass point is attached to the suspension point (xsusp, ysusp) which is
excited periodically:

xsusp(t) = 2.0 m + sin ωt · 0.3 m , ysusp(t) = sin ωt · 0.2 m

with ω = 0.05 Hz. Frequency and amplitudes of the time excitation were cho-
sen to guarantee an approximately linear system behaviour that is charac-
terized by small deviations |αi(t)| from the nominal position and by small
velocities |α̇i(t)| over the whole time span t ∈ [0 s, 200 s].

For the numerical tests the extended partitioned Jacobian update (26) was
implemented in DASSL. The error bounds are set to ATOL = 10−6 for the

19

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5
Standard dense evaluation

Time t[s]

E
xc

ita
tio

n
u(

t)

Time excitation
Jacobian−evaluation

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5
Extended partitioned evaluation

Time t[s]

E
xc

ita
tio

n
u(

t)

Time excitation
Jacobian−evaluation
Jacobian−update

Fig. 7. Jacobian evaluations by finite differences (16) and updates (26).

absolute error and RTOL = 10−4 for the relative error. The tests are performed
for different values of N resulting in problem dimensions np = 2N , ng = 0.

Fig. 7 shows for N = 16 the time instances of Jacobian evaluations by finite
differences (16) and the time instances of cheap Jacobian updates (26). The
sine function corresponds to the time excitation at the suspension point. The
dotted lines mark the expensive finite difference approximations of the Jaco-
bian whereas the dashed lines in the lower plot show the cheap updates in the
extended partitioned method (26).

The upper plot shows the results for the standard implementation of DASSL
with #Je = 43 finite difference approximations of the Jacobian in the time
span t ∈ [0 s, 200 s], see also Section 2.2. The lower plot illustrates the benefits
of the extended partitioned Jacobian updates that substitute most of the finite
difference approximations by cheap matrix additions (26) reducing the total
number of finite difference approximations (16) to #Je = 6.

In this fairly simple benchmark problem without any time consuming force
elements the extended partitioned Jacobian update (26) saves between 10%
and 30% of the total computing time, see the results for N = 12 and N = 14

20

N dense sparse
extended

cpu #Je #updates (26) percent
partitioned

12

? 5.69 59 0 100%

? 5.24 72 0 92.1%

? ? 4.68 9 27 82.2%

? ? 5.09 10 59 89.5%

14

? 9.03 96 0 100%

? 6.76 70 0 74.9%

? ? 6.78 12 62 75.1%

? ? 6.16 8 16 68.2%

Table 2
Numerical tests for the benchmark “Chain of pendulums”.

in Table 2. The savings are larger for higher problem dimensions since the
numerical effort of standard finite differences (16) grows linearly with np = 2N .
As in Section 4.1 we observe that the use of estimated sparsity patterns Ω in
Algorithm TOMS 618 (“sparse”) may result in an increased total number
of Jacobian evaluations (#Je + #updates) but the overall computing time is
nevertheless reduced in most computations.

Fig. 8. Passenger car performing periodic line changes.

4.2.2 Dynamical simulation of a motor-car performing periodic line changes

The section on numerical experiments is completed by a test problem from
automotive engineering, see Fig. 8. The model describes a passenger car that

21

drives with constant speed and performs periodic line changes.

The SIMPACK model has a rheonomic joint between car body and steering
which is excited by a sinusoidal input u(t). For moderate driving speed the car
behaves approximately linearly. Therefore, substantial savings of computing
time may be expected if the (extended) partitioned Jacobian updates (24)
and (26) are used.

In the time integration a developer version of DASSL is applied with tolerances
ATOL = 10−5 for the absolute error and RTOL = 10−4 for the relative error. The
time integration is performed for t ∈ [0 s, 5 s].

The results of Table 3 show that the overall computing time is decreased
substantially by partitioned Jacobian updates (24). Further savings result from
the additional update (26) of time dependent Jacobian entries. In the best case
a reduction of up to 85% was obtained combining the extended partitioned
update (26) with adapted finite differences (16) for sparse Jacobians.

dense sparse partitioned
extended

cpu #Je percent
partitioned

? 296.86 2229 100%

? 309.44 2303 103.3%

? ? 141.28 660 29.6%

? ? 145.75 668 30.0%

? ? 79.66 410 18.4%

? ? 59.45 317 14.2%

Table 3
Numerical tests for a passenger car performing periodic line changes.

5 Summary

If complex mechanical systems are described by joint coordinates then the
computational effort in the dynamical simulation is typically dominated by
the evaluation of the Jacobian of the equations of motion. The topology of the
mechanical system is reflected by the structure of this Jacobian and should be
exploited to save computing time.

The standard algorithm computes a difference approximation of the Jacobian
column by column using one difference quotient per column of the Jacobian. If
the Jacobian is sparse and its sparsity structure is explicitly known then several
columns of the Jacobian may be approximated simultaneously using just one

22

perturbed function value. This algorithm for the difference approximation of
sparse Jacobians reduces the overall computing time substantially.

The semi-explicit structure of the differential-algebraic equations of motion
is exploited by partitioned Jacobian approximations that re-use information
from previous time steps. If possible, the new Jacobian is calculated by a cheap
matrix addition instead of an expensive difference approximation. Additional
updates of time dependent entries in the Jacobian proved to be favourable for
multibody system models with strong external excitations.

The methods were successfully implemented and tested in an industrial multi-
body system tool. Numerical experiments show substantial savings of comput-
ing time in the dynamical simulation of models from railway and automotive
engineering.

Acknowledgements

The authors acknowledge many fruitful discussions on the subject with Wolf-
gang Rulka (Siemens Transportation Systems, Munich).

References

[1] A. Shabana, Dynamics of Multibody Systems, 2nd Edition, Cambridge
University Press, Cambridge, 1998.

[2] B. Simeon, C. Führer, P. Rentrop, Differential-algebraic equations in vehicle
system dynamics, Surveys on Mathematics for Industry 1 (1991) 1–37.

[3] W. Kortüm, W. Schiehlen, M. Arnold, Software tools: From multibody system
analysis to vehicle system dynamics, in: H. Aref, J. Phillips (Eds.), Mechanics
for a New Millennium, Kluwer Academic Publishers, Dordrecht, 2001, pp. 225–
238.

[4] E. Eich-Soellner, C. Führer, Numerical Methods in Multibody Dynamics,
Teubner–Verlag, Stuttgart, 1998.

[5] R. Roberson, R. Schwertassek, Dynamics of Multibody Systems, Springer–
Verlag, Berlin Heidelberg New York, 1988.

[6] H. Brandl, R. Johanni, M. Otter, A very efficient algorithm for the simulation
of robots and similar multibody systems without inversion of the mass matrix,
in: P. Kopacek, I. Troch, K. Desoyer (Eds.), Theory of Robots, Pergamon Press,
Oxford, 1988, pp. 95–100.

23

[7] A. Eichberger, Simulation von Mehrkörpersystemen auf parallelen Rechner-
architekturen, Fortschritt-Berichte VDI Reihe 8, Nr. 332, VDI–Verlag,
Düsseldorf, 1993.

[8] K. Brenan, S. Campbell, L. Petzold, Numerical solution of initial–value
problems in differential–algebraic equations, 2nd Edition, SIAM, Philadelphia,
1996.

[9] E. Hairer, G. Wanner, Solving Ordinary Differential Equations. II. Stiff
and Differential-Algebraic Problems, 2nd Edition, Springer–Verlag, Berlin
Heidelberg New York, 1996.

[10] W. Rulka, Effiziente Simulation der Dynamik mechatronischer Systeme für
industrielle Anwendungen, Ph.D. thesis, Vienna University of Technology,
Department of Mechanical Engineering (1998).

[11] M. Arnold, Simulation algorithms and software tools, submitted to: G. Mastinu,
M. Plöchl (Eds.), Road and Off-Road Vehicle System Dynamics Handbook,
Taylor & Francis, London, to appear in 2005.

[12] C. Gear, B. Leimkuhler, G. Gupta, Automatic integration of Euler–Lagrange
equations with constraints, J. Comp. Appl. Math. 12&13 (1985) 77–90.

[13] C. Kelley, Solving Nonlinear Equations with Newton’s Method, SIAM,
Philadelphia, 2003.

[14] K. Burrage, J. Butcher, F. Chipman, An implementation of singly–implicit
Runge–Kutta methods, BIT 20 (1980) 326–340.

[15] T. Coleman, B. Garbow, J. Moré, Algorithm 618: FORTRAN subroutines
for estimating sparse Jacobian matrices, ACM Transactions on Mathematical
Software 10 (1984) 346–347.

[16] A. Fuchs, Effiziente Korrektoriteration für implizite Zeitintegrationsverfahren
in der Mehrkörperdynamik, Master Thesis, Munich University of Technology,
Department of Mathematics (2002).

[17] S. Dietz, G. Hippmann, G. Schupp, Interaction of vehicles and flexible tracks
by co–simulation of multibody vehicle systems and finite element track models,
in: H. True (Ed.), The Dynamics of Vehicles on Roads and on Tracks, Proc.
of the 17th IAVSD Symposium, Denmark, 20-24 August 2001, Supplement to
Vehicle System Dynamics, Vol. 37, Swets & Zeitlinger B.V., 2003, pp. 372–384.

[18] M. Arnold, H. Netter, Approximation of contact geometry in the dynamical
simulation of wheel-rail systems, Mathematical and Computer Modelling of
Dynamical Systems 4 (1998) 162–184.

[19] C. Führer, Differential-algebraische Gleichungssysteme in mechanischen
Mehrkörpersystemen. Theorie, numerische Ansätze und Anwendungen, PhD
Thesis, TU München, Mathematisches Institut und Institut für Informatik
(1988).

[20] C. Führer, B. Leimkuhler, Numerical solution of differential–algebraic equations
for constrained mechanical motion, Numer. Math. 59 (1991) 55–69.

24

