T-SYMMETRICAL TENSOR DIFFERENTIAL FORMS WITH
LOGARITHMIC POLES ALONG A HYPERSURFACE
SECTION
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ABSTRACT. The aim of this paper is to investigate T-symmetrical tensor
differential forms with logarithmic poles on the projective space PV and
on complete intersections Y C PV. Let H C PV, N > 2, be a nonsingular
irreducible algebraic hypersurface which implies that D = H is a prime
divisor in PY. The main goal of this paper is the study of the locally
free sheaves QHZ:N (log D) and the calculation of their cohomology groups.

In addition, for complete intersections Y C PV we give some vanishing
theorems and recursion formulas.

1. INTRODUCTION

The symmetry properties of tensors are important in physics and certain
areas of mathematics. In the following, let k be the ground field which is
assumed to be algebraically closed satisfying char(k) = 0. We denote by
H C PY,N > 2, a nonsingular, irreducible, algebraic hypersurface defined
by the equation F' = 0 where deg F' = m. Then D = H gives a prime divisor
of degree m in ]P’{CV . The aim of this paper is the calculation of the dimension of
the cohomology groups H (P, QgN (log D)(t)) with general twist ¢ € Z, where
T is a Young tableau specified later. Q%N (log D) denotes the so-called sheaf of
germs of T-symmetrical tensor differential forms with logarithmic poles along
the prime divisor D (cf. [5], [8], [3]). In addition, we consider the associated
cohomology groups of nonsingular, irreducible, n-dimensional complete inter-
sections Y C PY, n > 2. In this case, let the prime divisor D = Y N H be
the intersection of Y and hypersurface H. As special cases, we investigate the
alternating and the symmetric differential forms on PV and on Y, respectively.

2. NOTATIONS AND PRELIMINARIES

Let Q% be the sheaf of germs of regular algebraic differential forms on a

n-dimensional nonsingular, projective variety X C PN and let QY = /T\Qﬁ(
and S"Q% be the sheaves of alternating and symmetric differential forms on
X, alternatively. We denote by (Q%)®" the r—th tensor power of Q4. The
coherent sheaves Q%, 0%, S"QY and (Q%)®" are locally free on X with the
rank n, ("), ("H’_l) and n”, respectively.

T T
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The irreducible representations of the symmetric group S, correspond to the
conjugacy classes of S,.. These are given by partitions (1) : r =1+ ...+ 14
with I; € Z, I; > 1y > ... > Iy > 1. Partition (I) can be described by a
so-called Young diagram T with r boxes and the row lengths l4,...,l3. The
column lengths of T" will be denoted by d1,...,d; and we set d = d; = depthT
and | = l; = length T, respectively. Clearly, dy > dy > ... > d; > 1 and the
equations 23:1 d; = Zle l; = r are fulfilled. Moreover, we put I; = 0 for
i >d and d;j = 0 for j > [. The "hook-length” of the box inside the i—th row
and the j—th column of the Young diagram is defined by h; ; = ; —i+d; —j+1
and the degree of the associated irreducible representation is equal to

! ! d ! Li—l
vy = HZM = 1Lz (lH—Zd—i)! 'H1§i<j§d ( =t 1) =
=rl-det((§ cf. [7]).
A numbering of the r boxes ofa given Young diagram by the integers 1,2,...,r
in any order is said to be a Young tableau which for simplicity again will be

denoted by T. Now, one has an idempotent er in the group algebra k - S,
defined by

=%- > sen(g)-q)o| dop].

q€QT pEPT

where the subgroups Pr and Qr of S, are given as follows:

Pr ={p € S, : p preserves each row of T},

Q1 = {q € S, : q preserves each column of T'}.

The idempotent er is called Young symmetrizer (cf. [7]). If the numbering of
the boxes of the Young tableau generates inside every row and every column
monotone increasing sequences, we speak of a standard tableau. The number
of all standard tableaux to a given Young diagram is equal to the degree v ;).
We denote by D(r) the set of all standard tableaux to all Young diagrams with
r boxes.

For a variety X the notation Q" = (Q%)®" stands for the sheaf of germs of
regular algebraic tensor differential forms. This implies that the symmetric
group S, and the related group algebra k - S, act on Q?}T defined by
plar®...®a,) = a,-11) ® ... ® ap-1(, for all p € S,.. That means, mapping
p permutates the spots inside the tensor product. Furthermore, it holds

0= @ ot
TeD(r)

with Q% = er(QY"), where Q% is called the sheaf of germs of T—symmetrical

tensor differential forms or simply the T-power of Q% . If two Young tableaux

T and T possess the same Young diagram, we have Q% = Q;

Under the assumption depthT" < dim X with a smooth n-dimensional variety
X the belonging sheaf Q% is locally free of rank

—1
li— 1 iy
H (J,_;—i—l) = (Hu) Al = 1,15 —2,..., 1, —n),

1<i<j<n i=1
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where A(t1,t2,...,tn) = [[1<;<j<n(ti — t;) denotes the Vandermonde deter-
minant. If depth7” > dim X then we have Q% = 0. In the special cases
Q% = A"Q% and S"Q% the Young tableau has only one column and one row,

respectively. In the same way the T-power F' of an arbitrary coherent alge-
braic sheaf F is defined. One has for instance Q% (log D) = (2% (log D))” .

Furthermore, we describe the T-power of an algebraic complex (cf. [3]):
Let R be a commutative ring which contains the algebraically closed ground
field k fulfilling char(k) = 0. We consider an algebraic complex K of R—modules
given by K : Ko -5 K -% Ky -5 ... with d2 = 0.

Then the r—th tensor power P = K®" of K is defined by

P=K® PP %P  withP=@,, ., _K,©.. 0K,
and 5(()1 X... ®b7n) = Z:Zl(_l)ler---JrSi_l . b1 X... ®bi—1 ®d(bz) ®bi+1 X... ®br
where b; € K, for all j. Again the symmetric group S, acts on this tensor
power by permutation of the spots inside the tensor product. In order to ob-
tain such an action of S, on P = K®", which commutates with §, we introduce
additionally a sign as follows:

(1) o(p;siy....80) =D, i<i s;-s; forallpels,

p(i)>p(j)
(2) p(b1 ®R...Q bT) = (—1)0(]9 i815m08r) bp—l(l) ®R...Q bp—l(r)
where b; € K, forall j € {1,...,r}.

Then one has P, = ®TeD(r) K(gT) , K®r = @TeD(T) KT
H*(K®") = @pepgy H(KD) with K7 = ez (P,) and

KO — en(Kor): 5T 5, ) 5, p(n) 8
This complex K(T) is said to be the T—power of K. If two Young tableaux T'
and T possess the same Young diagram, one has KT) = K(T) For an exact

sequence K the T—power K(T) of K is also an exact sequence.

Now, let X C PV be a projective variety satisfying wy = Ox(nx) for some
nx € 7, where wx stands for the canonical line bundle. This implies under the
assumptions d = depthT = dim X = n and [ = lengthT" > 1 the isomorphism

0% = 0% @ wy 2 0¥ (nx),

where T" arises from T by deleting the first column of T

In the case d = depthT = dim X = n and | = lengthT = 1 ( i.e. T has only
one column ) we have the isomorphism Q% = Q% =~ wy = Ox(nx).

An important tool in our considerations will be the Serre duality:

Suppose the Young tableau T has the column lengths d,...,d; satisfying
di = d = depthT < dimX = n. We get an associated Young tableau T*
by the column lengths dj =n —d;41—; for all j =1,...,1. One verifies readily
that in case depthT < n holds (T*)* =T.

The next lemma delivers some duality relations about the dimensions of coho-
mology groups.

Lemma 2.1. LetY = Hin...N Hy_, C PN be a n-dimensional, non-
singular, irreducible, complete intersection defined by algebraic hypersurfaces
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H; C PN satisfying F; = 0 with deg F; = m;. The dimension of Y is n. In this
case, let the prime divisor D = Y N H be the intersection of Y and hypersurface
H : F =0 of degree m. Assume that D also becomes a nonsingular irreducible
complete intersection of dimension n — 1. Then one has:
(i) dim H1(PY, Q5 (log D)(t)) = dim HN=9(PN, Q)" (log D)(—t — m))
(i) dim HY(Y, Q% (log D)(¢)) = dim H* (Y, Qy~ "(log D)(—t —m))
(iii) dim H(PN, QL (log D)(t))
= dim HN 9PV, QI (log D)(—t — 1 - m+ (I — 1)(N +1)))
(iv) dim HY(Y, Q¥ (log D)(t))
— dim H"~9(Y, Q% (log D)(—t — L -m — (L = 1)(XN 1" mi = N = 1)))
(v) dim H4(PV, S’“QI%,N (log D)(t))
= dim HN =PV, QI  (log D)(—t —r-m+ (r — 1)(N + 1))
where T™ denotes a rectangle with N — 1 rows and r columns.
(vi) dim HY(Y, S"0- (log D)(t))
= dim H" (Y, Q% (log D)(—t —r-m — (r — 1)(N ;" m; — N — 1))

where T denotes a rectangle with n — 1 rows and r columns.

Proof. We consider the following exact sequence (cf. [5])
0 — Qpn(log D)(—m) — Qpy — Qp — 0.

For r = N we have QF =0, i.e. Q2 (logD) = Q0 (m) = Opn(m — N —1).
This implies a pairing Qpy (log D)(t) x QQN_T(log D)(-t—-m+N+1) —
Opn~, which means that the vector space HI(PV,QF, (log D)(t)) is dual to
HN=9(PN (Q) " (log D) (—t —m + N + 1)) ® Q).

Setting QD = Opv (—N — 1) yields (i). The statement (ii) can be shown in a
similar way. Note that Q% (log D) = Q% (m) = Oy (m + Zf\gn m; — N —1).
Now, let T be a Young tableau with r boxes, given by the row lengths l1, ..., 14
and the column lengths dy,...,d; where d = d; = depthT and | = [; =
length 7. The Young tableau T has the column lengths dj = n — dj41-; for
all j € {1,...,1} and we have again Q) (log D) = Opy (m — N — 1). From the
pairing QI (log D)(t) x QL5 (log D)(—t — 1+ (m — N — 1)) — Opn follows
Hom(QLy (log D)(t), Opn) = QL (log D)(—t — - (m — N — 1)), which shows
assertion (iii). In order to show the formula for complete intersections Y instead
of PV, we replace —N — 1 by Zl]\;" m; — N —1. Choosing [ = r (depthT = 1)
in (iii) and (iv) proves (v) and (vi), respectively. O

For a projective variety X C PV and a coherent sheaf F on X the dimensions
dimy, H9(X, F) are finite and we have the so-called Euler-Poincare character-
istic given by x(X,F) = Z‘;izn(l)x(fl)q -dim H9(X,F) . From a short exact
sequence 0 - F — G — H — 0 with coherent sheaves F,G,H on X we ob-
tain the equation x(X,G) = x(X, F) + x(X,H). Under the above assumptions
we also know, that for a short exact sequence of coherent sheaves on X there
exists a long exact sequence for the associated cohomology groups. For every
coherent sheaf F on the projective variety X C PV there exists a polynomial
P(X,F)(t) € Q[t] of degree dim X which fulfills x (X, F(t)) = P(X,F)(t) for
allt € Z. P(X,F)(t) is said to be the Hilbert polynomial of F (cf. [6], [4], [8]).
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For example, the structure sheaf on PV has the following Hilbert polynomial

(t+N)-...-(t+1)

PPV, 050) (1) = X(PY, Op (1)) = = S

3. THE PROJECTIVE SPACE PV

In the following, we change the meaning of the binomial coefficient setting
(g) =0 for all @ € Z, 8 € N satisfying o < (3, in particular: (g) =0if a <O.
For instance: dim H?(PY, Opn (t)) = (t"]’VN) , dim HY (PY | Opn (t)) (_3\,_1)7
HI(PN, Opn(t)) =0 for 0 < ¢ < N.

Let H ¢ PNV (N > 2) be a nonsingular, irreducible, algebraic hypersurface
defined by the equation F' = 0, that means, D = H is a prime divisor in P,
Both F' and D are of degree m and D = H has dimension N — 1.

3.1. Alternating Differential Forms. We denote by Q2 the local free sheaf
of germs of alternating differential forms on the projective space PV and con-
sider the following sequence (¢t € Z)

0 — Qpn (t) — Qpn (log D)(t) — Q' (t) — 0, (2)

which is known to be exact (cf. [5]). The dimensions of the cohomology groups
HI(PN, Q. (t)) and HY(D, Q5 '(t)) are calculated in [1], where we also find
the following exact sequences

0 — Qpn (t = m) — Qg (1) == Op(t) ®o,y Vv — 0 (3)
0 — QL (t = m) — Op(t) ®o_y Ypn 2 (1) — 0. (4)

The mapping ¢* := Boa means the restriction of the differential forms on PV to
the hypersurface D = H. In the case r = 1, one has to replace the sheaf Q’;l by
the structure sheaf Op. For 0 < ¢ < N we have dim H4(PY, QF (t)) = 84,7010
(Kronecker-0) and we know by [1, Lemma 4] a base element of H"(PY,Qfy)
which is given by the cohomology class of the cocycle w(™ € CT(U, Q%) defined
by

r X X4 T X,
wgo)wir:—O-d—l/\d—QA...Ad—. (5)
. i, Ti, Ty Lip_y

l stands for the affine open covering of PV by the affine spaces U; = {z; # 0}.

T z
For » = 1, in particular, Wz%)n = " .d~" is a logarithmic differential. We
’ i1 L
may represent (5) by
wm L= wgl)» A wgl). VANRAN wm

105eeeyr 0,01 11,12 Tp—1,8p )
which is an outer product of logarithmic differential forms. In the case ¢ = r =
N, t =0 the cochain w™) creates a base of HY (PV, QL) (cf. [1, Lemma 2]).
Finally, we set w(® = 1.

Lemma 3.1. Let0 < r < N. Then the homomorphismd : H"~*(D, Q") —
H"(PV, Q) in the long homology sequence with respect to the exact sequence

0 — Qpx — Qpn(log D) — Q51— 0
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is epimorphic. If in addition 2(r —1) # N —1 is valid, then d is an isomorphism.

Proof. We calculate the image of the cohomology class of w1 at the
composition

HT—IGPN’Q];;l) " H™™ 1(D Qr 1) H" (]P;N 7 )

and denote ¢*(w("~1) again by w"~D. Let 4 be the affine, open covering
of PV given by the affine spaces U; = {x; # 0}. We consider the following
commutative diagram

0— Crfl(ﬂ,Q];N) — CT*I(L[,QE,N(IogD)) _ Crfl(il,ngl) =0
! ! |
0— C(UQ%y) — CWa(logD) — CWLALYH =0

where the cocycle w"™D € C"~1(U, Q") possesses in C"~1(8l, Q5 (log D))
the preimage ¢ defined by 0;,,..i. , = =W A %’ -d L= (cf. [5]).
0

D0 yeens Tp_1
Elementary calculations show that dw(™=1) = (=1)" - m - w(™ € C"(U, Q).
Therefore, the cocycle dw™=1 € C"(4, Qp~) is nonzero and the associated
cohomology class is a base of H" (PV, Qp~ ). Thus, the homomorphism
d: HY(D,Q") — H"(PY,Q5y) is epimorphic. In the case 2(r — 1) #
N — 1, we obtain dimH“l(D,le) =1 by [1, Satz 2 and Lemma 5], which
implies that d is an isomorphism. (I

Theorem 3.2.
Let D C PV be a smooth algebraic hypersurface of degree m (N > 2).

(a) For eachr € {1,...,N — 1} one has:
dim HO(PY , Q7 (log D)(t))

-y () ()

(b) Forallr € {1,...,N —1} holds: H°(PY ,QF (log D)(t)) #0 < t>7r

(
t 1
(¢) Inthe caser = N one has: dim H°(PY, Q) (log D)(t)) = < + n]\lf )
(d) If D C PV is a hyperplane (m = 1), then holds:

Proof. The formula (a) follows directly from the long exact cohomology
sequence related to the exact sequence in (2) by applying Lemma 3.1. For
r = N we obtain QY (log D) = Q2 (m) = Op~(m — N — 1) which yields (c).
(a) obviously implies (b) and (d). O

Theorem 3.3.

(a) Let 0<g< N,q+7r#N andr > 1.
Then we obtain H1(PN,Qf  (log D)(t)) = 0 for all t € Z.
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(b) For 1 <r < N —1 it follows:
dimEN " (BN, 05 (log D) (1)

fo " (N+1) <t+(r1)'mN(i1)‘(m1)>

That means: If D is a hyperplane (m = 1), then we have
HN=7(PN, QF (log D)(t)) = 0 for all t € Z.
(¢) For 1 <r < N —1 one has:
dim HN(IP’N n (log D)(t))

_Z ; N+1 —t—-m—i-(m—1)+r
N—r—i N

IfDisa hyperplane (m = 1), then we get:

. NN N —t—1+r

dim HY (P, Qpx (log D)(t)) = . N

—t—m—i—N)

(d) dim HN (PN, QN (log D)(t)) = ( N

Proof. We consider the following exact sequence
L HTYD, Q7 (1) -2 HIPY, O (1)) —
— HI(PN, Q% (log D)(t)) — HY(D, Q5 (1)) = (6)
< HIE PN, O (1) —

and assume 0 < ¢, 0 <r and ¢g+r < N. By Lemma 3.1 the mappings d; and
do are epimorphic for all t € Z and from (6) we get the exact sequence

0 — HY(PN Qfy (log D) (1)) — HQ(D,QTD—l(t)) % HPH PN Qpa(t) — 0.

Under these assumptions holds H(D, Q5 (t)) = 0if ¢ # 7 —1or t # 0 (cf.
[1]). In case ¢ = r — 1,t = 0 we know that ds is an isomorphism by Lemma 3.1
since 2(r — 1) < N — 1. Therefore, one has
HYPN Qpn(log D)(t)) =0for 0< g, 0<randg+r < N.

For ¢ < N,r < N,q+ r > N we use the Serre duality to show statement (a).
The case r = N is trivial since Q2 (log D) & Opy (m — N — 1) .
If r > 2 and g+ r = N then the mappings d; and dy are epimorphic, i.e.
dim HY =" (PY Q% (log D)(t))

= dim HN="(D, Q75 1 (t)) — dim HN"+L(PN, Qz . (¢)).
In the case r =1 and ¢ = N — 1 one has
dim HV PN Ol (log D)(1))



8 P. BRUCKMANN AND P. WINKERT

=dim HV=Y(D, Op(t)) — dim HN (PY, QL (1)) + HY (PY, QL (log D)(t)).
Applying Theorem 3.2, Lemma 2.1 and the results in [1] delivers (b) and (c¢). O

3.2. T-symmetric Tensor Differential Forms. Let T be a Young tableau
with r boxes. We study the sheaf Q7 (log D) = (! (log D))" on PV and begin
with a free resolution of the sheaf Q! (log D).

Lemma 3.4. Let D C PV be a nonsingular, irreducible, algebraic hyper-
surface of degree m > 2 defined by the equation F' = 0.
Then there exists a short exact sequence

N+1
0 — Opn(—m) — @ Opn(—1) — Qpn (log D) — 0. (7)

N
If D is a hyperplane, i.e. m =1, we have Qfy (log D) = & Opn (—1).

Proof. Let U; = {x; # 0} C PN and let U C P¥ be an arbitrary open affine
subset. We are going to show that there is an exact sequence

0 = T(U, Opx (—m)) & @& T(U, Opw (~1)) 2 T(U, 2 (log D)) — 0.

For sections fy,..., fx € [(U,O(-1)) we put g := —~ -Zﬁf:o zufu, € T(U,0).

m

Let F; = % denotes the partial derivatives of F. The mapping (3 is defined
by (fo,-.., f~) — w , where the differential form w on U N U; is given by

N

FV v
w=uw; :=Z(fu—|—g-F>-a:i-dZ.

v=0

v#i
One easily verifies that w is a section of Qfy(logD) on U and it holds, in
particular, w; = wj for any ¢,5 € {0,1,..., N}. For a section 6 € I'(U, O(—m))
let f, =6 F, for all v =0,1,..., N which implies that f, € T'(U,O(-1)) and
g = —0¢ - F. Finally, we have ker 38 = {(¢ - Fy,...,d - Fn)} =2 T(U, Opn (—m)),
which yields the claim for m > 2.
In the last part we have to show the statement of Lemma 3.4 in case m = 1.
Let D C PV be the hyperplane satisfying the equation zx = 0, and let U C PN
be an open subset. For given sections fo, ..., fv—1 € T'(U,O(-1)) let w be the

differential form, which hason UNU; , i =0,,..., N — 1, the representation
N-1 x
N
:qu'xz di_ Zfﬂ Ty |- 9
v=0 u=0 N T
v#i

respectively on U N Uy,

w—waqu TN - di

Then w is a section of Qg (log D) on U, and the mapping (fo, ..., fn-1) — w
N
becomes an isomorphism of I'(U, & Opn (—1)) onto I'(U, Q. (log D)). O
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Lemma 3.5. Let T be a Young tableau with r boxes and the row lengths
li,lay .y lg, set t; :=r+1; —iforallt > 1 (I =0 ifi > d) and assume
d =depthT < N . Then the following sequence is exact for m > 2:

0— @ Opn(d-(1=m)—1) 2% @ Opn((d—1)-(1—m)—r) ==
ba ba—1

B O]P’N((d_Q)'(l_m)_T)oﬂ...&?Opw(l—m—r)& (8)

[

Lo OPN(—T‘) N Q%:N (log D) — 0
bo

with the integers

N —1
bs<H2'> : Z A(tlatQa"'atil717"'7tis717'~-atNatN+1)
=1

1<ir<...<is<d
9)

where A denotes the Vandermonde determinant.
In the case s = 0 we have

N -1 N -1
bo = (Hz’!) I G-y+i-i) = (Hi!) Aty gyt ENG1).
=1 i=1

1<i<j<N+1

For m =1 (D is a hyperplane) holds

rk(ﬂ;}v)
Qfv(logD) = @& " Opn(—7)

with

d
rk(Qp) = (H + 1) = Z(—l)i - b;
1<i<j<N ;

] —1

Proof. The T-Power of (7) yields the claim for m > 2 (cf. [3]) and Lemma
3.4 shows the case m = 1. (]

Theorem 3.6. Let T be a Young tableau with r boxes and with d =
depth T rows.

d N
() X(BY, 0% (10 D)(1) = - (1) b [[ (i (m—1) 45— 7)
T =0 j=1
(b) For depthT < N one has:
d .
dimHO(PN,QgN (IOgD)(t)) — Z(_l)l . bz‘ ) (t —1- (m *Jvl) + N — T)
i=0

and therefore: HO(PY, Qiy (log D)(t)) #0 < t>r
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(¢) Let d = depthT = N and let Iy be the number of columns of T with
the length N. We denote by T’ the Young tableau which is given by T
without these columns of length N. Then depth T’ < N and it holds
QLy (log D)(t) = QL (log D)(t + In - (m — N —1)).

If T is a rectangle with N rows and | columns, then we have
Qfy(log D)(t) = Opn (t+1- (m — N —1)).

(d) For1<q< N —d we get H1(PY, QL (log D)(t)) = 0 for all t € Z.

(e) Let d; be the length of the last column of T. Then holds:
H1(PN, QL (log D)(t)) =0 for N —d; < ¢ < N and Vt € Z.

Proof. The short exact sequences of (8) yields
0 —>§B Opn(d-(1—m)—1) —>b@ Opn((d—1)-(1=m)—r) —
d d—1
— Imag_1 —0
0 —Imag_1 — & Opnv((d—2)-(1—-m)—7r) —Imagz_s — 0

b2

0 —Imas — ®Opwn(1—m—r) — Ima; — 0

by

0 — Ima; — ®O0pn(—1) — Qi (log D) — 0
bo

where HY(PN,Opn (t)) =0 for 1 < ¢ < N — 1 and for all ¢ € Z. This implies
HY(PN Ima;(t)) = 0for 1 < ¢ < N —1+1i—d and hence, we have in case
d<N

dim H*(PY, Ql (log D)(t))

= b - dim HO(PY, Opn (t — 7)) — dim H°(PY, Im vy (t))

dim H°(PY , Tm o (1))

= by - dim HO(PY, Opn (t + 1 —m — 7)) — dim H°(PY, Tm ax(t))

dim HO(PY  Tm oy 1 (t)) = bg_1 - dim HO(PY, Opn (t + (d — 1) - (1 —m) — 1))
— by - dim HO (PN, Opn (t +d - (1 —m) —1)).

This shows (b). For d = N we already know that
Ofn (log)(t) = QM (log D) @ ... ® Qb (log D) ® Qg;v (log D)(t)
=~ QT (log D)(t + In - (m — N — 1))

which proves assertion (c). In order to prove (d), we consider again the short
exact sequences of (8) and obtain

HYPN Oy (log D)(t)) =0 if
HY(PN,Opn(t —7)) =0 and HY (PN, Imay(t)) =0
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HY PN Tmoy (t) =0 if
HTY PN Opn(t+1—m—7)) =0 and HI(PN Imay(t)) =0

HHH PN Imag-1 (1) =0 if
HITY PN, Opn (t+ (d—1) - (1 —=m) —7)) =0
and HIY(PYN, Opx (t+d- (1—m)—7)) =0.

This implies H1(PY, QL (log D)(t)) =0for 1 <¢g< N —d—1and Vt € Z.
The last statement can be proven by Serre duality which means

dim HY(PN, Ol (log D)(t))
= dim HN 9PN, QL (log D)(—t —m — (I = 1) - (m — N — 1)))
where depthT* = N —d; < N. Note if we use (b) with T instead of T, we
obtain a formula for dim H™ (PY, QL (log D)(t)). O

3.3. Symmetric Differential Forms. Let 7" be a Young tableau with r
boxes and only one row, i.e. depthT = 1. We will specify the dimensions of
H1(PN,S"Q(log D)(t)) and consider the following exact sequence (cf. Lemma
3.5)

0— g} Opn(—-m+1—71) — ;19 Opn (—1) — S"Qpn (log D) — 0 (10)

N N -1
with the integers by = ( ; r) and b = ( +NT )
Theorem 3.7. Let N > 2. Then one has:
(a) x(PY,S" Qg (log D)(t))

N N
1 N+7r ) 1 N+7r—1 _
:N"< N >~H(t—r+])—N'~( N ) (t—m+1—r+i)

: j=1 ’ i=1

(b) dim HO(PN, S7QL, (log D)(t))

(V) )T )

(¢) For1<q< N —2 holds: H (PN, S"Qx (log D)(t)) = 0 for all t € Z

(d) dim HN PN, S"Qin (log D)(1))

T <—t—f<m—2>];_i'<m— 1) - 1)

N MU

dim HN (PN, STQLy (log D)(t))
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- ié(—1>i-5i- (o

with the integerls:
~ 1 N+7r N+7r r+i—1
b; = . . . 11
ver o l) () () w
Proof. (a) follows directly from (10) and the additivity of the Euler char-
acteristic. We consider (10) together with the corresponding cohomology se-

quence and know that H4(PY, Opn (t)) = 0 for any ¢ € {1,..., N — 1} and for
all t € Z , which implies (b) and (c). Using the Serre Duality yields

dim HN(PY, S"Q (log D)(t))
= dim H°(PY, Q7 (log D)(—t + (r — 1) - (N +1) —7-m)) ,
where T™ is a rectangle with depth 7" = N —1 rows and length 7™ = r columns
and with the associated integers b; in (11) (cf. Lemma 3.5). Theorem 3.6(b)
delivers the formula for dim HO(PN, Q" (log D)(—t+ (r—1)- (N +1) —r-m)).
Finally, one gets easily the dimension dim H™'(PV,S™Qly (log D)(t)) from
the long cohomology sequence. O

Corollary 3.8. For N > 2 we obtain:
(a) HO(PN,S"Qiy (log D) (1)) #0 < t>r
(b) dim HO(PN, 0L, (log D) (1)) = x(PY, S™2L (log D)(t))
ift>m+r—N-—-1
(c) HN(PN,S"Qpn(log D)(t)) =0 < t> —r(m—2)— N
(d) HN-HPN,S"Qin (log D)(t)) =0 ift >m+r— N —1

Proof. Obviously, the proof follows from Theorem 3.7. O

Theorem 3.9. Let N > 2 and let D be a hyperplane, that is, m = 1.
Then one has

(a) dim HO(PN, S7Qly (log D)(t)) = (N; i; 1) ' (t ) 7]«\[+ N)

(b) For1<q <N —1 holds: H1(PV, 5™y (log D)(t)) =0Vt € Z

(c) dim HN (PN, 57l (log D)(1)) = (N]\tiz 1) ' (_t +]\7fq . 1)

Proof. §"Qly(logD)= @& Opn(—r). =
()

4. COMPLETE INTERSECTIONS Y C PV

Let Y = HiN...N Hy_,, C PV be a nonsingular, irreducible, complete
intersection of algebraic hypersurfaces H; C PV, where H; is given by the
equation F; = 0 with deg F; = m;. We denote by n the dimension of Y. Let
D be a prime divisor on Y, which is defined by the equation D = Y N H
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with a hypersurface H : F' = 0. The degree of H is m. In the following, we
abbreviating denote ¢ = N — n = codimY and assume n > 2. Let X be a
further complete intersection which is described by X = HyN...N H._1. Here
dimX =n+1and Y = XN H,.. There exists also a divisor D* = XN H on X.
Assume that the hypersurfaces Hy,..., Hy_, and H lie in general position,
i.e. for instance X = H1N...NH._1 C PV and the prime divisors D on Y and
D* on X are nonsingular, irreducible, complete intersections, too.

4.1. Alternating Differential Forms. In case r = n we obtain
QF =wy 2Oy (>;_, mi — N — 1) which implies

0F (log D) = Q% (m) = Oy (Y _m; = N —14m),
i=1

where D =Y N H with deg H = m. The dimensions of H?(Y, Q% (log D)(¢)) =
HYY, 0y (>"5_;m; — N —14+m+t)) are well known:

If 1<qg<mn-—1then HI(Y,Oy(t)) =0Vt € Z.
N
dim HO(Y, Oy () = (’”;V >+

+zc:(_1)j, Z <t+Nmil 131127711])
j=1

1<i1<i2<...<i;<c
dim H™(Y, Oy (t)) = dim H*(Y, Oy (=t + my + ma + ... +me — N — 1))

(cf. e.g. [1] or the proof of Lemma (4.4) in the present paper).
We study the cohomology groups H(Y, Q% (log D)(t)) with r < dimY = n:

Lemma 4.1. The following sequences are exact.
(a) 0 — Ox(—m.) — Ox Si>(9y—>0 (12)

(b) 0 — Q% (log D*)(—me) = Q% (log D) 2 Oy @0, Wy (log D*) — 0
(13)

(¢) 0 — Q5 Ylog D)(—me) 2 Oy @0, Qi (log D*) > QF (log D) — 0
(14)

Proof. Notice, for r = 1 we have to substitute Q%! (log D) by the structure
sheaf Oy . The composition § o 3 is the restriction of the differential forms on
X to the subvariety Y C X. Obviously, the sequence (12) is exact and (13)
results by multiplication of (12) with the locally free sheaf Q% (log D*). We
will show that (14) is also an exact sequence. Let U C X be an open subset
of X and let V =Y NU be an open, nonempty subset of Y. Without loss of
generality we assume U C U; = {z; # 0}. Moreover, we suppose the existence
of local parameters wy,...,Up_1,U, = l%,unﬂ = ;nc of X on U such that
their restriction to Y are also local pararﬁeters L

v = @ (1), s Vn—1 = @ (Un_1),0n = @ (u,) = :I;Lm of Y on V. Then
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L(V,0y ®ox % (logD*)) is a free I'(V, Oy )-module whose rank is equal to
("f) . Let w € T'(V, Oy ®o, % (log D*)) be a section of the form

n—1
w = Z firyoiin dug, Ao A dug,

i, =1

n—1
du,
+ Z filw’irfl’nduil VAN duiT71 A U
i,=1
n—1
+ Z firoiroamtr dugy Ao oA du;, Adugg
i,=1
n—1 du
+ Z fil,.“,irfg,n,n+1 duil VAR duird A w n A dun+1 y
n

=1
where f;, ;. € T'(V,0Oy). The homomorphism ¢ is defined as follows:

n—1

n—1
dov
(5(w) = Z fi17~~~5i1‘ d’UZ'1 A.. ~/\d/UiT + Z fi1,m,7ir71,n dvil A... /\d.’l)ui1 A n7

n

iy,=1 i,=1

which means that d(w) € T'(V, Q% (log D)). The kernel of § is given by

n—1
kerd = {Z firoiroamtrdusy, Ao oA Adu;,  Adugg

i, =1

n—1
du
+ E fi1,...,ir_2,n,n+l duil VAN duir_2 A n A dun+1} y
i,=1 Un

where ker § C T'(V, Oy ®0, Q% (log D*)). In order to show that the kernel of §
is isomorphic to T'(V, Q37" (log D)(—m..)), we consider the following homomor-
phisms

ker 6 —% T(V, Oy (—me) @0, U (log D*)) - T(V, Q57 (log D) (—me)).

Let & € ker ¢ be any element. The mappings & and 5 are illustrated by

-1
- 1
Oé(f) = e Z fi1,...,i7~,1,n+1 duh AN duir—l
tog,=1
1 = du
+ Z Jirvoirammrr dug, Ao A, A —,
tog,=1 n
respectively,
1 n—1
pal§)) = —m > fivripmirdvi, A AdY;
tog,=1
—1
1 3 do,
+ e D fiieamnn dvig A A, A o

tog,=1
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Since " - dupy1 = x; < - d x%p is a global section of the sheaf

Oy (m.) ®oy Qk the functions o and B are independent of the index ¢ with
U C U; and independent of the choice of the local parameters wy,...,u,_1.
One can easily see that a and B are monomorphic. The mapping B is the
restriction from X to Y which obviously is epimorphic. While & is generally
not epimorphic, any element of I'(V, Q5! (log D)(—m,)) has a preimage in ker 4.
We can represent an element of T'(V, Q5! (log D)(—m.)) by the form B(@())
with functions f;,, . ;. € T'(V,Oy). In order to find a preimage in ker d, we use
the same functions f;, .. ;. , and in place of v; we take the local parameters u;

on X and multiply with z]" - d up41. This proves that the composition (o &
is isomorphic, the sequence (14) is exact. a

By means of these exact sequences we are going to prove recursion formulas
about the dimensions of the cohomology groups H?(Y, Q5 (log D)(t)). As above
mentioned, for r = n these dimensions are known.

Theorem 4.2.
(a) x(Y, Q5 (log D)(t)) = x(X, Q% (log D*)(t))
—X(X, % (log D*)(t — m.)) — x(Y, 25~ (log D) (t — m,)) for 1 > 1

In the case r = 1 one has to substitute Q5 *(log D) by the structure

sheaf Oy .
(b) Let 0 < g<m,q+r+#nandr>0.

Then one has H1(Y, Q% (log D)(t)) = 0 for any t € Z.

(¢) dim H°(Y, Q% (log D)(t))
= dim H°(X, Q% (log D*)(t)) — dim H°(X, Q% (log D*)(t — m.))
—dim H(Y, QY (log D)(t —m,)) for0<r<n

(d) dim H™(Y, Q% (log D)(t)) = dim H(X, Q% " (log D*)(—t — m))
—dim H°(X, Q% "(log D*)(—t — m. — m))
—dim H(Y, Q%" (log D)(~t — m. —m))
(e) dim H'(Y, Q3 (log D)(t))
= dim H°(Y, Q% ' (log D)(t)) + dim H°(Y, Q% (log D)(t + m.))
+dim H°(X, Q% (log D*)(t)) — dim H°(X, Q% (log D*)(t + m.))
—dim H' (X, Q% (log D*)(t)) + dim H' (X, Q% (log D*)(t + m.))

(f) dim H"™"(Y, Q5 (log D)(t))
= dim H" "1V, Q5 (log D) (t+m..))—dim H" " (X, Q% (log D*)(t))
+dim H" (X, Q% (log D*)(t +m,)) for2<r<n
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Proof. Under the additional condition ¢ + r < n the proof of (b) will be
shown by complete induction with respect to ¢ = codimY and r. Then the
case ¢ + r > n follows directly from the Serre duality. If ¢ = 0, i.e. Y = PV,
Theorem 3.3 implies H4(Y, - (log D)(t)) =0 for 0 < ¢ < N and ¢+ r # N.
If r = 0 then we get H1(Y, Oy (t)) =0 for 0 < ¢ < n (cf. e.g. [2, Lemma 1]).
In particular, we have the following induction assumption (¢ — 1 = codim X) :

(i) From ¢,r e N, 0< ¢, 0 <rand g+ r <n+1 it follows
HY(X, Q% (log D*)(t)) = 0 for all t € Z.

Now assume 0 < ¢, 0 <r and ¢g+7r < n . From (13) we get the exact sequence
.— HY(X, Q% (log D*)(t)) — HY(Y, Oy (t) ®0 Q% (log D*)) —
— HN (X, Q% (log D*)(t — me)) — ... .

Since 0 < ¢, ¢+ 1+ <n+1 we have by induction assumption (i) :

HI(X, Q% (log D*)(t)) = 0 and HI™ (X, Q% (log D*)(t — m.)) = 0. Hence,

HY(Y,Oy(t) @0y Q% (logD*))=0for0<q, ¢+r <nand any t € Z.

Now, let > 0 be a fixed integer. We use the following induction assumption:
(ii) If0 < g and g+7—1 < n then HI(Y, Q' (log D)(t)) = 0 for all t € Z.

To prove: If 0 < g and ¢+ r < n then HY(Y, QY (log D)(t)) = 0 for all t € Z.
Let 0 < g, g+ r < mn. We consider the exact sequence which is given by (14)

. — HU(Y, Oy (t) ®0, Yx(log D*)) — H(Y,Qy (log D)(t) —
— HTNY, Q0 Ylog D) (t — me)) — ... .

By (i) one has H9t' (Y, Q5 ! (log D)(t — m,)) = 0 for all t € Z since
qg+14+r—1=q+r<n (and ¢+ 1 < n). Furthermore, we know that
HYUY,Oy(t) @0, % (log D*)) =0 for any t € Z because of 0 < ¢, g+r <n.
This implies H1(Y, 2} (log D)(t) = 0 for 0 < ¢ < n and g+r < n for any ¢t € Z.
For the proof of (¢) we first consider the exact sequence from (13)

0 — HO(X, Q% (log D*)(t — m.)) — H(X, Q% (log D*)(¢)) —
— H(Y, Oy (1) ®0, Vi (log D*) — H (X, (log D*)(t — m,)) — ...,
(15)

and apply (i) which yields HY(X, Q% (log D*)(t —m.)) =0as 1+7r<n+1=
dim X. Because of (14) one gets the exact sequence

0 — HO(Y, 2 (log D) (t — m.)) — H(Y, Oy (1) ®o, Vi (log D*)) —
HO(Y, 0% (log D) (1)) — H' (V.2 (log D)(t — my)) — ..

*

(16)

and due to 1 +7 — 1 =r < n one has H'(Y,Q} ' (log D)(t — m.)) = 0. State-
ment (c) can be read from (15) and (16). Assertion (d) can easily be shown
by Serre duality. The Euler-Poincare characteristic can be calculated by the
exact sequences (12)—(14). This allows us to specify finally the dimension of
H" (Y, Q% (log D)(t)). (e) and (f) also can be shown using the exact coho-
mology sequences. O
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4.2. T-symmetric Differential Forms. Let Y C PV be the n-dimensional
complete intersection of multidegree (m) = (mq,msg,...,me). ¢ = N —n
denotes the codimension of Y.
We consider a Young tableau T with r boxes, the row lengths I > o >
. > lg > 0 and the column lengths di > dy > ... > d; > 0. We denote
Il =13 =lengthT and d = d; = depthT. Let M(T) be the set of all integer
matrices A = ((d;;)) € N with ¢ + 1 rows, | columns and with the
following properties:

(1) dlyj = dj RS {1, .. .,l},
(2) diJ > di-‘,—l,l >0Vie {1, ... ,C},
(3) di,j Z di+1,j Z di,j-i-l VZ S {1, .o .,C} V] € {1, N ,l — 1}

Let 0;(A) = 2221 d;j be the i-th row sum of A and we put o(A) = gc41(A).
We denote by

p=> d (17)
j=1

the number of boxes in the first ¢ columns of T', where d; = 0 for j > . One
can easily see that r — u < g(A4) < r for all A € M(T). Finally, we define
the subset My (T) of M(T) by Ms(T) :={A € M(T) : o(A) =r — s} for all
s €{0,1,...,u}. For simplification we set furthermore:

Qfv)y (log D*) = Oy ®0_y Ux(log DY), By = @ Q5L (log D) (t(4))
AeM,(T)

C

with #(A) = Z(«Qi+1(A) — 0i(4)) - my.

i=1
Here T'(A) denotes a Young tableau with o(A) boxes and the column lengths
deg1,1;- -+ dey1,, that is, T'(A) depends only on the last row of A. If p(A4) =0

we need to replace the sheaf QPT];(II;‘) (log D*) by the structure sheaf Oy .

Lemma 4.3. There exists following exact sequence:

0 — B 2o gt e B gl BT (log D) 2 0F (log D) — 0.
(18)

Proof. (18) is the T-Power of the following short exact sequence (cf. [3]):
@ 1 * B 1
0— @Oy(—mi) — Oy ®o,y Qpn(log D*) — Qy(log D) — 0 (19)
i=1
We need to show that (19) is an exact sequence. Let U C PV be an open

subset. Without loss of generality we put U C U; = {x; # 0}. Assume that
there exist local parameters rF—ll, R %,ul, ey Up—1, xim of PY on U such

K3 z’t

m
s

that the restrictions v; = @*(u1),...,Vp—1 = @*(Un—1), Vn = ©* (L) are local
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parameters of Y on UNY. We know that T'(U NY, Oy ®o_, Qi (log D*)) is
a free I'(U N'Y, Oy )—module defined by the span

F Fc m Ia
dTla---7dT’dU17~-.7dun,1,i-di .
' x;© F xm

r(UNY, Q4 (log D)) is a free I (UNY, Oy )—module with the span d vy, ..., d v,.
Let w e D(UNY, Oy Qo_y Qpx (log D*)) be any element given by

- . F; " F
w=> fad mJ+ng dug +h-—-d .
j= i k=1 "

The homomorphism 8 maps w to f(w) = 22;11 gr - dvg + h - dU”” where the

kernel of this mapping is given by ker g = {Z;_l fi- xznj F,{J } We obtain

the following homomorphism

c

v : Ty, 0y (-my)) — ker 8 with (f1,..., fe) Hzfj 2" gL mj

Jj=1 j=1

which is isomorphic and independent of the index i with U C U;. (]

Lemma 4.4. For an arbitrary Young tableau T’ there exists the following
exact sequence

0 — Qv (log D) Zml =5 @QPN log D*) _Zc:mj+mi)a°;5...

1<i<e

2 P ali(og DY) (—my, —miy) 25 @D Qfx(log D*)(—m;) 5

1<i1<ia<c 1<i<c

4 0l (log D*) =% Oy ®0_, Qkx (log D) — 0.
(20)

Proof. We consider the following exact sequence which is called the Koszul
complex:

c c
O—>(’)1P>N(—Zmi)&> @ (’)]P:N(—ij—i—mi)(ﬁ...
i=1 1<i<c j=1

=5 P Oev(—mi, —miy) 25 P Opn(—my) =5 Opn =% Oy — 0.

1<y <ip<e 1<i<e

Multiplying this exact sequence with the local free sheaf QH,T]:, (log D*) yields
the assertion. O

Theorem 4.5. Under the assumption 1 < g < n — depthT — p one gets

HY(Y,Q% (log D)(t)) = 0 for all t € Z.
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Proof. We write instead of (20) short exact sequences and obtain

0 — Qv (log D)(=Y_mi) — D U (log D) (=Y mj+m;) —
i=1 1<i<e =1
—Ima._.1 —0

0 —Imaeq — @ Q%;lv (log D*)(— ij +m;, +my,) —
1<i1<i2<¢c 7j=1
—Ima._o —0

0 — Imay — @ Q%ﬁ;(logD*)(fmi) — Ima; — 0

1<i<c
0 — Ima; — QI (log D*) — Oy ®o_y Qix(log D*) — 0.
Using the long exact cohomology sequences yields a vanishing criterion for
HI(Y,Oy @0, QT (log D*)(t)). We have
H(Y, Oy @0,y Yin(log D7)(1)) = 0if H (BN, (log D*)()) = 0
and H7"H(PY  Imay(t)) =0

H (PN Imon (1) =0 if HIT (PN, QI (log D*)(t —m;)) =0
1<i<e

and H72(PY  Imay(t)) =0

H PN Tma._(t)) =0

c
it e (PN, @ Qfx(log DY) (t— > my+m;)) =0

1<i<e j=1

and H(PN QI (log D*)(t — Y m;) = 0.
=1

Applying Theorem 3.6 (d) yields H9(Y, Oy (t) ®o,, QL (log D*)) =0 for 1 <

g < n —depthT’. Now we study H(Y,QL (log D)(t)) with the aid of (18).
Decomposing (18) in short exact sequences delivers

0— Ef — Eéf_l —Img@,_1 —0

0 —Imp,_1 — Eéﬂ_2 — Imp, o —0

0—ImfBy — E} — ImpB; — 0

0—Imp — Q%le(log D*) — Q% (log D) — 0.
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With Ef.(t) = @ QPN(D,)(log D*)(t+t(A)) one has
AeM(T)

H(Y, 9 (log D)(t)) = 0 if H(Y, 0, (log D*)(t)) = 0
and H7™H(Y,Im 3,(t)) =0

HT=1(Y, Tm B,_1(t) = 0 if HITH1(Y, B\ (1)) =
and HTM(Y, Ef.(t)) = 0.

This implies H4(Y, Q% (log D)(t)) =0 for 1 < g < n — depthT — p. O

Now assume for instance p < n — depthT. Then for each t € Z it follows
from our exact sequences: HY(PN, Ima;(t)) =0 if 1<q¢<p+i,
HI(Y, 0y (t) ®0,y Qx(logD*) =0 if 1<g<p+ec,
HYY,EL(t)=0 if 1<q<j , HI(Y,ImpB;(t)) =0 if 1<q<j.
In particular, the cohomology groups H'(...) of all these sheaves vanish. There-
fore, we have the opportunity to calculate the dimensions of their cohomology
groups H°(...) :
Let h™(t) abbreviating denotes the dimension dim H°(PY, QL (log D*)(t)) as
an integer function of ¢ . Remember that (m) = (mq,ma, ..., m.) is the mul-
tidegree of the complete intersection Y . We set

TRURSEUED DETD DI AR

1<i1<i2<...<is<c

Because of (20) we have dim H(Y, Oy ®o,, Qs (logD*)(t)) = AL

(m)(t) and

using (18) we get the following formula:

Theorem 4.6. Ify < dimY — depthT then

dim HO(Y, Qf (log D)(1)) = > (~1)" " - 1 (9 (¢ 4 (A))
AeM(T)

with t(A) = 371, (0i41(A) — 0i(A)) - mi.
In particular for t = 0 : H*(Y,QL(log D)) =0 if 4 < dimY — depth T .

Remark 4.7. For regular T-symmetrical tensor differential forms one has
HOY, QL) =0if p < dimY .

4.3. Symmetric Differential Forms. We consider symmetrical differential
forms with logarithmic poles as a special case, that means, T is a Young tableau
with  boxes and only one row (depthT =1, [ =lengthT = r).

Let D* = H be the prime divisor on projective space PNand let D be the
prime divisor on the n-dimensional complete intersection Y as above (n > 2).
Distinguishing the cases r < ¢ and ¢ < r we obtain two exact sequences as
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symmetrical power of (19) :  Assume at first r < ¢ :

0— @ Oy (—my, —mj, — ... —m;, )—
1<i1<i2<..<ir< €
1 *
— @ Oy(—mil — My, —...—mi7,71)®@PN Q]P,N(IOgD )—>

1<i<.<ipo1< ¢
e ED Oy (=m;) ®o, ST10Ly (log D*)—
1<i<ec

— Oy ®o,y S™Qbx (log D*)—S"Q4 (log D)— 0

In the case ¢ < r the following sequence is exact:

0— Oy(= Y mj) ®o,, Ny (log D*)—>
j=1

— P Oy (=D my+mi) @0, T (log D) — ...

1<i<e j=1

R @ Oy (—m;) ®o,y S™ 104 (log D*)—

1<i<c

—0Oy ®o, S U (log D*)—5"Qy (log D)— 0

Furthermore, we have Lemma 4.4 with the sheaf S"Qfy (log D*) instead of
Q]g\, (log D*) . With the corresponding cohomology sequences we get:

Theorem 4.8. Assumen =dimY > 2.
(a) If1 < g <n—2 then HI(Y, Oy (t) @0,y S" Uy (log D*)) =0Vt € Z
(b)

dim H°(Y, Oy (t) ®o,, S"Qpx (log D*)) = dim HO(PV, S"Qpx (log D*)(t))+

Y (=17 Y dimHO(PY, S Qg (log D*)(E = mi, — ... —my,))
j=1 1<ip <...<ij<e
(c) H(Y,Oy (t) @0,y S"Qpn(log D*)) #0 & t>7r
(d) Incaset =0 : H(Y,Oy @0,y S"Qpx (log D*)) =0 for all + >0

Theorem 4.9.

(a) Ifr <cand1<gq<n-—r then H(Y,S"Q} (log D)(t)) =0Vt € Z
(b) Ifc<rand1<q<mn—c—1 then H(Y,S"Q3 (log D)(t)) =0Vt € Z

Proof. By Theorem 4.5 we know H?(Y, Q¥ (log D)(t)) =0 for all t € Z
if 1 < g < n—depthT—pu. For symmetric differential forms we have depthT =1
and p = >.;_,d; = min{c,r}, where d; = 1 for i < r and d; = 0 for i > 7.
This proves (b). Under condition 7 < ¢ one gets the stronger result (a) since
H1(Y,0y(t)) =0 for 1 < g <n and for all t € Z. O
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Theorem 4.10.
(¢) If r < c and r < n then

HO(Y, 57} (log D) (1)) = dim HO(Y, Oy (1) ©o,, 5" (log D))+

r—1 k

YD > dimHY(Y, Oy (t— Y mi)) ®o,y 8" " Qpw (log D))
k=1 1<ii<...<ip<c j=1

+(=D7 Y dmHOY, Oy (t—mi, — ... —my,)

1<ii<...<ir<c
(d) Ife<randc<n—1 then

HO(Y, S"Qy (log D)(t)) = dim H*(Y, Oy (t) ®o,, S"Qpw (log D*))+

c k
Y (=DF > dmHO(Y, Oy (t— > mi)) ®o,y 8" Qpx (log D))
k=1

1<ir<...<ip<c j=1

Proof. Statements (c¢) and (d) follow from the related exact sequences since
under these premises by Theorem 4.8 the cohomology groups H(...) of all
these sheaves vanish (cf. Theorem 4.8 and Theorem 3.7 ). O

Finally, it is easy to see:

Theorem 4.11.

(e) Ift <7 < min(c,n — 1) then H(Y,S™Q} (log D)(t)) =0 .
(f) Ift <7 and ¢ < min(r,n — 1) then H°(Y, S"Ql (log D)(t)) =0 .
(g) Ifc<n—1 then H(Y,S"QL (log D)) =0 for allr >0 .
(h) If0 < r < n then HO(Y, S™QL (log D)) =0 .

Remark 4.12. On the other hand, for regular symmetrical differential
forms on complete intersections it is well known:
If ¢ < n then H(Y,S7Q3,) =0 for all 7 > 0 .
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