T-SYMMETRICAL TENSOR DIFFERENTIAL FORMS WITH LOGARITHMIC POLES ALONG A HYPERSURFACE SECTION

P. BRÜCKMANN AND P. WINKERT

ABSTRACT. The aim of this paper is to investigate *T*-symmetrical tensor differential forms with logarithmic poles on the projective space \mathbb{P}^N and on complete intersections $Y \subset \mathbb{P}^N$. Let $H \subset \mathbb{P}^N$, $N \geq 2$, be a nonsingular irreducible algebraic hypersurface which implies that D = H is a prime divisor in \mathbb{P}^N . The main goal of this paper is the study of the locally free sheaves $\Omega_{\mathbb{P}^N}^T(\log D)$ and the calculation of their cohomology groups. In addition, for complete intersections $Y \subset \mathbb{P}^N$ we give some vanishing theorems and recursion formulas.

1. INTRODUCTION

The symmetry properties of tensors are important in physics and certain areas of mathematics. In the following, let k be the ground field which is assumed to be algebraically closed satisfying $\operatorname{char}(k) = 0$. We denote by $H \subset \mathbb{P}_k^N, N \geq 2$, a nonsingular, irreducible, algebraic hypersurface defined by the equation F = 0 where deg F = m. Then D = H gives a prime divisor of degree m in \mathbb{P}_k^N . The aim of this paper is the calculation of the dimension of the cohomology groups $H^q(\mathbb{P}^N, \Omega_{\mathbb{P}^N}^T(\log D)(t))$ with general twist $t \in \mathbb{Z}$, where T is a Young tableau specified later. $\Omega_{\mathbb{P}^N}^T(\log D)$ denotes the so-called sheaf of germs of T-symmetrical tensor differential forms with logarithmic poles along the prime divisor D (cf. [5], [8], [3]). In addition, we consider the associated cohomology groups of nonsingular, irreducible, n-dimensional complete intersections $Y \subset \mathbb{P}^N$, $n \geq 2$. In this case, let the prime divisor $D = Y \cap H$ be the intersection of Y and hypersurface H. As special cases, we investigate the alternating and the symmetric differential forms on \mathbb{P}^N and on Y, respectively.

2. NOTATIONS AND PRELIMINARIES

Let Ω_X^1 be the sheaf of germs of regular algebraic differential forms on a *n*-dimensional nonsingular, projective variety $X \subseteq \mathbb{P}^N$ and let $\Omega_X^r = \bigwedge^r \Omega_X^1$ and $S^r \Omega_X^1$ be the sheaves of alternating and symmetric differential forms on X, alternatively. We denote by $(\Omega_X^1)^{\otimes r}$ the *r*-th tensor power of Ω_X^1 . The coherent sheaves Ω_X^1 , Ω_X^r , $S^r \Omega_X^1$ and $(\Omega_X^1)^{\otimes r}$ are locally free on X with the rank n, $\binom{n}{r}$, $\binom{n+r-1}{r}$ and n^r , respectively.

²⁰⁰⁰ Mathematics Subject Classification. 14F10, 14M10, 14F17, 55N30.

 $Key\ words\ and\ phrases.$ Young tableaux, complete intersections, algebraic differential forms.

The irreducible representations of the symmetric group S_r correspond to the conjugacy classes of S_r . These are given by partitions $(l) : r = l_1 + \ldots + l_d$ with $l_i \in \mathbb{Z}$, $l_1 \geq l_2 \geq \ldots \geq l_d \geq 1$. Partition (l) can be described by a so-called Young diagram T with r boxes and the row lengths l_1, \ldots, l_d . The column lengths of T will be denoted by d_1, \ldots, d_l and we set $d = d_1 = \text{depth } T$ and $l = l_1 = \text{length } T$, respectively. Clearly, $d_1 \geq d_2 \geq \ldots \geq d_l \geq 1$ and the equations $\sum_{j=1}^{l} d_j = \sum_{i=1}^{d} l_i = r$ are fulfilled. Moreover, we put $l_i = 0$ for i > d and $d_j = 0$ for j > l. The "hook-length" of the box inside the i-th row and the j-th column of the Young diagram is defined by $h_{i,j} = l_i - i + d_j - j + 1$ and the degree of the associated irreducible representation is equal to

$$\nu_{(l)} = \frac{r!}{\prod h_{i,j}} = \frac{r!}{d!} \cdot \prod_{i=1}^{d} \frac{i!}{(l_i+d-i)!} \cdot \prod_{1 \le i < j \le d} \left(\frac{l_i - l_j}{j-i} + 1 \right) = r! \cdot \det\left(\left(\frac{1}{\Gamma(l_i+1-i+j)}\right)\right)_{i,j=1,\dots,d} \text{ (cf. [7]).}$$

A numbering of the r boxes of a given Young diagram by the integers $1, 2, \ldots, r$ in any order is said to be a Young tableau which for simplicity again will be denoted by T. Now, one has an idempotent e_T in the group algebra $k \cdot S_r$ defined by

$$e_T = \frac{\nu_{(l)}}{r!} \cdot \left(\sum_{q \in Q_T} \operatorname{sgn}(q) \cdot q\right) \circ \left(\sum_{p \in P_T} p\right)$$

where the subgroups P_T and Q_T of S_r are given as follows:

 $P_T = \{ p \in S_r : p \text{ preserves each row of } T \},\$ $Q_T = \{ q \in S_r : q \text{ preserves each column of } T \}.$

The idempotent e_T is called Young symmetrizer (cf. [7]). If the numbering of the boxes of the Young tableau generates inside every row and every column monotone increasing sequences, we speak of a standard tableau. The number of all standard tableaux to a given Young diagram is equal to the degree $\nu_{(l)}$. We denote by D(r) the set of all standard tableaux to all Young diagrams with r boxes.

For a variety X the notation $\Omega_X^{\otimes r} = (\Omega_X^1)^{\otimes r}$ stands for the sheaf of germs of regular algebraic tensor differential forms. This implies that the symmetric group S_r and the related group algebra $k \cdot S_r$ act on $\Omega_X^{\otimes r}$ defined by

 $p(a_1 \otimes \ldots \otimes a_r) = a_{p^{-1}(1)} \otimes \ldots \otimes a_{p^{-1}(r)}$ for all $p \in S_r$. That means, mapping p permutates the spots inside the tensor product. Furthermore, it holds

$$\Omega_X^{\otimes r} = \bigoplus_{T \in D(r)} \Omega_X^T$$

with $\Omega_X^T = e_T(\Omega_X^{\otimes r})$, where Ω_X^T is called the sheaf of germs of T-symmetrical tensor differential forms or simply the T-power of Ω_X^1 . If two Young tableaux T and \tilde{T} possess the same Young diagram, we have $\Omega_X^T \cong \Omega_X^{\tilde{T}}$.

Under the assumption depth $T \leq \dim X$ with a smooth *n*-dimensional variety X the belonging sheaf Ω_X^T is locally free of rank

$$\prod_{1 \le i < j \le n} \left(\frac{l_i - l_j}{j - i} + 1 \right) = \left(\prod_{i=1}^{n-1} i! \right)^{-1} \cdot \Delta(l_1 - 1, l_2 - 2, \dots, l_n - n),$$

where $\Delta(t_1, t_2, \dots, t_n) = \prod_{1 \le i < j \le n} (t_i - t_j)$ denotes the Vandermonde determinant. If depth $T > \dim \overline{X}$ then we have $\Omega_X^T = 0$. In the special cases $\Omega_X^r = \wedge^r \Omega_X^1$ and $S^r \Omega_X^1$ the Young tableau has only one column and one row, respectively. In the same way the *T*-power \mathcal{F}^T of an arbitrary coherent algebraic sheaf \mathcal{F} is defined. One has for instance $\Omega^T_X(\log D) = (\Omega^1_X(\log D))^T$.

Furthermore, we describe the T-power of an algebraic complex (cf. [3]): Let R be a commutative ring which contains the algebraically closed ground field k fulfilling char(k) = 0. We consider an algebraic complex K of R-modules given by $K: K_0 \xrightarrow{d} K_1 \xrightarrow{d} K_2 \xrightarrow{d} \dots$ with $d^2 = 0$. Then the *r*-th tensor power $P = K^{\otimes r}$ of K is defined by

 $P = K^{\otimes r} : P_0 \xrightarrow{\delta} P_1 \xrightarrow{\delta} P_2 \xrightarrow{\delta} \dots \text{ with } P_s = \bigoplus_{s_1 + \dots + s_r = s} K_{s_1} \otimes \dots \otimes K_{s_r}$ and $\delta(b_1 \otimes \dots \otimes b_r) = \sum_{i=1}^r (-1)^{s_1 + \dots + s_{i-1}} \cdot b_1 \otimes \dots \otimes b_{i-1} \otimes d(b_i) \otimes b_{i+1} \otimes \dots \otimes b_r$ where $b_j \in K_{s_j}$ for all j. Again the symmetric group S_r acts on this tensor power by permutation of the spots inside the tensor product. In order to obtain such an action of S_r on $P = K^{\otimes r}$, which commutates with δ , we introduce additionally a sign as follows:

- (1) $\sigma(p; s_1, \dots, s_r) := \sum_{\substack{i < j \\ p(i) > p(j)}} s_i \cdot s_j$ for all $p \in S_r$ (2) $p(b_1 \otimes \dots \otimes b_r) := (-1)^{\sigma(p; s_1, \dots, s_r)} \cdot b_{p^{-1}(1)} \otimes \dots \otimes b_{p^{-1}(r)}$ where $b_j \in K_{s_j}$ for all $j \in \{1, \dots, r\}$

Then one has $P_s = \bigoplus_{T \in D(r)} K_s^{(T)}$, $K^{\otimes r} = \bigoplus_{T \in D(r)} K^{(T)}$, $H^*(K^{\otimes r}) = \bigoplus_{T \in D(r)} H^*(K^{(T)})$ with $K_s^{(T)} = e_T(P_s)$ and $K^{(T)} = e_T(K^{\otimes r}): K_0^{(T)} \xrightarrow{\delta} K_1^{(T)} \xrightarrow{\delta} K_2^{(T)} \xrightarrow{\delta} \dots$ This complex $K^{(T)}$ is said to be the *T*-power of *K*. If two Young tableaux *T*

and \widetilde{T} possess the same Young diagram, one has $K^{(T)} \cong K^{(T)}$. For an exact sequence K the T-power $K^{(T)}$ of K is also an exact sequence.

Now, let $X \subseteq \mathbb{P}^N$ be a projective variety satisfying $\omega_X \cong \mathcal{O}_X(n_X)$ for some $n_X \in \mathbb{Z}$, where ω_X stands for the canonical line bundle. This implies under the assumptions $d = \operatorname{depth} T = \operatorname{dim} X = n$ and $l = \operatorname{length} T > 1$ the isomorphism

$$\Omega_X^T \cong \Omega_X^{T'} \otimes \omega_X \cong \Omega_X^{T'}(n_X)$$

where T' arises from T by deleting the first column of T. In the case $d = \operatorname{depth} T = \operatorname{dim} X = n$ and $l = \operatorname{length} T = 1$ (i.e. T has only one column) we have the isomorphism $\Omega_X^T \cong \Omega_X^n \cong \omega_X \cong \mathcal{O}_X(n_X)$. An important tool in our considerations will be the Serre duality:

Suppose the Young tableau T has the column lengths d_1, \ldots, d_l satisfying $d_1 = d = \operatorname{depth} T \leq \operatorname{dim} X = n$. We get an associated Young tableau T^* by the column lengths $d_i^* = n - d_{l+1-j}$ for all $j = 1, \ldots, l$. One verifies readily that in case depth T < n holds $(T^*)^* = T$.

The next lemma delivers some duality relations about the dimensions of cohomology groups.

Lemma 2.1. Let $Y = H_1 \cap \ldots \cap H_{N-n} \subseteq \mathbb{P}^N$ be a *n*-dimensional, nonsingular, irreducible, complete intersection defined by algebraic hypersurfaces $H_i \subset \mathbb{P}^N$ satisfying $F_i = 0$ with deg $F_i = m_i$. The dimension of Y is n. In this case, let the prime divisor $D = Y \cap H$ be the intersection of Y and hypersurface H: F = 0 of degree m. Assume that D also becomes a nonsingular irreducible complete intersection of dimension n-1. Then one has:

- $\begin{array}{l} (\mathrm{i}) \ \dim H^q(\mathbb{P}^N, \Omega^r_{\mathbb{P}^N}(\log D)(t)) = \dim H^{N-q}(\mathbb{P}^N, \Omega^{N-r}_{\mathbb{P}^N}(\log D)(-t-m)) \\ (\mathrm{ii}) \ \dim H^q(Y, \Omega^r_Y(\log D)(t)) = \dim H^{n-q}(Y, \Omega^{n-r}_Y(\log D)(-t-m)) \end{array}$

- (iii) dim $H^q(\mathbb{P}^N, \Omega^T_{\mathbb{P}^N}(\log D)(t))$ = dim $H^{N-q}(\mathbb{P}^N, \Omega^{T^*}_{\mathbb{P}^N}(\log D)(-t l \cdot m + (l 1)(N + 1)))$ (iv) dim $H^q(Y, \Omega_Y^T(\log D)(t))$
- $= \dim H^{n-q}(Y, \Omega_Y^{T^*}(\log D)(-t l \cdot m (l-1)(\sum_{i=1}^{N-n} m_i N 1)))$ (v) dim $H^q(\mathbb{P}^N, S^r \Omega_{\mathbb{P}^N}^1(\log D)(t))$

$$= \dim^{\mathbb{T}} H^{N-q}(\mathbb{P}^N, \Omega_{\mathbb{P}^N}^{T^*}(\log D)(-t - r \cdot m + (r-1)(N+1)))$$

where T^* denotes a rectangle with $N-1$ rows and r columns.

(vi) dim $H^q(Y, S^r \Omega^1_Y(\log D)(t))$ $= \dim H^{n-q}(Y, \Omega_Y^{T^*}(\log D)(-t - r \cdot m - (r-1)(\sum_{i=1}^{N-n} m_i - N - 1)))$ where T^* denotes a rectangle with n-1 rows and r columns.

Proof. We consider the following exact sequence (cf. [5])

$$0 \longrightarrow \Omega^r_{\mathbb{P}^N}(\log D)(-m) \longrightarrow \Omega^r_{\mathbb{P}^N} \longrightarrow \Omega^r_D \longrightarrow 0.$$

For r = N we have $\Omega_D^N = 0$, i.e. $\Omega_{\mathbb{P}^N}^N(\log D) \cong \Omega_{\mathbb{P}^N}^N(m) \cong \mathcal{O}_{\mathbb{P}^N}(m-N-1)$. This implies a pairing $\Omega_{\mathbb{P}^N}^r(\log D)(t) \times \Omega_{\mathbb{P}^N}^{N-r}(\log D)(-t-m+N+1) \longrightarrow \mathcal{O}_{\mathbb{P}^N}$, which means that the vector space $H^q(\mathbb{P}^N, \Omega_{\mathbb{P}^N}^r(\log D)(t))$ is dual to $H^{N-q}(\mathbb{P}^N, (\Omega_{\mathbb{P}^N}^{N-r}(\log D)(-t-m+N+1)) \otimes \Omega_{\mathbb{P}^N}^N)$. Setting $\Omega_{\mathbb{P}^N}^N \cong \mathcal{O}_{\mathbb{P}^N}(-N-1)$ yields (i). The statement (ii) can be shown in a

similar way. Note that $\Omega_Y^n(\log D) \cong \Omega_Y^n(m) \cong \mathcal{O}_Y(m + \sum_{i=1}^{N-n} m_i - N - 1).$ Now, let T be a Young tableau with r boxes, given by the row lengths l_1, \ldots, l_d and the column lengths d_1, \ldots, d_l where $d = d_1 = \operatorname{depth} T$ and $l = l_1 =$ length T. The Young tableau T^* has the column lengths $d_j^* = n - d_{l+1-j}$ for all $j \in \{1, \ldots, l\}$ and we have again $\Omega_{\mathbb{P}^N}^N(\log D) \cong \mathcal{O}_{\mathbb{P}^N}(m-N-1)$. From the pairing $\Omega_{\mathbb{P}^N}^T(\log D)(t) \times \Omega_{\mathbb{P}^N}^{T^*}(\log D)(-t-l \cdot (m-N-1)) \longrightarrow \mathcal{O}_{\mathbb{P}^N}$ follows $\operatorname{Hom}(\Omega^{T}_{\mathbb{P}^{N}}(\log D)(t), \mathcal{O}_{\mathbb{P}^{N}}) \cong \Omega^{T^{*}}_{\mathbb{P}^{N}}(\log D)(-t - l \cdot (m - N - 1)), \text{ which shows}$ assertion (iii). In order to show the formula for complete intersections Y instead of \mathbb{P}^N , we replace -N-1 by $\sum_{i=1}^{N-n} m_i - N - 1$. Choosing l = r (depth T = 1) in (iii) and (iv) proves (v) and (vi), respectively.

For a projective variety $X \subseteq \mathbb{P}^N$ and a coherent sheaf \mathcal{F} on X the dimensions $\dim_k H^q(X, \mathcal{F})$ are finite and we have the so-called Euler-Poincare characteristic given by $\chi(X,\mathcal{F}) = \sum_{q=0}^{\dim X} (-1)^q \cdot \dim H^q(X,\mathcal{F})$. From a short exact sequence $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$ with coherent sheaves $\mathcal{F}, \mathcal{G}, \mathcal{H}$ on X we obtain the equation $\chi(X,\mathcal{G}) = \chi(X,\mathcal{F}) + \chi(X,\mathcal{H})$. Under the above assumptions we also know, that for a short exact sequence of coherent sheaves on X there exists a long exact sequence for the associated cohomology groups. For every coherent sheaf \mathcal{F} on the projective variety $X \subset \mathbb{P}^N$ there exists a polynomial $P(X,\mathcal{F})(t) \in \mathbb{Q}[t]$ of degree dim X which fulfills $\chi(X,\mathcal{F}(t)) = P(X,\mathcal{F})(t)$ for all $t \in \mathbb{Z}$. $P(X, \mathcal{F})(t)$ is said to be the Hilbert polynomial of \mathcal{F} (cf. [6], [4], [8]). For example, the structure sheaf on \mathbb{P}^N has the following Hilbert polynomial

$$P(\mathbb{P}^N, \mathcal{O}_{\mathbb{P}^N})(t) = \chi(\mathbb{P}^N, \mathcal{O}_{\mathbb{P}^N}(t)) = \frac{(t+N)\cdots(t+1)}{N!} .$$
(1)

3. The Projective Space \mathbb{P}^N

In the following, we change the meaning of the binomial coefficient setting $\binom{\alpha}{\beta} = 0$ for all $\alpha \in \mathbb{Z}, \beta \in \mathbb{N}$ satisfying $\alpha < \beta$, in particular: $\binom{\alpha}{\beta} = 0$ if $\alpha < 0$. For instance: dim $H^0(\mathbb{P}^N, \mathcal{O}_{\mathbb{P}^N}(t)) = \binom{t+N}{N}$, dim $H^N(\mathbb{P}^N, \mathcal{O}_{\mathbb{P}^N}(t)) = \binom{-t-1}{N}$, $H^q(\mathbb{P}^N, \mathcal{O}_{\mathbb{P}^N}(t)) = 0$ for 0 < q < N. Let $H \subset \mathbb{P}^N$ $(N \ge 2)$ be a nonsingular, irreducible, algebraic hypersurface

Let $H \subset \mathbb{P}^N$ $(N \ge 2)$ be a nonsingular, irreducible, algebraic hypersurface defined by the equation F = 0, that means, D = H is a prime divisor in \mathbb{P}^N . Both F and D are of degree m and D = H has dimension N - 1.

3.1. Alternating Differential Forms. We denote by $\Omega_{\mathbb{P}^N}^r$ the local free sheaf of germs of alternating differential forms on the projective space \mathbb{P}^N and consider the following sequence $(t \in \mathbb{Z})$

$$0 \longrightarrow \Omega^{r}_{\mathbb{P}^{N}}(t) \longrightarrow \Omega^{r}_{\mathbb{P}^{N}}(\log D)(t) \longrightarrow \Omega^{r-1}_{D}(t) \longrightarrow 0,$$
(2)

which is known to be exact (cf. [5]). The dimensions of the cohomology groups $H^q(\mathbb{P}^N, \Omega^r_{\mathbb{P}^N}(t))$ and $H^q(D, \Omega^{r-1}_D(t))$ are calculated in [1], where we also find the following exact sequences

$$0 \longrightarrow \Omega^{r}_{\mathbb{P}^{N}}(t-m) \longrightarrow \Omega^{r}_{\mathbb{P}^{N}}(t) \xrightarrow{\alpha} \mathcal{O}_{D}(t) \otimes_{\mathcal{O}_{\mathbb{P}^{N}}} \Omega^{r}_{\mathbb{P}^{N}} \longrightarrow 0$$
(3)

$$0 \longrightarrow \Omega_D^{r-1}(t-m) \longrightarrow \mathcal{O}_D(t) \otimes_{\mathcal{O}_{\mathbb{P}^N}} \Omega_{\mathbb{P}^N}^r \xrightarrow{\beta} \Omega_D^r(t) \longrightarrow 0.$$
(4)

The mapping $\varphi^* := \beta \circ \alpha$ means the restriction of the differential forms on \mathbb{P}^N to the hypersurface D = H. In the case r = 1, one has to replace the sheaf Ω_D^{r-1} by the structure sheaf \mathcal{O}_D . For 0 < q < N we have dim $H^q(\mathbb{P}^N, \Omega_{\mathbb{P}^N}^r(t)) = \delta_{q,r} \cdot \delta_{t,0}$ (Kronecker- δ) and we know by [1, Lemma 4] a base element of $H^r(\mathbb{P}^N, \Omega_{\mathbb{P}^N}^r)$ which is given by the cohomology class of the cocycle $\omega^{(r)} \in C^r(\mathfrak{U}, \Omega_{\mathbb{P}^N}^r)$ defined by

$$\omega_{i_0,\dots,i_r}^{(r)} = \frac{x_{i_0}}{x_{i_r}} \cdot \mathrm{d} \, \frac{x_{i_1}}{x_{i_0}} \wedge \mathrm{d} \, \frac{x_{i_2}}{x_{i_1}} \wedge \dots \wedge \mathrm{d} \, \frac{x_{i_r}}{x_{i_{r-1}}}.$$
(5)

 \mathfrak{U} stands for the affine open covering of \mathbb{P}^N by the affine spaces $U_i = \{x_i \neq 0\}$. For r = 1, in particular, $\omega_{i_0,i_1}^{(1)} = \frac{x_{i_0}}{x_{i_1}} \cdot \mathrm{d} \frac{x_{i_1}}{x_{i_0}}$ is a logarithmic differential. We may represent (5) by

$$\omega_{i_0,\dots,i_r}^{(r)} = \omega_{i_0,i_1}^{(1)} \wedge \omega_{i_1,i_2}^{(1)} \wedge \dots \wedge \omega_{i_{r-1},i_r}^{(1)} ,$$

which is an outer product of logarithmic differential forms. In the case q = r = N, t = 0 the cochain $\omega^{(N)}$ creates a base of $H^N(\mathbb{P}^N, \Omega^N_{\mathbb{P}^N})$ (cf. [1, Lemma 2]). Finally, we set $\omega^{(0)} = 1$.

Lemma 3.1. Let $0 < r \le N$. Then the homomorphism $d : H^{r-1}(D, \Omega_D^{r-1}) \longrightarrow H^r(\mathbb{P}^N, \Omega_{\mathbb{P}^N}^r)$ in the long homology sequence with respect to the exact sequence

$$0 \longrightarrow \Omega^r_{\mathbb{P}^N} \longrightarrow \Omega^r_{\mathbb{P}^N}(\log D) \longrightarrow \Omega^{r-1}_D \longrightarrow 0$$

is epimorphic. If in addition $2(r-1) \neq N-1$ is valid, then d is an isomorphism.

Proof. We calculate the image of the cohomology class of $\omega^{(r-1)}$ at the composition

$$H^{r-1}(\mathbb{P}^N, \Omega^{r-1}_{\mathbb{P}^N}) \xrightarrow{\varphi^*} H^{r-1}(D, \Omega^{r-1}_D) \xrightarrow{d} H^r(\mathbb{P}^N, \Omega^{r}_{\mathbb{P}^N})$$

and denote $\varphi^*(\omega^{(r-1)})$ again by $\omega^{(r-1)}$. Let \mathfrak{U} be the affine, open covering of \mathbb{P}^N given by the affine spaces $U_i = \{x_i \neq 0\}$. We consider the following commutative diagram

where the cocycle $\omega^{(r-1)} \in C^{r-1}(\mathfrak{U}, \Omega_D^{r-1})$ possesses in $C^{r-1}(\mathfrak{U}, \Omega_{\mathbb{P}^N}^r(\log D))$ the preimage ϱ defined by $\varrho_{i_0, \dots, i_{r-1}} = \omega_{i_0, \dots, i_{r-1}}^{(r-1)} \wedge \frac{x_{i_0}^m}{F} \cdot \mathrm{d} \frac{F}{x_{i_0}^m}$ (cf. [5]). Elementary calculations show that $d\omega^{(r-1)} = (-1)^r \cdot m \cdot \omega^{(r)} \in C^r(\mathfrak{U}, \Omega_{\mathbb{P}^N}^r)$.

Therefore, the cocycle $d\omega^{(r-1)} \in C^r(\mathfrak{U}, \Omega^r_{\mathbb{P}^N})$ is nonzero and the associated cohomology class is a base of $H^r(\mathbb{P}^N, \Omega^r_{\mathbb{P}^N})$. Thus, the homomorphism

 $d: H^{r-1}(D, \Omega_D^{r-1}) \longrightarrow H^r(\mathbb{P}^N, \Omega_{\mathbb{P}^N}^r)$ is epimorphic. In the case $2(r-1) \neq N-1$, we obtain dim $H^{r-1}(D, \Omega_D^{r-1}) = 1$ by [1, Satz 2 and Lemma 5], which implies that d is an isomorphism.

Theorem 3.2.

Let $D \subset \mathbb{P}^N$ be a smooth algebraic hypersurface of degree m $(N \ge 2)$.

(a) For each $r \in \{1, \ldots, N-1\}$ one has: dim $H^0(\mathbb{P}^N, \Omega^r_{\mathbb{P}^N}(\log D)(t))$

$$=\sum_{i=0}^{r}(-1)^{i}\cdot\binom{N+1}{r-i}\cdot\binom{t+N-i\cdot(m-1)-r}{N}$$

(b) For all $r \in \{1, \dots, N-1\}$ holds: $H^0(\mathbb{P}^N, \Omega^r_{\mathbb{P}^N}(\log D)(t)) \neq 0 \Leftrightarrow t \geq r$ (c) In the case r = N one has: dim $H^0(\mathbb{P}^N, \Omega^N_{\mathbb{P}^N}(\log D)(t)) = \binom{t+m-1}{N}$

- (d) If $D \subset \mathbb{P}^N$ is a hyperplane (m = 1), then holds: $\dim H^0(\mathbb{P}^N, \Omega^r_{\mathbb{P}^N}(\log D)(t)) = \binom{N}{r} \cdot \binom{t+N-r}{N}$

Proof. The formula (a) follows directly from the long exact cohomology sequence related to the exact sequence in (2) by applying Lemma 3.1. For r = N we obtain $\Omega_{\mathbb{P}^N}^N(\log D) \cong \Omega_{\mathbb{P}^N}^N(m) \cong \mathcal{O}_{\mathbb{P}^N}(m-N-1)$ which yields (c). (a) obviously implies (b) and (d). \square

Theorem 3.3.

(a) Let 0 < q < N, $q + r \neq N$ and $r \ge 1$. Then we obtain $H^q(\mathbb{P}^N, \Omega^r_{\mathbb{P}^N}(\log D)(t)) = 0$ for all $t \in \mathbb{Z}$.

(b) For $1 \le r \le N - 1$ it follows:

 $\dim H^{N-r}(\mathbb{P}^N, \Omega^r_{\mathbb{P}^N}(\log D)(t))$

$$=\sum_{i=0}^{N+1} (-1)^{i} \cdot \binom{N+1}{i} \cdot \binom{t+(N-r)\cdot m-(i-1)\cdot (m-1)}{N}$$
$$=\sum_{i=0}^{N+1} (-1)^{i} \cdot \binom{N+1}{i} \cdot \binom{-t+(r-1)\cdot m-(i-1)\cdot (m-1)}{N}$$

That means: If D is a hyperplane (m = 1), then we have $H^{N-r}(\mathbb{P}^N, \Omega_{\mathbb{P}^N}^r(\log D)(t)) = 0$ for all $t \in \mathbb{Z}$.

(c) For $1 \le r \le N - 1$ one has:

$$\dim H^{N}(\mathbb{P}^{N}, \Omega^{r}_{\mathbb{P}^{N}}(\log D)(t)) = \sum_{i=0}^{N-r} (-1)^{i} \cdot \binom{N+1}{N-r-i} \cdot \binom{-t-m-i\cdot(m-1)+r}{N}$$

If D is a hyperplane
$$(m = 1)$$
, then we get:

$$\dim H^{N}(\mathbb{P}^{N}, \Omega^{r}_{\mathbb{P}^{N}}(\log D)(t)) = \binom{N}{r} \cdot \binom{-t-1+r}{N}$$
(d) $\dim H^{N}(\mathbb{P}^{N}, \Omega^{N}_{\mathbb{P}^{N}}(\log D)(t)) = \binom{-t-m+N}{N}$

Proof. We consider the following exact sequence

$$\dots \longrightarrow H^{q-1}(D, \Omega_D^{r-1}(t)) \xrightarrow{d_1} H^q(\mathbb{P}^N, \Omega_{\mathbb{P}^N}^r(t)) \longrightarrow$$
$$\longrightarrow H^q(\mathbb{P}^N, \Omega_{\mathbb{P}^N}^r(\log D)(t)) \longrightarrow H^q(D, \Omega_D^{r-1}(t)) \xrightarrow{d_2}$$
(6)
$$\xrightarrow{d_2} H^{q+1}(\mathbb{P}^N, \Omega_{\mathbb{P}^N}^r(t)) \longrightarrow \dots,$$

and assume 0 < q, 0 < r and q + r < N. By Lemma 3.1 the mappings d_1 and d_2 are epimorphic for all $t \in \mathbb{Z}$ and from (6) we get the exact sequence

$$0 \to H^q(\mathbb{P}^N, \Omega^r_{\mathbb{P}^N}(\log D)(t)) \to H^q(D, \Omega^{r-1}_D(t)) \xrightarrow{d_2} H^{q+1}(\mathbb{P}^N, \Omega^r_{\mathbb{P}^N}(t)) \to 0.$$

Under these assumptions holds $H^q(D, \Omega_D^{r-1}(t)) = 0$ if $q \neq r-1$ or $t \neq 0$ (cf. [1]). In case q = r-1, t = 0 we know that d_2 is an isomorphism by Lemma 3.1 since 2(r-1) < N-1. Therefore, one has

$$H^{q}(\mathbb{P}^{N}, \Omega^{r}_{\mathbb{P}^{N}}(\log D)(t)) = 0 \text{ for } 0 < q , \ 0 < r \text{ and } q + r < N.$$

For q < N, r < N, q + r > N we use the Serre duality to show statement (a). The case r = N is trivial since $\Omega_{\mathbb{P}^N}^N(\log D) \cong \mathcal{O}_{\mathbb{P}^N}(m - N - 1)$. If $r \ge 2$ and q + r = N then the mappings d_1 and d_2 are epimorphic, i.e. dim $H^{N-r}(\mathbb{P}^N, \Omega_{\mathbb{P}^N}^r(\log D)(t))$ $= \dim H^{N-r}(D, \Omega_D^{r-1}(t)) - \dim H^{N-r+1}(\mathbb{P}^N, \Omega_{\mathbb{P}^N}^r(t)).$ In the case r = 1 and q = N - 1 one has

 $\dim H^{N-1}(\mathbb{P}^N, \Omega^1_{\mathbb{P}^N}(\log D)(t))$

 $= \dim H^{N-1}(D, \mathcal{O}_D(t)) - \dim H^N(\mathbb{P}^N, \Omega^1_{\mathbb{P}^N}(t)) + H^N(\mathbb{P}^N, \Omega^1_{\mathbb{P}^N}(\log D)(t)).$ Applying Theorem 3.2, Lemma 2.1 and the results in [1] delivers (b) and (c). \Box

3.2. *T*-symmetric Tensor Differential Forms. Let *T* be a Young tableau with *r* boxes. We study the sheaf $\Omega^T(\log D) = (\Omega^1(\log D))^T$ on \mathbb{P}^N and begin with a free resolution of the sheaf $\Omega^1(\log D)$.

Lemma 3.4. Let $D \subset \mathbb{P}^N$ be a nonsingular, irreducible, algebraic hypersurface of degree $m \geq 2$ defined by the equation F = 0. Then there exists a short exact sequence

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^N}(-m) \longrightarrow \overset{N+1}{\oplus} \mathcal{O}_{\mathbb{P}^N}(-1) \longrightarrow \Omega^1_{\mathbb{P}^N}(\log D) \longrightarrow 0.$$
(7)

If D is a hyperplane, i.e. m = 1, we have $\Omega^1_{\mathbb{P}^N}(\log D) \cong \bigoplus^N \mathcal{O}_{\mathbb{P}^N}(-1)$.

Proof. Let $U_i = \{x_i \neq 0\} \subset \mathbb{P}^N$ and let $U \subseteq \mathbb{P}^N$ be an arbitrary open affine subset. We are going to show that there is an exact sequence

$$0 \to \Gamma(U, \mathcal{O}_{\mathbb{P}^N}(-m)) \xrightarrow{\alpha} \overset{N+1}{\oplus} \Gamma(U, \mathcal{O}_{\mathbb{P}^N}(-1)) \xrightarrow{\beta} \Gamma(U, \Omega^1_{\mathbb{P}^N}(\log D)) \to 0.$$

For sections $f_0, \ldots, f_N \in \Gamma(U, \mathcal{O}(-1))$ we put $g := -\frac{1}{m} \cdot \sum_{\mu=0}^N x_\mu f_\mu \in \Gamma(U, \mathcal{O})$. Let $F_j = \frac{\partial F}{\partial x_j}$ denotes the partial derivatives of F. The mapping β is defined by $(f_0, \ldots, f_N) \longmapsto \omega$, where the differential form ω on $U \cap U_i$ is given by

$$\omega = \omega_i := \sum_{\substack{\nu=0\\\nu\neq i}}^N \left(f_\nu + g \cdot \frac{F_\nu}{F} \right) \cdot x_i \cdot \mathrm{d} \, \frac{x_\nu}{x_i} \, \, .$$

One easily verifies that ω is a section of $\Omega_{\mathbb{P}^N}^1(\log D)$ on U and it holds, in particular, $\omega_i = \omega_j$ for any $i, j \in \{0, 1, \ldots, N\}$. For a section $\delta \in \Gamma(U, \mathcal{O}(-m))$ let $f_{\nu} = \delta \cdot F_{\nu}$ for all $\nu = 0, 1, \ldots, N$ which implies that $f_{\nu} \in \Gamma(U, \mathcal{O}(-1))$ and $g = -\delta \cdot F$. Finally, we have ker $\beta = \{(\delta \cdot F_0, \ldots, \delta \cdot F_N)\} \cong \Gamma(U, \mathcal{O}_{\mathbb{P}^N}(-m))$, which yields the claim for $m \geq 2$.

In the last part we have to show the statement of Lemma 3.4 in case m = 1. Let $D \subset \mathbb{P}^N$ be the hyperplane satisfying the equation $x_N = 0$, and let $U \subseteq \mathbb{P}^N$ be an open subset. For given sections $f_0, \ldots, f_{N-1} \in \Gamma(U, \mathcal{O}(-1))$ let ω be the differential form, which has on $U \cap U_i$, $i = 0, \ldots, N-1$, the representation

$$\omega = \omega_i = \sum_{\substack{\nu=0\\\nu\neq i}}^{N-1} f_{\nu} \cdot x_i \cdot \mathrm{d} \, \frac{x_{\nu}}{x_i} - \left(\sum_{\mu=0}^{N-1} f_{\mu} \cdot x_{\mu}\right) \cdot \frac{x_i}{x_N} \, \mathrm{d} \, \frac{x_N}{x_i},$$

respectively on $U \cap U_N$,

$$\omega = \omega_N = \sum_{\nu=0}^{N-1} f_\nu \cdot x_N \cdot \mathrm{d} \, \frac{x_\nu}{x_N}.$$

Then ω is a section of $\Omega^1_{\mathbb{P}^N}(\log D)$ on U, and the mapping $(f_0, \ldots, f_{N-1}) \mapsto \omega$ becomes an isomorphism of $\Gamma(U, \bigoplus^N \mathcal{O}_{\mathbb{P}^N}(-1))$ onto $\Gamma(U, \Omega^1_{\mathbb{P}^N}(\log D))$. **Lemma 3.5.** Let T be a Young tableau with r boxes and the row lengths l_1, l_2, \ldots, l_d , set $t_i := r + l_i - i$ for all $i \ge 1$ ($l_i = 0$ if i > d) and assume $d = \operatorname{depth} T \le N$. Then the following sequence is exact for $m \ge 2$:

$$0 \longrightarrow_{b_d} \mathcal{O}_{\mathbb{P}^N}(d \cdot (1-m) - r) \xrightarrow{\alpha_d} \bigoplus_{b_{d-1}} \mathcal{O}_{\mathbb{P}^N}((d-1) \cdot (1-m) - r) \xrightarrow{\alpha_{d-1}} \\ \xrightarrow{\alpha_{d-1}} \bigoplus_{b_{d-2}} \mathcal{O}_{\mathbb{P}^N}((d-2) \cdot (1-m) - r) \xrightarrow{\alpha_{d-2}} \dots \xrightarrow{\alpha_2} \bigoplus_{b_1} \mathcal{O}_{\mathbb{P}^N}(1-m-r) \xrightarrow{\alpha_1} (8) \\ \xrightarrow{\alpha_1} \bigoplus_{b_0} \mathcal{O}_{\mathbb{P}^N}(-r) \xrightarrow{\alpha_0} \Omega_{\mathbb{P}^N}^T(\log D) \longrightarrow 0$$

with the integers

$$b_s = \left(\prod_{i=1}^N i!\right)^{-1} \cdot \sum_{1 \le i_1 < \dots < i_s \le d} \Delta(t_1, t_2, \dots, t_{i_1} - 1, \dots, t_{i_s} - 1, \dots, t_N, t_{N+1})$$
(9)

where Δ denotes the Vandermonde determinant. In the case s = 0 we have

$$b_0 = \left(\prod_{i=1}^N i!\right)^{-1} \cdot \prod_{1 \le i < j \le N+1} (l_i - l_j + j - i) = \left(\prod_{i=1}^N i!\right)^{-1} \cdot \Delta(t_1, t_2, \dots, t_N, t_{N+1})$$

For m = 1 (D is a hyperplane) holds

$$\Omega^T_{\mathbb{P}^N}(\log D) \cong \overset{\operatorname{rk}(\Omega^T_{\mathbb{P}^N})}{\oplus} \mathcal{O}_{\mathbb{P}^N}(-r)$$

with

$$\operatorname{rk}(\Omega_{\mathbb{P}^N}^T) = \prod_{1 \le i < j \le N} \left(\frac{l_i - l_j}{j - i} + 1 \right) = \sum_{i=0}^d (-1)^i \cdot b_i$$
$$= \left(\prod_{i=1}^{N-1} i! \right)^{-1} \cdot \Delta(t_1, t_2, \dots, t_N) \; .$$

Proof. The T-Power of (7) yields the claim for $m \ge 2$ (cf. [3]) and Lemma 3.4 shows the case m = 1.

Theorem 3.6. Let T be a Young tableau with r boxes and with $d = \operatorname{depth} T$ rows.

(a)
$$\chi(\mathbb{P}^N, \Omega_{\mathbb{P}^N}^T(\log D)(t)) = \frac{1}{N!} \cdot \sum_{i=0}^d (-1)^i \cdot b_i \cdot \prod_{j=1}^N (t - i \cdot (m - 1) + j - r)$$

- (b) For depth T < N one has:
- $$\begin{split} \dim H^0(\mathbb{P}^N,\Omega^T_{\mathbb{P}^N}(\log D)(t)) &= \sum_{i=0}^d (-1)^i \cdot b_i \cdot \binom{t-i \cdot (m-1)+N-r}{N} \\ \text{and therefore: } H^0(\mathbb{P}^N,\Omega^T_{\mathbb{P}^N}(\log D)(t)) \neq 0 \ \Leftrightarrow \ t \geq r \end{split}$$

P. BRÜCKMANN AND P. WINKERT

- (c) Let $d = \operatorname{depth} T = N$ and let l_N be the number of columns of T with the length N. We denote by T' the Young tableau which is given by Twithout these columns of length N. Then depth T' < N and it holds $\Omega_{\mathbb{P}^N}^T(\log D)(t) \cong \Omega_{\mathbb{P}^N}^{T'}(\log D)(t + l_N \cdot (m - N - 1)).$ If T is a rectangle with N rows and l columns, then we have $\Omega_{\mathbb{P}^N}^T(\log D)(t) \cong \mathcal{O}_{\mathbb{P}^N}(t + l \cdot (m - N - 1)).$
- (d) For $1 \leq q < N d$ we get $H^q(\mathbb{P}^N, \Omega^T_{\mathbb{P}^N}(\log D)(t)) = 0$ for all $t \in \mathbb{Z}$.
- (e) Let d_l be the length of the last column of T. Then holds: $H^q(\mathbb{P}^N, \Omega^T_{\mathbb{P}^N}(\log D)(t)) = 0$ for $N - d_l < q < N$ and $\forall t \in \mathbb{Z}$.

Proof. The short exact sequences of (8) yields

 $\begin{array}{cccc} 0 & \longrightarrow \underset{b_{d}}{\longrightarrow} \mathcal{O}_{\mathbb{P}^{N}}(d \cdot (1-m)-r) \longrightarrow \underset{b_{d-1}}{\oplus} \mathcal{O}_{\mathbb{P}^{N}}((d-1) \cdot (1-m)-r) \longrightarrow \\ & \longrightarrow \operatorname{Im} \alpha_{d-1} \longrightarrow 0 \\ 0 & \longrightarrow \operatorname{Im} \alpha_{d-1} \longrightarrow \underset{b_{d-2}}{\oplus} \mathcal{O}_{\mathbb{P}^{N}}((d-2) \cdot (1-m)-r) \longrightarrow \operatorname{Im} \alpha_{d-2} \longrightarrow 0 \\ & \vdots & \vdots \\ 0 & \longrightarrow \operatorname{Im} \alpha_{2} \longrightarrow \underset{b_{1}}{\oplus} \mathcal{O}_{\mathbb{P}^{N}}(1-m-r) \longrightarrow \operatorname{Im} \alpha_{1} \longrightarrow 0 \\ 0 & \longrightarrow \operatorname{Im} \alpha_{1} \longrightarrow \underset{b_{0}}{\oplus} \mathcal{O}_{\mathbb{P}^{N}}(-r) \longrightarrow \Omega_{\mathbb{P}^{N}}^{T}(\log D) \longrightarrow 0 \end{array}$

where $H^q(\mathbb{P}^N, \mathcal{O}_{\mathbb{P}^N}(t)) = 0$ for $1 \le q \le N - 1$ and for all $t \in \mathbb{Z}$. This implies $H^q(\mathbb{P}^N, \operatorname{Im} \alpha_i(t)) = 0$ for $1 \le q \le N - 1 + i - d$ and hence, we have in case d < N

$$\dim H^{0}(\mathbb{P}^{N}, \Omega_{\mathbb{P}^{N}}^{T}(\log D)(t))$$

$$= b_{0} \cdot \dim H^{0}(\mathbb{P}^{N}, \mathcal{O}_{\mathbb{P}^{N}}(t-r)) - \dim H^{0}(\mathbb{P}^{N}, \operatorname{Im} \alpha_{1}(t))$$

$$\dim H^{0}(\mathbb{P}^{N}, \operatorname{Im} \alpha_{1}(t))$$

$$= b_{1} \cdot \dim H^{0}(\mathbb{P}^{N}, \mathcal{O}_{\mathbb{P}^{N}}(t+1-m-r)) - \dim H^{0}(\mathbb{P}^{N}, \operatorname{Im} \alpha_{2}(t))$$

$$\vdots$$

$$\dim H^0(\mathbb{P}^N, \operatorname{Im} \alpha_{d-1}(t)) = b_{d-1} \cdot \dim H^0(\mathbb{P}^N, \mathcal{O}_{\mathbb{P}^N}(t+(d-1)\cdot(1-m)-r)) - b_d \cdot \dim H^0(\mathbb{P}^N, \mathcal{O}_{\mathbb{P}^N}(t+d\cdot(1-m)-r)).$$

This shows (b). For d = N we already know that

$$\Omega_{\mathbb{P}^N}^T(\log)(t) \cong \Omega_{\mathbb{P}^N}^N(\log D) \otimes \ldots \otimes \Omega_{\mathbb{P}^N}^N(\log D) \otimes \Omega_{\mathbb{P}^N}^{T'}(\log D)(t)$$
$$\cong \Omega_{\mathbb{P}^N}^{T'}(\log D)(t+l_N \cdot (m-N-1))$$

which proves assertion (c). In order to prove (d), we consider again the short exact sequences of (8) and obtain

$$H^{q}(\mathbb{P}^{N}, \Omega^{T}_{\mathbb{P}^{N}}(\log D)(t)) = 0 \text{ if}$$

$$H^{q}(\mathbb{P}^{N}, \mathcal{O}_{\mathbb{P}^{N}}(t-r)) = 0 \text{ and } H^{q+1}(\mathbb{P}^{N}, \operatorname{Im} \alpha_{1}(t)) = 0$$

10

$$\begin{split} H^{q+1}(\mathbb{P}^{N}, \operatorname{Im} \alpha_{1}(t)) &= 0 \quad \text{if} \\ H^{q+1}(\mathbb{P}^{N}, \mathcal{O}_{\mathbb{P}^{N}}(t+1-m-r)) &= 0 \quad \text{and} \quad H^{q+2}(\mathbb{P}^{N}, \operatorname{Im} \alpha_{2}(t)) = 0 \\ &\vdots \\ H^{q+d-1}(\mathbb{P}^{N}, \operatorname{Im} \alpha_{d-1}(t)) &= 0 \quad \text{if} \\ H^{q+d-1}(\mathbb{P}^{N}, \mathcal{O}_{\mathbb{P}^{N}}(t+(d-1)\cdot(1-m)-r)) &= 0 \\ \text{and} \quad H^{q+d}(\mathbb{P}^{N}, \mathcal{O}_{\mathbb{P}^{N}}(t+d\cdot(1-m)-r)) &= 0. \end{split}$$

This implies $H^q(\mathbb{P}^N, \Omega^T_{\mathbb{P}^N}(\log D)(t)) = 0$ for $1 \le q \le N - d - 1$ and $\forall t \in \mathbb{Z}$. The last statement can be proven by Serre duality which means

$$\dim H^q(\mathbb{P}^N, \Omega^T_{\mathbb{P}^N}(\log D)(t))$$

= dim $H^{N-q}(\mathbb{P}^N, \Omega^{T^*}_{\mathbb{P}^N}(\log D)(-t - m - (l-1) \cdot (m - N - 1)))$

where depth $T^* = N - d_l < N$. Note if we use (b) with T^* instead of T, we obtain a formula for dim $H^N(\mathbb{P}^N, \Omega^T_{\mathbb{P}^N}(\log D)(t))$.

3.3. Symmetric Differential Forms. Let T be a Young tableau with r boxes and only one row, i.e. depth T = 1. We will specify the dimensions of $H^q(\mathbb{P}^N, S^r\Omega^1(\log D)(t))$ and consider the following exact sequence (cf. Lemma 3.5)

$$0 \longrightarrow \bigoplus_{b_1} \mathcal{O}_{\mathbb{P}^N}(-m+1-r) \longrightarrow \bigoplus_{b_0} \mathcal{O}_{\mathbb{P}^N}(-r) \longrightarrow S^r \Omega^1_{\mathbb{P}^N}(\log D) \longrightarrow 0$$
(10)

with the integers $b_0 = \binom{N+r}{N}$ and $b_1 = \binom{N+r-1}{N}$.

Theorem 3.7. Let $N \ge 2$. Then one has:

(a)
$$\chi(\mathbb{P}^{N}, S^{r}\Omega^{1}_{\mathbb{P}^{N}}(\log D)(t))$$

= $\frac{1}{N!} \cdot \binom{N+r}{N} \cdot \prod_{j=1}^{N} (t-r+j) - \frac{1}{N!} \cdot \binom{N+r-1}{N} \cdot \prod_{i=1}^{N} (t-m+1-r+i)$

(b) dim
$$H^0(\mathbb{P}^N, S^r\Omega^1_{\mathbb{P}^N}(\log D)(t))$$

$$= \binom{N+r}{N} \cdot \binom{t-r+N}{N} - \binom{N+r-1}{N} \cdot \binom{t-m+1-r+N}{N}$$

(c) For $1 \leq q \leq N-2$ holds: $H^q(\mathbb{P}^N, S^r\Omega^1_{\mathbb{P}^N}(\log D)(t)) = 0$ for all $t \in \mathbb{Z}$

$$\begin{aligned} \text{(d)} \ &\dim H^{N-1}(\mathbb{P}^N, S^r\Omega^1_{\mathbb{P}^N}(\log D)(t)) \\ &= \sum_{i=0}^{N-1} (-1)^i \cdot \widetilde{b}_i \cdot \binom{-t-r(m-2)-i \cdot (m-1)-1}{N} \\ &-\binom{N+r}{N} \cdot \binom{-t+r-1}{N} + \binom{N+r-1}{N} \cdot \binom{-t+m+r-2}{N} \\ &\dim H^N(\mathbb{P}^N, S^r\Omega^1_{\mathbb{P}^N}(\log D)(t)) \end{aligned}$$

$$=\sum_{i=0}^{N-1} (-1)^{i} \cdot \widetilde{b}_{i} \cdot \binom{-t - r(m-2) - i \cdot (m-1) - 1}{N}$$

with the integers

$$\widetilde{b}_{i} = \frac{1}{N+r} \cdot \binom{N+r}{N-1-i} \cdot \binom{N+r}{N} \cdot \binom{r+i-1}{i}$$
(11)

Proof. (a) follows directly from (10) and the additivity of the Euler characteristic. We consider (10) together with the corresponding cohomology sequence and know that $H^q(\mathbb{P}^N, \mathcal{O}_{\mathbb{P}^N}(t)) = 0$ for any $q \in \{1, \ldots, N-1\}$ and for all $t \in \mathbb{Z}$, which implies (b) and (c). Using the Serre Duality yields

$$\dim H^{N}(\mathbb{P}^{N}, S^{r}\Omega^{1}(\log D)(t)) = \dim H^{0}(\mathbb{P}^{N}, \Omega^{T^{*}}(\log D)(-t + (r-1) \cdot (N+1) - r \cdot m))$$

where T^* is a rectangle with depth $T^* = N - 1$ rows and length $T^* = r$ columns and with the associated integers \tilde{b}_i in (11) (cf. Lemma 3.5). Theorem 3.6(b) delivers the formula for dim $H^0(\mathbb{P}^N, \Omega^{T^*}(\log D)(-t + (r-1)\cdot (N+1) - r \cdot m))$. Finally, one gets easily the dimension dim $H^{N-1}(\mathbb{P}^N, S^r\Omega^1_{\mathbb{P}^N}(\log D)(t))$ from the long cohomology sequence.

Corollary 3.8. For $N \ge 2$ we obtain:

- (a) $H^{0}(\mathbb{P}^{N}, S^{r}\Omega_{\mathbb{P}^{N}}^{1}(\log D)(t)) \neq 0 \Leftrightarrow t \geq r$ (b) $\dim H^{0}(\mathbb{P}^{N}, S^{r}\Omega_{\mathbb{P}^{N}}^{1}(\log D)(t)) = \chi(\mathbb{P}^{N}, S^{r}\Omega_{\mathbb{P}^{N}}^{1}(\log D)(t))$ if $t \geq m + r N 1$ (c) $H^{N}(\mathbb{P}^{N}, S^{r}\Omega_{\mathbb{P}^{N}}^{1}(\log D)(t)) = 0 \Leftrightarrow t \geq -r(m-2) N$ (d) $H^{N-1}(\mathbb{P}^{N}, S^{r}\Omega_{\mathbb{P}^{N}}^{1}(\log D)(t)) = 0$ if $t \geq m + r N 1$

Proof. Obviously, the proof follows from Theorem 3.7.

Theorem 3.9. Let $N \ge 2$ and let D be a hyperplane, that is, m = 1. Then one has

- (a) dim $H^0(\mathbb{P}^N, S^r\Omega^1_{\mathbb{P}^N}(\log D)(t)) = \binom{N+r-1}{N-1} \cdot \binom{t-r+N}{N}$
- (b) For $1 \le q \le N 1$ holds: $H^q(\mathbb{P}^N, S^r\Omega^1_{\mathbb{P}^N}(\log D)(t)) = 0 \ \forall t \in \mathbb{Z}$

(c) dim
$$H^N(\mathbb{P}^N, S^r\Omega^1_{\mathbb{P}^N}(\log D)(t)) = \binom{N+r-1}{N-1} \cdot \binom{-t+r-1}{N}$$

Proof.
$$S^r \Omega^1_{\mathbb{P}^N}(\log D) \cong \bigoplus_{\binom{N+r-1}{N-1}} \mathcal{O}_{\mathbb{P}^N}(-r).$$

4. Complete Intersections $Y \subset \mathbb{P}^N$

Let $Y = H_1 \cap \ldots \cap H_{N-n} \subseteq \mathbb{P}^N$ be a nonsingular, irreducible, complete intersection of algebraic hypersurfaces $H_i \subset \mathbb{P}^N$, where H_i is given by the equation $F_i = 0$ with deg $F_i = m_i$. We denote by n the dimension of Y. Let D be a prime divisor on Y, which is defined by the equation $D = Y \cap H$

 \square

with a hypersurface H: F = 0. The degree of H is m. In the following, we abbreviating denote $c = N - n = \operatorname{codim} Y$ and assume $n \geq 2$. Let X be a further complete intersection which is described by $X = H_1 \cap \ldots \cap H_{c-1}$. Here dim X = n+1 and $Y = X \cap H_c$. There exists also a divisor $D^* = X \cap H$ on X. Assume that the hypersurfaces H_1, \ldots, H_{N-n} and H lie in general position, i.e. for instance $X = H_1 \cap \ldots \cap H_{c-1} \subseteq \mathbb{P}^N$ and the prime divisors D on Y and D^* on X are nonsingular, irreducible, complete intersections, too.

4.1. Alternating Differential Forms. In case r = n we obtain $\Omega_Y^n = \omega_Y \cong \mathcal{O}_Y \left(\sum_{i=1}^c m_i - N - 1 \right)$ which implies

$$\Omega_Y^n(\log D) \cong \Omega_Y^n(m) \cong \mathcal{O}_Y(\sum_{i=1}^c m_i - N - 1 + m) ,$$

where $D = Y \cap H$ with deg H = m. The dimensions of $H^q(Y, \Omega_Y^n(\log D)(t)) = H^q(Y, \mathcal{O}_Y(\sum_{i=1}^c m_i - N - 1 + m + t))$ are well known:

If
$$1 \le q \le n-1$$
 then $H^q(Y, \mathcal{O}_Y(t)) = 0 \ \forall t \in \mathbb{Z}$.
 $\dim H^0(Y, \mathcal{O}_Y(t)) = {\binom{t+N}{N}} + \sum_{j=1}^c (-1)^j \cdot \sum_{1 \le i_1 < i_2 < \dots < i_j \le c} {\binom{t+N-m_{i_1}-m_{i_2}-\dots-m_{i_j}}{N}}$
 $\dim H^n(Y, \mathcal{O}_Y(t)) = \dim H^0(Y, \mathcal{O}_Y(-t+m_1+m_2+\dots+m_c-N-1))$

(cf. e.g. [1] or the proof of Lemma (4.4) in the present paper). We study the cohomology groups $H^q(Y, \Omega^r_Y(\log D)(t))$ with $r < \dim Y = n$:

Lemma 4.1. The following sequences are exact.

$$(a) \ 0 \longrightarrow \mathcal{O}_X(-m_c) \longrightarrow \mathcal{O}_X \xrightarrow{\varphi^*} \mathcal{O}_Y \longrightarrow 0 \tag{12}$$
$$(b) \ 0 \longrightarrow \mathcal{O}_X(-m_c) \xrightarrow{\alpha} \mathcal{O}_X^r (\log D^*) \xrightarrow{\beta} \mathcal{O}_Y \longrightarrow 0$$

$$(b) \ 0 \to \Omega'_X(\log D^*)(-m_c) \to \Omega'_X(\log D^*) \to \mathcal{O}_Y \otimes_{\mathcal{O}_X} \Omega'_X(\log D^*) \to 0$$

$$(13)$$

$$(c) \ 0 \to \Omega_Y^{r-1}(\log D)(-m_c) \xrightarrow{\gamma} \mathcal{O}_Y \otimes_{\mathcal{O}_X} \Omega_X^r(\log D^*) \xrightarrow{\delta} \Omega_Y^r(\log D) \to 0$$
(14)

Proof. Notice, for r = 1 we have to substitute $\Omega_Y^{r-1}(\log D)$ by the structure sheaf \mathcal{O}_Y . The composition $\delta \circ \beta$ is the restriction of the differential forms on X to the subvariety $Y \subset X$. Obviously, the sequence (12) is exact and (13) results by multiplication of (12) with the locally free sheaf $\Omega_X^r(\log D^*)$. We will show that (14) is also an exact sequence. Let $U \subseteq X$ be an open subset of X and let $V = Y \cap U$ be an open, nonempty subset of Y. Without loss of generality we assume $U \subseteq U_i = \{x_i \neq 0\}$. Moreover, we suppose the existence of local parameters $u_1, \ldots, u_{n-1}, u_n = \frac{F}{x_i^m}, u_{n+1} = \frac{F_c}{x_i^{m_c}}$ of X on U such that their restriction to Y are also local parameters

$$v_1 = \varphi^*(u_1), \dots, v_{n-1} = \varphi^*(u_{n-1}), v_n = \varphi^*(u_n) = \frac{F}{x_i^m}$$
 of Y on V. Then

 $\Gamma(V, \mathcal{O}_Y \otimes_{\mathcal{O}_X} \Omega_X^r(\log D^*))$ is a free $\Gamma(V, \mathcal{O}_Y)$ -module whose rank is equal to $\binom{n+1}{r}$. Let $\omega \in \Gamma(V, \mathcal{O}_Y \otimes_{\mathcal{O}_X} \Omega_X^r(\log D^*))$ be a section of the form

$$\omega = \sum_{i_{\nu}=1}^{n-1} f_{i_1,\dots,i_r} \,\mathrm{d}\, u_{i_1} \wedge \dots \wedge \mathrm{d}\, u_{i_r}$$

$$+ \sum_{i_{\nu}=1}^{n-1} f_{i_1,\dots,i_{r-1},n} \,\mathrm{d}\, u_{i_1} \wedge \dots \wedge \mathrm{d}\, u_{i_{r-1}} \wedge \frac{\mathrm{d}\, u_n}{u_n}$$

$$+ \sum_{i_{\nu}=1}^{n-1} f_{i_1,\dots,i_{r-1},n+1} \,\mathrm{d}\, u_{i_1} \wedge \dots \wedge \mathrm{d}\, u_{i_{r-1}} \wedge \mathrm{d}\, u_{n+1}$$

$$+ \sum_{i_{\nu}=1}^{n-1} f_{i_1,\dots,i_{r-2},n,n+1} \,\mathrm{d}\, u_{i_1} \wedge \dots \wedge \mathrm{d}\, u_{i_{r-2}} \wedge \frac{\mathrm{d}\, u_n}{u_n} \wedge \mathrm{d}\, u_{n+1}$$

where $f_{i_1,\ldots,i_r} \in \Gamma(V, \mathcal{O}_Y)$. The homomorphism δ is defined as follows:

$$\delta(\omega) = \sum_{i_{\nu}=1}^{n-1} f_{i_1,\dots,i_r} \,\mathrm{d}\, v_{i_1} \wedge \dots \wedge \mathrm{d}\, v_{i_r} + \sum_{i_{\nu}=1}^{n-1} f_{i_1,\dots,i_{r-1},n} \,\mathrm{d}\, v_{i_1} \wedge \dots \wedge \mathrm{d}\, v_{i_{r-1}} \wedge \frac{\mathrm{d}\, v_n}{v_n},$$

which means that $\delta(\omega) \in \Gamma(V, \Omega^r_Y(\log D))$. The kernel of δ is given by

$$\ker \delta = \left\{ \sum_{i_{\nu}=1}^{n-1} f_{i_1,\dots,i_{r-1},n+1} \,\mathrm{d}\, u_{i_1} \wedge \dots \wedge \mathrm{d}\, u_{i_{r-1}} \wedge \mathrm{d}\, u_{n+1} \right. \\ \left. + \sum_{i_{\nu}=1}^{n-1} f_{i_1,\dots,i_{r-2},n,n+1} \,\mathrm{d}\, u_{i_1} \wedge \dots \wedge \mathrm{d}\, u_{i_{r-2}} \wedge \frac{\mathrm{d}\, u_n}{u_n} \wedge \mathrm{d}\, u_{n+1} \right\},$$

where ker $\delta \subseteq \Gamma(V, \mathcal{O}_Y \otimes_{\mathcal{O}_X} \Omega_X^r(\log D^*))$. In order to show that the kernel of δ is isomorphic to $\Gamma(V, \Omega_Y^{r-1}(\log D)(-m_c))$, we consider the following homomorphisms

$$\ker \delta \xrightarrow{\widetilde{\alpha}} \Gamma(V, \mathcal{O}_Y(-m_c) \otimes_{\mathcal{O}_X} \Omega_X^{r-1}(\log D^*)) \xrightarrow{\beta} \Gamma(V, \Omega_Y^{r-1}(\log D)(-m_c)).$$

Let $\xi \in \ker \delta$ be any element. The mappings $\widetilde{\alpha}$ and $\widetilde{\beta}$ are illustrated by

$$\widetilde{\alpha}(\xi) = \frac{1}{x_i^{m_c}} \sum_{i_\nu=1}^{n-1} f_{i_1,\dots,i_{r-1},n+1} \,\mathrm{d}\, u_{i_1} \wedge \dots \wedge \mathrm{d}\, u_{i_{r-1}} \\ + \frac{1}{x_i^{m_c}} \sum_{i_\nu=1}^{n-1} f_{i_1,\dots,i_{r-2},n,n+1} \,\mathrm{d}\, u_{i_1} \wedge \dots \wedge \mathrm{d}\, u_{i_{r-2}} \wedge \frac{\mathrm{d}\, u_n}{u_n},$$

respectively,

$$\widetilde{\beta}(\widetilde{\alpha}(\xi)) = \frac{1}{x_i^{m_c}} \sum_{i_\nu=1}^{n-1} f_{i_1,\dots,i_{r-1},n+1} \,\mathrm{d}\, v_{i_1} \wedge \dots \wedge \mathrm{d}\, v_{i_{r-1}} \\ + \frac{1}{x_i^{m_c}} \sum_{i_\nu=1}^{n-1} f_{i_1,\dots,i_{r-2},n,n+1} \,\mathrm{d}\, v_{i_1} \wedge \dots \wedge \mathrm{d}\, v_{i_{r-2}} \wedge \frac{\mathrm{d}\, v_n}{v_n} \,.$$

Since $x_i^{m_c} \cdot d u_{n+1} = x_i^{m_c} \cdot d \frac{F_c}{x_i^{m_c}}$ is a global section of the sheaf $\mathcal{O}_Y(m_c) \otimes_{\mathcal{O}_X} \Omega^1_X$ the functions $\tilde{\alpha}$ and $\tilde{\beta}$ are independent of the index i with $U \subseteq U_i$ and independent of the choice of the local parameters u_1, \ldots, u_{n-1} . One can easily see that $\tilde{\alpha}$ and $\tilde{\beta}$ are monomorphic. The mapping $\tilde{\beta}$ is the restriction from X to Y which obviously is epimorphic. While $\tilde{\alpha}$ is generally not epimorphic, any element of $\Gamma(V, \Omega_Y^{r-1}(\log D)(-m_c))$ has a preimage in ker δ . We can represent an element of $\Gamma(V, \Omega_Y^{r-1}(\log D)(-m_c))$ by the form $\tilde{\beta}(\tilde{\alpha}(\xi))$ with functions $f_{i_1,\ldots,i_r} \in \Gamma(V, \mathcal{O}_Y)$. In order to find a preimage in ker δ , we use the same functions f_{i_1,\ldots,i_r} , and in place of v_i we take the local parameters u_i on X and multiply with $x_i^{m_c} \cdot d u_{n+1}$. This proves that the composition $\tilde{\beta} \circ \tilde{\alpha}$ is isomorphic, the sequence (14) is exact. \Box

By means of these exact sequences we are going to prove recursion formulas about the dimensions of the cohomology groups $H^q(Y, \Omega_Y^r(\log D)(t))$. As above mentioned, for r = n these dimensions are known.

Theorem 4.2.

- (a) $\chi(Y, \Omega_Y^r(\log D)(t)) = \chi(X, \Omega_X^r(\log D^*)(t))$ $-\chi(X, \Omega_X^r(\log D^*)(t - m_c)) - \chi(Y, \Omega_Y^{r-1}(\log D)(t - m_c))$ for $r \ge 1$ In the case r = 1 one has to substitute $\Omega_Y^{r-1}(\log D)$ by the structure sheaf \mathcal{O}_Y .
- (b) Let 0 < q < n, $q + r \neq n$ and $r \ge 0$. Then one has $H^q(Y, \Omega^r_V(\log D)(t)) = 0$ for any $t \in \mathbb{Z}$.
- (c) $\dim H^0(Y, \Omega_Y^r(\log D)(t))$ = $\dim H^0(X, \Omega_X^r(\log D^*)(t)) - \dim H^0(X, \Omega_X^r(\log D^*)(t - m_c))$ - $\dim H^0(Y, \Omega_Y^{r-1}(\log D)(t - m_c))$ for 0 < r < n
- (d) dim $H^n(Y, \Omega^r_Y(\log D)(t)) = \dim H^0(X, \Omega^{n-r}_X(\log D^*)(-t-m))$ $-\dim H^0(X, \Omega^{n-r}_X(\log D^*)(-t-m_c-m))$ $-\dim H^0(Y, \Omega^{n-r-1}_Y(\log D)(-t-m_c-m))$
- (e) $\dim H^{1}(Y, \Omega_{Y}^{n-1}(\log D)(t)) = \dim H^{0}(Y, \Omega_{Y}^{n-1}(\log D)(t)) + \dim H^{0}(Y, \Omega_{Y}^{n}(\log D)(t+m_{c}))$ $+ \dim H^{0}(X, \Omega_{X}^{n}(\log D^{*})(t)) - \dim H^{0}(X, \Omega_{X}^{n}(\log D^{*})(t+m_{c}))$ $- \dim H^{1}(X, \Omega_{X}^{n}(\log D^{*})(t)) + \dim H^{1}(X, \Omega_{X}^{n}(\log D^{*})(t+m_{c}))$

(f)
$$\dim H^{n-r}(Y, \Omega_Y^r(\log D)(t)) = \dim H^{n-r-1}(Y, \Omega_Y^{r+1}(\log D)(t+m_c)) - \dim H^{n-r}(X, \Omega_X^{r+1}(\log D^*)(t)) + \dim H^{n-r}(X, \Omega_X^{r+1}(\log D^*)(t+m_c)) \text{ for } 2 \le r < n$$

Proof. Under the additional condition q + r < n the proof of (b) will be shown by complete induction with respect to $c = \operatorname{codim} Y$ and r. Then the case q + r > n follows directly from the Serre duality. If c = 0, i.e. $Y = \mathbb{P}^N$, Theorem 3.3 implies $H^q(Y, \Omega_Y^r(\log D)(t)) = 0$ for 0 < q < N and $q + r \neq N$. If r = 0 then we get $H^q(Y, \mathcal{O}_Y(t)) = 0$ for 0 < q < n (cf. e.g. [2, Lemma 1]). In particular, we have the following induction assumption $(c - 1 = \operatorname{codim} X)$:

(i) From $q, r \in \mathbb{N}$, 0 < q, $0 \le r$ and q + r < n + 1 it follows

$$H^q(X, \Omega^r_X(\log D^*)(t)) = 0$$
 for all $t \in \mathbb{Z}$.

Now assume 0 < q, $0 \le r$ and q + r < n. From (13) we get the exact sequence

$$\dots \longrightarrow H^q(X, \Omega^r_X(\log D^*)(t)) \longrightarrow H^q(Y, \mathcal{O}_Y(t) \otimes_{\mathcal{O}_X} \Omega^r_X(\log D^*)) \longrightarrow \\ \longrightarrow H^{q+1}(X, \Omega^r_X(\log D^*)(t - m_c)) \longrightarrow \dots$$

Since 0 < q, q + 1 + r < n + 1 we have by induction assumption (i) : $H^q(X, \Omega^r_X(\log D^*)(t)) = 0$ and $H^{q+1}(X, \Omega^r_X(\log D^*)(t - m_c)) = 0$. Hence, $H^q(Y, \mathcal{O}_Y(t) \otimes_{\mathcal{O}_X} \Omega^r_X(\log D^*)) = 0$ for 0 < q, q + r < n and any $t \in \mathbb{Z}$. Now, let r > 0 be a fixed integer. We use the following induction assumption:

(ii) If 0 < q and q + r - 1 < n then $H^q(Y, \Omega_Y^{r-1}(\log D)(t)) = 0$ for all $t \in \mathbb{Z}$.

To prove: If 0 < q and q + r < n then $H^q(Y, \Omega^r_Y(\log D)(t)) = 0$ for all $t \in \mathbb{Z}$. Let 0 < q, q + r < n. We consider the exact sequence which is given by (14)

$$\dots \longrightarrow H^{q}(Y, \mathcal{O}_{Y}(t) \otimes_{\mathcal{O}_{X}} \Omega^{r}_{X}(\log D^{*})) \longrightarrow H^{q}(Y, \Omega^{r}_{Y}(\log D)(t) \longrightarrow \\ \longrightarrow H^{q+1}(Y, \Omega^{r-1}_{Y}(\log D)(t-m_{c})) \longrightarrow \dots$$

By (ii) one has $H^{q+1}(Y, \Omega_Y^{r-1}(\log D)(t - m_c)) = 0$ for all $t \in \mathbb{Z}$ since q + 1 + r - 1 = q + r < n (and q + 1 < n). Furthermore, we know that $H^q(Y, \mathcal{O}_Y(t) \otimes_{\mathcal{O}_X} \Omega_X^r(\log D^*)) = 0$ for any $t \in \mathbb{Z}$ because of 0 < q, q + r < n. This implies $H^q(Y, \Omega_Y^r(\log D)(t) = 0$ for 0 < q < n and q + r < n for any $t \in \mathbb{Z}$. For the proof of (c) we first consider the exact sequence from (13)

$$0 \longrightarrow H^{0}(X, \Omega_{X}^{r}(\log D^{*})(t - m_{c})) \longrightarrow H^{0}(X, \Omega_{X}^{r}(\log D^{*})(t)) \longrightarrow$$
$$\longrightarrow H^{0}(Y, \mathcal{O}_{Y}(t) \otimes_{\mathcal{O}_{X}} \Omega_{X}^{r}(\log D^{*}) \longrightarrow H^{1}(X, \Omega_{X}^{r}(\log D^{*})(t - m_{c})) \longrightarrow \dots,$$
(15)

and apply (i) which yields $H^1(X, \Omega^r_X(\log D^*)(t - m_c)) = 0$ as $1 + r < n + 1 = \dim X$. Because of (14) one gets the exact sequence

$$0 \longrightarrow H^{0}(Y, \Omega_{Y}^{r-1}(\log D)(t-m_{c})) \longrightarrow H^{0}(Y, \mathcal{O}_{Y}(t) \otimes_{\mathcal{O}_{X}} \Omega_{X}^{r}(\log D^{*})) \longrightarrow$$
$$H^{0}(Y, \Omega_{Y}^{r}(\log D)(t)) \longrightarrow H^{1}(Y, \Omega_{Y}^{r-1}(\log D)(t-m_{c})) \longrightarrow \dots,$$
(16)

and due to 1 + r - 1 = r < n one has $H^1(Y, \Omega_Y^{r-1}(\log D)(t - m_c)) = 0$. Statement (c) can be read from (15) and (16). Assertion (d) can easily be shown by Serre duality. The Euler-Poincare characteristic can be calculated by the exact sequences (12)–(14). This allows us to specify finally the dimension of $H^{n-r}(Y, \Omega_Y^r(\log D)(t))$. (e) and (f) also can be shown using the exact cohomology sequences.

4.2. *T*-symmetric Differential Forms. Let $Y \subseteq \mathbb{P}^N$ be the *n*-dimensional complete intersection of multidegree $(m) = (m_1, m_2, \ldots, m_c)$. c = N - n denotes the codimension of Y.

We consider a Young tableau T with r boxes, the row lengths $l_1 \geq l_2 \geq \ldots \geq l_d > 0$ and the column lengths $d_1 \geq d_2 \geq \ldots \geq d_l > 0$. We denote $l = l_1 = \text{length } T$ and $d = d_1 = \text{depth } T$. Let M(T) be the set of all integer matrices $A = ((d_{i,j})) \in \mathbb{N}^{(c+1,l)}$ with c+1 rows, l columns and with the following properties:

(1)
$$d_{1,j} = d_j \ \forall j \in \{1, \dots, l\},$$

(2) $d_{i,l} \ge d_{i+1,l} \ge 0 \ \forall i \in \{1, \dots, c\},$
(3) $d_{i,j} \ge d_{i+1,j} \ge d_{i,j+1} \ \forall i \in \{1, \dots, c\} \ \forall j \in \{1, \dots, l-1\}.$

Let $\varrho_i(A) = \sum_{j=1}^l d_{ij}$ be the i-th row sum of A and we put $\varrho(A) = \varrho_{c+1}(A)$. We denote by

$$\mu = \sum_{j=1}^{c} d_j \tag{17}$$

the number of boxes in the first c columns of T, where $d_j = 0$ for j > l. One can easily see that $r - \mu \leq \varrho(A) \leq r$ for all $A \in M(T)$. Finally, we define the subset $M_s(T)$ of M(T) by $M_s(T) := \{A \in M(T) : \varrho(A) = r - s\}$ for all $s \in \{0, 1, \ldots, \mu\}$. For simplification we set furthermore:

$$\Omega_{\mathbb{P}^{N}|Y}^{T'}(\log D^{*}) = \mathcal{O}_{Y} \otimes_{\mathcal{O}_{\mathbb{P}^{N}}} \Omega_{\mathbb{P}^{N}}^{T'}(\log D^{*}) , \ E_{T}^{s} = \bigoplus_{A \in M_{s}(T)} \Omega_{\mathbb{P}^{N}|Y}^{T'(A)}(\log D^{*})(t(A))$$

with $t(A) = \sum_{i=1}^{c} (\varrho_{i+1}(A) - \varrho_{i}(A)) \cdot m_{i}.$

Here T'(A) denotes a Young tableau with $\rho(A)$ boxes and the column lengths $d_{c+1,1}, \ldots, d_{c+1,l}$, that is, T'(A) depends only on the last row of A. If $\rho(A) = 0$ we need to replace the sheaf $\Omega_{\mathbb{P}^N|Y}^{T'(A)}(\log D^*)$ by the structure sheaf \mathcal{O}_Y .

Lemma 4.3. There exists following exact sequence:

$$0 \longrightarrow E_T^{\mu} \xrightarrow{\beta_{\mu}} E_T^{\mu-1} \xrightarrow{\beta_{\mu-1}} \dots \xrightarrow{\beta_2} E_T^1 \xrightarrow{\beta_1} \Omega_{\mathbb{P}^N|Y}^T(\log D^*) \xrightarrow{\beta_0} \Omega_Y^T(\log D) \longrightarrow 0.$$
(18)

Proof. (18) is the T-Power of the following short exact sequence (cf. [3]):

$$0 \longrightarrow \bigoplus_{i=1}^{\alpha} \mathcal{O}_Y(-m_i) \xrightarrow{\alpha} \mathcal{O}_Y \otimes_{\mathcal{O}_{\mathbb{P}^N}} \Omega^1_{\mathbb{P}^N}(\log D^*) \xrightarrow{\beta} \Omega^1_Y(\log D) \longrightarrow 0 \quad (19)$$

We need to show that (19) is an exact sequence. Let $U \subseteq \mathbb{P}^N$ be an open subset. Without loss of generality we put $U \subseteq U_i = \{x_i \neq 0\}$. Assume that there exist local parameters $\frac{F_1}{x_i^{m_1}}, \ldots, \frac{F_c}{x_i^{m_c}}, u_1, \ldots, u_{n-1}, \frac{F}{x_i^m}$ of \mathbb{P}^N on U such that the restrictions $v_1 = \varphi^*(u_1), \ldots, v_{n-1} = \varphi^*(u_{n-1}), v_n = \varphi^*\left(\frac{F}{x_i^m}\right)$ are local parameters of Y on $U \cap Y$. We know that $\Gamma(U \cap Y, \mathcal{O}_Y \otimes_{\mathcal{O}_{\mathbb{P}^N}} \Omega^1_{\mathbb{P}^N}(\log D^*))$ is a free $\Gamma(U \cap Y, \mathcal{O}_Y)$ -module defined by the span

$$\mathrm{d} \frac{F_1}{x_i^{m_1}}, \dots, \mathrm{d} \frac{F_c}{x_i^{m_c}}, \mathrm{d} u_1, \dots, \mathrm{d} u_{n-1}, \frac{x_i^m}{F} \cdot \mathrm{d} \frac{F}{x_i^m} .$$

$$\begin{split} &\Gamma(U \cap Y, \Omega^1_Y(\log D)) \text{ is a free } \Gamma(U \cap Y, \mathcal{O}_Y) - \text{module with the span } \mathrm{d}\, v_1, \dots, \mathrm{d}\, v_n. \\ & \text{Let } \omega \in \Gamma(U \cap Y, \mathcal{O}_Y \otimes_{\mathcal{O}_{\mathbb{P}^N}} \Omega^1_{\mathbb{P}^N}(\log D^*)) \text{ be any element given by} \end{split}$$

$$\omega = \sum_{j=1}^{c} f_j \cdot x_i^{m_j} \cdot \mathrm{d} \frac{F_j}{x_i^{m_j}} + \sum_{k=1}^{n-1} g_k \cdot \mathrm{d} u_k + h \cdot \frac{x_i^m}{F} \cdot \mathrm{d} \frac{F}{x_i^m}$$

The homomorphism β maps ω to $\beta(\omega) = \sum_{k=1}^{n-1} g_k \cdot \mathrm{d} v_k + h \cdot \frac{\mathrm{d} v_n}{v_n}$ where the kernel of this mapping is given by $\ker \beta = \left\{ \sum_{j=1}^{c} f_j \cdot x_i^{m_j} \cdot \mathrm{d} \frac{F_j}{x_i^{m_j}} \right\}$. We obtain the following homomorphism

$$\gamma : \bigoplus_{j=1}^{c} \Gamma(U \cap Y, \mathcal{O}_{Y}(-m_{j})) \longrightarrow \ker \beta \text{ with } (f_{1}, \dots, f_{c}) \longmapsto \sum_{j=1}^{c} f_{j} \cdot x_{i}^{m_{j}} \cdot \mathrm{d} \frac{F_{j}}{x_{i}^{m_{j}}}$$

which is isomorphic and independent of the index i with $U \subseteq U_i$.

Lemma 4.4. For an arbitrary Young tableau T' there exists the following exact sequence

$$0 \longrightarrow \Omega_{\mathbb{P}^{N}}^{T'}(\log D^{*})(-\sum_{i=1}^{c} m_{i}) \xrightarrow{\alpha_{c}} \bigoplus_{1 \leq i \leq c} \Omega_{\mathbb{P}^{N}}^{T'}(\log D^{*})(-\sum_{j=1}^{c} m_{j} + m_{i}) \xrightarrow{\alpha_{c-1}} \dots$$
$$\dots \xrightarrow{\alpha_{3}} \bigoplus_{1 \leq i_{1} < i_{2} \leq c} \Omega_{\mathbb{P}^{N}}^{T'}(\log D^{*})(-m_{i_{1}} - m_{i_{2}}) \xrightarrow{\alpha_{2}} \bigoplus_{1 \leq i \leq c} \Omega_{\mathbb{P}^{N}}^{T'}(\log D^{*})(-m_{i}) \xrightarrow{\alpha_{1}}$$
$$\xrightarrow{\alpha_{1}} \Omega_{\mathbb{P}^{N}}^{T'}(\log D^{*}) \xrightarrow{\alpha_{0}} \mathcal{O}_{Y} \otimes_{\mathcal{O}_{\mathbb{P}^{N}}} \Omega_{\mathbb{P}^{N}}^{T'}(\log D^{*}) \longrightarrow 0.$$
(20)

Proof. We consider the following exact sequence which is called the Koszul complex:

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^{N}}(-\sum_{i=1}^{c} m_{i}) \xrightarrow{\alpha_{c}} \bigoplus_{1 \leq i \leq c} \mathcal{O}_{\mathbb{P}^{N}}(-\sum_{j=1}^{c} m_{j} + m_{i}) \xrightarrow{\alpha_{c-1}} \dots$$
$$\xrightarrow{\alpha_{3}} \bigoplus_{1 \leq i_{1} < i_{2} \leq c} \mathcal{O}_{\mathbb{P}^{N}}(-m_{i_{1}} - m_{i_{2}}) \xrightarrow{\alpha_{2}} \bigoplus_{1 \leq i \leq c} \mathcal{O}_{\mathbb{P}^{N}}(-m_{i}) \xrightarrow{\alpha_{1}} \mathcal{O}_{\mathbb{P}^{N}} \xrightarrow{\alpha_{0}} \mathcal{O}_{Y} \longrightarrow 0.$$

Multiplying this exact sequence with the local free sheaf $\Omega_{\mathbb{P}^N}^{T'}(\log D^*)$ yields the assertion.

Theorem 4.5. Under the assumption $1 \le q < n - \operatorname{depth} T - \mu$ one gets

$$H^q(Y, \Omega^T_Y(\log D)(t)) = 0$$
 for all $t \in \mathbb{Z}$.

18

Proof. We write instead of (20) short exact sequences and obtain

$$\begin{split} 0 &\longrightarrow \Omega_{\mathbb{P}^{N}}^{T'}(\log D^{*})(-\sum_{i=1}^{c} m_{i}) \longrightarrow \bigoplus_{1 \leq i \leq c} \Omega_{\mathbb{P}^{N}}^{T'}(\log D^{*})(-\sum_{j=1}^{c} m_{j} + m_{i}) \longrightarrow \\ &\longrightarrow \operatorname{Im} \alpha_{c-1} \longrightarrow 0 \\ 0 &\longrightarrow \operatorname{Im} \alpha_{c-1} \longrightarrow \bigoplus_{1 \leq i_{1} < i_{2} \leq c} \Omega_{\mathbb{P}^{N}}^{T'}(\log D^{*})(-\sum_{j=1}^{c} m_{j} + m_{i_{1}} + m_{i_{2}}) \longrightarrow \\ &\longrightarrow \operatorname{Im} \alpha_{c-2} \longrightarrow 0 \\ & \vdots & \vdots \\ 0 &\longrightarrow \operatorname{Im} \alpha_{2} \longrightarrow \bigoplus_{1 \leq i \leq c} \Omega_{\mathbb{P}^{N}}^{T'}(\log D^{*})(-m_{i}) \longrightarrow \operatorname{Im} \alpha_{1} \longrightarrow 0 \\ 0 &\longrightarrow \operatorname{Im} \alpha_{1} \longrightarrow \Omega_{\mathbb{P}^{N}}^{T'}(\log D^{*}) \longrightarrow \mathcal{O}_{Y} \otimes_{\mathcal{O}_{\mathbb{P}^{N}}} \Omega_{\mathbb{P}^{N}}^{T'}(\log D^{*}) \longrightarrow 0. \end{split}$$

Using the long exact cohomology sequences yields a vanishing criterion for $H^q(Y, \mathcal{O}_Y \otimes_{\mathcal{O}_{\mathbb{P}^N}} \Omega_{\mathbb{P}^N}^{T'}(\log D^*)(t))$. We have

$$\begin{aligned} H^{q}(Y,\mathcal{O}_{Y}\otimes_{\mathcal{O}_{\mathbb{P}^{N}}}\Omega_{\mathbb{P}^{N}}^{T'}(\log D^{*})(t)) &= 0 \text{ if } H^{q}(\mathbb{P}^{N},\Omega_{\mathbb{P}^{N}}^{T'}(\log D^{*})(t)) = 0\\ \text{ and } H^{q+1}(\mathbb{P}^{N},\operatorname{Im}\alpha_{1}(t)) &= 0 \text{ if } H^{q+1}(\mathbb{P}^{N},\bigoplus_{1\leq i\leq c}\Omega_{\mathbb{P}^{N}}^{T'}(\log D^{*})(t-m_{i})) = 0\\ \text{ and } H^{q+2}(\mathbb{P}^{N},\operatorname{Im}\alpha_{2}(t)) &= 0 \end{aligned}$$

$$\vdots$$

$$H^{q+c-1}(\mathbb{P}^N, \operatorname{Im} \alpha_{c-1}(t)) = 0$$
if $H^{q+c-1}(\mathbb{P}^N, \bigoplus_{1 \le i \le c} \Omega_{\mathbb{P}^N}^{T'}(\log D^*)(t - \sum_{j=1}^c m_j + m_i)) = 0$
and $H^{q+c}(\mathbb{P}^N, \Omega_{\mathbb{P}^N}^{T'}(\log D^*)(t - \sum_{i=1}^c m_i) = 0.$

Applying Theorem 3.6 (d) yields $H^q(Y, \mathcal{O}_Y(t) \otimes_{\mathcal{O}_{\mathbb{P}^N}} \Omega_{\mathbb{P}^N}^{T'}(\log D^*)) = 0$ for $1 \leq q < n - \operatorname{depth} T'$. Now we study $H^q(Y, \Omega_Y^T(\log D)(t))$ with the aid of (18). Decomposing (18) in short exact sequences delivers

$$\begin{split} 0 &\longrightarrow E_T^{\mu} \longrightarrow E_T^{\mu-1} \longrightarrow \operatorname{Im} \beta_{\mu-1} \longrightarrow 0 \\ 0 &\longrightarrow \operatorname{Im} \beta_{\mu-1} \longrightarrow E_T^{\mu-2} \longrightarrow \operatorname{Im} \beta_{\mu-2} \longrightarrow 0 \\ \vdots & \vdots \\ 0 &\longrightarrow \operatorname{Im} \beta_2 \longrightarrow E_T^1 \longrightarrow \operatorname{Im} \beta_1 \longrightarrow 0 \\ 0 &\longrightarrow \operatorname{Im} \beta_1 \longrightarrow \Omega_{\mathbb{P}^N|Y}^T (\log D^*) \longrightarrow \Omega_Y^T (\log D) \longrightarrow 0 \end{split}$$

With
$$E_T^s(t) = \bigoplus_{A \in M_s(T)} \Omega_{\mathbb{P}^N|Y}^{T'(A)}(\log D^*)(t+t(A))$$
 one has

$$\begin{split} H^{q}(Y,\Omega^{T}_{Y}(\log D)(t)) &= 0 \text{ if } H^{q}(Y,\Omega^{T}_{\mathbb{P}^{N}|Y}(\log D^{*})(t)) = 0 \\ & \text{ and } H^{q+1}(Y,\operatorname{Im}\beta_{1}(t)) = 0 \\ & \vdots \\ H^{q+\mu-1}(Y,\operatorname{Im}\beta_{\mu-1}(t)) = 0 \text{ if } H^{q+\mu-1}(Y,E^{\mu-1}_{T}(t)) = 0 \\ & \text{ and } H^{q+\mu}(Y,E^{\mu}_{T}(t)) = 0. \end{split}$$

This implies $H^q(Y, \Omega^T_V(\log D)(t)) = 0$ for $1 \le q < n - \operatorname{depth} T - \mu$.

Now assume for instance $\mu < n - \operatorname{depth} T$. Then for each $t \in \mathbb{Z}$ it follows from our exact sequences: $H^q(\mathbb{P}^N, \operatorname{Im} \alpha_i(t)) = 0$ if $1 \le q \le \mu + i$, $H^q(Y, \mathcal{O}_Y(t) \otimes_{\mathcal{O}_{\mathbb{P}^N}} \Omega_{\mathbb{P}^N}^{T'}(\log D^*)) = 0$ if $1 \le q \le \mu + c$, $H^q(Y, E_T^j(t)) = 0$ if $1 \le q \le j$, $H^q(Y, \operatorname{Im} \beta_j(t)) = 0$ if $1 \le q \le j$. In particular, the cohomology groups $H^1(\ldots)$ of all these sheaves vanish. Therefore, we have the opportunity to calculate the dimensions of their cohomology

groups $H^0(\ldots)$: Let $h^T(t)$ abbreviating denotes the dimension dim $H^0(\mathbb{P}^N, \Omega^T_{\mathbb{P}^N}(\log D^*)(t))$ as an integer function of t. Remember that $(m) = (m_1, m_2, \ldots, m_c)$ is the multidegree of the complete intersection Y. We set

$$h_{(m)}^{T}(t) := h^{T}(t) + \sum_{s=1}^{c} (-1)^{s} \cdot \sum_{\substack{1 \le i_{1} < i_{2} < \dots < i_{s} \le c}} h^{T}(t - m_{i_{1}} - m_{i_{2}} - \dots - m_{i_{s}}) .$$

Because of (20) we have dim $H^0(Y, \mathcal{O}_Y \otimes_{\mathcal{O}_{\mathbb{P}^N}} \Omega_{\mathbb{P}^N}^{T'}(\log D^*)(t)) = h_{(m)}^{T'}(t)$ and using (18) we get the following formula:

Theorem 4.6. If $\mu < \dim Y - \operatorname{depth} T$ then

$$\dim H^0(Y, \Omega^T_Y(\log D)(t)) = \sum_{A \in M(T)} (-1)^{r-\varrho(A)} \cdot h_{(m)}^{T'(A)}(t+t(A))$$

with $t(A) = \sum_{i=1}^{c} (\varrho_{i+1}(A) - \varrho_i(A)) \cdot m_i$. In particular for t = 0: $H^0(Y, \Omega_Y^T(\log D)) = 0$ if $\mu < \dim Y - \operatorname{depth} T$.

Remark 4.7. For regular *T*-symmetrical tensor differential forms one has $H^0(Y, \Omega_Y^T) = 0$ if $\mu < \dim Y$.

4.3. Symmetric Differential Forms. We consider symmetrical differential forms with logarithmic poles as a special case, that means, T is a Young tableau with r boxes and only one row (depth T = 1, l = length T = r).

Let $D^* = H$ be the prime divisor on projective space \mathbb{P}^N and let D be the prime divisor on the *n*-dimensional complete intersection Y as above $(n \ge 2)$. Distinguishing the cases $r \le c$ and c < r we obtain two exact sequences as

symmetrical power of (19) : Assume at first $r \leq c$:

$$0 \longrightarrow \bigoplus_{1 \le i_1 < i_2 < \dots < i_r \le c} \mathcal{O}_Y(-m_{i_1} - m_{i_2} - \dots - m_{i_r}) \longrightarrow$$
$$\longrightarrow \bigoplus_{1 \le i_1 < \dots < i_{r-1} \le c} \mathcal{O}_Y(-m_{i_1} - m_{i_2} - \dots - m_{i_{r-1}}) \otimes_{\mathcal{O}_{\mathbb{P}^N}} \Omega^1_{\mathbb{P}^N}(\log D^*) \longrightarrow \dots$$
$$\dots \longrightarrow \bigoplus_{1 \le i \le c} \mathcal{O}_Y(-m_i) \otimes_{\mathcal{O}_{\mathbb{P}^N}} S^{r-1}\Omega^1_{\mathbb{P}^N}(\log D^*) \longrightarrow$$
$$\longrightarrow \mathcal{O}_Y \otimes_{\mathcal{O}_{\mathbb{P}^N}} S^r\Omega^1_{\mathbb{P}^N}(\log D^*) \longrightarrow S^r\Omega^1_Y(\log D) \longrightarrow 0$$

In the case c < r the following sequence is exact:

$$0 \longrightarrow \mathcal{O}_{Y}(-\sum_{j=1}^{c} m_{j}) \otimes_{\mathcal{O}_{\mathbb{P}^{N}}} \Omega_{\mathbb{P}^{N}}^{r-c}(\log D^{*}) \longrightarrow$$
$$\longrightarrow \bigoplus_{1 \leq i \leq c} \mathcal{O}_{Y}(-\sum_{j=1}^{c} m_{j} + m_{i}) \otimes_{\mathcal{O}_{\mathbb{P}^{N}}} \Omega_{\mathbb{P}^{N}}^{r-c+1}(\log D^{*}) \longrightarrow \dots$$
$$\dots \longrightarrow \bigoplus_{1 \leq i \leq c} \mathcal{O}_{Y}(-m_{i}) \otimes_{\mathcal{O}_{\mathbb{P}^{N}}} S^{r-1}\Omega_{\mathbb{P}^{N}}^{1}(\log D^{*}) \longrightarrow$$
$$\longrightarrow \mathcal{O}_{Y} \otimes_{\mathcal{O}_{\mathbb{P}^{N}}} S^{r}\Omega_{\mathbb{P}^{N}}^{1}(\log D^{*}) \longrightarrow S^{r}\Omega_{Y}^{1}(\log D) \longrightarrow 0$$

Furthermore, we have Lemma 4.4 with the sheaf $S^r \Omega^1_{\mathbb{P}^N}(\log D^*)$ instead of $\Omega_{\mathbb{P}^N}^{T'}(\log D^*)$. With the corresponding cohomology sequences we get:

Theorem 4.8. Assume $n = \dim Y \ge 2$. (a) If $1 \le q \le n-2$ then $H^q(Y, \mathcal{O}_Y(t) \otimes_{\mathcal{O}_{\mathbb{P}^N}} S^r \Omega^1_{\mathbb{P}^N}(\log D^*)) = 0 \ \forall t \in \mathbb{Z}$ (b)

 $\dim H^0(Y, \mathcal{O}_Y(t) \otimes_{\mathcal{O}_{\mathbb{P}^N}} S^r \Omega^1_{\mathbb{P}^N}(\log D^*)) = \dim H^0(\mathbb{P}^N, S^r \Omega^1_{\mathbb{P}^N}(\log D^*)(t)) +$ $\sum_{i=1}^{c} (1)^{i} \sum_{j=1}^{c} U^{0}(\mathbb{D}^{N} C^{T} O^{1} (1-T)^{*})$

$$+\sum_{j=1}^{j}(-1)^{j}\cdot\sum_{1\leq i_{1}<\ldots< i_{j}\leq c}\dim H^{0}(\mathbb{P}^{N},S^{T}\Omega^{1}_{\mathbb{P}^{N}}(\log D^{*})(t-m_{i_{1}}-\ldots-m_{i_{j}}))$$

- $\begin{array}{ll} \text{(c)} & H^0(Y, \mathcal{O}_Y(t) \otimes_{\mathcal{O}_{\mathbb{P}^N}} S^r \Omega^1_{\mathbb{P}^N}(\log D^*)) \neq 0 \ \Leftrightarrow \ t \geq r \\ \text{(d)} & \text{In case } t = 0 : \ H^0(Y, \mathcal{O}_Y \otimes_{\mathcal{O}_{\mathbb{P}^N}} S^r \Omega^1_{\mathbb{P}^N}(\log D^*)) = 0 \ \text{for all } r > 0 \end{array}$

Theorem 4.9.

- (a) If $r \leq c$ and $1 \leq q < n-r$ then $H^q(Y, S^r \Omega^1_Y(\log D)(t)) = 0 \ \forall t \in \mathbb{Z}$
- (b) If c < r and $1 \le q < n c 1$ then $H^q(Y, S^r \Omega^1_Y(\log D)(t)) = 0 \ \forall t \in \mathbb{Z}$

Proof. By Theorem 4.5 we know $H^q(Y, \Omega_Y^T(\log D)(t)) = 0$ for all $t \in \mathbb{Z}$ if $1 \le q < n - \operatorname{depth} T - \mu$. For symmetric differential forms we have depth T = 1and $\mu = \sum_{i=1}^{c} d_i = \min\{c, r\}$, where $d_i = 1$ for $i \le r$ and $d_i = 0$ for i > r. This proves (b). Under condition $r \leq c$ one gets the stronger result (a) since $H^q(Y, \mathcal{O}_Y(t)) = 0$ for $1 \le q < n$ and for all $t \in \mathbb{Z}$.

Theorem 4.10.

(c) If $r \leq c$ and r < n then

$$H^{0}(Y, S^{r} \Omega^{1}_{Y}(\log D)(t)) = \dim H^{0}(Y, \mathcal{O}_{Y}(t) \otimes_{\mathcal{O}_{\mathbb{P}^{N}}} S^{r} \Omega^{1}_{\mathbb{P}^{N}}(\log D^{*})) + \\ + \sum_{k=1}^{r-1} (-1)^{k} \cdot \sum_{1 \leq i_{1} < \ldots < i_{k} \leq c} \dim H^{0}(Y, \mathcal{O}_{Y}(t - \sum_{j=1}^{k} m_{i_{j}}) \otimes_{\mathcal{O}_{\mathbb{P}^{N}}} S^{r-k} \Omega^{1}_{\mathbb{P}^{N}}(\log D^{*})) \\ + (-1)^{r} \cdot \sum_{1 \leq i_{1} < \ldots < i_{r} \leq c} \dim H^{0}(Y, \mathcal{O}_{Y}(t - m_{i_{1}} - \ldots - m_{i_{r}})) \\ (d) If c < r and c < n-1 then$$

$$H^{0}(Y, S^{r}\Omega^{1}_{Y}(\log D)(t)) = \dim H^{0}(Y, \mathcal{O}_{Y}(t) \otimes_{\mathcal{O}_{\mathbb{P}^{N}}} S^{r}\Omega^{1}_{\mathbb{P}^{N}}(\log D^{*})) + \\ + \sum_{k=1}^{c} (-1)^{k} \cdot \sum_{1 \leq i_{1} < \ldots < i_{k} \leq c} \dim H^{0}(Y, \mathcal{O}_{Y}(t - \sum_{j=1}^{k} m_{i_{j}}) \otimes_{\mathcal{O}_{\mathbb{P}^{N}}} S^{r-k}\Omega^{1}_{\mathbb{P}^{N}}(\log D^{*}))$$

Proof. Statements (c) and (d) follow from the related exact sequences since under these premises by Theorem 4.8 the cohomology groups $H^1(\ldots)$ of all these sheaves vanish (cf. Theorem 4.8 and Theorem 3.7).

Finally, it is easy to see:

Theorem 4.11.

- (e) If $t < r \le \min(c, n-1)$ then $H^0(Y, S^r \Omega^1_Y(\log D)(t)) = 0$.
- (f) If t < r and $c < \min(r, n-1)$ then $H^0(Y, S^r \Omega^1_Y(\log D)(t)) = 0$.
- (g) If c < n-1 then $H^0(Y, S^r\Omega^1_Y(\log D)) = 0$ for all r > 0.
- (h) If 0 < r < n then $H^0(Y, S^r \Omega^1_V(\log D)) = 0$.

Remark 4.12. On the other hand, for regular symmetrical differential forms on complete intersections it is well known: If c < n then $H^0(Y, S^r\Omega^1_Y) = 0$ for all r > 0.

References

- P. Brückmann, Zur Kohomologie von projektiven Hyperflächen, Beiträge zur Algebra und Geometrie, 2 (1974), 87–101.
- [2] P. Brückmann, Zur Kohomologie von vollständigen Durchschnitten mit Koeffizienten in der Garbe der Keime der Differentialformen, Mathematische Nachrichten, 71 (1976), 203–210.
- [3] P. Brückmann, The Hilbert polynomial of the sheaf Ω^T of germs of *T*-symmetrical tensor differential forms on complete intersections, *Math. Ann.*, **307** (1997), 461–472.
- [4] R. Hartshorne, Algebraic Geometry, GTM 52, New York, Berlin, Heidelberg (1977).
- [5] H. Esnault, E. Viehweg, Lectures on Vanishing Theorems, Basel, Boston, Berlin (1992).
- [6] I.R. Shafarevich, Algebraic Geometry II, Encyclopaedia of Mathematical Sciences Vol. 35, Berlin, Heidelberg, New York (1996).
- [7] W. Fulton, J. Harris, *Representation Theory*, GTM 129, New York, Berlin, Heidelberg (1991).
- [8] J.-P. Serre, Faisceaux algébriques cohérents, Ann. of Math., 61 (1955), 197–278.

22

 $T\mbox{-}{\rm SYMMETRICAL}$ TENSOR DIFFERENTIAL FORMS WITH LOGARITHMIC POLES 23

Department of Mathematics, Martin-Luther-University Halle-Wittenberg, 06099 Halle, Germany

 $E\text{-}mail\ address:\ \texttt{brueckmann}\texttt{C}\texttt{mathematik.uni-halle.de}$

Department of Mathematics, Martin-Luther-University Halle-Wittenberg, 06099 Halle, Germany

 $E\text{-}mail\ address: patrick.winkert@mathematik.uni-halle.de$