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Frank Heyde∗, Andreas Löhne†and Christiane Tammer‡

November 15, 2006

Abstract

This article is a continuation of [14]. We developed in [14] a duality theory for convex

vector optimization problems, which is different from other approaches in the literature.

The main idea is to embed the image space Rq of the objective function into an appropriate

complete lattice, which is a subset of the power set of Rq. This leads to a duality theory

which is very analogous to that of scalar convex problems. We applied these results to

linear problems and showed duality assertions. However, in [14] we could not answer the

question, whether the supremum of the dual linear program is attained in vertices of the

dual feasible set. We show in this paper that this is, in general, not true but, it is true

under additional assumptions.

1 Introduction

Vectorial linear programs play an important role in economics and finance and there have

been many efforts to solve those problems with the aid of appropriate algorithms. There

are several papers on variants of the simplex algorithm for the multiobjective case, see e.g.

Armand, Malivert [1], Ecker, Hegner, Kouada [2], Ecker, Kouada [3], Evans, Steuer [5], Gal [6],

Hartley [8], Isermann [9], Philip [16], [17], Yu, Zeleny [21] and Zeleny [22]. However, neither

of these papers consider a dual simplex algorithm, which is in scalar linear programming a

very important tool from the theoretical as well as the practical point of view. In the paper

by Ehrgott, Puerto and Rodŕıguez-Ch́ıa [4] it was mentioned that ”multi-objective duality

theory cannot easily be used to develop a [dual or primal-dual simplex] algorithm”. It is

therefore our aim to consider an alternative approach to duality theory, which is appropriate

for a dual simplex algoritm. This approach differs essentially from those in the literature (cf.

Yu, Zeleny [21], Isermann [9] and Armand, Malivert [1]). In [14] we developed the basics of

our theory and showed weak and strong duality assertions. The main idea is to embed the

image space Rq of the objective function into a complete lattice, in fact into the space of
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self-infimal subsets of Rq ∪ {−∞, +∞}. As a result, many statements well-known from the

case of scalar linear programming can be expressed analogously. However, in order to develop

a dual simplex algorithm, it is important to have the property that the supremum of the dual

problem is attained in vertices of the dual feasible set. This ensures that we only have to

search a finite subset of feasible points. However, in [14] we could not show this attainment

property, which is therefore the main subject of the present paper.

After a short introduction into the notation and the results of [14] we show that the

attainment property is not true, in general. But, supposing some relatively mild assumptions,

we can proof that for one of the three types of problems considered in [14], the supremum is

indeed attained in vertices. This result is obtained by showing a kind of quasi-convexity of

the (set-valued) dual objective function, which together with its concavity is a replacement

for linearity. We further see that it is typical that the supremum is not attained in a single

vertex (like in the scalar case) but in a set of possibly more than one vertex.

The application of these result in order to develop a dual simplex algirithm is presented

in a forthcoming paper.

2 Preliminaries

We start to introduce the space of self-infimal sets, which plays an important role in the

following. For a more detailed discussion of this space see [14].

Let C ( Rq be a closed convex cone with nonempty interior. The set of minimal or weakly

efficient points of a subset B ⊆ Rq (with respect to C) is defined by

Min B := {y ∈ B| ({y} − intC) ∩ B = ∅} .

The upper closure (with respect to C) of B ⊆ Rq is defined to be the set

Cl +B := {y ∈ Rq| {y} + intC ⊆ B + intC} .

Before we recall the definition of infimal sets, we want to extend the upper closure for subsets

of the space R
q

:= Rq ∪ {−∞, +∞}. For a subset B ⊆ R
q

we set

Cl +B :=







Rq if −∞ ∈ B

∅ if B = {+∞}

{y ∈ Rq| {y} + intC ⊆ B + intC} else.

Note that the upper closure of a subset of R
q

is always a subset in Rq. The infimal set of

B ⊆ R
q

(with respect to C) is defined by

Inf B :=







MinCl +B if ∅ 6= Cl +B 6= Rq

{−∞} if Cl +B = Rq

{+∞} if Cl +B = ∅.

This means that the infimal set of B with respect to C coincides essentially with the set of

weakly efficient elements of the set cl (B+C) with respect to C. The supremal set of a set B ⊆

R
q

is defined analogously and is denoted by SupB. To this end, we have SupB = − Inf(−B).
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In the sequel we need the following assertions due to Nieuwenhuis [15]. For B ⊆ Rq with

∅ 6= B + intC 6= Rq it holds

Inf B = {y ∈ Rq| y 6∈ B + intC, {y} + intC ⊆ B + intC} , (1)

Inf B ∩ B = MinB. (2)

Let I be the family of all self-infimal subsets of R
q
, i.e., all sets B ⊆ R

q
satisfying

Inf B = B. In I we introduce an order relation 4 as follows:

B1 4 B2 : ⇐⇒ Cl +B1 ⊇ Cl +B2.

As shown in [14], there is an isotone bijection j between the space (I, 4) and the space (F ,⊇)

of upper closed subsets of Rq ordered by set inclusion. Indeed, one can choose

j : I → F , j( · ) = Cl +( · ), j−1( · ) = Inf( · ).

Note that j is also isomorphic for an appropriate definition of an addition and a multiplication

by nonnegative real numbers. Moreover, (I, 4) is a complete lattice and for nonempty sets

B ⊆ I it holds [14, Theorem 3.5]

inf B = Inf
⋃

B∈B

B, supB = Sup
⋃

B∈B

B.

This shows that the infimum and the supremum in I are closely related to the usual solution

concepts in vector optimization.

In [14] we considered the following three linear vector optimization problems. As usual in

vector optimization we use the abbreviation f [S] :=
⋃

x∈S f(x).

(LP1) P̄ = Inf M [S], S := {x ∈ Rn| Ax ≥ b} ,

(LP2) P̄ = Inf M [S], S := {x ∈ Rn| x ≥ 0, Ax ≥ b} ,

(LP3) P̄ = Inf M [S], S := {x ∈ Rn| x ≥ 0, Ax = b} ,

where M ∈ Rq×n, A ∈ Rm×n, b ∈ Rm.

In the following let a vector c ∈ intC be fixed. In [14] we calculated the dual problems to

(LPi) (i = 1, 2, 3) (depending on c) as

(LD1
c)

{

D̄c = Sup
⋃

u∈Tc

(

c uT b + Inf(M − c uTA)[Rn]
)

Tc :=
{

u ∈ Rm| u ≥ 0, ∃c∗ ∈ Bc : AT u = MT c∗
}

,

(LD2
c)

{

D̄c = Sup
⋃

u∈Tc

(

c uT b + Inf(M − c uTA)[Rn
+]

)

Tc :=
{

u ∈ Rm| u ≥ 0, ∃c∗ ∈ Bc : AT u ≤ MT c∗
}

.

(LD3
c)

{

D̄c = Sup
⋃

u∈Tc

(

c uT b + Inf(M − c uTA)[Rn
+]

)

Tc :=
{

u ∈ Rm| ∃c∗ ∈ Bc : AT u ≤ MT c∗
}

.

where the compact and convex set Bc := {c∗ ∈ −C◦| 〈c, c∗〉 = 1} is used to express the dual

side conditions. We obseverd in [14] that the set Tc in (LD1
c)-(LD3

c) is always a closed convex

subset of Rm and, if C is polyhedral, then Tc is polyhedral, too. Moreover, we have shown

the following duality result.
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Theorem 2.1 ([14]) It holds weak and strong duality between (LPi) and (LDi
c) (i = 1, 2, 3).

More precisely we have

(i) D̄c = P̄ ⊆ Rq if S 6= ∅ and Tc 6= ∅, where ”Sup” can be replaced by ”Max” in this case,

(ii) D̄c = P̄ = {−∞} if S 6= ∅ and Tc = ∅,

(iii) D̄c = P̄ = {+∞} if S = ∅ and Tc 6= ∅.

The following example [14] illustrates the dual problem and the strong duality. Moreover,

in this example we have the attainment of the supremum of the dual problem in the (three)

vertices of the dual feasible set T .

Example 2.2 ([14]) (see Figure 1) Let q = m = n = 2, C = R2
+ and consider the problem

(LP2) with the data

M =

(

1 0

0 1

)

, A =

(

1 2

2 1

)

, b =

(

2

2

)

.

The dual feasible set for the choice c = (1, 1)T ∈ int R2
+ is Tc = {u1, u2 ≥ 0| u1 + u2 ≤ 1/3}.

The vertices of Tc are the points v1 = (0, 0)T , v2 = (1/3, 0)T and v3 = (0, 1/3)T . We

obtain the values of the dual objective function at v1, v2, v3 as Dc(v1) = bd R2
+, Dc(v2) =

{

y ∈ R2| y1 + 2y2 = 2
}

and Dc(v3) =
{

y ∈ R2| 2y1 + y2 = 2
}

. We see that the three dual

feasible points v1, v2, v3 ∈ Tc are already sufficient for strong duality.

M [S] =
⋃

x∈S

M · x

Inf M [S]

SupDc[Tc]

Dc(v3)
Dc(v2)

Dc(v1)

Figure 1: The primal and dual values in Example 2.2.

3 Dual Attainment in Vertices

We start with an example that shows that the supremum of the dual problem is, in general,

not attained in vertices of the dual feasible set. Then we show that the dual attainmant in

vertices can be ensured under certain additional assumptions.
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Example 3.1 Let q = m = n = 2, C = R2
+ and consider the problem (LP2) with the data

M =

(

1
2 1

0 −1

)

, A =

(

−1
2 1
3
2 −2

)

, b =

(

−1

−2

)

.

As above, we set c = (1, 1)T ∈ int R2
+, hence Bc = {c∗1, c

∗
2 ≥ 0 | c∗1 + c∗2 = 1}. One easily

verifies that the dual feasible set is the set Tc = conv {v1, v2, v3, v4}, where v1 = (0, 0)T ,

v2 = (1, 0)T , v3 = (5, 2)T and v4 = (0, 1/3)T . However, the four vertices of Tc don’t generate

the supremum, in fact we have (see Figure 2)

Sup
4

⋃

i=1

Dc(vi) = Dc(v1) = Inf M [R2
+] = R+(0, 1)T ∪ R+(1,−1)T .

Tc

M [S]

Sup
4

⋃

i=1

Dc(vi)

Dc(v5)

1 2 3 4 5

1

2

v5

3

−2

Figure 2: The dual feasible set and certain values of the dual objective in Example 3.1.

One can show that v1 = (0, 0)T together with v5 = (0, 1/8)T generate the supremum, i.e.,

D̄c = Sup

(

Dc

(

(0, 0)T
)

∪ Dc

(

(0, 1/8)T
)

)

,

but v5 is not a vertice of Tc.

It is natural to ask for additional assumptions to ensure that the supremum of the dual

problem is always generated by the vertices (or extreme points) of the dual feasible set Tc. We

can give a positive answer for the problem (LD1
c) by the following considerations. Moreover,

we show that problem (LD1
c) can be simplified under relatively mild assumptions.

Proposition 3.2 Let M ∈ Rq×n, rankM = q, u ∈ Rq, v ∈ Rn. Then, for the matrix

H := M − uvT it holds rankH ≥ q − 1.

Proof. We suppose q ≥ 2, otherwise the assertion is obvious. The matrix consisting of the

first k columns {a1, a2, ..., ak} of a matrix A is denoted by A(k) . Without loss of generality

we can suppose rankM (q) = q. Assume that rankH(q) =: k ≤ q − 2. Without loss of

generality we have rankH(k) = k. Since rankH(k+1) = k, there exist w ∈ Rk+1 \ {0} such
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that H(k+1)w = 0, hence M (k+1)w = u(vT )(k+1)w. We have rankM (k+1) = k + 1, hence

(vT )(k+1)w 6= 0. It follows that u ∈ Mk+1[R
k+1] = lin {m1, m2, ..., mk+1} =: L. Thus, for all

x ∈ Rk+1, we have H(k+1)x = M (k+1)x − u(vT )(k+1)x ∈ L + L = L. From rankM (q) = q we

conclude that mk+2 6∈ L, hence hk+2 = mk+2 + uvk+2 6∈ L. It follows that rankH(q) ≥ k + 1,

a contradiction. Thus, we have rankH ≥ rankH(q) ≥ q − 1. �

Proposition 3.3 Let M ∈ Rq×n, rankM = q, c ∈ intC, c∗ ∈ Bc and Hc∗ := M − cc∗T M .

It holds

(i) rankHc∗ = q − 1,

(ii) Hc∗ [R
n] is a hyperplane in Rq orthogonal to c∗,

(iii) Inf Hc∗ [R
n] = Hc∗ [R

n].

Proof. (i) We easily verify that c∗T Hc∗ = 0, and so rankHc∗ < q. Thus, the statement

follows from Proposition 3.2. (ii) is immediate. (iii) We first show that Hc∗ [R
n] + intC =

{

y ∈ Rq| c∗T y > 0
}

. Of course, for y ∈ Hc∗ [R
n] + intC we have c∗T y > 0. Conversely, let

c∗T y > 0 for some y ∈ Rq. Then, there exists some λ > 0 such that c∗T λy = 1 = c∗T c. It

follows λy − c ∈ Hc∗ [R
n] and hence y ∈ Hc∗ [R

n] + intC.

a) Hc∗ [R
n] ⊆ Inf Hc∗ [R

n]. Assume that y ∈ Hc∗ [R
n], but y 6∈ Inf Hc∗ [R

n]. Then by (1) we

have y ∈ Hc∗ [R
n] + intC, hence c∗T y > 0 , a contradiction.

b) Inf Hc∗ [R
n] ⊆ Hc∗ [R

n]. Let y ∈ Inf Hc∗ [R
n] and take into account (1). On the one

hand this means y 6∈ Hc∗ [R
n] + intC and hence c∗T y ≤ 0. On the other hand we have

{y} + intC ⊆ Hc∗ [R
n] + intC, i.e., for all λ > 0 it holds c∗T (y + λc) > 0, whence c∗T y ≥ 0.

Thus, c∗T y = 0, i.e., y ∈ Hc∗ [R
n]. �

Theorem 3.4 Consider problem (LD1
c), where M ∈ Rq×n, rankM = q, c ∈ intC. Let the

matrix L ∈ Rq×m be defined by L := (MMT )−1MAT . Then it holds

(i) For u ∈ Rm, c∗ ∈ Rq: (AT u = MT c∗ =⇒ c∗ = Lu).

(ii) L[Tc] ⊆ Bc.

(iii) The dual objective Dc : Tc → I, Dc(u) := c uT b + Inf(M − c uTA)[Rn] can be expressed

as

Dc(u) = {y ∈ Rq| 〈Lu, y〉 = 〈u, b〉} .

(iv) For u1, u2, ..., ur ∈ Tc, λi ≥ 0 (i = 1, ..., r) with
∑r

i=1 λi = 1 it holds

Dc

( r
∑

i=1

λiui

)

4 Sup

r
⋃

i=1

Dc(ui).

(v) If D̄c ⊆ Rq, the supremum of (LD1
c) is generated by the set extTc of extreme points of

Tc, i.e.,

Sup
⋃

u∈Tc

Dc(u) = Sup
⋃

u∈ext Tc

Dc(u).
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Proof. (i) Since rankM = q, MMT ∈ Rq×q is invertible, and so the statement is easy to

verify.

(ii) Let u ∈ Tc. Hence there exists c∗ ∈ Bc such that AT u = MT c∗. By (i) it follows that

c∗ = Lu, whence Lu ∈ Bc.

(iii) Let u ∈ Tc. By (i) we have AT u = MT Lu. From Proposition 3.3 we obtain Dc(u) =

c uT b + {y ∈ Rq| 〈Lu, y〉 = 0} =: B1. Of course, we have B1 ⊆ B2 := {y ∈ Rq| 〈Lu, y〉 = 〈u, b〉}.

To see the opposite inclusion, let y ∈ B2, i.e., 〈Lu, y〉 = 〈u, b〉. It follows c (Lu)T y = cuT b. By

(ii), we have c∗ := Lu ∈ Bc. With the aid of Proposition 3.3, we obtain y = cuT b+y−cc∗T y ∈
{

cuT b
}

+ (I − cc∗T I)[Rn] = B1.

(iv) Consider the function dc : Tc → F , defined by dc(u) := j(Dc(u)) = Cl +Dc(u).

Proceeding as in the proof of Proposition 3.3 (iii), we obtain dc(u) = {y ∈ Rq| 〈Lu, y〉 ≥ 〈u, b〉}

for all u ∈ Tc. One easily verifies the inclusion dc

(
∑r

i=1 λiui

)

⊇
⋂r

i=1 dc(ui). Since j is an

isotone bijection between (I, 4) and (F ,⊇), this is equivalent to the desired assertion.

(v) Let u ∈ Tc be given. Since Tc is closed and convex and contains no lines, [18, Theorem

18.5] yields that there are extreme points u1, ..., uk and extreme directions uk+1, ..., ul of Tc

such that

u =
l

∑

i=1

λiui, with λi ≥ 0 (i = 1, ..., l), and
k

∑

i=1

λi = 1,

(see [18, Sections 17 and 18]). Of course, we have v :=
∑l

i=k+1 λiui ∈ 0+Tc and u − v ∈ Tc.

From (iv) we obtain

Dc(u − v) = Dc

( k
∑

i=1

λiui

)

4 sup
i=1,...,k

Dc(ui) 4 sup
u∈ext Tc

Dc(u).

It remains to show that Dc(u) 4 Dc(u − v).

Consider the set V := {u − v}+R+v ⊆ Tc. By (ii), it holds L[V ] = L(u−v)+L[R+v] ⊆ Bc.

Since L[R+v] is a cone, but Bc is bounded it follows that L[R+v] = {0}. This implies

L(u − v + λv) = c∗ for all λ ≥ 0, in particular, L(u − v) = Lu = c∗. From (iii), we now

conclude that exactly one of the following assertions is true:

Dc(u) 4 Dc(u − v) or
(

Dc(u − v) 4 Dc(u) ∧ Dc(u − v) 6= Dc(u)
)

.

We show that the second assertion yields a contradiction. Since c∗ = Lu = L(u − v) ∈ Bc ⊆

−C◦ \ {0}, we have 〈u − v, b〉 < 〈u, b〉 and so 〈v, b〉 > 0 in this case, hence 〈u − v + λv, b〉 →

+∞ for λ → +∞. It follows that

D̄c = sup
u∈Tc

Dc(u) < sup
u∈V

Dc(u) = sup
λ≥0

{y ∈ Rq| 〈c∗, y〉 = 〈u − v + λv, b〉} = {+∞} .

This contradicts the assumption D̄c ⊆ Rm. �

Corollary 3.5 Consider problem (LD1
c), where M ∈ Rq×n, rankM = q, c ∈ intC and C

polyhedral.
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If the supremum D̄c of (LD1
c) is a subset of Rq, then it is generated by the finitely many

vertices u1, ..., uk of (the nonempty polyhedral set) Tc. Moreover, we have

D̄c = Sup
⋃

i=1,...,k

Dc(ui) = Max
⋃

i=1,...,k

Dc(ui).

Proof. The set Tc is polyhedral [14, Proposition 7.4]. Hence, extTc consists of finitely many

points, called the vertices of Tc. The first equality follows from Theorem 3.4 (v).

To show the second equality let y ∈ Sup
⋃

i=1,...,k Dc(ui) ⊆ Rq be given. By an assertion

analogous to (1) this means y 6∈
⋃

i=1,...,k Dc(ui) − intC and {y} − intC ⊆
⋃

i=1,...,k Dc(ui) −

intC. From the last inclusion we conclude that y ∈ cl
⋃

i=1,...,k(Dc(ui)−intC) =
⋃

i=1,...,k cl (Dc(ui)−

intC) =
⋃

i=1,...,k(Dc(ui)−C). Hence there exists some i ∈ {1, ..., k} such that y ∈ (Dc(ui)−

C) \ (Dc(ui) − intC). By the same arguments as used in the proof of Proposition 3.3 (iii)

we can show the last statement means y ∈ Dc(ui), i.e. we have y ∈
⋃

i=1,...,k Dc(ui). The

statement now follows from an assertion analogous to (2). �

It is typical that more than one vertice is necessary to generate the infimum or supremum

in case of vectorial linear programming. It remains the question how to determine a minimal

subset of vertices of S and Tc that generates the infimum and supremum, respectively.

4 Comparison with duality based on scalarization

Duality assertions for linear vector optimization problems are derived by many authors (com-

pare Isermann [10] and Jahn [11]). In these approaches the dual problem is constructed

in such a way that the dual variables are linear mappings from Rm → Rq, whereas in our

approach the dual variables are vectors belonging to Rm. In order to show strong duality

assertions these authors suppose that b 6= 0. As shown in Theorem 2.1 we do not need such

an assumption in order to prove strong duality assertions. However, there are several relations

between our dualtity statements and those given by Jahn [11]. First, we recall an assertion

given by Jahn [11] in order to compare our results wi th corresponding duality statements

given by Jahn and others. In the following we consider (LD1
c) for some c ∈ intC.

Theorem 4.1 (Jahn [11], Theorem 2.3)

Assume that V and Y are real separated locally convex linear spaces and b ∈ V, u∗ ∈ V∗,

y ∈ Y, λ∗ ∈ Y∗.

(i) If there exists a linear mapping Z : V → Y with y = Z(b) and u∗ = Z∗(λ∗), then

λ∗(y) = u∗(b).

(ii) If b 6= 0, λ∗ 6= 0 and λ∗(y) = u∗(b), then there exists a continuous linear mapping

Z : V → Y with y = Z(b) and u∗ = Z∗(λ∗).

Usually, one considers in linear vector optimization dual problems of the form (Isermann

[10] and Jahn [11])

(LDo) Max
⋃

Z∈T o

c

Zb,
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where

T o
c := {Z ∈ Rq×m | ∃c∗ ∈ Bc : ZT c∗ ≥ 0, (ZA)T c∗ = MT c∗}. (3)

We have the following relationships between (LD1
c) and (LDo):

Theorem 4.2 Let M ∈ Rq×n, rankM = q, c ∈ intC and L := (MMT )−1MAT ∈ Rq×m.

Then it holds

D1 :=
⋃

u∈Tc

{y ∈ Rq | 〈Lu, y〉 = 〈u, b〉} ⊇
⋃

Z∈T o

c

Zb =: D2

In the case of b 6= 0 we have equality, i.e., D1 = D2.

Proof. a) We show D2 ⊆ D1. Assume y ∈ D2. Then there exists Z ∈ T o
c with a

corresponding c∗ ∈ Bc, i.e.,

ZT c∗ ≥ 0, (ZA)T c∗ = MT c∗ (4)

and y = Zb. Put u = ZT c∗, then Theorem 4.1 (i) yields

〈c∗, y〉 = 〈u, b〉. (5)

Furthermore, taking into account (4) we obtain

u = ZT c∗ ≥ 0

and

AT u = AT ZT c∗ = (ZA)T c∗ = MT c∗.

By Theorem 3.4 (i) and (5), we conclude that y ∈ D1.

b) We show D1 ⊆ D2 under the assumption b 6= 0. Suppose y ∈ D1. Then there exists

u ∈ Tc with the corresponding c∗ ∈ Bc, i.e.

u ≥ 0, (6)

AT u = MT c∗ (7)

and

〈Lu, y〉 = 〈u, b〉.

From Theorem 3.4 (i), (ii) we get 〈c∗, y〉 = 〈u, b〉 and c∗ ∈ Bc. So the assumptions c∗ 6= 0,

b 6= 0 of Theorem 4.1 (ii) are fulfilled and we conclude that there exists Z ∈ Rq×m with

y = Zb and u = ZT c∗. Moreover, we obtain by (7)

(ZA)T c∗ = AT ZT c∗ = AT u = MT c∗

and from (6) we get

ZT c∗ = u ≥ 0.

This yields y ∈ D2, which completes the proof.

�

9



Remark 4.3 Theorem 4.2 shows, that for linear vector optimization problems under the

assumption b 6= 0 our dual problems coincides with the dual problems given in the papers

[10] and [11].

The following example shows that the assumption b 6= 0 cannot be omitted in order to

have the equality D1 = D2.

Example 4.4 Let q = m = n = 2, C = R2
+, c = (1, 1)T ,

A = M =

(

1 0

0 1

)

and b =

(

0

0

)

.

Then we have L = M = A, Tc = Bc, D2 =
{

(0, 0)T
}

and

D1 =
{

y ∈ R2| (y1 ≥ 0 ∧ y2 ≤ 0) ∨ (y1 ≤ 0 ∧ y2 ≥ 0)
}

,

i.e., D1 6= D2.
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