
FRACTIONAL WHITE NOISE PERTURBATIONS OF
PARABOLIC VOLTERRA EQUATIONS

STEFAN SPERLICH AND MATHIAS WILKE

Abstract. Aim of this work is to extend the results of Clément, Da Prato

& Prüss [3] on the fractional white noise perturbation with Hurst parameter

H ∈ (0, 1). We will obtain similar results and it will turn out that the regularity

of the solution u(t) increases with Hurst parameter H.

1. Introduction and Notations

We are given a separable Hilbert spaceH with norm |·|H and inner product (·|·)H.

Let A be a closed linear densely defined operator in H, and b ∈ L1(R+) a scalar
kernel. As in [3] we consider the integro-differential equation

(1.1)

 u̇(t) +
∫ t

0

b(t− τ)Au(τ)dτ = f(t), t ≥ 0,

u(0) = u0.

Here the initial value u0 is assumed to be an element of H and the forcing
function f shall be of the form

f(t) = h(t) +Q1/2ḂH(t),

with deterministic part h ∈ L1,loc(R+;H) and BH is a standard cylindrical frac-
tional Brownian motion in H with Hurst parameter H ∈ (0, 1) (e.g. Grecksch and
Anh [7]) with corresponding fractional white noise ḂH.

Because problem (1.1) is motivated from applications of linear viscoelastic ma-
terial behavior, we consider G ⊂ RN to be an open and bounded domain and the
operator −A to be an elliptic differential operator like the Laplacian, the elasticity
operator, or the Stokes operator, together with appropriate boundary conditions
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(e.g. Prüss [10, Section I.5]). In the following we are particulary interested in the
case H = L2(G).

Hypothesis (A). A is an unbounded, selfadjoint, positive definite operator in H
with compact resolvent. Consequently, the eigenvalues µn of A form a nondecreas-
ing sequence with limn→∞ µn = ∞, the corresponding eigenvectors (en)n∈N ⊂ H
form an orthonormal basis of H.

Hypothesis (e). There is a constant C > 0 such that

|en(ξ)| ≤ C and |∇en(ξ)| ≤ Cµ1/2
n ,

where n ∈ N and ξ ∈ G.

Hypothesis (b). b ∈ L1(R+) is 3-monotone, i.e. b and −ḃ are nonnegative,
nonincreasing, convex; in addition,

(1.2) lim
t→0

1
t

∫ t
0
τb(τ)dτ∫ t

0
−τ ḃ(τ)dτ

<∞.

Prüss proved in [10, Section I.1] that if (A) and (b) are valid, the integrated
version of problem (1.1) admits a resolvent S(t) (which is strongly continuous,
uniformly bounded by 1, with limt→∞ |S(t)|B(H) = 0 and S ∈ L1(R+;B(H))) such
that the unique mild solution of (1.1) is given by the variation of parameters formula

(1.3) u(t) = S(t)u0 +
∫ t

0

S(t− τ)f(τ)dτ, t ≥ 0,

whenever u0 ∈ H and f ∈ L1,loc(R+;H).

By means of the spectral decomposition of A, the resolvent family S(t) can be
written explicitly as

(1.4) S(t)x =
∞∑
n=1

sn(t)(x|en)en, t ≥ 0, x ∈ H,

where the scalar functions sn(t) are the solutions of the scalar problems

(1.5) ṡn(t) + µn

∫ t

0

b(t− τ)sn(τ)dτ = 0, t ≥ 0, sn(0) = 1.

Next we want to give an abstract formulation of the assumptions on the covariance
Q and the fractional white noise ḂH.

Hypothesis (B).Q ∈ L1(H) is selfadjoint, positive semi-definite and commutes
with the operator A, i.e. there is a sequence (γn) ∈ `1(R+), such that Qen = γnen
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for all n ∈ N. BH(t) is of the form

(1.6) (BH(t)|x) =
∞∑
n=0

βH
n (t)(x|en), t ∈ R, x ∈ H,

where βH
n (t) are mutually independent real valued fractional Brownian motions with

Hurst parameter H ∈ (0, 1) on the probability space (Ω,F ,P).

It is well known that BH(t) (as in (1.6)) is not a well defined H-valued random
variable. However, due to BH(t) : Ω→ HQ−1/2 , where HQ−1/2 is the completion of
H with respect to the norm |x|2

Q−1/2 := |Q−1/2x|H, x ∈ H, the forcing function f

is well defined since Q1/2BH(t) is a mapping with values in H.

In the sequel an upper index 〈t〉, t > 0 at a function f : R+ → R means

f 〈t〉(τ) :=

f(t− τ) : τ ≤ t;

0 : τ > t.

Moreover, we will make use of the theory of integration with respect to fractional
Brownian motions, which is provided by Pipiras and Taqqu [9]. Hence we denote
the fractional integral of order α > 0 of a function φ by Iαφ, precisely this means

(Iαφ)(r) =
1

Γ(α)

∫
R

φ(τ)(τ − r)α−1
+ dτ, r ∈ R,

where (x)+ = 0 if x ≤ 0, and (x)+ = x if x > 0. By means of the Marchaud
fractional derivative we introduce the left inverse of Iα as Dα for α > 0, i.e. for
appropriate functions φ it holds that

(1.7) Dα(Iαφ) ≡ φ.

Next we want to characterize the class of integrands f with respect to a fractional
Brownian motion, such that the integral

∫
R
f(τ)dBH(τ) is well defined. In order to

study the most general case, we consider the space ΛH for integrands in the time
domain which arises as

(1.8) ΛH :=
{
f :
∫
R

[
(D 1

2−Hf)(r)
]2

dr <∞
}

for 0 < H < 1
2 ,

or alternatively as

(1.9) ΛH :=
{
f :
∫
R

[
(IH− 1

2 f)(r)
]2

dr <∞
}

for 1
2 < H < 1.

In both cases ΛH is a linear space with inner product

(f |g)ΛH
=

Γ2(H + 1
2 )

ζ2(H− 1
2 )

∫
R

(D 1
2−Hf)(r)(D 1

2−Hg)(r)dr,
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or accordingly

(f |g)ΛH
=

Γ2(H + 1
2 )

ζ2(H− 1
2 )

∫
R

(IH− 1
2 f)(r)(IH− 1

2 g)(r)dr,

where

ζ(H) =
[∫ ∞

0

[
(1 + τ)H − τH

]2
dτ +

1
2H + 1

]1/2

.

Pipiras and Taqqu proved in [9, Proposition 3.2], that the embeddings

(1.10) L1(R) ∩ L2(R) ↪→ L1/H(R) ↪→ ΛH,

hold true for H ∈ ( 1
2 , 1).

In the spectral domain we are interested in integrands being a member of the
homogeneous Bessel potential space of order 1

2 − H,

Ḣ
1
2−H
2 (R) =

{
f ∈ S∗(R) :

∫
R

|Ff(τ)|2|τ |−2H+1dτ <∞
}
,

where S∗ is the space of tempered distributions. It is well known, that for f ∈
Ḣ

1
2−H
2 (R) the Fourier transform of IH− 1

2 f or D 1
2−Hf is

(1.11) ψH− 1
2
(x)(Ff)(x)|x| 12−H = (Ff)(x)(ix)

1
2−H,

where

ψα(x) = e−iπα/2χ{x>0} + eiπα/2χ{x<0}, x ∈ R.

Here χM denotes the indicator function of the set M . Hence by Plancherel’s The-
orem it holds that

(1.12) Ḣ
1
2−H
2 (R) ∼= ΛH.

An easy calculus shows that the identity

(1.13) (f |g)ΛH
= E

[(∫
R

f(τ)dβH(τ)
)(∫

R

g(τ)dβH(τ)
)]

holds for all f, g ∈ E , where E denotes the set of all elementary functions. Since
E is dense in ΛH (see [9, Theorems 3.2 resp. 3.3]) equation (1.13) holds for all
f, g ∈ ΛH.
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Remark.

(i) Since by (1.11) F(I−κf) ≡ F(Dκf) and by Plancherel’s Theorem the norm
in Ḣκ

2 (R) can be rewritten as

(1.14) |f |Ḣκ2 (R) =

|Dκf |L2(R) : κ ≥ 0

|I−κf |L2(R) : κ < 0

(ii) Observe that equation (1.13) also holds on an arbitrary set M ⊂ R. This can
be seen by replacing f and g by fχM and gχM , respectively.

The plan of our paper is as follows. In Section 2 we state the main results
about fractional white noise perturbations of equations in linear viscoelasticity,
i.e. equation (1.1), assuming the Hypotheses (A), (b), and (B) explained above.
These results are proved in Section 3 by means of the methods introduced in the
monograph by Da Prato and Zabczyk [5], adapted to evolutionary integral equations
in Clément and Da Prato [1], [2]. The required estimates were already available
and taken from Monniaux and Prüss [8] and Clément, Da Prato & Prüss [3].
Section 4 is devoted to a study of the equation

u+ gα ∗Au = gβ ∗Q1/2ḂH

on the halfline, where gκ(t) = tκ−1/Γ(κ), t > 0 for κ > 0 denotes the Riemann-
Liouville kernel of fractional integration.

2. Main results

Concentrating on the stochastic case we let h(t) = 0, i.e. f(t) = Q1/2ḂH(t);
w.l.o.g. we set u0 = 0. This means that we have to investigate the stochastic
convolution

(2.1) u(t) =
∫ t

0

S(t− τ)d(Q1/2BH)(τ), t ≥ 0.

In virtue of the spectral decompositions of A and Q we may rewrite

(2.2) u(t) =
∞∑
n=1

√
γn

∫ t

0

sn(t− τ)endβH
n (τ), t ≥ 0.

Our main result on problem (1.1) reads as follows.

Theorem 1. Let H ∈ (0, 1). Assume that Hypotheses (A), (b), (B) are valid and
suppose

(2.3)
∞∑
n=1

γnµ
− 2H
ρ

n <∞,
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where

(2.4) ρ := 1 +
2
π

sup{| arg b̂(λ)| : Reλ > 0}.

Then the series (2.2) converges in L2(Ω;H), uniformly in t on bounded subsets of
R+ and u ∈ Cb(R+;L2(Ω;H)). u(t) is a Gaussian random variable with mean zero
and covariance operator Qt, defined by

(2.5) Qtx =
∞∑
n=1

∥∥∥s〈t〉n √γn∥∥∥2

ΛH

(x|en)en, x ∈ H,

and we have Tr[Qt] ≤ cH Tr[QA−2H/ρ].
If in addition, there is θ ∈ (0, 1) such that

(2.6)
∞∑
n=1

γnµ
2H(θ−1)

ρ
n <∞,

then for each α ∈ (0, θH), the trajectories of u(t) are almost everywhere α-Hölder-
continuous, i.e. u ∈ Cαb (R+;L2(Ω;H)).
In case H = L2(G) and Hypothesis (e) as well as

(2.7)
∞∑
n=1

γnµ
θ−2H
ρ

n <∞,

are met, the trajectories of u(t, ξ) are almost surely α-Hölder-continuous in ξ, for
each exponent α ∈ (0, θ), i.e. u ∈ Cb(R+;Cα(G;L2(Ω))).

Here and in the sequel we denote by cH > 0 a generic constant depending on H.

Remark.

(i) Λ 1
2

is isometrically isomorphic to L2(R). In this sense Theorem 1 is a gener-
alization of [3, Theorem 2.1].

(ii) Note that by Hypothesis (A) and (b) the problem under consideration is
parabolic, i.e. ρ ∈ [1, 2).

3. Proof of the main results

The idea of the proof is, of course, similar to Clément et al. [3] and follows the
arguments for the Cauchy problem presented in Da Prato and Zabczyk [5].

Let us cite a useful lemma which was proven in [3, Lemma 3.1]:

Lemma 3.1. Suppose the kernel b(t) is subject to Hypothesis (b), and let ρ ∈ (1, 2)
be defined by (2.4). Then for every n ∈ N it is

(i) |sn(t)| ≤ 1 for all t, µn > 0;
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(ii) |ṡn|L1(R+) ≤ C for all µn > 0;
(iii) |tṡn|L1(R+) ≤ Cµ

−1/ρ
n for all µn > 0;

(iv) |sn|L1(R+) ≤ Cµ
−1/ρ
n for all µn > 0,

where C > 0 denotes a constant which is independent of µn > 0.

Now, let the hypotheses of Theorem 1 be fulfilled. Observe that for H ∈ ( 1
2 , 1)

by (iv) and (i) of Lemma 3.1 the functions s〈t〉n belongs to L1(R)∩L2(R) and hence
by embedding (1.10) to ΛH. So by identity (1.13) we obtain

(3.1) E|u(t)|2H = cH

∞∑
n=1

γn

∫
R

[
(IH− 1

2 s〈t〉n )(r)
]2

dr = cH

∞∑
n=1

γn

∣∣∣IH− 1
2 s〈t〉n

∣∣∣2
L2(R)

.

As a result of [11, Theorem 5.3] the operator IH− 1
2 is bounded from L1/H(R) into

L2(R). Thus we have by (i) and (iv) of Lemma 3.1

(3.2) E|u(t)|2H ≤ cH
∞∑
n=1

γn|s〈t〉n |2L1/H(R) ≤ cH
∞∑
n=1

γn|s〈t〉n |2H
L1(R) ≤ cH

∞∑
n=1

γnµ
−2H/ρ
n

which is finite by assumption. In the case H ∈ (0, 1
2 ) one may argue as in the latter

situation to obtain

(3.3) E|u(t)|2H = cH

∞∑
n=1

γn

∣∣∣D 1
2−Hs〈t〉n

∣∣∣2
L2(R)

≤ cH
∞∑
n=1

γn|s〈t〉n |2
H

1
2−H

2 (R)

and hence by interpolation and Lemma 3.1

(3.4) E|u(t)|2H ≤ cH
∞∑
n=1

γn|s〈t〉n |2H
L1(R) · |s

〈t〉
n |

2(1−H)

H1
1 (R)

≤ cH
∞∑
n=1

γnµ
−2H/ρ
n

holds.

Thus u(t) is a zero mean H-valued Gaussian random variable. Let Qt be its
covariance operator, then for H ∈ ( 1

2 , 1)

(Qtx|y)H = E [(u(t)|x)(u(t)|y)]

=
∞∑
n=1

γn(en|x)(en|y)E
∣∣∣∣∫
R

stn(τ)dβH
n (τ)

∣∣∣∣2
=

Γ2(H + 1
2 )

ζ2(H− 1
2 )

∞∑
n=1

(en|x)(en|y)
∫
R

[
(IH− 1

2 s〈t〉n
√
γn)(τ)

]2
dτ

=
Γ2(H + 1

2 )
ζ2(H− 1

2 )

∞∑
n=1

(∫
R

[
(IH− 1

2 s〈t〉n
√
γn)
]2

(τ)dτ(en|x)en
∣∣∣y) ,

and with help of (3.1) and (3.2) Tr[Qt] ≤ cH Tr[QA−2H/ρ] follows. Replacing IH− 1
2

by D 1
2−H yields the claim for H ∈ (0, 1

2 ).
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Concerning Hölder-continuity we will use the following two estimates with the
convention sn(τ) = 0 for τ < 0.

Lemma 3.2. Suppose that the kernel b(t) is subject to Hypothesis (b) and let
κ ∈ (1, 2). Then for each θ ∈ (0, 1) there is a constant Cθ > 0 such that

(3.5)
∫ t

x

|sn(t− τ)|κdτ ≤ Cθµ(θ−1)/ρ
n |t− x|θ, 0 < x < t,

and

(3.6)
∫ x

−∞
|sn(t− τ)− sn(x− τ)|κdτ ≤ Cθµ(θ−1)/ρ

n |t− x|θ, x < t.

The proof of Lemma 3.2 follows exactly the lines of [3, Proof of Lemma 3.1].
Therefore we omit it.

For H ∈ ( 1
2 , 1) we use the identity (1.13) to obtain

E|u(t)− u(x)|2H = E(u(t)− u(x)|u(t)− u(x))H =
∞∑
n=1

γn(s〈t〉n − s〈x〉n |s〈t〉n − s〈x〉n )ΛH

= cH

∞∑
n=1

γn

∣∣∣IH− 1
2 (s〈t〉n − s〈x〉n )

∣∣∣2
L2(R)

≤ cH
∞∑
n=1

γn|s〈t〉n − s〈x〉n |2L1/H(R)

and we have

|s〈t〉n − s〈x〉n |L1/H
=
[∫ x

−∞
|sn(t− τ)− sn(x− τ)|1/Hdτ +

∫ t

x

|sn(t− τ)|1/Hdτ
]H

.

For H ∈ (0, 1
2 ) it is

E|u(t)− u(x)|2H = cH

∞∑
n=1

γn

∣∣∣D 1
2−H(s〈t〉n − s〈x〉n )

∣∣∣2
L2(R)

and the estimate

(3.7)
∣∣∣D 1

2−H(s〈t〉n − s〈x〉n )
∣∣∣2
L2(R)

≤ c|s〈t〉n − s〈x〉n |2
H

1
2−H

2 (R)
≤ c̃|s〈t〉n − s〈x〉n |2H

L1(R)

holds for sufficient large n ∈ N, by interpolation and Lemma 3.1. Thus by employ-
ing Lemmata 3.1 and 3.2 this yields

E|u(t)− u(x)|2H ≤ cH|t− x|2θH
∞∑
n=1

γnµ
2H(θ−1)/ρ
n ,

for H ∈ (0, 1) and we may conclude Hölder-continuity of u(t) as in the proofs
given in Clément and Da Prato [1] or [2]. Similarly, in case (e) holds, we obtain
Hölder-continuity in space from the identities

E|u(t, ξ)− u(t, η)|2 = cH

∞∑
n=1

γn

∣∣∣IH− 1
2 s〈t〉n

∣∣∣2
L2(R)

|en(ξ)− en(η)|2
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for H ∈ ( 1
2 , 1) and

E|u(t, ξ)− u(t, η)|2 = cH

∞∑
n=1

γn

∣∣∣D 1
2−Hs〈t〉n

∣∣∣2
L2(R)

|en(ξ)− en(η)|2

for H ∈ (0, 1
2 ) respectively.

4. Fractional derivatives and fractional white noise

In the remaining part of this paper we take up a different viewpoint to equations
with fractional noise. We consider the problems

(4.1) u+ gα ∗Au = gβ ∗Q1/2ḂH

in the Hilbert space H, where the operator A is subject to Hypothesis (A) and also
to (e) if appropriate, the covariance Q and the fractional Brownian motion BH are
subject to (B), and gκ denotes the fractional integration kernel

gκ(t) =
tκ−1

Γ(κ)
, t > 0,

where κ > 0. Note that if we set β = 1 and a = gα for α ∈ (0, 1] equation (4.1) is
a special case of problem (1.1).
For α ∈ (0, 2), β > 0, define the scalar fundamental solution of (4.1) by

(4.2) r̂n(λ) =
ĝβ(λ)

1 + µnĝα(λ)
=

λα

λβ(λα + µn)
, Reλ ≥ 0, λ 6= 0, µn > 0,

where r̂n denotes the Laplace transform of rn. Furthermore with the convention
rn(τ) = 0 for τ < 0 we have by the Paley-Wiener Theorem

|rn|
Ḣ

1
2−H

2 (R)
=
∫
R

|(Frn)(ρ)|2|ρ|1−2Hdρ

≤ cα
∫
R

[ |ρ|α

|ρ|β(|ρ|α + µn)

]2
|ρ|1−2Hdρ

= 2cα
∫ ∞

0

[ ρα

ρβ(ρα + µn)

]2
ρ1−2Hdρ

= 2cαµ
2(1−β−H)

α
n

∫ ∞
0

[τα−β−H+ 1
2

1 + τα

]2
dτ,

(4.3)

and the right integral is finite if and only if 1 − H < β < 1 − H + α. Thus by
isomorphism (1.12) rn belongs to ΛH whenever α ∈ (0, 2) and β ∈ (1−H, 1−H+α).
The solution of (4.1) can be rewritten as

(4.4) u(t) =
∞∑
n=1

√
γn

∫ t

0

rn(t− τ)dβH
n (τ)en, t > 0,
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and therefore as in Section 3 it is by means of representation (1.14)

(4.5) E|u(t)|2H = cH

∞∑
n=1

γn|r〈t〉n |2
Ḣ

1
2−H

2 (R)

as well as

(4.6) E|u(t)− u(x)|2H = cH

∞∑
n=1

γn|r〈t〉n − r〈x〉n |2
Ḣ

1
2−H

2 (R)

and in case H = L2(G) and (e) is valid

(4.7) E|u(t, ξ)− u(t, η)|2 = cH

∞∑
n=1

γn|r〈t〉n |2
Ḣ

1
2−H

2 (R)
|en(ξ)− en(η)|2.

Moreover

|r〈t〉n |
Ḣ

1
2−H

2 (R+)
≤ |r〈t〉n |

Ḣ
1
2−H

2 (R)
= |r〈0〉n |

Ḣ
1
2−H

2 (R)
= |rn|

Ḣ
1
2−H

2 (R+)

holds t ≥ 0, as soon as rn ∈ Ḣ
1
2−H
2 (R+). Identities (4.5) and (4.6) show that the

solution u(t) of (4.1) exists and is continuous in L2(Ω;H) if and only if

(4.8) σ1 :=
∞∑
n=1

γn|rn|2
Ḣ

1
2−H

2 (R+)
<∞.

Next observe that we have for H ∈ ( 1
2 , 1)∣∣∣IH− 1

2 (r〈t〉n − r〈x〉n )
∣∣∣2
L2(R)

=
∫
R

∣∣∣(IH− 1
2 r〈t〉n )(τ)− (IH− 1

2 r〈x〉n )(τ)
∣∣∣2 dτ

=
∫
R

∣∣∣(IH− 1
2 r〈0〉n )(τ − t)− (IH− 1

2 r〈0〉n )(τ − x)
∣∣∣2 dτ

=
∣∣∣(IH− 1

2 r〈0〉n )(x− t+ ·)− (IH− 1
2 r〈0〉n )(·)

∣∣∣2
L2(R)

≤
∣∣∣IH− 1

2 r〈0〉n

∣∣∣2
Bθ2,∞(R)

|t− x|2θ

and analogue for H ∈ (0, 1
2 )∣∣∣D 1

2−H(r〈t〉n − r〈x〉n )
∣∣∣2
L2(R)

≤
∣∣∣D 1

2−Hr〈0〉n

∣∣∣2
Bθ2,∞(R)

|t− x|2θ,

where Bθ2,∞(R) denotes a Besov space. Now we have the embedding

Hθ
2 (R) ↪→ Bθ2,∞(R),

cf. [12, Theorem 2.3.2 (c)], and the apparent relation

(4.9) |f |Ḣκ2 (R) + |f |Ḣθ+κ2 (R) =

|Dκf |Hθ2 : κ ≥ 0,

|I−κf |Hθ2 : κ < 0.
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So the condition

(4.10) σ2 :=
∞∑
n=1

γn

[
|rn|

Ḣ
1
2−H

2 (R+)
+ |rn|

Ḣ
θ+ 1

2−H

2 (R+)

]2

<∞

implies Hölder continuity of u(t) in time of order θ. Finally from (e) we obtain by
interpolation

|en(ξ)− en(η)| ≤ C|ξ − η|θµθ/2n ,

hence

(4.11) σ3 :=
∞∑
n=1

γnµ
θ
n|rn|2

Ḣ
1
2−H

2 (R+)
<∞

yields Hölder-continuity of u(t, ξ) in space ξ of order θ. Therefore the goal is to esti-

mate the Ḣθ+ 1
2−H

2 (R+)-norms of rn, where the functions rn(t) are the fundamental
solutions of the scalar problems

(4.12) rn + µngα ∗ rn = gβ .

This will be done by the following Lemma.

Lemma 4.1. Suppose α ∈ (0, 2), β > 0, θ ∈ [0, 1], and let rn(t) denote the solution
of (4.12). Then

|rn|2
Ḣ
θ+ 1

2−H

2 (R+)
≤ Cα,β,θµ

2(1−β+θ−H)
α

n , µn > 0,

whenever β ∈ (1− H + θ, 1− H + α).

Proof. Again we extend the functions rn trivially on negative halfline. Let
H ∈ ( 1

2 , 1). We first consider the case θ = 0. Then by the Paley-Wiener theorem,

IH− 1
2 rn ∈ L2(R) if and only if ̂IH− 1

2 rn ∈ H2(C+), the Hardy space of exponent

2 and |IH− 1
2 rn|L2(R) = (1/

√
2π)| ̂IH− 1

2 rn|H2(C+). Applying the Paley-Wiener theo-
rem one more time, it suffices to show that F(IH− 1

2 rn) ∈ L2(R). Now we may use
(1.11) to compute∫

R

∣∣∣F(IH− 1
2 rn)(ρ)

∣∣∣2 dρ ≤
∫ ∞

0

[
ρα

ρβ(ρα + µn)

]2

ρ−2H+1dρ

and we have seen in (4.3) that the right integral converges if and only if β ∈
(1 − H, 1 − H + α). In case θ 6= 0, observe that | · |L2(R) + |Dθ · |L2(R) defines
an equivalent norm in Hθ

2 (R), hence replacing β by β − θ the result follows by
Plancherel’s Theorem. For H ∈ (0, 1

2 ) one may proceed as above with replacing
IH− 1

2 by D 1
2−H. �

Now we are in the position to state our result on (4.1).
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Theorem 2. Let α ∈ (0, 2), β > 0, θ ∈ [0, 1] such that β ∈ (1− H + θ, 1− H + α).
Assume that (A) and (B) are satisfied.

(i) If
∞∑
n=1

γnµ
2(1−β−H)

α
n <∞

then the solution u of (4.1) exists and belongs to Cb(R+;L2(Ω;H)).
(ii) If

∞∑
n=1

γnµ
2(1−β+θ−H)

α
n <∞

then u ∈ Cθb (R+;L2(Ω;H)).
(iii) If H = L2(G), (e) holds, and

∞∑
n=1

γnµ
2(1−β−H)+αθ

α
n <∞

then u ∈ Cb(R+;Cθ(G;L2(Ω))).

Proof. Use Lemma 4.1 to estimate the quantities σi, i = 1, 2, 3. �

Example. Let H = L2(0, π), A = Am0 , where A0 = −(d/dx)2 with domain
D(A0) = H2

2 (0, π) ∩ °H1
2 (0, π). It is obvious that A is subject to Hypothesis (A)

and it is well known that eigenvalues of A are µk = k2m for k ∈ N. The covariance
Q is given by its spectral decomposition

Qx =
∞∑
k=1

γk(x|ek)ek,

with (γk)k∈N ⊂ (0, 1] such that
∑∞
k=1 γk <∞. For our example we choose γk = k−l,

l > 1, and we obtain
∞∑
k=1

γkµ
2(1−β−H)

α

k <∞ ⇐⇒ β > 1− H− α(l − 1)
4m

;

∞∑
k=1

γkµ
2(1−β+θ−H)

α

k <∞ ⇐⇒ β > 1− H + θ − α(l − 1)
4m

;

∞∑
k=1

γkµ
2(1−β−H)+αθ

α

k <∞ ⇐⇒ β > 1− H +
αθ

2
− α(l − 1)

4m
.

Obviously the latter series converge for all β ∈ (1−H + θ, 1−H + α), hence Theo-
rem 2 applies independently from the choice of l and m. Observe that the spatial
regularity is better than in time and that for H ∈ ( 1

2 , 1) the regularity in space and
in time is better than in case H = 1

2 . On the other hand regularity degrade for
H ∈ (0, 1

2 ).
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