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Abstract

We investigate two rather technical properties concerning Lipschitz mappings. In the first
part, we show that the result of Roberts and Varberg on the Lipschitz conditions for convex
functions also holds for mappings with values in partially ordered spaces. In the second part,
we prove that the distance functions can be used for exact penalization in vector optimization
problems. Our results are close to similar assertions in real-valued convex optimization.
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1 Introduction

We consider the vector-valued optimization problem

f(x) → min, x ∈ X ⊂ X

with f : X → Y . For this, let X be a Banach space and X a nonempty closed subset of X. Y

denotes a topological vector space which is partially ordered by the convex cone C ⊂ Y. The
aim of our note is double:

1) We investigate a Lipschitz condition for mappings with values in partially ordered spaces
and show that convex, locally bounded mappings satisfy are Lipschitz.

2) We study how the original problem can be replaced by a global vector optimization problem
by including the constraints into the goal function via penalization.

The results are close to similar assertions in real-valued optimization. Our assertions are of
rather technical nature and differ sometimes only slightly from results that can be found in
literature. Nevertheless, they are crucial for the development of efficiency criteria in vector-
valued optimization.

In the real-valued case, penalization via distance function is a fundamental technical method
within constraint optimization, compare e.g. Clarke [1, Proposition 2.4.3]. It is the basis for
handling abstract constraints, for example if one wishes to characterize optimal points via subd-
ifferentials: The resulting goal functions is again convex if the original function was so, and the
subdifferential can be calculated in an easy way (if one can do so for the original goal function).

Our note is organized as follows. Section 3 deals with the notion of (vector-valued) Lipschitz
mappings, and we prove that convex, locally bounded mappings are Lipschitz. In section 4 we
show that the distance functions can used for exact penalization in vector optimization problems,
too.
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2 Basic notions and preliminaries

We only repeat some basic notions concerning partially ordered vector spaces and efficiency. For
more details, we recommend the monographs of Jahn [2] and Peressini [6].

Let Y be a topological vector space which is partially ordered by the convex cone C ⊂ Y,
C 6= Y. We assume C ∩ −C = {0}. An element ȳ ∈ Y is called supremum of a set A ⊂ Y,
ȳ = supA, if ȳ ∈ y + C for all y ∈ A and z ∈ ȳ + C whenever z ∈ y + C for all y ∈ A. The
infimum of a set can be defined dually; if the infimum and the supremum exists for any pair of
elements of Y, the space Y is a vector lattice. In that case, by |y| := sup{y,−y} we denote the
absolute value of y ∈ Y. Obviously, |y| ∈ C, |y| ∈ y + C and |y| ∈ −y + C.

Let X ⊂ X a nonempty subset, and f : X → Y. An element x̄ ∈ X is called efficient in X
with respect to f, if

f(X) ∩ (f(x̄)− C)\{0}) = ∅.
If intC 6= ∅, x̄ ∈ X is called weakly efficient in X with respect to f, if

f(X) ∩ (f(x̄)− intC) = ∅.

The set of all (weakly) efficient elements in X with respect to f is denoted by Eff(f(X), C) and
Effw(f(X), C), respective. Obviously Eff(f(X), C) ⊆ Effw(f(X), C).

Within this note, let (X, ‖.‖) be a Banach space and X ⊂ X a (closed) subset. We denote by
dX : X → R+, dX(x) := infx′∈X ‖x − x′‖ the distance function (with respect to the set X).
Remind dX(x) = 0 iff x ∈ cl X.

3 Lipschitz mappings

Definition 3.1 A mapping f : X → Y is called locally Lipschitz, if for all x ∈ X there exists
a neighborhood N of x and a Lipschitz rank k ∈ C such that

‖x1 − x2‖ k ∈ |f(x1)− f(x2)|+ C, x1, x2 ∈ N

holds. f : X → Y is called Lipschitz (of rank k ∈ C), if the same Lipschitz rank k can be
chosen for all x ∈ X.

This definition of Lipschitz mappings with values in partially ordered spaces is near to Kusraev’s
and to Papageorgiou’s notions of Lipschitz mappings, compare [3] and [4], [5], respectively. The
hardest difference to their definitions consists in the existence of an unique Lipschitz rank k for
all x ∈ X. Other concepts of Lipschitz mappings and comparisons of that notions have been
investigated by Reiland [7, 8], Staib [10], Thibault [11, 12, 13], for example.

Note that, if Y is an order lattice (i.e. a normed vector space such that |y1|− |y2| ∈ C implies
‖y1‖Y ≥ ‖y2‖Y), then the above Lipschitz conditions implies that f is norm Lipschitz.

From real-valued analysis we know that convex, locally bounded functions are locally Lipschitz
(compare Clarke [1, Proposition 2.2.6] and for the original result Roberts and Varberg [9]). We
show that these results hold for mappings with values in partially ordered spaces, too. Related
results are known from Papageorgiou [4], Reiland [8] and Thibault [11].

For this, let U be an open convex subset of X. Remind that a mapping f : U → Y is said to
be convex if for all x1, x2 ∈ U and all λ ∈ [0, 1], we have

λf(x1) + (1− λ) f(x2) ∈ f(λx1 + (1− λ)x2) + C.

f is called bounded above on some set U ′ ⊂ U if there exists some y ∈ Y such that y− f(x) ∈ C
for all x ∈ U ′. Finally, f is called bounded on some set U ′ ⊂ U if there exists some y ∈ Y such
that y − |f(x)| ∈ C for all x ∈ U ′.
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Lemma 3.1 Let U ⊂ X be open and convex, f : U → Y convex. Assume f to be bounded above
on a neighborhood of some point x̄ ∈ U . Then, for any x ∈ U , f is bounded near x.

Proof. We only have to verify that the original proof of Roberts and Varberg [9] can be translated
in our setting. So, assume that f is bounded above by some y ∈ Y on the set εB := {x ∈ X :
‖x − x̄‖ < ε} ⊆ U and fix an arbitrary x̃ ∈ U . We choose α > 1 such that x1 = αx̃ ∈ U . With
λ = 1/α the set

V := {x ∈ X : x = (1− λ)x′ + λx1, x′ ∈ εB}

is a neighborhood of x̃ with radius (1− λ)ε. By boundedness above and convexity we get for all
x ∈ V

y + λf(x1) ∈ f(x′) + λf(x1) + C ⊆ (1− λ)f(x′) + λf(x1) + C ⊆ f(x) + C, (1)

i.e. f is bounded above on a neighborhood of x̃. On the other hand, if x ∈ x̃ + (1− λ)εB, there
is a point x′ such that x̃ = (x + x′)/2. Convexity and boundedness above yield

f(x) ∈ 2f(x̃)− f(x′) + C ⊆ 2f(x̃)− y − λf(x1) + C. (2)

With ỹ := sup {y + λf(x1), y + λf(x1) − 2f(x̃)}, inclusions (1) and (2) can be summarized to
ỹ − f(x) ∈ C and ỹ + f(x) ∈ C, hence ỹ − |f(x)| ∈ C for all x ∈ x̃ + (1− λ)εB, i.e. f is bounded
on this set.

Theorem 3.1 Let U ⊂ X be open and convex, f : U → Y convex. Assume f to be bounded above
on a neighborhood of some point x̄ ∈ U . Then, for any x ∈ U , f is Lipschitz near x̃.

Proof. Once again, we follow the the original proof of Roberts and Varberg [9]. So, by Lemma 3.1
we know that, for any x ∈ U , f is bounded near x. To be more precise, assume that y ∈ Y is a
bound on |f| on the set x + 2εB with ε > 0. For x1, x2 ∈ x + εB, x1 6= x2, we define

x3 = x2 +
ε

α
(x2 − x1) with α := ‖x2 − x1‖.

It is easy to verify x3 ∈ x + 2εB and

x2 =
ε

α + ε
x1 +

α

α + ε
x3,

so from convexity of f we deduce

ε

α + ε
f(x1) +

α

α + ε
f(x3) ∈ f(x2) + C.

Therefore,

α

ε
[|f(x3)|+ |f(x1)|] ∈

α

ε
|f(x3)− f(x1)|+ C ⊆ α

α + ε
[f(x3)− f(x1)] + C ⊆ f(x2)− f(x1) + C.

Recalling boundedness of f, we get

2
ε
‖x2 − x1‖ y ∈ f(x2)− f(x1) + C.

Since we can interchange x1 and x2, we conclude that f is Lipschitz near x.

Corollary 3.1 The proof shows that f is Lipschitz of (the same) rank, if there exists a global
bound for f.
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4 Exact penalization via distance function

Consider
gα(.) := f(.) + dX(.)αk, α ≥ 1,

with k ∈ C. In this section, we show that the efficiency sets with respect to f and gα are identical.
Note that we do not need convexity of the funtion f or the set X.

Theorem 4.1 Let f : X → Y be Lipschitz of rank k ∈ C, X ⊂ X be a closed subset of X and
suppose x̄ ∈ X. Then x̄ ∈ Eff(f(X), C) implies x̄ ∈ Eff(gα(X), C) for each α > 1.

Proof. Fix α > 1 and consider x̄ 6∈ Eff(gα(X), C). Then there exists x ∈ X such that

gα(x̄)− gα(x) = f(x̄)− f(x)− dX(x)αk ∈ C\{0}. (3)

We can assume x /∈ X, i.e. dX(x) > 0, avoiding a contradiction to x̄ ∈ Eff(f(X), C). So, we can
choose x̃ ∈ X with ‖x̃− x‖ ≤ αdX(x) and get

f(x̄)− f(x̃) ∈ f(x)− f(x̃) + dX(x)αk + C\{0} ∈ f(x)− f(x̃) + ‖x̃− x‖k + C\{0} ∈ C\{0},

in contradiction to x̄ ∈ Eff(f(X), C).

Remark 4.1 If int C 6= ∅, the same result can be stated for weak efficiency. Since equation (3)
can be replaced by

f(x̄)− f(x)− (dX(x) + ε) k ∈ C\{0}

with sufficiently small ε > 0, the assertions of the theorem remain valid for α = 1.

Theorem 4.2 Let f : X → Y be Lipschitz of rank k ∈ C, X ⊂ X be a closed subset of X. Then
x̃ ∈ Eff(gα(X), C) for some α > 1 implies x̃ ∈ X and therefore x̃ ∈ Eff(f(X), C).

Proof. Assume x̃ ∈ Eff(gα(X), C) for some α > 1. If x̃ ∈ X we have nothing to do, so let us
study the case x̃ /∈ X. Then,

S := {x ∈ X : ‖x̃− x‖ < αdX(x̃)} 6= ∅.

For x ∈ S we have by the efficiency of x̃

gα(x̃)− gα(x) = f(x̃) + dX(x̃)αk − f(x) /∈ C\{0} (4)

and since f is Lipschitz

f(x̃) + dX(x̃)αk − f(x) ∈ f(x̃) + ‖x̃− x‖k − f(x) + C ⊆ C (5)

By the combination of the inclusions (4) and (5) we derive f(x̃) + dX(x̃)αk = f(x) for x ∈ S.
Inserting this equation into the Lipschitz condition yields (‖x̃−x‖−αdX(x̃)) k ∈ C, thus ‖x̃−x‖ ≥
αdX(x̃) for x ∈ S, in contradiction to the definition of set S. Therefore, x̃ /∈ X is not possible,
and by f(x) = gα(x) for x ∈ X our assertion holds.

Remark 4.2 If intC 6= ∅, the same result holds for weakly efficient points. Even more, the
results hold for each cone C ′ ⊂ Y, C ′ ∩−C ′ = ∅, C ′ + k ⊂ C ′, i.e. for most of the cones defining
proper efficiency.
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