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Abstract

Geometric duality theory for multiple objective linear programmes is used to derive a dual

variant of Benson’s outer approximation algorithm to solve multiobjective linear programmes

in objective space. We also suggest some improvements of the original version of the algorithm

and prove that solving the dual provides a weight set decomposition. We compare both

algorithms on small illustrative and on practically relevant examples.

Keywords: Multiobjective optimization, vector optimization, linear programming, duality,

objective space, outer approximation.

MSC 2000 Classification: 90C29, 90C05.



1 Introduction

Multiple objective linear programming has been a subject of research since the 1960s. Many al-

gorithms based on extensions of the simplex method to deal with multiple objectives have been

published over the years, see for example the brief survey in Ehrgott and Wiecek (2005). Text-

books on multicriteria optimization usually cover multiobjective simplex algorithms (Steuer,

1985; Ehrgott, 2005).

Researchers have noted that the number of efficient basic feasible solutions of multiple

objective LP’s increases dramatically with the number of objectives and simplex algorithms

become rather inefficient. This has motivated research in methods solving the problems in

objective or outcome space.

Benson’s outer approximation algorithm (Benson, 1998b) is a method to solve a multiple

objective linear programme in the outcome space. The motivation for the algorithm is twofold.

On the one hand it is in many practical cases not possible for the decision maker to choose a

preferred solution from the overwhelming set of all efficient solutions, because the dimension

of the decision space is in many problems much bigger than the dimension of the outcome

space. On the other hand it seems to be more natural to compare criteria values rather than

the decisions leading to them.

We use some new results on duality for multiple objective linear programmes in order to

develop a dual variant of Benson’s algorithm. Geometric duality (Heyde and Löhne, 2006)

defines a dual vector optimization problem which has a completely different outcome set than

the primal problem, but it provides a well-defined relationship between the primal and dual

outcome set which is easy to handle. The idea of Benson’s algorithm can be applied (with

some slight modifications) to the dual outcome set. Duality results yield information about

the primal outcome set.

Geometric duality theory also yields some new insights into the algorithm. We rediscover

well-known principles from scalar duality theory, for instance the embedding of the optimal

value between the values of the primal and dual objectives at feasible solutions.

The article is organized as follows. In Section 2 we introduce notation and some basic

concepts. In Section 3 we give an introduction to geometric duality. Section 4 is devoted to the

original outer approximation algorithm. However, we propose some improvements. Section 5

deals with our dual variant of the algorithm. In Section 6 we prove that the solution of the dual

problem provides a weight set decomposition with respect to nondominated extreme points.

In Section 7 we present numerical results, comparing the primal and the dual algorithm for

several examples.

2 Preliminaries

Throughout the article we use the following notation. The k-th unit vector in R
p is denoted

ek and a vector of all ones is denoted by e. Given a mapping f : R
n → R

p and a subset

X ⊆ R
n we write f(X ) := {f(x) : x ∈ X}.

Let A ⊆ R
p. We denote the boundary, interior, and relative interior of A by bdA, intA,

and riA. The convex hull of A is denoted convA.
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Let C ⊆ R
p be a closed convex cone. An element y ∈ A is called C-minimal if ({y} − C \

{0}) ∩ A = ∅ and C-maximal if ({y} + C \ {0}) ∩ A = ∅. A point y ∈ A is called weakly

C-minimal (weakly C-maximal) if ({y} − ri C) ∩ A = ∅ (({y} + ri C) ∩ A = ∅). We set

wminCA := {y ∈ A : ({y} − ri C) ∩ A = ∅} and

wmaxCA := wmin(−C)A.

In this paper we consider two special ordering cones, namely C = R
p

≧
= {x ∈ R

p : xk ≧ 0, k =

1, . . . , p} and

C = K := R≧ep = {y ∈ R
p : y1 = · · · = yp−1 = 0, yp ≧ 0} .

For the choice C = R
p

≧
the set of weakly R

p

≧
-minimal elements of A (also called the set of

weakly nondominated points of A) is given by

wminR
p

≧
A :=

{

y ∈ A : ({y} − int R
p

≧
) ∩ A = ∅

}

.

In case of C = K the set of K-maximal elements of A is given by

maxKA := {y ∈ A : ({y} + K \ {0}) ∩ A = ∅} .

Note that riK = K \ {0} so that weakly K-maximal and K-maximal elements of A coincide.

Since we will always consider minimization with respect to R
p

≧
and maximization with

respect to K, we sometimes omit the subscripts.

Let us recall some facts concerning the facial structure of polyhedral sets (Webster, 1994).

Let A ⊆ R
n be a convex set. A convex subset F ⊆ A is called a face of A if for all y1, y2 ∈ A

and α ∈ (0, 1) such that αy1 + (1−α)y2 ∈ F it holds that y1, y2 ∈ F . A face F of A is called

proper if ∅ 6= F 6= A. A point y ∈ A is called an extreme point of A if {y} is a face of A.

A recession direction of A is a vector d ∈ R
p such that y + αd ∈ A for some y ∈ A and all

α ≧ 0. The recession cone (or asymptotic cone) A∞ of A is the set of all recession directions

A∞ := {d ∈ R
p : y + αd ∈ A for some y ∈ A for all α ≧ 0}.

A recession direction d 6= 0 is called extreme if there are no recession directions d1, d2 6= 0

with d1 6= αd2 for all α > 0 such that d = 1
2(d1 + d2).

A polyhedral convex set A is defined by {x ∈ R
n : Ax ≧ b}, where A ∈ R

m×n and b ∈ R
m.

A polyhedral set A has a finite number of faces. A subset F of A is a face if and only if there

are λ ∈ R
n and γ ∈ R such that A ⊆

{

y ∈ R
n : λT y ≧ γ

}

and F =
{

y ∈ R
n : λT y = γ

}

∩ A.

Moreover, F is a proper face if and only if H :=
{

y ∈ R
n : λT y = γ

}

is a supporting hyperplane

to A with F = A ∩ H. We call hyperplane H =
{

y ∈ R
p : λT y = γ

}

supporting if λT y ≧ γ

for all y ∈ A and there is some y0 ∈ A such that λT y0 = γ. The proper (r − 1)-dimensional

faces of an r-dimensional polyhedral set A are called facets of A.

A polyhedral convex set A can be represented by both a finite set of inequalities and the

set of all extreme points and extreme directions of A (Rockafellar, 1972, Theorem 18.5). Let

E = {x1, . . . , xr, d1, . . . , dt} be the set of all extreme points and extreme directions of A then

A =







y ∈ R
p : y =

r
∑

i=1

αix
i +

t
∑

j=1

νjd
j with αi ≧ 0, νj ≧ 0, and

r
∑

i=1

αi = 1







.
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For a polyhedral convex set A, the extreme points are called vertices. The set of all vertices

of a polyhedron A is denoted by vertA.

3 Geometric Duality

Let A ∈ R
m×n, b ∈ R

m, P ∈ R
p×n, e := (1, ..., 1)T ∈ R

p. Consider the vector optimization

problem

(P) wminR
p

≧
P (X ), X := {x ∈ R

n : Ax ≧ b} .

Then the dual problem according to the geometric duality theory developed in Heyde and

Löhne (2006) is

(D) maxKD(U), U :=
{

(u, λ) ∈ R
m × R

p : (u, λ) ≧ 0, AT u = P T λ, eT λ = 1
}

,

where K := {y ∈ R
p : y1 = y2 = ... = yp−1 = 0, yp ≧ 0} as defined before and D : R

m+p → R
p

is given by

D(u, λ) :=
(

λ1, ..., λp−1, b
T u
)T

=

(

0 Ip−1 0

bT 0 0

)(

u

λ

)

.

The primal problem (P) consists in finding the weakly nondominated points of P (X ), the

dual problem consists in finding the K-maximal elements of D(U). We introduce the extended

polyhedral image sets P := P (X ) + R
p

≧
of problem (P) and D := D(U) −K of problem (D).

It is known that the R
p

≧
-minimal (nondominated) points of P and P (X ) as well as the K-

maximal elements of D and D(U) coincide, see Heyde and Löhne (2006). An illustration is

given in Example 3.1.

Example 3.1 Consider problem (P) with the data

P =

(

1 0

0 1

)

, A =















2 1

1 1

1 2

1 0

0 1















, b =















4

3

4

0

0















.

The extended outcome sets P and D of (P) and (D) are shown in Figures 1 and 2.

The geometric duality theory of Heyde and Löhne (2006) establishes a relationship between

the (weakly nondominated) vertices of P and the K-maximal facets of D and between the

weakly nondominated facets of P and the K-maximal vertices of D. In this example, the five

vertices of D, namely (0, 0), (1
3 , 4

3), (1
2 , 3

2), (2
3 , 4

3), and (1, 0), correspond to the facets of P

given by y2 = 0, y1+2y2 = 4, y1+y2 = 3, 2y1+y2 = 4, y1 = 0. The four vertices of P, namely

(0, 4), (1, 2), (2, 1), and (4, 0) correspond to the K-maximal facets of D given by 4v1 + v2 = 4,

v1 + v2 = 2, −v1 + v2 = 1, and −4v1 + v2 = 0, respectively.

Geometric duality is an extension of the well-known duality of polytopes to P and D.

Recall that two polytopes G and G∗ in R
p are said to be dual to each other provided there
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1 2 3 4 5

1

2

3

4

5

b

b

b

b

P = P (X ) + R
2
≧

y2

y1

Figure 1: P in Example 3.1.

0.5 1.0

0

0.5

1.0

1.5

b

b

b

b

b

D =
D(U) −K

v2

v1

Figure 2: D in Example 3.1.

exists a one-to-one mapping Ψ between the set of all faces of G and the set of all faces of

G∗ such that Ψ is inclusion-reversing, i.e. faces F1 and F2 of G satisfy F1 ⊆ F2 if and only

if the faces Ψ(F1) and Ψ(F2) satisfy Ψ(F1) ⊇ Ψ(F2) (Grünbaum, 2003). The geometric

duality theorem (Heyde and Löhne, 2006, Theorem 1) states that there is a similar duality

relationship between P and D.

To be more precise, we introduce the following notation. We consider the coupling function

ϕ : R
p × R

p → R, defined by

ϕ(y, v) :=

p−1
∑

i=1

yivi + yp

(

1 −

p−1
∑

i=1

vi

)

− vp.

Note that ϕ(·, v) and ϕ(y, ·) are affine. Choosing the values of the primal and dual objective

functions for x ∈ X and (u, λ) ∈ U as arguments, we just get

ϕ(Px, D(u, λ)) = λT Px − bT u. (1)

Using the coupling function ϕ, we define the following two set-valued maps

H : R
p ⇉ R

p, H(v) := {y ∈ R
p : ϕ(y, v) = 0} ,

H∗ : R
p ⇉ R

p, H∗(y) := {v ∈ R
p : ϕ(y, v) = 0} .

Of course, H(v) and H∗(y) are hyperplanes in R
p for all v, y ∈ R

p. Using the notation

λ(v) :=

(

v1, . . . , vp−1, 1 −

p−1
∑

i=1

vi

)T

and

λ∗(y) :=
(

y1 − yp, . . . , yp−1 − yp,−1
)T

it is easy to see that

H(v) =
{

y ∈ R
p : λ(v)T y = vp

}

and

H∗(y) =
{

v ∈ R
p : λ∗(y)T v = −yp

}

.
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We observe that λ(v) ≧ 0 if and only if v1, . . . , vp−1 ≧ 0 and
∑p−1

i=1 vi ≦ 1, a fact we will often

use.

The map H is now used to define our duality map Ψ : 2R
p

→ 2R
p

. Let F∗ ⊆ R
p, then

Ψ(F∗) :=
⋂

v∈F∗

H(v) ∩ P.

The considerations in the following sections are based on the following geometric duality

theorem of Heyde and Löhne (2006).

Theorem 3.2 (Heyde and Löhne (2006)) Ψ is an inclusion reversing one-to-one map

between the set of all proper K-maximal faces of D and the set of all proper weakly nondomi-

nated faces of P and the inverse map is given by

Ψ−1(F) =
⋂

y∈F

H∗(y) ∩ D. (2)

Moreover, for every proper K-maximal face F∗ of D it holds dimF∗ + dim Ψ(F∗) = p − 1.

We next consider two important consequences.

Corollary 3.3 (Heyde and Löhne (2006)) The following statements are equivalent

(i) v is a K-maximal vertex of D,

(ii) H(v) ∩ P is a weakly nondominated (p − 1)-dimensional facet of P.

Moreover, if F is a weakly nondominated (p−1)-dimensional facet of P, there is some uniquely

defined point v ∈ R
p such that F = H(v) ∩ P.

Corollary 3.4 (Heyde and Löhne (2006)) The following statements are equivalent

(i) y is a weakly nondominated vertex of P,

(ii) H∗(y) ∩ D is a K-maximal (p − 1)-dimensional facet of D.

Moreover, if F∗ is a K-maximal (p−1)-dimensional facet of D, there is some uniquely defined

point y ∈ R
p such that F∗ = H∗(y) ∩ D.

The proof of Theorem 3.2 in Heyde and Löhne (2006) is based on the consideration of the

following two pairs of dual linear programming problems.

(P1(v)) min
x∈X

λ(v)T Px, X := {x ∈ R
n : Ax ≧ b}

(D1(v)) max
u∈T (v)

bT u, T (v) :=
{

u ∈ R
m : u ≧ 0, AT u = P T λ(v)

}

and

(P2(y)) min
x∈S(y)

z, S(y) := {(x, z) ∈ R
n × R : Ax ≧ b, Px − ez ≦ y} ,
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(D2(y)) max
(u,λ)∈U

(bT u−yT λ), U :=
{

(u, λ) ∈ R
m × R

p : (u, λ) ≧ 0, AT u = P T λ, eT λ = 1
}

.

Note that Figure 2 illustrates the linear programming duality between (P1(v)) and (D1(v)).

For any v ∈ R
p such that λ(v) ≧ 0 we have that x ∈ X and u ∈ T (v) are optimal solu-

tions of (P1(v)) and (D1(v)), respectively, if and only if ϕ(Px, D(u, λ(v)) = 0 in (1). Thus,

(v1, . . . , vp−1, λ(v)T Px) = (v1, . . . , vp−1, b
T u) is a boundary point of D(U)−K. Feasible values

of (P1(v)) are “above” that point, feasible values of (D1(v)) are “below”: For feasible x ∈ X

and u ∈ T (v) the value of ϕ(Px, D(u, λ(v)) measures the duality gap between the two feasible

solutions.

The four problems above play a key role in the following algorithms.

4 Benson’s Outer Approximation Algorithm

We propose an algorithm, which is essentially Benson’s algorithm (Benson, 1998b), but in-

volves some slight improvements. We see that it is not necessary to work with bounded

simplices as Benson did in the original version. Thus, we compute the nondominated ver-

tices directly and the final step (Benson, 1998b, Theorem 3.2) to check whether a vertex is

nondominated or not is superfluous.

In our primal vector optimization problem (P) we assume that the set P = P (X ) + R
p

≧

is R
p

≧
-bounded from below, i.e., there exists some ŷ ∈ R

p such that ŷ ≦ y for all y ∈ P. As a

consequence, the ideal point yI of P defined by yI
k := min{yk : y ∈ P} for i = 1, . . . , p exists.

Of course, this assumption is weaker than the assumption that X is a bounded set, which is

supposed in Benson (1998b). We also assume that X is nonempty.

The algorithm first constructs a p-dimensional polyhedral set S0 = yI + R
p

≧
such that

P ⊆ S0. In every iteration it chooses an extreme point sk of Sk−1 not contained in P and

constructs a supporting hyperplane to P by solving a linear programme (D2(y
k)), where yk

is a boundary point of P on the line segment connecting sk with an interior point p̂ of P.

Sk is defined by intersecting Sk−1 with the halfspace of the hyperplane containing P. The

algorithm terminates as soon as no such sk can be found and Sk−1 = P.

For the next result we need Lemma 4.1 from Heyde and Löhne (2006).

Lemma 4.1 The following three statements are equivalent.

(i) y0 ∈ wminR
p

≧
P.

(ii) There is some x0 ∈ R
n such that (x0, 0) is an optimal solution to (P2(y

0)).

(iii) There is some (u0, λ0) ∈ U with bT u0 = y0T
λ0 that is an optimal solution to (D2(y

0)).

Proposition 4.2 Let y ∈ wminP. Then there exists an optimal solution of (D2(y)) and

for each such solution (ū, λ̄) ∈ U , H(D(ū, λ̄)) is a supporting hyperplane to P with y ∈

H(D(ū, λ̄)).
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Proof. By Lemma 4.1 there exists an optimal solution (ū, λ̄) of (D2(y)) such that bT ū = yT λ̄.

Of course, the latter equality is also valid for any other optimal solution of (D2(y)). For

arbitrary y ∈ P, there exists some x ∈ X such that y ≧ Px. Hence (x, 0) is feasible for (P2(y))

and duality between (P2(y)) and (D2(y)) implies that λ̄T y ≧ bT ū. Hence H(D(ū, λ̄)) =
{

y ∈ R
p : λ̄T y = bT ū

}

is a supporting hyperplane to P. �

We note that Benson (1998b,a) proves similar results to Lemma 4.1 and Proposition 4.2

for his original algorithm.

Proposition 4.3 Every vertex of P is nondominated (Rp

≧
-minimal).

Proof. Let y be a vertex of P = P (X ) + R
p

≧
and assume that y is not R

p

≧
-minimal. Hence,

there exists some z ∈
(

{y} − R
p

≧
\ {0}

)

∩ P, i.e., y ∈ {z} + R
p

≧
\ {0} ⊆ P (X ) + R

p

≧
+
(

R
p

≧
\

{0}
)

= P (X ) + R
p

≧
\ {0}. Therefore, there is some x̄ ∈ X and some d̄ ∈ R

p

≧
\ {0} such that

y = Px̄ + d̄ ∈ P. Hence the points y − d̄ and y + d̄ belong to P and y = 1
2(y − d̄) + 1

2(y + d̄).

This contradicts y being a vertex of P. �

The following Proposition 4.4 shows that we do not need to consider extreme directions but

only the vertices (extreme points) in the following algorithm, because the extreme directions

are always the same, namely the unit vectors ek ∈ R
p.

Proposition 4.4 Let y ∈ R
p and let S ⊆ R

p be a polyhedral convex set such that P ⊆ S ⊆

{y} + R
p

≧
. Letting E be the set of extreme points of S, we have S = conv (E + R

p

≧
).

Proof. Since S and P are closed and convex, we get R
p

≧
⊆ P∞ ⊆ S∞ ⊆ R

p

≧
, hence S∞ = R

p

≧
.

Now the conclusion follows from (Rockafellar, 1972, Theorem 18.5 and Theorem 19.5). �

In the following algorithm we construct in iteration k a polyhedron Sk, for which we store

both a representation by a finite number of points and a representation by a finite number of

inequalities. We cannot always ensure that all the points representing the set Sk are extreme

points, i.e., our set may contain some redundant points. Similarly, it may happen that we

have redundant inequalities in the inequality representation of Sk. Therefore, we say that

a set E of finitely many points is a point representation of S if S = conv (E + R
p

≧
). If E

only consists of extreme points of S, we say that E is nondegenerate. Otherwise, E is called

degenerate.

Analogously, a system of inequalities is called a nondegenerate inequality representation

of S if S is the solution set of the system and if there are no redundant inequalities. An

inequality representation of S is called degenerate if there exist redundant inequalities, i.e.,

there exists a proper subsystem of inequalities having S as the solution set.

Algorithm 1.

Initialization (k = 0).

(i1) Choose some p̂ ∈ intP.
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(i2) Compute an optimal solution ūi and the optimal value yI
i of (D1(e

i)), for i = 1, . . . , p.

(i3) Set S0 :=
{

yI
}

+ R
p

≧
and k = 1.

Iteration steps (k ≧ 1).

(k1) If vertSk−1 ⊆ P stop, otherwise choose a vertex sk of Sk−1 such that sk 6∈ P.

(k2) Compute αk ∈ (0, 1) such that yk := αksk + (1 − αk)p̂ ∈ wminR
p

≧
P.

(k3) Compute an optimal solution (uk, λk) of (D2(y
k)).

(k4) Set Sk := Sk−1 ∩ {y ∈ R
p : ϕ

(

y, D(uk, λk)
)

≧ 0}.

(k5) Set k := k + 1 and go to (k1).

Results.

(r1) The set of R
p

≧
-minimal vertices of P is vertSk−1. Moreover Sk−1 = P.

(r2) The set
{

v ∈ R
p : λ(v) ≧ 0, ϕ(y, v) ≧ 0 for all y ∈ vertSk−1

}

is defined by a nondegen-

erate inequality representation of D.

(r3) All K-maximal vertices of D are contained in the set

V :=
{

D(ū1, e1), D(ū2, e2), . . . , D(ūp, ep), D(u1, λ1), . . . , D(uk−1, λk−1)
}

.

(r4) The set {y ∈ R
p : ϕ(y, v) ≧ 0 for all v ∈ V} is given by a (possibly degenerate) inequality

representation of P.

Details of Algorithm 1.

(i1) It is obvious that intP 6= ∅. For instance, Px + αe ∈ intP for arbitrary x ∈ X and

α > 0.

(i2) Of course, (D1(e
i)) has an optimal solution because (P1(e

i)) is bounded.

(i3) From the definition of the ideal point we directly obtain that S0 ⊇ P.

(k1) Let y ∈ vertSk−1. By computing the optimal value µ of (P2(y)) or (D2(y)) it is possible

to decide whether y ∈ P or not. We have y ∈ P if and only if µ = 0.

(k2) Solve the linear programme

αk := max{α : x ∈ X , αsk + (1 − α)p̂ ≧ Px}. (3)

Of course, for every x̄ ∈ X , (x̄, 0) is feasible for (3). Since X is nonempty, there exists

an optimal solution of (3). From sk 6∈ P and p̂ ∈ intP we conclude that yk ∈ bdP and

αk ∈ (0, 1). Moreover, we have bdP = wminR
p

≧
P (see e.g. Heyde et al. (2006)).
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(k3) By Proposition 4.2, there exists an optimal solution.

(k4) By Proposition 4.2, H(D(ū, λ̄)) is a supporting hyperplane to P containing yk. This

means, ϕ
(

y, D(uk, λk)
)

≧ 0 for all y ∈ P and ϕ
(

yk, D(uk, λk)
)

= 0. Hence we get

P ⊆ Sk ⊆ Sk−1.

(r1) From (k1) we get vertSk−1 ⊆ P. By Proposition 4.4 we obtain Sk−1 = conv (vertSk−1+

R
p

≧
) ⊆ P. As shown in (k4) we have P ⊆ Sk−1. Together we have P = Sk−1. By

Proposition 4.3 the statement follows.

(r2) By Corollary 3.4, F∗ is a K-maximal (p− 1)-dimensional facet of D if and only if there

exists some R
p

≧
-minimal vertex y of P such that F∗ = H∗(y) ∩ D. Hence a hyperplane

H∗(y) supports D in a facet if and only if y is a R
p

≧
-minimal vertex of P. Of course,

the corresponding inequalities are not redundant.

(r3) Let v be a K-maximal vertex of D. By Corollary 3.3, F := H(v) ∩ P is a R
p

≧
-minimal

(p − 1)-dimensional facet of P. Since Sk−1 = P and by the construction of Sk−1, for

every weakly R
p

≧
-minimal facet F of P there exists some i ∈ {0, . . . , k − 1} such that

F = H(D(ui, λi)) ∩ P. By Corollary 3.3, we get D(ui, λi) = v.

(r4) This follows from (r3) by the geometric duality theorem.

In Example 4.5 we demonstrate the occurrence of degeneracy.

Example 4.5 Consider problem (P) with the data

P =

(

1 0

0 1

)

, A =















2 1

1 2

3 3

1 0

0 1















, b =















2

2

4

0

0















.

0 1 2

0

1

2

b

b

b

P

y2

y1

Figure 3: P and the first supporting hyper-

plane.

0.5 1.0

0

0.5

1.0

b

b b

b

ut

D

v2

v1

Figure 4: D and a point in the relative inte-

rior of a facet.

We apply Algorithm 1 for the choice p̂ = (1, 1)T . In the initialization (k = 0) we obtain

yI = (0, 0)T and S0 = R
p

≧
. In the first iteration (k = 1) we get y1 = (2

3 , 2
3)T . We have to
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solve (D2(y
1)). This problem has three optimal extreme point solutions, namely (u1, λ1)T =

(0, 1
3 , 0, 0, 0, 1

3 , 2
3)T , (u1, λ1)T = (0, 0, 1

6 , 0, 0, 1
2 , 1

2)T and (u1, λ1)T = (1
3 , 0, 0, 0, 0, 2

3 , 1
3)T . In

the case we choose the second one, we get the redundant inequality 3y1 + 3y2 ≧ 4. The

corresponding hyperplane supports P not in a facet, but just in the vertex y1, see Figure 3.

Also, for the choice (u1, λ1)T = (0, 0, 1
6 , 0, 0, 1

2 , 1
2)T , the point D(u1, λ1) is not a vertex of D,

see Figure 4. This means, Algorithm 1 yields a degenerate inequality representation of P and

a degenerate point representation of D.

Finally we show the finiteness of the modified algorithm in the same way as in the original

variant of Benson (1998b).

Theorem 4.6 The modified outer approximation algorithm is finite.

Proof. Since p̂ ∈ intP, the point yk ∈ P computed in iteration k belongs to intSk−1. We

have Sk := Sk−1 ∩ {y ∈ R
p : ϕ

(

y, D(uk, λk)
)

≧ 0} and by Proposition 4.2 we know that

F := {y ∈ P : ϕ
(

y, D(uk, λk)
)

= 0} is a face of P with yk ∈ F , where F ⊆ bdSk. This means

for the next iteration that yk+1 6∈ F (because yk+1 ∈ intSk), and therefore yk+1 belongs to

another face of P. Since P is polyhedral, it has a finite number of faces, hence the algorithm

is finite. �

5 The Dual Variant of Benson’s Algorithm

As in the previous section we assume that the primal feasible set X of problem (P) is nonempty

and P is R
p

≧
-bounded from below.

The dual variant of Benson’s algorithm first constructs a p-dimensional polyhedral set

S0 = {v ∈ R
p : λ(v) ≧ 0, ϕ(Px0, v) ≧ 0} such that D ⊆ S0. Here x0 is an optimal solution

of (P1(d̂)) for an interior point d̂ of D. In every iteration it chooses a vertex sk of Sk−1 not

contained in D and constructs a supporting hyperplane to D by solving the linear programme

(P1(v
k)), where vk is a boundary point of D on the line segment connecting sk with the

interior point d̂ of D. Sk is defined by intersecting Sk−1 with the halfspace of the hyperplane

containing D until at termination Sk−1 = D.

Proposition 5.1 Let v̄ ∈ maxK D, then for every solution x̄ of (P1(v̄)), H∗(Px̄) is a sup-

porting hyperplane of D with v̄ ∈ H∗(Px̄).

Proof. Let v ∈ D, i.e., there is some u such that (u, λ(v)) ∈ U and vp ≦ bT u. From the

weak duality between (P1(v)) and (D1(v)) we get that λ(v)T Px̄ ≧ bT u ≧ vp, or equivalently,

ϕ(Px̄, v) ≧ 0. For v̄ ∈ maxK D we get similarly even an optimal solution ū of (D1(v̄)), and

strong duality between (P1(v̄)) and (D1(v̄)) implies that ϕ(Px̄, v̄) = 0. The result follows

from the definition of H∗(Px̄) = {v ∈ R
p : ϕ(Px̄, v) = 0}. �

Proposition 5.2 Every vertex of D is K-maximal.
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Proof. Assume there is some vertex v̄ ∈ D which is not K-maximal. Then there exists some

v ∈ v̄ +K∩D with v 6= v̄. We get v̄ = 1
2v + 1

2(v̄− (v− v̄)), where v ∈ D and (v̄− (v− v̄)) ∈ D

are not equal to v̄. This contradicts the fact that v̄ is a vertex. �

Similarly to Proposition 4.4, we can represent the polyhedra approximating the set D

from outside in the following algorithm by a finite number of (extreme) points, because the

(extreme) directions are always the same.

Proposition 5.3 Let y ∈ R
p and let S ⊆ R

p be a polyhedral convex set such that D ⊆

S ⊆ {v ∈ R
p : λ(v) ≧ 0, ϕ(y, v) ≧ 0}. Letting E be the set of extreme points of S, we have

S = conv (E − K).

Proof. Setting W := {v ∈ R
p : λ(v) ≧ 0, ϕ(y, v) ≧ 0}, we have v ∈ W if and only if

v1 ≧ 0, . . . , vp−1 ≧ 0,

p−1
∑

i=1

vi ≦ 1, λ∗(y)T v ≧ −yp,

where the last component of λ∗(y) is −1. It follows that W∞ = −K. Since S is closed and

convex, we get −K ⊆ D∞ ⊆ S∞ ⊆ −K, hence S∞ = −K. Now the conclusion follows from

(Rockafellar, 1972, Theorem 18.5 and Theorem 19.5.) �

A set E of finitely many points in R
p is called a point representation of D if D = conv (E −

K). The same notation is used for sets Sk constructed during the algorithm. Again, we

speak about nondegenerate and degenerate point representations depending on whether E

only consists of extreme points of D or not. With this notation we can say that in the result

(r3) of Algorithm 1 we get a (possibly degenerate) point representation of D.

We propose the following algorithm, subsequently called dual outer approximation algo-

rithm.

Algorithm 2

Initialization (k = 0).

(i1) Choose some d̂ ∈ intD.

(i2) Compute an optimal solution x0 of (P1(d̂)).

(i3) Set S0 := {v ∈ R
p : λ(v) ≧ 0, ϕ(Px0, v) ≧ 0} and k = 1.

Iteration steps (k ≧ 1).

(k1) If vertSk−1 ⊆ D stop, otherwise choose a vertex sk of Sk−1 such that sk 6∈ D.

(k2) Compute αk ∈ (0, 1) such that vk := αksk + (1 − αk)d̂ ∈ maxK D.

(k3) Compute an optimal solution xk of (P1(v
k)).

(k4) Set Sk := Sk−1 ∩ {v ∈ R
p : ϕ(Pxk, v) ≧ 0}.

(k5) Set k := k + 1 and go to (k1)

11



Results.

(r1) The set of K-maximal vertices of D is vertSk−1.

(r2) The set
{

y ∈ R
p : ϕ(y, v) ≧ 0 for all v ∈ vertSk−1

}

is given by a nondegenerate inequal-

ity representation of P.

(r3) All R
p

≧
-minimal (nondominated) vertices of P are contained in the set Y := {Px0, Px1,

. . . , Pxk−1}.

(r4) The set {v ∈ R
p : λ(v) ≧ 0, ϕ(y, v) ≧ 0 for all y ∈ Y} is given by a (possibly degenerate)

inequality representation of D.

Details of Algorithm 2.

(i1) We show that intD 6= ∅. Since X is assumed to be nonempty and P is R
p

≧
-bounded

from below, (P1(v)) has an optimal solution for every v ∈ R
p with λ(v) ≧ 0. By duality,

the same is true for (D1(v)). Denote by γi the optimal value of (D1(e
i)). Furthermore,

set γ = min
{

γi : i ∈ {1, . . . , p}
}

. Then γ is a lower bound for the optimal values of the

problems (D1(v)) whenever λ(v) ≧ 0. From the definition of D we easily obtain

D =
{

v ∈ R
p : λ(v) ≧ 0, AT u = P T λ(v) and vp ≦ bT u for some u ≧ 0

}

.

Hence

D ⊇ {v ∈ R
p : λ(v) ≧ 0, vp ≦ γ} ,

which shows that intD is nonempty. One possible choice for the point d̂ ∈ intD is

d̂ =
(

1
p
, . . . , 1

p
, γ − 1

)T

.

(i2) Since X is assumed to be nonempty, P is R
p

≧
-bounded from below and λ(d̂) ≧ 0, (P1(d̂))

has an optimal solution.

(i3) It holds that S0 ⊇ D. It remains to show that

{

v ∈ R
p : AT u = P T λ(v), vp ≦ bT u for some u ≧ 0

}

⊆
{

v ∈ R
p : ϕ(Px0, v) ≧ 0

}

.

This follows from weak duality between (P1(v)) and (D1(v)) as in the proof of Propo-

sition 5.1.

(k1) Compute the optimal value µ of (P1(s
k)) in order to decide whether sk belongs to D.

We have sk ∈ D if and only if sk
p ≦ µ.

(k2) Solve the linear programme

αk := max{α : (u, λ) ∈ U , αsk + (1 − α)d̂ = D(u, λ)}. (4)

The existence of an optimal solution of the LP (4) can be shown as follows. If there

is some (ū, λ̄) ∈ U such that d̂ = D(ū, λ̄), then (ū, λ̄, 0) is feasible for problem (4).
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Otherwise, we have d̂ 6∈ D(U). Let wi be the i-th unit vector, but let the last component

be replaced by γi. It is easy to verify that there is some ᾱ ∈ (0, 1) such that ᾱsk +

(1 − ᾱ)d̂ ∈ conv
{

w1, . . . , wp
}

⊆ D(U), i.e., there is some (ū, λ̄) ∈ U such that (ū, λ̄, ᾱ)

is feasible for problem (4). Furthermore, we have ᾱ < 1 because otherwise we obtain

sk ∈ D(U) ⊆ D, a contradiction.

(k3) Since X is nonempty and P (X ) is R
p

≧
-bounded from below, there exists an optimal

solution.

(k4) Analogously to (i3) above we get Sk ⊇ D.

(r1) From (k1) we get vertSk−1 ⊆ D. By Proposition 5.3 we obtain Sk−1 = conv (vertSk−1−

K) ⊆ D. As shown in (k4) we have D ⊆ Sk−1. Together we have D = Sk−1. By

Proposition 5.2 the statement follows.

(r2) By Corollary 3.3, F is a weakly nondominated (p − 1)-dimensional facet of P if and

only if there exists some K-maximal vertex v of D such that F = H(v) ∩ P. Hence

a hyperplane H(v) supports P in a facet if and only if v is a K-maximal vertex of D.

Thus we have a nondegenerate inequality representation of P.

(r3) Let y be a R
p

≧
-minimal vertex of P. By Corollary 3.4, F∗ := H∗(y) ∩ D is a K-

maximal (p − 1)-dimensional facet of D. Since Sk−1 = D and by the construction of

Sk−1, for every K-maximal facet F∗ of D there exists some i ∈ {0, . . . , k − 1} such that

F∗ = H∗(Pxi) ∩ D. By Corollary 3.4, we get Pxi = y.

(r4) This follows from (r3) by the geometric duality theorem.

Remark 5.4 If d̂ ∈ intD such that d̂p ≦ γ, problem (4) is equivalent to the following one

having p + 1 fewer variables and 2p + 1 fewer constraints,

αk := max

{

bT u − d̂p

sk
p − d̂p

: u ≧ 0, Ãu = b̃

}

. (5)

where

Ã := (sk
p − d̂p)A

T + P T
(

λ(d̂) − λ(sk)
)

bT and b̃ := P T
(

sk
pλ(d̂) − d̂pλ(sk)

)

.

This equivalence of problem (4) and problem (5) can be shown in a straightforward way

taking into account that d̂p ≦ γ implies d̂p < sk
p.

Example 5.5 illustrates the occurrence of degenerate representations of P and D.

Example 5.5 Consider problem (P) with the data

P =

(

1 0 0

0 1 0

)

, A =











7 21 9

0 0 −1

−7 −42 3

1 7 0











, b =











30

−1

−39

6











.
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We apply Algorithm 2 for the choice d̂ = (1
2 , 0)T . In the initialization step (k = 0) we

solve P1(d̂) and obtain the unique optimal solution x0 = (0, 1, 1)T . Hence

S0 = {v ∈ R
p : 0 ≦ v1 ≦ 1, v2 ≦ 1 − v1} .

There is exactly one vertex of S0, namely s1 = (0, 1)T , that does not belong to D. Step (k2)

yields v1 = (1
8 , 3

4)T . Note that we have the situation that v1 is not in the relative interior

of a facet of D, because it is a vertex of D. In step (k3) we solve P1(v
1). We have exactly

three extreme point optimal solutions of P1(v
1), namely x1 = (3

4 , 3
4 , 1)T , x1 = (3, 3

7 , 0)T

and x1 = (6, 0, 1)T . In case we choose the second one, we get the redundant inequality

−18
7 v1 + v2 ≦ 3

7 . The corresponding hyperplane supports D not in a facet, but just in the

vertex v1 (see Figure 6). For the choice x1 = (3, 3
7 , 0)T , the point Px1 is not a vertex of P

(see Figure 5). This means, Algorithm 2 yields a degenerate inequality representation of D

and a degenerate point representation of P.

0 1 2 3 4 5 6

0

0.25

0.50

0.75

1.00 b

b

b

ut

P

y2

y1

Figure 5: P and a point in the relative inte-

rior of a facet

0.5 1.0

0

0.25

0.50

0.75

1.00

b

b b

b

D

v2

v1

Figure 6: D and the supporting hyperplane

Finally we show that the algorithm terminates after a finite number of steps.

Theorem 5.6 The dual outer approximation algorithm is finite.

Proof. Since d̂ ∈ intD, the point vk ∈ D computed in iteration k belongs to intSk−1.

We have Sk := Sk−1 ∩ {v ∈ R
p : ϕ(Pxk, v) ≧ 0} and, by Proposition 5.1, we know that

F := {v ∈ D : ϕ(Pxk, v) = 0} is a face of D with vk ∈ F , where F ⊆ bdSk. This means

for the next iteration that vk+1 6∈ F (because vk+1 ∈ intSk), and therefore vk+1 belongs to

another face of D. Since D is polyhedral, it has a finite number of faces, hence the algorithm

is finite. �

6 Weight Set Decomposition

It is well known that R
p

≧
-minimal points of P can be characterized by weighted sum scalar-

ization (Isermann, 1974). A point y ∈ P is R
p

≧
-minimal if and only if there exists w ∈ R

p
> =

{w ∈ R
p : w > 0, k = 1, . . . , p} such that wT y ≦ wT y′ for all y′ ∈ P.
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Considering, for fixed y ∈ P, all w with this property leads to the idea of weight set

decomposition, e.g. Benson and Sun (2000). Let y ∈ P and define

W(y) :=
{

w ∈ R
p

≧
: wT y ≦ wT y′ for all y′ ∈ P

}

.

Using the equivalence relation w1 ∼ w2 if and only if w1 = αw2 for some α > 0 it is

clear that we can identify R
p

≧
\ {0} with Λ =

{

λ ∈ R
p : λ ≧ 0,

∑p
k=1 λk = 1

}

and W(y) with

Λ(y) =
{

λ ∈ Λ : λT y ≦ λT y′ for all y′ ∈ P
}

.

The following function was already considered in Section 3

λ : R
p → R

p, λ(v) :=

(

v1, . . . , vp−1, 1 −

p−1
∑

i=1

vi

)T

.

Proposition 6.1 Let P be nonempty and R
p

≧
-bounded below. Let {y1, . . . , yq} be the non-

dominated extreme points of P and let {F∗
1 , . . . ,F∗

q } be the corresponding K-maximal facets

of D according to the geometric duality theorem. Then for all i = 1, . . . , q it holds

Λ(yi) = λ(F∗
i ) := {λ(v) : v ∈ F∗

i }

and {λ(F∗
i ) : i = 1, . . . , q} is a weight set decomposition, that is,

Λ =

q
⋃

i=1

λ(F∗
i ) and riλ(F∗

i ) ∩ riλ(F∗
j ) = ∅ whenever i 6= j.

Proof. Of course, λ(·) is a one-to-one map from maxK D onto Λ. The inverse map is

v(λ′) := λ−1(λ′) = (λ′
1, . . . , λ

′
p−1, vp)

T where vp is the optimal value of the linear programme

(D1(λ
′)). Moreover, λ(·) is affine on convex subsets of maxK D, in particular on each K-

maximal facet of D.

Let λ′ ∈ Λ(yi). Determine v(λ′). By duality between (P1(λ
′)) and (D1(λ

′)) we get

ϕ(yi, v(λ′)) = 0. Moreover, we have v(λ′) ∈ D. Hence v(λ′) ∈ H∗(yi) ∩ D = F∗
i and so

λ′ ∈ λ(F∗
i ).

Let λ′ ∈ λ(F∗
i ), i.e., v(λ′) ∈ F∗

i . Then H(v(λ′)) supports P in yi. This implies that

λ′ ∈ Λ(yi).

The second statement follows from the properties of λ(·) and the fact that

max
K

D =

q
⋃

i=1

F∗
i and riF∗

i ∩ riF∗
j = ∅ whenever i 6= j.

This completes the proof. �

Proposition 6.1 shows that both Algorithms 1 and 2 can be used to compute a weight set

decomposition with respect to the nondominated extreme points of P. This result is very rel-

evant in the context of multiobjective integer linear programmes. These are often solved using

a two phase algorithm (Ulungu and Teghem, 1995), where the first phase consists in identi-

fying the nondominated extreme points and the second phase finds all other nondominated
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points. The major problem in Phase 1 is the determination of a weight set decomposition

(Przybylski et al., 2007). It can be expected that the algorithms to solve (D) proposed in this

paper lead to progress in multiple objective integer linear programming algorithms for prob-

lems such as network flow problems, where the single objective counterparts can be solved by

linear programming.

7 Numerical Results

In this section, we solve several multiple objective linear programmes by both the primal

and the dual outer approximation algorithm. We start with some small examples in order

to illustrate the relationship between the primal outcome set P and the dual outcome set D.

Then we address some larger problems taken from real world applications. In each example,

the primal problem is solved by (our slightly modified) primal outer approximation algorithm

and the dual problem is solved by the dual variant of the algorithm. We show the primal

and dual sets P and D and list the vertices and the facets for some of the smaller examples.

We also compare the computation time of solving the primal and the dual problem. As seen

in the considerations above it is sufficient to solve one problem to obtain the outcome set of

both the primal and dual problems.

Both algorithms were implemented in Matlab 7.1(R14) using CPLEX 10.0 as LP solver

and the tests were run on a dual processor CPU with 1.8 GHz and 1 GB RAM. We used the

dual simplex method to solve the LPs. At step (k4), the method of Chen and Hansen (1991)

for on-line vertex enumeration by adjacency lists was used to calculate a vertex representation

from the inequality representation of Sk.

As Benson’s algorithm and its dual variant have steps of the same type, the number of

facets of the primal, respectively dual, outcome set seems to correlate with the computation

time. We observe in each of our examples that the dual variant is faster if the dual outcome

set has fewer facets than the primal. Otherwise the primal method is faster. This means that

it depends on the structure of the problem whether the primal or the dual algorithm is the

better choice.

Example 7.1 In this example we consider the LP relaxation of an assignment problem with

three objectives. The cost matrices of the three objectives are











3 6 4 5

2 3 5 4

3 5 4 2

4 5 3 6











,











2 3 5 4

5 3 4 3

5 2 6 4

4 5 2 5











,











4 2 4 2

4 2 4 6

4 2 6 3

2 4 5 3











.

Figures 7 and 8 show the weakly nondominated set of P and the K-maximal subset of D.

The four nondominated vertices of P are (11, 11, 14), (19, 14, 10), (15, 9, 17), and (13, 16, 11).

They correspond to the K-maximal facets of D given by 3v1+3v2+v3 = 14, −9v1−4v2+v3 =

10, 2v1 + 8v2 + v3 = 17, and −2v1 − 5v2 + v3 = 11, respectively. D has nine vertices which we

list along with the corresponding facets of P in Table 1.
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Figure 7: wmin
R

3

≧
P in Example 7.1.

0

0.5
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0.5

15
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15

v
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1

v 3=
bT
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Figure 8: maxK D in Example 7.1.

Vertices of D Facets of P

v1 v2 v3

1 0 11 y1 = 11

0 1 9 y2 = 9

0 0 10 y3 = 10
1

3

2

3
11 1

3
y1 + 2

3
y2 = 11

3

5
0 12 1

5

3

5
y1 + 2

5
y3 = 12 1

5

0 4

7
12 2

7

4

7
y2 + 3

7
y3 = 12 2

7
1

7
0 11 2

7

1

7
y1 + 6

7
y3 = 11 2

7

0 3

5
12 1

5

3

5
y2 + 2

5
y3 = 12 1

5
11

61

16

61
12 41

61

11

61
y1 + 16

61
y2 + 34

61
y3 = 12 41

61

Table 1: Example 7.1: Vertices of D and corresponding facets of P.

Example 7.2 The next small example has again three objectives. The data are

P =







−1 0 0

0 −1 0

0 0 −1






, A =



















−1 −1 −1

−1 −3 −1

−3 −4 0

1 0 0

0 1 0

0 0 1



















, b =



















−5

−9

−16

0

0

0



















.

Figures 9 and 10 show the weakly nondominated subset of P and the K-maxiaml subset

of D. Seven vertices of P and their corresponding K-maximal facets of D are shown in Table

2. D has nine vertices we list these vertices and their corresponding facets of P in Table 3.
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Figure 9: wmin
R

3

≧
P in Example 7.2.

0
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0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

−4
−2

0

v
2

v
1

v 3=
bT

u

Figure 10: maxK D in Example 7.2.

Vertices of P K-maximal Facets of D

v1 v2 v3

−5 0 0 5v1 + v3 = 0

0 −3 0 3v2 + v3 = 0

0 0 −5 −5v1 − 5v2 + v3 = −5

−22
5 −21

5 0 22
5v1 + 21

5v2 + v3 = 0

0 −2 −3 −3v1 − v2 + v3 = −3

−4 −1 0 4v1 + v2 + v3 = 0

−22
3 −2 −1

3 21
3v1 + 12

3v2 + v3 = −1
3

Table 2: Example 7.2: Vertices of P and corresponding K-maximal facets of D.

Vertices of D Facets of P

v1 v2 v3
1
3

1
3 −12

3
1
3y1 + 1

3y2 + 1
3y3 = −12

3

1 0 −5 y1 = −5

0 1 −3 y2 = −3

0 0 −5 y3 = −5
1
2

1
2 −21

2
1
2y1 + 1

2y2 = −21
2

1
2 0 −21

2
1
2y1 + 1

2y3 = −21
2

0 3
4 −21

4
3
4y2 + 1

4y3 = −21
4

0 1
2 −21

2
1
2y2 + 1

2y3 = −21
2

1
4

3
4 −21

4
1
4y1 + 3

4y2 = −21
4

3
7

4
7 −22

7
3
7y1 + 4

7y2 = −22
7

1
5

3
5 −14

5
1
5y1 + 3

5y2 + 1
5y3 = −14

5

Table 3: Example 7.2: Vertices of D and corresponding facets of P.
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Example 7.3 In this example the primal solves faster than the dual. The data are

P =







1 0 0

0 1 0

0 0 1






, A =



















1 1 1

2 1 2

1 2 2

1 0 0

0 1 0

0 0 1



















, b =



















3

4

4

0

0

0



















.

The weakly R
3
≧
-minimal set of P and the K-maximal set of D are shown in Figures 11 and 12,

respectively. P has seven vertices, they are (0, 0, 3), (2, 0, 1), (0, 2, 1), (0, 4, 0), (4, 0, 0), (1, 2, 0)

and (2, 1, 0). The corresponding K-maximal facets of D are 3v1+3v2+v3 = 3, v1−v2+v3 = 1,

−v1 + v2 + v3 = 1, −4v2 + v3 = 0, −4v1 + v3 = 0, −v1 − 2v2 + v3 = 0, and −2v1 − v2 + v3 = 0,

respectively. The six vertices (1, 0, 0), (0, 1, 0), (0, 0, 0), (1
3 , 1

3 , 1), (2
5 , 1

5 , 4
5) and (1

5 , 2
5 , 4

5) of D

correspond to the facets y1 = 0, y2 = 0, y3 = 0, 1
3y1 + 1

3y2 + 1
3y3 = 1, 2

5y1 + 1
5y2 + 2

5y3 = 4
5 ,

and 1
5y1 + 2

5y2 + 2
5y3 = 4

5 of P.
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Figure 11: wmin
R

3

≧
P in Example 7.3.
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Figure 12: maxK D in Example 7.3.

Example 7.4 This problem is a portfolio selection problem (example 2050 in Steuer (1989))

with three objectives, 21 variables and 45 constraints. P has 52 nondominated extreme points.

D has 99 extreme points and 52 facets, see Figures 13 and 14.

Example 7.5 The problem of intensity optimization in radiotherapy treatment planning can

be formulated as a multiobjective linear programme (Shao and Ehrgott, 2006). We use one

of the examples from Shao and Ehrgott (2006), an acoustic neuroma. The problem has three

objectives, 597 variables and 1664 constraints. P (see Figure 15) has 55 vertices and 85 facets,

D (see Figure 16 ) has 85 vertices and 55 facets.

Example 7.6 Our second radiotherapy treatment planning example concerns a prostate case.

In this three-objective problem P has 3165 nondominated extreme points and 3280 facets. P

and D are shown in Figures 17 and 18, respectively.
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P in Example 7.4.
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Figure 14: maxK D in Example 7.4.
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Figure 15: wmin
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P in Example 7.5.
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Figure 16: maxK D in Example 7.5.

Finally, we compare the computation times of our examples (see Table 4). We only give

the number of vertices and the number of facets of P, because the number of facets and the

number of vertices of D correspond to them by geometric duality theory.

We see that the dual variant of the algorithm may have a computational speed advantage.

It can be regarded as an alternative method which is preferable depending on the structure

of the problem.
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