
DAE time integration for real-time applications in
multi-body dynamics

Bernhard Burgermeister a,∗, Martin Arnold a, Benjamin Esterl b

aMartin–Luther–University Halle–Wittenberg, Department of Mathematics and Computer
Science, Institute of Numerical Mathematics, D - 06099 Halle (Saale), Germany
bTESIS DYNAware GmbH, Baierbrunnerstr. 15, D-81379 München, Germany

Abstract

The equations of motion of multi-body systems with kinematically closed loops are given
by differential-algebraic equations (DAE). Real-time applications like hardware-in-the-
loop testbeds or driving simulators require appropriate integration methods that can solve
the non-linear constraints without exceeding an a priori fixed number of calculation steps.

Partitioned linear-implicit Euler methods can be extended by appropriate stabilization
techniques to keep the error in the constraints limited for arbitrary time intervals. These
methods need a fixed low number of operations for each time step. One simplified Newton
step for the projection onto the constraint manifold can prevent the drift-off for arbitrary
time intervals if the stepsize is sufficiently small.

Selected methods were successfully implemented in the commercial vehicle simulation
package veDYNA to improve substantially the simulation capabilities for vehicle-trailer
coupling.

Key words: Differential-algebraic equations, time integration, real-time, multi-body
dynamics

1 Real-time simulation of multi-body systems

Computer simulations are an important tool for the design and optimization of me-
chanical systems like robots, cars and planes. Mechanical multi-body system mod-
els reproduce the dynamical behavior of mechanical systems in great detail [16].

∗ Corresponding author.
Email address: bernhard.burgermeister@mathematik.uni-halle.de

(Bernhard Burgermeister).

Preprint submitted to Z. Angew. Math. Mech. 17 February 2006

A multi-body system (MBS) consists of a finite number of rigid or flexible bod-
ies which are connected by coupling elements like joints, springs, dampers and
actuators. The coupling elements are assumed to be massless, so that the mass of
the mechanical system is concentrated in the bodies. Industrial simulation pack-
ages like SIMPACK [21] or ADAMS [18] provide an interface for modeling and
numerical simulation of multi-body systems [23].

The equations of motion of a mechanical multi-body system are given by a second
order system of ordinary differential equations (ODE)

M(q)q̈ = f(q, q̇) ⇔

q̇ = u

u̇ = f̃(q, u) = M−1(q)f(q, u).
(1)

If the mechanical system contains closed loops, additional algebraic constraints
have to be introduced and the resulting equations of motion are given by a differential-
algebraic equation (DAE) that may be written in first order form as [20]

q̇ = u, (2a)

M(q)u̇ = f(q, u) − GT (q)λ, (2b)
0 = g(q) (2c)

where q are the generalized coordinates, u the generalized velocities, M(q) the
positive definite mass matrix, g(q) = 0 the algebraic constraints, λ the Lagrange
multipliers and G(q) = ∂g(q)/∂q the constraint matrix that is given by the Jaco-
bian of g(q). We suppose that G(q) has full rank to exclude redundant constraints
(Grübler condition) [9].

Real-time applications like simulators or hardware-in-the-loop test facilities have
special demands on the utilized integration methods [6,22]. For hardware-in-the-
loop tests a module of a larger system, for example the anti-skid system of a car,
is embedded in a simulation environment that simulates the remaining parts of the
car, the driver and the road. So the anti-skid system can be tested without time
consuming and dangerous test runs with a real car.

The embedded hardware module has a fixed time scale, so the simulation has to
be as fast as the mechanical system that is replaced by the simulation. Usually this
is achieved by using a fixed small time stepsize (often in the range of 1.0ms) and
exchanging data between the hardware module and the simulation at the beginning
of each time step.

The complete calculation of one time-step has to be finished within this fixed period
of time. So it is not possible to use iterative methods and techniques like automatic
stepsize control which are commonly used in off-line simulation to improve the
efficiency of the integration method.

2

The accuracy requirements on the time integration methods are quite low, because
mechanical systems are usually designed to be stable or are embedded in stable
control circuits that compensate errors in the time integration. Because of the re-
quired very small computing times only low order methods are used, in most cases
the first order Euler method.

It is well known, that the classical explicit Euler method suffers from numerical
instability in the application to stiff systems like vehicle models with stiff suspen-
sion elements or strongly damped components [19]. To avoid the iterative solution
of nonlinear equations that is typical of implicit time integration methods for stiff
systems, we consider in the present paper the linear-implicit Euler method [15,19]
that may be interpreted as an implementation of the implicit Euler method with an a
priori fixed number of Newton steps in the iterative solution of the arising systems
of nonlinear equations.

In the unconstrained case the linear-implicit Euler method requires in each time
step the solution of a system of linear equations (I − hJ)x = b with h denoting
the time stepsize and an approximation J of the Jacobian of the right hand side in
(1). The choice of J is essential for the efficiency and for the numerical stability of
the linear-implicit method: J should be a cheap approximation of the Jacobian con-
taining all terms that cause stiffness in the system. On the other hand, all terms of
the Jacobian that correspond to non-stiff components may be neglected (partitioned
linear-implicit method). The partitioning may be based on physical considerations
[19] or on numerical criteria [24,25].

In the present paper, we study the stability of the linear-implicit Euler method for
different partitioning strategies and extend the analysis of low order linear-implicit
methods to constrained systems (2).

The remaining part of the paper is organized as follows: In Section 2, the linear
stability analysis based on Dahlquist’s classical test equation ẏ = λy is extended to
second order ODEs (1). Stability regions and the maximum stepsize h in the stiff
case depend strongly on the structure of the Jacobian approximation J .

The main focus of the present work is on constrained systems (2) that are consid-
ered in more detail in Section 3. The key result of this section is a rigorous proof that
one Newton step of a projection method is sufficient to guarantee that the residuum
‖g(qn)‖ in the constraints (2c) remains bounded on arbitrary long time intervals
and the drift-off effect [3,15] is completely avoided for many problems.

Based on these theoretical investigations the partitioned linear-implicit methods
were implemented in an industrial vehicle simulation package [7,8]. Section 4 sum-
marizes test results for an academic test problem, for a classical numerical bench-
mark problem and for the application to the simulation of vehicle-trailer coupling
in the industrial vehicle simulation package veDYNA.

3

2 Partitioned linear-implicit Euler method

Frequently, vehicle models contain stiff springs or components with strong damp-
ing. Therefore, the equations of motion can contain stiff components and explicit
time integration methods get inefficient. Explicit methods need the lowest numer-
ical effort for each integration step, but are not stable for stiff systems or require
very small step sizes [15, Section IV.2]. On the other hand, implicit methods can
have excellent stability properties, but require the iterative solution of nonlinear
equations at each time-step and hence the number of computation steps and the
computing time are not known in advance.

The class of linear-implicit Runge-Kutta methods combines positive properties of
explicit and implicit methods [15, Section IV.7]. They have good stability properties
and need only the solution of linear systems of equations at each time step. We will
focus on the linear-implicit Euler method

yn+1 = yn + h(I − hJ)−1f̂(yn) for ẏ(t) = f̂(y(t))

since it requires the lowest numerical effort at each time step and is well suited for
large classes of stiff problems.

The linear-implicit Euler method belongs to the class of W-methods [15, Section
IV.7] which do not need the exact Jacobian matrix J of the right hand side f̂ for
convergence. This allows us to partition the equations of motion and hence improve
the performance of the integration method.

The calculation of the Lagrange multipliers λ in (2) from the constraints (2c) will
be the subject of the Section 3. If λ is given, the equations of motion (2) can be
written as ordinary differential equation:

q̇ = u,

u̇ = f̃(q, u) = M−1f(q, u) − M−1GT (q)λ.

For this system, one step of the linear-implicit Euler method is given by

(I − hJ)

∆q

∆u

 =

u

f̃(q, u)

 ,

q1

u1

 =

q0

u0

+ h

∆q

∆u

 (3)

with the exact Jacobian

J = Jexact :=

0 I

f̃q(q, u) f̃u(q, u)

 .

4

Without knowledge of the structure of f̃ we can partition the system only if we
omit the identity matrix in the upper right block of J . As the matrix J is important
for the stability of the method for stiff systems we consider the linear second order
test equation

q̈ = f̃(q, q̇) = −aq − bq̇, (q(t), a, b ∈ R, a ≥ 0, b ≥ 0)

and transform this system to a first order system

q̇ = u,

u̇ = f̃(q, u) = −aq − bu.

With the exact Jacobian matrix

Jexact =

0 I

f̃q f̃u

 =

0 1

−a −b

of the test problem the linear-implicit Euler method is stable for all a, b ≥ 0 at any
stepsize. This method requires, however, the evaluation of f̃q, f̃u and the solution
of a system of 2nq linear equations in each time step.

If we set the upper right block to zero

J = J1 :=

0 0

f̃q f̃u

 =

0 0

−a −b

 ,

we can calculate ∆q = u0 by the explicit Euler method and ∆u by solving a system
of linear equations of size nq instead of 2nq. The explicit treatment of q has a severe
effect on the stability of the linear-implicit Euler method. Now, the coefficients a, b
and the stepsize h are limited by 0 ≤ hb and 0 ≤ h2a ≤ 2hb + 4.

Comparison of the Taylor series expansion of the numerical solution shows that the
stability of the linear-implicit Euler method with J = Jexact can be restored if we
modify the lower right block of the stabilization matrix:

J = J2 :=

0 0

f̃q f̃u + hf̃q

 =

0 0

−a −b − ha

 .

This matrix allows stable integration of the test equation for any a, b ≥ 0 and any
stepsize h.

Depending on the model this full stabilization is not always necessary. One im-
portant case are moderately oscillating system with low or no damping. It is well

5

known that the explicit Euler method is inappropriate for such systems. The stabi-
lization matrix

J = J3 :=

0 0

f̃q 0

 =

0 0

−a 0

allows stable integration for 0 ≤ hb ≤ 2 and 0 ≤ h2a ≤ 4 − 2hb. The main
advantage of this stabilization matrix is, that no full Jacobian matrix of f̃ has to be
calculated. Only one directional derivative f̃qu is needed. This method is closely
related to the half-implicit Euler method of Gipser [11].

If we plot the eigenvalues eF of the right hand side for stable parameters a and b of
the test equation we get the stability domains shown in Figure 1.

PSfrag replacements

J2, Jexact J1

explicit

Euler
J3

-7 -6 -5 -4 -3 -2 -1 0
-3

-2

-1

0

1

2

3

Fig. 1. Stability domain of the partitioned linear-implict Euler method for different matri-
ces J .

Though this scalar second order test equation cannot give a proof of the stabil-
ity for larger systems [15, p. 116], it shows at least some necessary entries of the
stabilization matrix J .

3 Linear-implicit methods for constrained mechanical systems

In implicit time integration methods, the consideration of constraints is straightfor-
ward [4]. Furthermore, there are implicit methods with excellent stability proper-

6

ties for stiff equations. However, for real-time applications implicit methods are not
suitable since systems of nonlinear equations have to be solved iteratively in each
time step.

The results of Section 2 show that similar stability properties may be achieved by
linear-implicit methods without any iterative algorithms. For constrained systems,
we cannot expect that a non-iterative method solves nonlinear constraints exactly.

In the present section, we discuss several ways to extend the linear-implicit Euler
method of Section 2 to a non-iterative method for constrained systems and prove
that the error in the constraints g(q) = 0 is bounded by ‖g(qn)‖ ≤ Chr with r ≥ 2
and a constant C that is independent of the length of the time interval.

3.1 Index reduction and drift-off effect

The equations of motion (2) are given by a differential-algebraic system of index 3.
To avoid numerical problems which make the direct time integration of index-3
systems difficult, the system is transformed to a new system with lower index by
differentiation of the constraints [4,9,15]:

0 = g(q), (5a)

0 =
dg(q)

dt
= gq(q)q̇ = G(q)u, (5b)

0 =
d2g(q)

dt2
= gqq(q)(u, u) + G(q)u̇. (5c)

If we substitute in (2) the original constraints (5a) on position level by their second
derivative (5c) on acceleration level we get the so called index-1 formulation. Then
we can insert the differential equation (2b) into (5c) and calculate the Lagrange
multipliers λ by solving the linear system of equations

λ = (G(q)M−1GT (q))−1(gqq(q)(u, u) + G(q)M−1f(q, u)).

Accordingly we get the index-2 formulation by using the first derivative (5b) on
velocity level of the constraints. Because of the special structure of the equations
of motion we can insert the formula for the integration step of un+1, see (3), in (5b)
and choose λn so that G(qn+1)un+1 = 0 holds:

qn+1 = qn + hun, (6a)

M − hJu GT (qn)

G(qn+1) 0

un+1 − un

λn

= h

f + hJqun

−G(qn+1)un

 . (6b)

7

Here, Jq and Ju denote the lower blocks in the 2 × 2 block matrix J . The main
advantages of this linear-implicit Euler method are that the velocity constraints
(5b) are solved exactly and there is no need for the second derivative of g(q). It
may be considered as a drawback of this approach that the matrix of (6b) is no
longer symmetric and the order of the calculation of qn+1 and un+1 is fixed.

The numerical solution of an index reduced system can leave the manifold

{q : g(q) = 0}

defined by the original constraints (2c) because of discretization and round-off er-
rors (drift-off effect). To avoid the drift, we have to apply additional stabilization
techniques to keep the error in the constraints limited. Otherwise the error in the
position constraints (5a) can grow linearly in time for methods that are based on the
index-2 formulation (index-2 methods) or up to quadratically in time for methods
that are based on the index-1 formulation (index-1 methods) [15, Theorem VII.2.1].

3.2 Baumgarte stabilization

The first method for stabilization of the constraints was proposed by Baumgarte
[3]: he substituted the constraints on acceleration level (5c) by a linear combination
of (5a)-(5c):

0 =
d2

dt2
g + 2α

d
dt

g + βg = gqq(q)(u, u) + G(q)u̇ + 2αG(q)u + βg(q).

The scalar constants α and β are called Baumgarte parameters. These parameters
have to be chosen so that the scalar differential equation 0 = ÿ + 2αẏ + βy has
an asymptotically stable solution y(t) = c1e

τ1t + c2e
τ2t. This is equivalent to the

condition that τ1,2 = −α ±
√

α2 − β have both negative real part.

The quality of the stabilization depends on the parameters α and β. If we choose
them too small, the stabilization is not sufficient. Too large parameters introduce
additional stiffness to the system and make the numerical integration inefficient
and sensitive to round-off errors [14].

To find the optimal parameters, we abbreviate the errors in the position and velocity
constraints in the i-th step by w0 := g(qi) and v0 := G(qi)ui. Beginning with
sufficiently small initial values w0 and v0 we get for the errors after one and two
time steps:

8

w1 = w0 + hv0 + O(h2),

v1 =−hβw0 + (1 − 2hα)v0 + O(h2),

w2 = (1 − h2β)w0 + 2h(1 − hα)v0 + O(h2),

v2 = 2hβ(hα − 1)w0 + (4hα(hα − 1) + 1 − h2β)v0 + O(h2) + (α + β)O(h3).

For α = 1/h and β = 1/h2 the influence of w0 and v0 on w2 and v2 is annihi-
lated in first order. On the other hand the large Baumgarte parameter β = 1/h2

introduces artificial stiffness to the system and adds a large error term to the ve-
locity constraints. The expected errors in the position constraints are of magnitude
O(h2) and O(h) in the velocity constraints. To avoid problems with the additional
stiffness, the Baumgarte parameters are usually chosen smaller: 0 < α < 1/h and
0 < β < 1/h2, see [1]. Then the influence of wi and vi on wi+2 and vi+2 is damped
by the factors 1 − hα < 1 and 1 − h2β < 1.

Baumgarte stabilization can be applied to the index-2 formulation too [6,22]. Here,
the position constraints (5a) are multiplied by one Baumgarte parameter α and
added to the velocity constraints (5b):

0 =
d
dt

g + αg = G(q)u + αg(q).

The error in the position constraint after one time step is

g(qn+1) = g(qn) + hG(qn)un + O(h2) = (1 − hα)g(qn) + O(h2)

which is independent of g(qn) in first order for α = 1/h and has the magnitude of
O(h2). Again this introduces a large error of size O(h) to the velocity constraints.

3.3 Iterative projection methods

A common method for the stabilization of constraints is the stabilization by projec-
tion. This projection can be added to almost any integration methods for differential-
algebraic systems.

After each integration step of the index-reduced system there is usually a small
error in the constraints g(q̃n+1) 6= 0 with q̃n+1 denoting the numerical solution after
one step. To satisfy the constraints, the numerical solution can be projected to the
manifold defined by g(q) = 0 by solving the following minimization problem [17]:

min
qn+1∈R

nq

‖qn+1 − q̃n+1‖M with 0 = g(qn+1).

The distance is measured in the M -Norm ‖x‖M =
√

xT Mx which is induced by
the positive definite mass matrix M . In the norm ‖·‖M , the weighting factors for

9

displacements of heavy bodies are larger than the ones for displacements of light
bodies.

To solve the minimization problem, the constraints are coupled to the target func-
tion by Lagrange parameters µ. That gives the necessary conditions for a minimum
[15, Section VII.2]:

M(qn+1)(qn+1 − q̃n+1) + GT (qn+1)µ = 0, (7a)
g(qn+1) = 0. (7b)

Normally, this nonlinear system has to be solved by a Newton like method, but for
real-time applications we must not use an iterative method, so we can only perform
a limited number of Newton steps to reduce the error in the constraints.

The error in the velocity constraints can be corrected in a similar way by projection
of the velocity ũn+1 on the manifold defined by G(qn+1)u = 0:

min
un+1∈Rnu

‖un+1 − ũn+1‖M with 0 = G(qn+1)un+1.

The necessary conditions for this minimization problem are given by the linear
equation

M(qn+1)(un+1 − ũn+1) + GT (qn+1)µ = 0,

G(qn+1)un+1 = 0

which can be solved exactly without iterative methods.

The projection of the velocities u has to be done after the projection of the positions
q because the velocity projection depends on the value of qn+1 and changes only
un+1 (sequential position velocity projection). If the individual calculations of the
integration step and the projections are interleaved in an appropriate order, only
very few additional evaluations of the multi-body formalisms are necessary [15,
Section VII.2].

As an alternative to sequential position velocity projection, Gear et al. [10] pro-
posed the simultaneous consideration of position and velocity constraints in the
index-2 formulation (Gear-Gupta-Leimkuhler formulation):

Mq̇ = Mu − GT (q)µ, (9a)

Mu̇ = f(q, u) − GT (q)λ, (9b)
0 = g(q), (9c)
0 = G(q)u. (9d)

10

This system is a DAE of index 2 that contains the position and velocity constraints.
Additional Lagrange multipliers µ are introduced that vanish for the exact solution
[10].

The explicit Euler step for (9a) replaces the first stage of method (6):

qn+1 = qn + hun − hM−1GT µn.

The Lagrange multipliers µn are determined implicitly by the position constraint
(9c) at t = tn+1. With q̃n+1 = qn +hun this nonlinear system is identical to (7a) for
the projection of the position coordinates. After that, un+1 can be calculated exactly
like for the unstabilized index-2 method (6b), so that the velocity constraints (9d)
are solved exactly at t = tn+1.

3.4 Non-iterative projection methods

Practical experience shows, that for real-time applications only one step of the
Newton iteration for the projection of the position coordinates is sufficient for sta-
bilization. In this section we will give a rigorous proof that this strategy guarantees
that the error in the constraints remains limited for arbitrary time intervals [5]:

To calculate the propagation of the error in the position constraints we have to
examine the following steps:

(qn, un)
integrator−−−−→ (q̃n+1, ũn+1)

q-projection−−−−−−→ (qn+1, ũn+1)
u-projection−−−−−−→ (qn+1, un+1)

We can assume G(qn)un = 0 because of the u-projection in the preceding time step
tn−1 → tn. The error in the position constraints after one integration step with the
explicit Euler method can be estimated by a Taylor series expansion:

g(q̃n+1) = g(qn + hun) = g(qn) + hG(qn)un + h2R1,n

= g(qn) + h2R1,n

(10)

with the remainder term

R1,n :=

1∫

0

(1 − ζ)gqq(qn + ζhun)(un, un) dζ.

The projection step requires the solution of the linear system of equations

M(qn) GT (qn)

G(qn) 0

∆qn

∆µn

 =

0

g(q̃n+1)

 (11)

11

which we can write with the help of the inverse

M GT

G 0

−1

=

∗ M−1GT (GM−1GT)−1

∗ ∗

of the so-called optimization matrix, see [13], as

∆qn = Png(q̃n+1), G(qn)∆qn = g(q̃n+1) (12)

with
Pn := M−1GT (GM−1GT)−1|qn

.

By Taylor series expansion we can estimate the error in the position constraint for
the new position coordinates qn+1 = q̃n+1 − ∆qn:

g(qn+1) = g(q̃n+1) − G(q̃n+1)∆qn + R2,n(∆qn, ∆qn)

= (G(qn) − G(q̃n+1))∆qn + R2,n(∆qn, ∆qn)

= −hR3,n(un, ∆qn) + R2,n(∆qn, ∆qn)

with the remainder terms

R2,n(y1, y2) :=

1∫

0

(1 − ζ)gqq(q̃n+1 + ζ∆qn)(y1, y2) dζ,

R3,n(y1, y2) :=

1∫

0

gqq(q̃n+1 − ζhun)(y1, y2) dζ.

Together with (12) and (10) this gives the quadratic form in g(qn)

g(qn+1) =R2,n(Png(qn), Png(qn))

− hR3,n(un, Png(qn)) + 2h2R2,n(PnR1,n, Png(qn))

− h3R3,n(un, PnR1,n) + h4R2,n(PnR1,n, PnR1,n).

Then the error in the position constraints is limited by

‖g(qn+1)‖ ≤ C2,n‖g(qn)‖2 + hC1,n‖g(qn)‖ + h3C0,n

with the abbreviations

A1,n := 1

2
maxξ∈Un

‖gqq(ξ)(un, un)‖
A2,n := 1

2
maxξ∈Un

‖gqq(ξ)((Pn(·), Pn(·))‖
A3,n := max

ξ∈Un

‖gqq(ξ)(un, Pn(·))‖
C2,n := A2

C1,n := A3 + hA2A1

C0,n := A3A1 + hA2A
2
1

12

in a neighborhood Un of the exact solution which contains qn and the unprojected
numerical solution q̃n+1.

If the constants

C0 := max
n=0,1,...,N

C0,n, C1 := max
n=0,1,...,N

C1,n, C2 := max
n=0,1,...,N

C2,n

fulfill the conditions

hC1 < 1 and (1 − hC1)
2 − 4h3C0C2 > 0, (13)

then ‖g(qn)‖ is limited by

‖g(qn)‖ ≤ glim :=
1 − hC1 −

√
(1 − hC1)2 − 4h3C0C2

2C2

≤ Ch3

with a suitable constant C that is independent of n, n = 0, 1, . . . , N .

Proof. The scalar function Φ(g) = C2g
2 + hC1g + h3C0 has the attractive fixed

point glim with 0 < Φ′(g) < 1 and Φ(g) < g for 0 ≤ g ≤ glim. So any iteration
gn+1 = Φ(gn), (n = 0, 1, 2, . . .) with 0 ≤ g0 < glim converges to glim with gn < glim

for any n, see [5] for more details. 2

In practical applications, the constants C2, C1 and C0 remain bounded on arbitrary
time intervals because velocities and forces are limited in real systems. For suffi-
ciently small step sizes h, the conditions (13) are always satisfied. For real-time
applications the stepsize h is fixed, so this gives a sufficient condition to guaran-
tee that the error in the constraints remains bounded by Ch3 if just one projection
step is performed per time step. Similar results may be obtained for the sequential
regularization methods of Ascher and Lin [2], see [5].

4 Numerical experiments

In the present section we summarize numerical results for three test problems of
increasing complexity. The drift-off effect in the unstabilized time integration of an
academic test problem underlines the need for stabilization methods in the long-
term simulation of constrained systems, see Section 4.1. A detailed comparison
of various stabilization methods applied to a simplified car axle model is given in
Section 4.2. Finally, one of the stabilization methods was tested successfully in a
developer version of an industrial vehicle simulation tool, see Section 4.3.

13

4.1 Circular track

To test the long-term stability of the constraints we created a test scenario where a
point mass rotates in a plane around a fixed center point, see Fig. 2. The position of
the mass is given by its Cartesian coordinates q := (x1, x2)

T . The distance between
the mass and the center is fixed to 1 by an algebraic constraint g(q) := x2

1 +x2
2 − 1.

A force FPI tangential to the path controls the speed of the mass by a PI-controller
and a force FR orthogonal to the path pushes the mass away from the center in
addition to the centrifugal force.

This test problem is a closed control circuit which compensates integration er-
rors that change the speed of the mass, but emphasizes the error by the drift-off.
Fig. 3 shows the drift for the unstabilized index-1 method, the unstabilized index-2
method and the fully stabilized index-1 method with projection of the velocities u
and displacements q. As expected, the distance of the mass to the center diverges
from 1 for the index-reduced methods without stabilization, and the results for the
index-1 method diverge faster than the ones for the index-2 methods.

PSfrag replacements

M

FPI

FR

-2
-1
0
1
2

-1.5
-1

-0.5
0

0.5
1

1.5

Fig. 2. Circular track.

PSfrag replacements

Time t

‖g
(q

)‖

projected

I1 unstab
I2 unstab
projected

0 0.5 1 1.5 2
-0.05

0

0.05

0.1

0.15

0.2

Fig. 3. Drift-off for circular track.

4.2 Car axle from IVP test set

The well known IVP test set at http://pitagora.dm.uniba.it/˜testset/
consists of several benchmark problems to test the accuracy of solvers for initial
value problems. We selected the “car axle problem” to study the effects of Jacobian
partitioning, see Section 2, and constraint stabilization, see Section 3, for a non-
trivial but still rather simple multi-body system model. This benchmark represents
a very simple model of a car axle on a bumpy road, see Fig. 4.

As the springs have a Hooke’s constant of 104 we are outside the stability domain of
the explicit Euler method for the stepsize h = 1.0 ms. Fig. 7 shows that the explicit

14

D
DD

D
DD

d

d

`````````````````````````

�
��̀ ````````````````````````�

��

d

d

D
DD

PP"
""

"
""

"
""

"
""

PP
P

PP
P

PP
P

PP

D
DD

AA
�
��
�   

A
A



M
   D
DD Q
Q

Q

(0, 0)
�
��

(xb, yb)
�
�
��

(xl, yl)

�
�	

(xr, yr)

�
�	

M

Fig. 4. Car axle from IVP test set.

Euler method is unstable for this problem independent of the method that is used
for the stabilization of the constraints. If we use any of the partitioned Jacobians
J1, J2, J3 of Section 2 that contains the derivative f̃q, stable integration of the car
axle problem is possible.

The results of Fig. 5 illustrate again the drift-off effect with an unbounded growth
of the error in the constraints for the unstabilized methods. For all stabilized meth-
ods the errors in the constraints remain bounded. Fig. 6 shows the maximum error
‖g(q)‖ in the position constraints vs. stepsize h. For both unstabilized methods, the
error is of size O(h) which we expected since the linear-implicit Euler method has
order 1. Both Baumgarte methods have an error in the magnitude of O(h2). For the
projection methods (with only one Newton step per time step) we observe an error
of size O(h3) which coincides perfectly with the theoretical results of Section 3.

Fig. 8 shows the correlation between global error and stabilization method for se-
lected methods. The global error is seen to be sensitive to the error in the con-
straints. Projection improves the global error by a factor of 10. For longer time
intervals this difference grows considerably.

PSfrag replacements

Time t

‖g
(q

)‖

I2 projected

I1 unstab
I2 unstab
I1 Baumgarte
I2 Baumgarte
I1 projected
I2 projected

00 11 22 3
10−10

10−5

Fig. 5. Benchmark “Car axle”: Drift,
h = 10.0 ms.

PSfrag replacements

Stepsize h

m
ax

‖g
(q

)‖

I2 projected

I1 unstab
I2 unstab
I1 Baumgarte
I2 Baumgarte
I1 projected
I2 projected

10−3 10−2

10−10

10−5

Fig. 6. Benchmark “Car axle”: Maximum
Drift vs. stepsize h.

15



PSfrag replacements

Time t

y r

lin.-implicit projected

explicit
explicit projected
lin.-implicit
lin.-implicit projected

0 0.5 1 1.5

-0.5

0

0.5

Fig. 7. Benchmark “Car axle”: Explicit and
(partitioned) linear-implicit Euler method.

PSfrag replacements

Stepsize h

er
ro

r
q

I2 projected
I1 unstab
I2 unstab
I1 Baumgarte
I2 projected

10−3 10−2

10−3

10−2

10−1

Fig. 8. Benchmark “Car axle”: Global error
vs. stepsize h.

4.3 Vehicle-trailer coupling in veDYNA

The industrial software package veDYNA [12] implements real-time simulation of
full vehicle dynamics. Following the approach of Rill [19], the motion of vehicle
and trailer is described by mechanical multi-body systems for the basic chassis
extended by sophisticated axle models which can either be depicted by nonlinear
elasto-kinematic look-up tables or by detailed multi-body models, including the
respective control arms, drag links, subframes and bushings. Intrinsic vehicle dy-
namics properties are considered by specific component models for the drive train,
the steering system and the tire dynamics. The choice of suitable generalized co-
ordinates and velocities allows eliminating possible constraints in the respective
equations of motion for vehicle and trailer and yields systems of ordinary differen-
tial equations formulated according to Jourdain’s principle.

In the present section, we consider the simulation of vehicle-trailer coupling in
veDYNA [7,8]. In former versions of veDYNA, the coupling between vehicle and
trailer was implemented by the use of a spring-damper system to maintain the ODE
structure of the equations of motion. This model has a limited accuracy and requires
large spring and damper coefficients which make the system very stiff. In addition,
the model accuracy with regard to the representation of the specific joint geometry
and the computation of the coupling forces is limited.

To overcome these limitations, a new vehicle-trailer coupling was implemented
in veDYNA which explicitly considers algebraic constraints between vehicle and
trailer. Due to the modular structure of veDYNA, which is implemented by a couple
of Matlab/Simulink-Blocks, the new coupling could be implemented in a separate
hook module, see Fig. 9. To maintain the very efficient integration scheme of ve-
DYNA which needs only one evaluation of the equations of motion of the trailer
and of the vehicle at each time-step, only a limited number of the integration meth-
ods described in Section 3 is suitable for implementation in veDYNA.

16



Vehicle Hook Trailer

qV eh, uV eh, MV eh, fV eh input qTra, uTra, MTra, fTra

(˜GTλ)V eh constraint forces (˜GTλ)Tra

Fig. 9. Model structure for vehicle-trailer coupling in veDYNA.

The integration scheme of veDYNA uses a partitioned linear-implicit Euler method
to solve the system of differential equations

q̇ = V u,

Mu̇ = f(q, u)
(14)

where q are the position coordinates, u the generalized velocities, and f the vector
of generalized forces and torques. At each time step, the new velocities un+1 are
given by the solution of the linear system

(
Mn − h

∂f

∂u
− h2∂f

∂q
Vn

)
(un+1 − un) = hf(qn, un)

and afterwards the new positions qn+1 are given by

qn+1 = qn + hVn+1un+1.

Compared with the index-2 methods of Section 3 which start with the calculation of
the new positions qn+1, the calculation steps of the linear-implicit Euler method in
veDYNA are in reverse order. Therefore no index-2 method can be used in veDYNA
without rewriting of core functions.

Projection methods are incompatible with the modular structure of veDYNA where
each block is evaluated only once per time step. There is only one stabilization
method of Section 3 that is applicable in veDYNA: Baumgarte stabilization. This
method can be implemented by extensions of the right hand sides of (14) without
changes in the calling sequences and integration structure of veDYNA.

Several simulations with different vehicle-trailer combinations and different driv-
ing maneuvers were performed in veDYNA. Exemplarily, we show results from a
heavy truck on a demanding handling course, further results are presented in [7,8].
Fig. 10 depicts the position difference between truck and trailer; defects for both the
implementation via spring-damper element and the DAE coupling are shown. Both
approaches yield long-term stability. The overall position error for the DAE solver
is limited by 10−5 m, while an almost constant defect in the range of 10−1 m is ob-
tained for the force coupling. The characteristic of the constraint forces (Fig. 11)
shows that also the oscillations and the amplitude of the coupling forces are reduced
to reasonable values.

17



PSfrag replacements

Time t

Po
si

tio
n

D
ef

ec
t[

m
]

Spring-Damper

Baumgarte 100/10000
Spring-Damper

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10−15

10−10

10−5

100

Fig. 10. Position defect between vehicle and
trailer.

PSfrag replacements

Time t

X
-C

ou
pl

in
g

Fo
rc

e
[k

N
]

Spring-Damper

Baumgarte 100/10000
Spring-Damper

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-5

0

5

10

×104

Fig. 11. Coupling forces between vehicle
and trailer.

The implementation of the Baumgarte stabilization showed that for veDYNA sim-
ulation with an integration step size of h = 1.0 ms the theoretically optimal Baum-
garte parameters α = 1/h and β = 1/h2 are too large. The coefficients had to
be reduced to α = 100 and β = 104 to avoid numerical instabilities due to the
increased overall stiffness.

Moreover, also a modified version of a sequential regularization method of order 1
was implemented in veDYNA [7] which yielded similar results. Because of the
promising results of the Baumgarte stabilization, future versions of veDYNA will
incorporate the new vehicle-trailer coupling by algebraic constraints.

The positive experience with vehicle-trailer coupling shows that a numerically sta-
ble time integration of constrained systems in real-time may be achieved by the
methods of Section 3. In the present industrial application, the joint modelling by
constraints is clearly superior to the penalty techniques that are typical of a classical
ODE framework for time integration in real-time.

5 Summary

In real-time applications, the explicit Euler method for time integration may be
considered as quasi-standard. It is well known, however, that the explicit Euler
method suffers from numerical instability in the stiff case. Furthermore the method
is restricted to unconstrained systems.

The stability problem is solved by the linear-implicit Euler method that may be
interpreted as implicit Euler method with just one simplified Newton step in the
corrector iteration of each time step. The stability analysis for a linear test problem
shows that the stability properties of the linear-implicit method depend strongly on
the structure of the Jacobian approximation in use.

18



For constrained systems, explicit or linear-implicit Euler method are applied to an
index reduced formulation of the equations of motion. The drift-off effect is avoided
on arbitrary long time intervals by just one Newton step of a projection method in
each time step. A comparison with the classical Baumgarte stabilization technique
shows that the error in the constraints is smaller by a factor of h if the projection
method is used.

The results are illustrated by numerical tests for two benchmarks and one large scale
applied problem that was solved in a developer version of an industrial multi-body
system simulation package.

References

[1] U.M. Ascher, H. Chin, and S. Reich. Stabilization of DAEs and invariant manifolds.
Numer. Math., 67:131–149, 1994.

[2] U.M. Ascher and P. Lin. Sequential Regularization Methods for Nonlinear Higher-
Index DAEs. SIAM J. Sci. Comput., 18(1):160–181, 1997.

[3] J. Baumgarte. Stabilization of constraints and integrals of motion in dynamical
systems. Computer Methods in Applied Mechanics and Engineering, 1:1–16, 1972.

[4] K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical solution of initial–value
problems in differential–algebraic equations. SIAM, Philadelphia, 2nd edition, 1996.

[5] B. Burgermeister. Echtzeitfähige Zeitintegration von differentiell-algebraischen
Systemen in der Mehrkörperdynamik. Master Thesis, Munich University of
Technology, Department of Mathematics, 2003.

[6] A. Eichberger and W. Rulka. Process Save Reduction by Macro Joint Approach: The
Key to Real Time and Efficient Vehicle Simulation. Vehicle System Dynamics, 41:401–
413, 2004.

[7] B. Esterl. Echtzeitfähige Fahrzeug-Anhänger-Kopplung mit Algorithmen für
differential-algebraische Systeme. Master Thesis, Munich University of Technology,
Department of Mathematics, 2004.

[8] B. Esterl, T. Butz, B. Simeon, and B. Burgermeister. Real-time capable vehicle-
trailer coupling by algorithms for differential-algebraic equations. Technical report,
TU München, 2005, submitted for publication.

[9] C. Führer. Differential-algebraische Gleichungssysteme in mechanischen
Mehrkörpersystemen. Theorie, numerische Ansätze und Anwendungen. PhD thesis,
TU München, Mathematisches Institut und Institut für Informatik, 1988.

[10] C.W. Gear, G.K. Gupta, and B. Leimkuhler. Automatic integration of Euler–Lagrange
equations with constraints. J. Comp. Appl. Math., 12&13:77–90, 1985.

[11] M. Gipser. Systemdynamik und Simulation. Teubner–Verlag, Stuttgart Leipzig, 1999.

19



[12] TESIS DYNAware GmbH. veDYNA User Manual. München, 2004.

[13] G.H. Golub and Ch.F. van Loan. Matrix Computations. The Johns Hopkins University
Press, Baltimore London, 2nd edition, 1989.

[14] H. Hahn and B. Simeon. Separation principle of mechanical system models including
stabilized constraint relations. Archive of Applied Mechanics, 64:147–153, 1994.

[15] E. Hairer and G. Wanner. Solving Ordinary Differential Equations. II. Stiff and
Differential-Algebraic Problems. Springer–Verlag, Berlin Heidelberg New York, 2nd
edition, 1996.

[16] E.J. Haug. Computer Aided Kinematics and Dynamics of Mechanical Systems,
volume I. Allyn and Bacon, Boston, MA, 1989.

[17] Ch. Lubich, Ch. Engstler, U. Nowak, and U. Pöhle. Numerical integration of
constrained mechanical systems using MEXX. Mech. Struct. Mach., 23:473–495,
1995.

[18] N. Orlandea. Development and Application of Node–Analogous Sparsity–Oriented
Methods for Simulation of Mechanical Dynamic Systems. PhD thesis, University of
Michigan, 1973.

[19] G. Rill. Simulation von Kraftfahrzeugen. Fundamentals and Advances in the
Engineering Sciences. Vieweg, Braunschweig Wiesbaden, 1994.

[20] R.E. Roberson and R. Schwertassek. Dynamics of Multibody Systems. Springer–
Verlag, Berlin Heidelberg New York, 1988.

[21] W. Rulka. SIMPACK – A computer program for simulation of large–motion multibody
systems. In W.O. Schiehlen, editor, Multibody Systems Handbook. Springer–Verlag,
Berlin Heidelberg New York, 1990.

[22] W. Rulka and E. Pankiewicz. MBS Approach to Generate Equations of Motions for
HiL-Simulations in Vehicle Dynamics. Multibody System Dynamics, 14:367–386,
2005.

[23] W.O. Schiehlen, editor. Multibody Systems Handbook. Springer–Verlag, Berlin
Heidelberg New York, 1990.

[24] A. Schiela and F. Bornemann. Sparsing in Real Time Simulation. Z. Angew. Math.
Mech., 83:637–647, 2003.

[25] R. Weiner, M. Arnold, P. Rentrop, and K. Strehmel. Partitioning strategies in Runge–
Kutta type methods. IMA J. Numer. Anal., 13:303–319, 1993.

20


