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Abstract. The aim of this paper is to investigate T -symmetrical tensor

differential forms with logarithmic poles on the projective space PN and

on complete intersections Y ⊂ PN . Let H ⊂ PN , N ≥ 2, be a nonsingular
irreducible algebraic hypersurface which implies that D = H is a prime

divisor in PN . The main goal of this paper is the study of the locally

free sheaves ΩT
PN (log D) and the calculation of their cohomology groups.

In addition, for complete intersections Y ⊂ PN we give some vanishing

theorems and recursion formulas.

1. Introduction

The symmetry properties of tensors are important in physics and certain
areas of mathematics. In the following, let k be the ground field which is
assumed to be algebraically closed satisfying char(k) = 0. We denote by
H ⊂ PNk , N ≥ 2, a nonsingular, irreducible, algebraic hypersurface defined
by the equation F = 0 where degF = m. Then D = H gives a prime divisor
of degree m in PNk . The aim of this paper is the calculation of the dimension of
the cohomology groups Hq(PN ,ΩTPN (logD)(t)) with general twist t ∈ Z, where
T is a Young tableau specified later. ΩTPN (logD) denotes the so-called sheaf of
germs of T -symmetrical tensor differential forms with logarithmic poles along
the prime divisor D (cf. [5], [8], [3]). In addition, we consider the associated
cohomology groups of nonsingular, irreducible, n-dimensional complete inter-
sections Y ⊂ PN , n ≥ 2. In this case, let the prime divisor D = Y ∩ H be
the intersection of Y and hypersurface H. As special cases, we investigate the
alternating and the symmetric differential forms on PN and on Y , respectively.

2. Notations and Preliminaries

Let Ω1
X be the sheaf of germs of regular algebraic differential forms on a

n-dimensional nonsingular, projective variety X ⊆ PN and let ΩrX =
r
∧Ω1

X

and SrΩ1
X be the sheaves of alternating and symmetric differential forms on

X, alternatively. We denote by (Ω1
X)⊗r the r−th tensor power of Ω1

X . The
coherent sheaves Ω1

X , ΩrX , SrΩ1
X and (Ω1

X)⊗r are locally free on X with the
rank n,

(
n
r

)
,
(
n+r−1

r

)
and nr, respectively.
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The irreducible representations of the symmetric group Sr correspond to the
conjugacy classes of Sr. These are given by partitions (l) : r = l1 + . . . + ld
with li ∈ Z, l1 ≥ l2 ≥ . . . ≥ ld ≥ 1. Partition (l) can be described by a
so-called Young diagram T with r boxes and the row lengths l1, . . . , ld. The
column lengths of T will be denoted by d1, . . . , dl and we set d = d1 = depthT
and l = l1 = lengthT , respectively. Clearly, d1 ≥ d2 ≥ . . . ≥ dl ≥ 1 and the
equations

∑l
j=1 dj =

∑d
i=1 li = r are fulfilled. Moreover, we put li = 0 for

i > d and dj = 0 for j > l. The ”hook-length” of the box inside the i−th row
and the j−th column of the Young diagram is defined by hi,j = li−i+dj−j+1
and the degree of the associated irreducible representation is equal to
ν(l) = r!∏

hi,j
= r!

d! ·
∏d
i=1

i!
(li+d−i)! ·

∏
1≤i<j≤d

(
li−lj
j−i + 1

)
=

= r! · det(( 1
Γ(li+1−i+j) ))

i,j=1,...,d
(cf. [7]).

A numbering of the r boxes of a given Young diagram by the integers 1, 2, . . . , r
in any order is said to be a Young tableau which for simplicity again will be
denoted by T . Now, one has an idempotent eT in the group algebra k · Sr
defined by

eT =
ν(l)

r!
·

∑
q∈QT

sgn(q) · q

 ◦
∑
p∈PT

p

 ,

where the subgroups PT and QT of Sr are given as follows:
PT = {p ∈ Sr : p preserves each row of T},
QT = {q ∈ Sr : q preserves each column of T}.
The idempotent eT is called Young symmetrizer (cf. [7]). If the numbering of
the boxes of the Young tableau generates inside every row and every column
monotone increasing sequences, we speak of a standard tableau. The number
of all standard tableaux to a given Young diagram is equal to the degree ν(l).
We denote by D(r) the set of all standard tableaux to all Young diagrams with
r boxes.
For a variety X the notation Ω⊗rX = (Ω1

X)⊗r stands for the sheaf of germs of
regular algebraic tensor differential forms. This implies that the symmetric
group Sr and the related group algebra k · Sr act on Ω⊗rX defined by
p(a1 ⊗ . . .⊗ ar) = ap−1(1) ⊗ . . .⊗ ap−1(r) for all p ∈ Sr. That means, mapping
p permutates the spots inside the tensor product. Furthermore, it holds

Ω⊗rX =
⊕

T∈D(r)

ΩTX

with ΩTX = eT (Ω⊗rX ), where ΩTX is called the sheaf of germs of T−symmetrical
tensor differential forms or simply the T -power of Ω1

X . If two Young tableaux
T and T̃ possess the same Young diagram, we have ΩTX ∼= ΩT̃X .
Under the assumption depthT ≤ dimX with a smooth n-dimensional variety
X the belonging sheaf ΩTX is locally free of rank

∏
1≤i<j≤n

(
li − lj
j − i

+ 1
)

=

(
n−1∏
i=1

i!

)−1

·∆(l1 − 1, l2 − 2, . . . , ln − n),
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where ∆(t1, t2, . . . , tn) =
∏

1≤i<j≤n(ti − tj) denotes the Vandermonde deter-
minant. If depthT > dimX then we have ΩTX = 0. In the special cases
ΩrX = ∧rΩ1

X and SrΩ1
X the Young tableau has only one column and one row,

respectively. In the same way the T -power FT of an arbitrary coherent alge-
braic sheaf F is defined. One has for instance ΩTX(logD) = (Ω1

X(logD))T .

Furthermore, we describe the T -power of an algebraic complex (cf. [3]):
Let R be a commutative ring which contains the algebraically closed ground
field k fulfilling char(k) = 0. We consider an algebraic complexK ofR−modules
given by K : K0

d−→ K1
d−→ K2

d−→ . . . with d2 = 0.
Then the r−th tensor power P = K⊗r of K is defined by
P = K⊗r : P0

δ−→ P1
δ−→ P2

δ−→ . . . with Ps =
⊕

s1+...+sr=sKs1 ⊗ . . . ⊗Ksr

and δ(b1⊗ . . .⊗br) =
∑r
i=1(−1)s1+...+si−1 ·b1⊗ . . .⊗bi−1⊗d(bi)⊗bi+1⊗ . . .⊗br

where bj ∈ Ksj for all j. Again the symmetric group Sr acts on this tensor
power by permutation of the spots inside the tensor product. In order to ob-
tain such an action of Sr on P = K⊗r, which commutates with δ, we introduce
additionally a sign as follows:

(1) σ(p ; s1, . . . , sr) :=
∑

i<j
p(i)>p(j)

si · sj for all p ∈ Sr
(2) p(b1 ⊗ . . .⊗ br) := (−1)σ(p ;s1,...,sr) · bp−1(1) ⊗ . . .⊗ bp−1(r)

where bj ∈ Ksj for all j ∈ {1, . . . , r}.

Then one has Ps =
⊕

T∈D(r)K
(T )
s , K⊗r =

⊕
T∈D(r)K

(T ) ,

H∗(K⊗r) =
⊕

T∈D(r)H
∗(K(T )) with K

(T )
s = eT (Ps) and

K(T ) = eT (K⊗r) : K
(T )
0

δ−→ K
(T )
1

δ−→ K
(T )
2

δ−→ . . . .
This complex K(T ) is said to be the T−power of K. If two Young tableaux T
and T̃ possess the same Young diagram, one has K(T ) ∼= K(T̃ ). For an exact
sequence K the T−power K(T ) of K is also an exact sequence.

Now, let X ⊆ PN be a projective variety satisfying ωX ∼= OX(nX) for some
nX ∈ Z, where ωX stands for the canonical line bundle. This implies under the
assumptions d = depthT = dimX = n and l = lengthT > 1 the isomorphism

ΩTX ∼= ΩT
′

X ⊗ ωX ∼= ΩT
′

X (nX),

where T ′ arises from T by deleting the first column of T .
In the case d = depthT = dimX = n and l = lengthT = 1 ( i.e. T has only
one column ) we have the isomorphism ΩTX ∼= ΩnX ∼= ωX ∼= OX(nX).
An important tool in our considerations will be the Serre duality:
Suppose the Young tableau T has the column lengths d1, . . . , dl satisfying
d1 = d = depthT ≤ dimX = n. We get an associated Young tableau T ∗

by the column lengths d∗j = n− dl+1−j for all j = 1, . . . , l. One verifies readily
that in case depthT < n holds (T ∗)∗ = T .
The next lemma delivers some duality relations about the dimensions of coho-
mology groups.

Lemma 2.1. Let Y = H1 ∩ . . . ∩ HN−n ⊆ PN be a n-dimensional, non-
singular, irreducible, complete intersection defined by algebraic hypersurfaces
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Hi ⊂ PN satisfying Fi = 0 with degFi = mi. The dimension of Y is n. In this
case, let the prime divisor D = Y ∩H be the intersection of Y and hypersurface
H : F = 0 of degree m. Assume that D also becomes a nonsingular irreducible
complete intersection of dimension n− 1. Then one has:

(i) dimHq(PN ,ΩrPN (logD)(t)) = dimHN−q(PN ,ΩN−rPN (logD)(−t−m))
(ii) dimHq(Y,ΩrY (logD)(t)) = dimHn−q(Y,Ωn−rY (logD)(−t−m))

(iii) dimHq(PN ,ΩTPN (logD)(t))
= dimHN−q(PN ,ΩT∗PN (logD)(−t− l ·m+ (l − 1)(N + 1)))

(iv) dimHq(Y,ΩTY (logD)(t))
= dimHn−q(Y,ΩT

∗

Y (logD)(−t− l ·m− (l − 1)(
∑N−n
i=1 mi −N − 1)))

(v) dimHq(PN , SrΩ1
PN (logD)(t))

= dimHN−q(PN ,ΩT∗PN (logD)(−t− r ·m+ (r − 1)(N + 1)))
where T ∗ denotes a rectangle with N − 1 rows and r columns.

(vi) dimHq(Y, SrΩ1
Y (logD)(t))

= dimHn−q(Y,ΩT
∗

Y (logD)(−t− r ·m− (r − 1)(
∑N−n
i=1 mi −N − 1)))

where T ∗ denotes a rectangle with n− 1 rows and r columns.

Proof. We consider the following exact sequence (cf. [5])

0 −→ ΩrPN (logD)(−m) −→ ΩrPN −→ ΩrD −→ 0.

For r = N we have ΩND = 0 , i.e. ΩNPN (logD) ∼= ΩNPN (m) ∼= OPN (m − N − 1).
This implies a pairing ΩrPN (logD)(t) × ΩN−rPN (logD)(−t − m + N + 1) −→
OPN , which means that the vector space Hq(PN ,ΩrPN (logD)(t)) is dual to
HN−q(PN , (ΩN−rPN (logD)(−t−m+N + 1))⊗ ΩNPN ).
Setting ΩNPN ∼= OPN (−N − 1) yields (i). The statement (ii) can be shown in a
similar way. Note that ΩnY (logD) ∼= ΩnY (m) ∼= OY (m +

∑N−n
i=1 mi − N − 1).

Now, let T be a Young tableau with r boxes, given by the row lengths l1, . . . , ld
and the column lengths d1, . . . , dl where d = d1 = depthT and l = l1 =
lengthT . The Young tableau T ∗ has the column lengths d∗j = n − dl+1−j for
all j ∈ {1, . . . , l} and we have again ΩNPN (logD) ∼= OPN (m−N − 1). From the
pairing ΩTPN (logD)(t)× ΩT

∗

PN (logD)(−t− l · (m−N − 1)) −→ OPN follows
Hom(ΩTPN (logD)(t),OPN ) ∼= ΩT

∗

PN (logD)(−t − l · (m − N − 1)), which shows
assertion (iii). In order to show the formula for complete intersections Y instead
of PN , we replace −N − 1 by

∑N−n
i=1 mi−N − 1. Choosing l = r (depthT = 1)

in (iii) and (iv) proves (v) and (vi), respectively. �

For a projective variety X ⊆ PN and a coherent sheaf F on X the dimensions
dimkH

q(X,F) are finite and we have the so-called Euler-Poincare character-
istic given by χ(X,F) =

∑dimX
q=0 (−1)q · dimHq(X,F) . From a short exact

sequence 0 → F → G → H → 0 with coherent sheaves F ,G,H on X we ob-
tain the equation χ(X,G) = χ(X,F) +χ(X,H). Under the above assumptions
we also know, that for a short exact sequence of coherent sheaves on X there
exists a long exact sequence for the associated cohomology groups. For every
coherent sheaf F on the projective variety X ⊂ PN there exists a polynomial
P (X,F)(t) ∈ Q[t] of degree dimX which fulfills χ(X,F(t)) = P (X,F)(t) for
all t ∈ Z. P (X,F)(t) is said to be the Hilbert polynomial of F (cf. [6], [4], [8]).
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For example, the structure sheaf on PN has the following Hilbert polynomial

P (PN ,OPN )(t) = χ(PN ,OPN (t)) =
(t+N) · . . . · (t+ 1)

N !
. (1)

3. The Projective Space PN

In the following, we change the meaning of the binomial coefficient setting(
α
β

)
= 0 for all α ∈ Z, β ∈ N satisfying α < β, in particular:

(
α
β

)
= 0 if α < 0.

For instance: dimH0(PN ,OPN (t)) =
(
t+N
N

)
, dimHN (PN ,OPN (t)) =

(−t−1
N

)
,

Hq(PN ,OPN (t)) = 0 for 0 < q < N .
Let H ⊂ PN (N ≥ 2) be a nonsingular, irreducible, algebraic hypersurface
defined by the equation F = 0, that means, D = H is a prime divisor in PN .
Both F and D are of degree m and D = H has dimension N − 1.

3.1. Alternating Differential Forms. We denote by ΩrPN the local free sheaf
of germs of alternating differential forms on the projective space PN and con-
sider the following sequence (t ∈ Z)

0 −→ ΩrPN (t) −→ ΩrPN (logD)(t) −→ Ωr−1
D (t) −→ 0, (2)

which is known to be exact (cf. [5]). The dimensions of the cohomology groups
Hq(PN ,ΩrPN (t)) and Hq(D,Ωr−1

D (t)) are calculated in [1], where we also find
the following exact sequences

0 −→ ΩrPN (t−m) −→ ΩrPN (t) α−→ OD(t)⊗OPN
ΩrPN −→ 0 (3)

0 −→ Ωr−1
D (t−m) −→ OD(t)⊗OPN

ΩrPN
β→ ΩrD(t) −→ 0. (4)

The mapping ϕ∗ := β◦α means the restriction of the differential forms on PN to
the hypersurfaceD = H. In the case r = 1, one has to replace the sheaf Ωr−1

D by
the structure sheaf OD. For 0 < q < N we have dimHq(PN ,ΩrPN (t)) = δq,r ·δt,0
(Kronecker-δ) and we know by [1, Lemma 4] a base element of Hr(PN ,ΩrPN )
which is given by the cohomology class of the cocycle ω(r) ∈ Cr(U,ΩrPN ) defined
by

ω
(r)
i0,...,ir

=
xi0
xir
· d xi1

xi0
∧ d

xi2
xi1
∧ . . . ∧ d

xir
xir−1

. (5)

U stands for the affine open covering of PN by the affine spaces Ui = {xi 6= 0}.
For r = 1, in particular, ω(1)

i0,i1
=
xi0
xi1
· d xi1

xi0
is a logarithmic differential. We

may represent (5) by

ω
(r)
i0,...,ir

= ω
(1)
i0,i1
∧ ω(1)

i1,i2
∧ . . . ∧ ω(1)

ir−1,ir
,

which is an outer product of logarithmic differential forms. In the case q = r =
N , t = 0 the cochain ω(N) creates a base of HN (PN ,ΩNPN ) (cf. [1, Lemma 2]).
Finally, we set ω(0) = 1.

Lemma 3.1. Let 0 < r ≤ N . Then the homomorphism d : Hr−1(D,Ωr−1
D ) −→

Hr(PN ,ΩrPN ) in the long homology sequence with respect to the exact sequence

0 −→ ΩrPN −→ ΩrPN (logD) −→ Ωr−1
D −→ 0
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is epimorphic. If in addition 2(r−1) 6= N−1 is valid, then d is an isomorphism.

Proof. We calculate the image of the cohomology class of ω(r−1) at the
composition

Hr−1(PN ,Ωr−1
PN )

ϕ∗−→ Hr−1(D,Ωr−1
D ) d−→ Hr(PN ,ΩrPN )

and denote ϕ∗(ω(r−1)) again by ω(r−1). Let U be the affine, open covering
of PN given by the affine spaces Ui = {xi 6= 0}. We consider the following
commutative diagram

0 → Cr−1(U,ΩrPN ) → Cr−1(U,ΩrPN (logD)) → Cr−1(U,Ωr−1
D ) → 0

↓ ↓ ↓
0 → Cr(U,ΩrPN ) → Cr(U,ΩrPN (logD)) → Cr(U,Ωr−1

D ) → 0

where the cocycle ω(r−1) ∈ Cr−1(U,Ωr−1
D ) possesses in Cr−1(U,ΩrPN (logD))

the preimage % defined by %i0,...,ir−1 = ω
(r−1)
i0,...,ir−1

∧ xmi0
F · d

F
xmi0

(cf. [5]).

Elementary calculations show that dω(r−1) = (−1)r · m · ω(r) ∈ Cr(U,ΩrPN ).
Therefore, the cocycle dω(r−1) ∈ Cr(U,ΩrPN ) is nonzero and the associated
cohomology class is a base of Hr(PN ,ΩrPN ). Thus, the homomorphism
d : Hr−1(D,Ωr−1

D ) −→ Hr(PN ,ΩrPN ) is epimorphic. In the case 2(r − 1) 6=
N − 1, we obtain dimHr−1(D,Ωr−1

D ) = 1 by [1, Satz 2 and Lemma 5], which
implies that d is an isomorphism. �

Theorem 3.2.
Let D ⊂ PN be a smooth algebraic hypersurface of degree m (N ≥ 2).

(a) For each r ∈ {1, . . . , N − 1} one has:

dimH0(PN ,ΩrPN (logD)(t))

=
r∑
i=0

(−1)i ·
(
N + 1
r − i

)
·
(
t+N − i · (m− 1)− r

N

)
(b) For all r ∈ {1, . . . , N − 1} holds: H0(PN ,ΩrPN (logD)(t)) 6= 0 ⇔ t ≥ r

(c) In the case r = N one has: dimH0(PN ,ΩNPN (logD)(t)) =
(
t+m− 1

N

)
(d) If D ⊂ PN is a hyperplane (m = 1), then holds:

dimH0(PN ,ΩrPN (logD)(t)) =
(
N

r

)
·
(
t+N − r

N

)
Proof. The formula (a) follows directly from the long exact cohomology

sequence related to the exact sequence in (2) by applying Lemma 3.1. For
r = N we obtain ΩNPN (logD) ∼= ΩNPN (m) ∼= OPN (m −N − 1) which yields (c).
(a) obviously implies (b) and (d). �

Theorem 3.3.

(a) Let 0 < q < N , q + r 6= N and r ≥ 1.
Then we obtain Hq(PN ,ΩrPN (logD)(t)) = 0 for all t ∈ Z.



T -SYMMETRICAL TENSOR DIFFERENTIAL FORMS WITH LOGARITHMIC POLES 7

(b) For 1 ≤ r ≤ N − 1 it follows:

dimHN−r(PN ,ΩrPN (logD)(t))

=
N+1∑
i=0

(−1)i ·
(
N + 1
i

)
·
(
t+ (N − r) ·m− (i− 1) · (m− 1)

N

)

=
N+1∑
i=0

(−1)i ·
(
N + 1
i

)
·
(
−t+ (r − 1) ·m− (i− 1) · (m− 1)

N

)
That means: If D is a hyperplane (m = 1), then we have
HN−r(PN ,ΩrPN (logD)(t)) = 0 for all t ∈ Z.

(c) For 1 ≤ r ≤ N − 1 one has:

dimHN (PN ,ΩrPN (logD)(t))

=
N−r∑
i=0

(−1)i ·
(

N + 1
N − r − i

)
·
(
−t−m− i · (m− 1) + r

N

)
If D is a hyperplane (m = 1), then we get:

dimHN (PN ,ΩrPN (logD)(t)) =
(
N

r

)
·
(
−t− 1 + r

N

)
(d) dimHN (PN ,ΩNPN (logD)(t)) =

(
−t−m+N

N

)
Proof. We consider the following exact sequence

. . . −→ Hq−1(D,Ωr−1
D (t)) d1−→ Hq(PN ,ΩrPN (t)) −→

−→ Hq(PN ,ΩrPN (logD)(t)) −→ Hq(D,Ωr−1
D (t)) d2−→

d2−→ Hq+1(PN ,ΩrPN (t)) −→ . . . ,

(6)

and assume 0 < q , 0 < r and q+ r < N . By Lemma 3.1 the mappings d1 and
d2 are epimorphic for all t ∈ Z and from (6) we get the exact sequence

0→ Hq(PN ,ΩrPN (logD)(t))→ Hq(D,Ωr−1
D (t)) d2−→ Hq+1(PN ,ΩrPN (t))→ 0.

Under these assumptions holds Hq(D,Ωr−1
D (t)) = 0 if q 6= r − 1 or t 6= 0 (cf.

[1]). In case q = r− 1, t = 0 we know that d2 is an isomorphism by Lemma 3.1
since 2(r − 1) < N − 1. Therefore, one has

Hq(PN ,ΩrPN (logD)(t)) = 0 for 0 < q , 0 < r and q + r < N.

For q < N, r < N, q + r > N we use the Serre duality to show statement (a).
The case r = N is trivial since ΩNPN (logD) ∼= OPN (m−N − 1) .
If r ≥ 2 and q + r = N then the mappings d1 and d2 are epimorphic, i.e.

dimHN−r(PN ,ΩrPN (logD)(t))
= dimHN−r(D,Ωr−1

D (t))− dimHN−r+1(PN ,ΩrPN (t)).

In the case r = 1 and q = N − 1 one has

dimHN−1(PN ,Ω1
PN (logD)(t))
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= dimHN−1(D,OD(t))− dimHN (PN ,Ω1
PN (t)) +HN (PN ,Ω1

PN (logD)(t)).

Applying Theorem 3.2, Lemma 2.1 and the results in [1] delivers (b) and (c). �

3.2. T -symmetric Tensor Differential Forms. Let T be a Young tableau
with r boxes. We study the sheaf ΩT (logD) = (Ω1(logD))T on PN and begin
with a free resolution of the sheaf Ω1(logD).

Lemma 3.4. Let D ⊂ PN be a nonsingular, irreducible, algebraic hyper-
surface of degree m ≥ 2 defined by the equation F = 0.
Then there exists a short exact sequence

0 −→ OPN (−m) −→
N+1
⊕ OPN (−1) −→ Ω1

PN (logD) −→ 0. (7)

If D is a hyperplane, i.e. m = 1, we have Ω1
PN (logD) ∼=

N
⊕ OPN (−1).

Proof. Let Ui = {xi 6= 0} ⊂ PN and let U ⊆ PN be an arbitrary open affine
subset. We are going to show that there is an exact sequence

0→ Γ(U,OPN (−m)) α→
N+1
⊕ Γ(U,OPN (−1))

β→ Γ(U,Ω1
PN (logD))→ 0.

For sections f0, . . . , fN ∈ Γ(U,O(−1)) we put g := − 1
m ·
∑N
µ=0 xµfµ ∈ Γ(U,O).

Let Fj = ∂F
∂xj

denotes the partial derivatives of F . The mapping β is defined
by (f0, . . . , fN ) 7−→ ω , where the differential form ω on U ∩ Ui is given by

ω = ωi :=
N∑
ν=0
ν 6=i

(
fν + g · Fν

F

)
· xi · d

xν
xi

.

One easily verifies that ω is a section of Ω1
PN (logD) on U and it holds, in

particular, ωi = ωj for any i, j ∈ {0, 1, . . . , N}. For a section δ ∈ Γ(U,O(−m))
let fν = δ · Fν for all ν = 0, 1, . . . , N which implies that fν ∈ Γ(U,O(−1)) and
g = −δ · F . Finally, we have kerβ = {(δ · F0, . . . , δ · FN )} ∼= Γ(U,OPN (−m)),
which yields the claim for m ≥ 2.
In the last part we have to show the statement of Lemma 3.4 in case m = 1.
Let D ⊂ PN be the hyperplane satisfying the equation xN = 0, and let U ⊆ PN
be an open subset. For given sections f0, . . . , fN−1 ∈ Γ(U,O(−1)) let ω be the
differential form, which has on U ∩ Ui , i = 0, , . . . , N − 1, the representation

ω = ωi =
N−1∑
ν=0
ν 6=i

fν · xi · d
xν
xi
−

(
N−1∑
µ=0

fµ · xµ

)
· xi
xN

d
xN
xi
,

respectively on U ∩ UN ,

ω = ωN =
N−1∑
ν=0

fν · xN · d
xν
xN

.

Then ω is a section of Ω1
PN (logD) on U , and the mapping (f0, . . . , fN−1) 7→ ω

becomes an isomorphism of Γ(U,
N
⊕ OPN (−1)) onto Γ(U,Ω1

PN (logD)). �
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Lemma 3.5. Let T be a Young tableau with r boxes and the row lengths
l1, l2, . . . , ld, set ti := r + li − i for all i ≥ 1 (li = 0 if i > d) and assume
d = depthT ≤ N . Then the following sequence is exact for m ≥ 2:

0 −→ ⊕
bd
OPN (d · (1−m)− r) αd−→ ⊕

bd−1

OPN ((d− 1) · (1−m)− r) αd−1−→

αd−1−→ ⊕
bd−2

OPN ((d− 2) · (1−m)− r) αd−2−→ . . .
α2−→ ⊕

b1
OPN (1−m− r) α1−→

α1−→ ⊕
b0
OPN (−r) α0−→ ΩTPN (logD) −→ 0

(8)

with the integers

bs =

(
N∏
i=1

i!

)−1

·
∑

1≤i1<...<is≤d

∆(t1, t2, . . . , ti1 − 1, . . . , tis − 1, . . . , tN , tN+1)

(9)

where ∆ denotes the Vandermonde determinant.
In the case s = 0 we have

b0 =

(
N∏
i=1

i!

)−1

·
∏

1≤i<j≤N+1

(li−lj+j−i) =

(
N∏
i=1

i!

)−1

·∆(t1, t2, . . . , tN , tN+1).

For m = 1 (D is a hyperplane) holds

ΩTPN (logD) ∼=
rk(ΩTPN )
⊕ OPN (−r)

with

rk(ΩTPN ) =
∏

1≤i<j≤N

(
li − lj
j − i

+ 1
)

=
d∑
i=0

(−1)i · bi

=

(
N−1∏
i=1

i!

)−1

·∆(t1, t2, . . . , tN ) .

Proof. The T-Power of (7) yields the claim for m ≥ 2 (cf. [3]) and Lemma
3.4 shows the case m = 1. �

Theorem 3.6. Let T be a Young tableau with r boxes and with d =
depthT rows.

(a) χ(PN ,ΩTPN (logD)(t)) =
1
N !
·
d∑
i=0

(−1)i · bi ·
N∏
j=1

(t− i · (m− 1) + j − r)

(b) For depthT < N one has:

dimH0(PN ,ΩTPN (logD)(t)) =
d∑
i=0

(−1)i · bi ·
(
t− i · (m− 1) +N − r

N

)
and therefore: H0(PN ,ΩTPN (logD)(t)) 6= 0 ⇔ t ≥ r
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(c) Let d = depthT = N and let lN be the number of columns of T with
the length N . We denote by T ′ the Young tableau which is given by T
without these columns of length N . Then depthT ′ < N and it holds
ΩTPN (logD)(t) ∼= ΩT

′

PN (logD)(t+ lN · (m−N − 1)).
If T is a rectangle with N rows and l columns, then we have
ΩTPN (logD)(t) ∼= OPN (t+ l · (m−N − 1)).

(d) For 1 ≤ q < N − d we get Hq(PN ,ΩTPN (logD)(t)) = 0 for all t ∈ Z.
(e) Let dl be the length of the last column of T . Then holds:

Hq(PN ,ΩTPN (logD)(t)) = 0 for N − dl < q < N and ∀t ∈ Z.

Proof. The short exact sequences of (8) yields

0 −→ ⊕
bd
OPN (d · (1−m)− r) −→ ⊕

bd−1

OPN ((d− 1) · (1−m)− r) −→

−→ Imαd−1 −→ 0

0 −→ Imαd−1 −→ ⊕
bd−2

OPN ((d− 2) · (1−m)− r) −→ Imαd−2 −→ 0

...
...

0 −→ Imα2 −→ ⊕
b1
OPN (1−m− r) −→ Imα1 −→ 0

0 −→ Imα1 −→ ⊕
b0
OPN (−r) −→ ΩTPN (logD) −→ 0

where Hq(PN ,OPN (t)) = 0 for 1 ≤ q ≤ N − 1 and for all t ∈ Z. This implies
Hq(PN , Imαi(t)) = 0 for 1 ≤ q ≤ N − 1 + i − d and hence, we have in case
d < N

dimH0(PN ,ΩTPN (logD)(t))

= b0 · dimH0(PN ,OPN (t− r))− dimH0(PN , Imα1(t))

dimH0(PN , Imα1(t))

= b1 · dimH0(PN ,OPN (t+ 1−m− r))− dimH0(PN , Imα2(t))
...

dimH0(PN , Imαd−1(t)) = bd−1 · dimH0(PN ,OPN (t+ (d− 1) · (1−m)− r))
− bd · dimH0(PN ,OPN (t+ d · (1−m)− r)).

This shows (b). For d = N we already know that

ΩTPN (log)(t) ∼= ΩNPN (logD)⊗ . . .⊗ ΩNPN (logD)⊗ ΩT
′

PN (logD)(t)

∼= ΩT
′

PN (logD)(t+ lN · (m−N − 1))

which proves assertion (c). In order to prove (d), we consider again the short
exact sequences of (8) and obtain

Hq(PN ,ΩTPN (logD)(t)) = 0 if

Hq(PN ,OPN (t− r)) = 0 and Hq+1(PN , Imα1(t)) = 0
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Hq+1(PN , Imα1(t)) = 0 if

Hq+1(PN ,OPN (t+ 1−m− r)) = 0 and Hq+2(PN , Imα2(t)) = 0
...

Hq+d−1(PN , Imαd−1(t)) = 0 if

Hq+d−1(PN ,OPN (t+ (d− 1) · (1−m)− r)) = 0

and Hq+d(PN ,OPN (t+ d · (1−m)− r)) = 0.

This implies Hq(PN ,ΩTPN (logD)(t)) = 0 for 1 ≤ q ≤ N − d− 1 and ∀t ∈ Z.
The last statement can be proven by Serre duality which means

dimHq(PN ,ΩTPN (logD)(t))

= dimHN−q(PN ,ΩT
∗

PN (logD)(−t−m− (l − 1) · (m−N − 1)))

where depthT ∗ = N − dl < N . Note if we use (b) with T ∗ instead of T , we
obtain a formula for dimHN (PN ,ΩTPN (logD)(t)). �

3.3. Symmetric Differential Forms. Let T be a Young tableau with r
boxes and only one row, i.e. depthT = 1. We will specify the dimensions of
Hq(PN , SrΩ1(logD)(t)) and consider the following exact sequence (cf. Lemma
3.5)

0 −→ ⊕
b1
OPN (−m+ 1− r) −→ ⊕

b0
OPN (−r) −→ SrΩ1

PN (logD) −→ 0 (10)

with the integers b0 =
(
N + r

N

)
and b1 =

(
N + r − 1

N

)
.

Theorem 3.7. Let N ≥ 2. Then one has:

(a) χ(PN , SrΩ1
PN (logD)(t))

=
1
N !
·
(
N + r

N

)
·
N∏
j=1

(t− r+ j)− 1
N !
·
(
N + r − 1

N

)
·
N∏
i=1

(t−m+ 1− r+ i)

(b) dimH0(PN , SrΩ1
PN (logD)(t))

=
(
N + r

N

)
·
(
t− r +N

N

)
−
(
N + r − 1

N

)
·
(
t−m+ 1− r +N

N

)
(c) For 1 ≤ q ≤ N − 2 holds: Hq(PN , SrΩ1

PN (logD)(t)) = 0 for all t ∈ Z

(d) dimHN−1(PN , SrΩ1
PN (logD)(t))

=
N−1∑
i=0

(−1)i · b̃i ·
(
−t− r(m− 2)− i · (m− 1)− 1

N

)

−
(
N + r

N

)
·
(
−t+ r − 1

N

)
+
(
N + r − 1

N

)
·
(
−t+m+ r − 2

N

)
dimHN (PN , SrΩ1

PN (logD)(t))
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=
N−1∑
i=0

(−1)i · b̃i ·
(
−t− r(m− 2)− i · (m− 1)− 1

N

)
with the integers

b̃i =
1

N + r
·
(

N + r

N − 1− i

)
·
(
N + r

N

)
·
(
r + i− 1

i

)
(11)

Proof. (a) follows directly from (10) and the additivity of the Euler char-
acteristic. We consider (10) together with the corresponding cohomology se-
quence and know that Hq(PN ,OPN (t)) = 0 for any q ∈ {1, . . . , N − 1} and for
all t ∈ Z , which implies (b) and (c). Using the Serre Duality yields

dimHN (PN , SrΩ1(logD)(t))

= dimH0(PN ,ΩT
∗
(logD)(−t+ (r − 1) · (N + 1)− r ·m)) ,

where T ∗ is a rectangle with depthT ∗ = N−1 rows and lengthT ∗ = r columns
and with the associated integers b̃i in (11) (cf. Lemma 3.5). Theorem 3.6(b)
delivers the formula for dimH0(PN ,ΩT∗(logD)(−t+ (r− 1) · (N + 1)− r ·m)).
Finally, one gets easily the dimension dimHN−1(PN , SrΩ1

PN (logD)(t)) from
the long cohomology sequence. �

Corollary 3.8. For N ≥ 2 we obtain:

(a) H0(PN , SrΩ1
PN (logD)(t)) 6= 0 ⇔ t ≥ r

(b) dimH0(PN , SrΩ1
PN (logD)(t)) = χ(PN , SrΩ1

PN (logD)(t))
if t ≥ m+ r −N − 1

(c) HN (PN , SrΩ1
PN (logD)(t)) = 0 ⇔ t ≥ −r(m− 2)−N

(d) HN−1(PN , SrΩ1
PN (logD)(t)) = 0 if t ≥ m+ r −N − 1

Proof. Obviously, the proof follows from Theorem 3.7. �

Theorem 3.9. Let N ≥ 2 and let D be a hyperplane, that is, m = 1.
Then one has

(a) dimH0(PN , SrΩ1
PN (logD)(t)) =

(
N + r − 1
N − 1

)
·
(
t− r +N

N

)
(b) For 1 ≤ q ≤ N − 1 holds: Hq(PN , SrΩ1

PN (logD)(t)) = 0 ∀t ∈ Z

(c) dimHN (PN , SrΩ1
PN (logD)(t)) =

(
N + r − 1
N − 1

)
·
(
−t+ r − 1

N

)

Proof. SrΩ1
PN (logD) ∼= ⊕

(N+r−1
N−1 )

OPN (−r). �

4. Complete Intersections Y ⊂ PN

Let Y = H1 ∩ . . . ∩ HN−n ⊆ PN be a nonsingular, irreducible, complete
intersection of algebraic hypersurfaces Hi ⊂ PN , where Hi is given by the
equation Fi = 0 with degFi = mi. We denote by n the dimension of Y . Let
D be a prime divisor on Y , which is defined by the equation D = Y ∩ H
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with a hypersurface H : F = 0. The degree of H is m. In the following, we
abbreviating denote c = N − n = codimY and assume n ≥ 2. Let X be a
further complete intersection which is described by X = H1 ∩ . . .∩Hc−1. Here
dimX = n+ 1 and Y = X ∩Hc. There exists also a divisor D∗ = X ∩H on X.
Assume that the hypersurfaces H1, . . . ,HN−n and H lie in general position,
i.e. for instance X = H1∩ . . .∩Hc−1 ⊆ PN and the prime divisors D on Y and
D∗ on X are nonsingular, irreducible, complete intersections, too.

4.1. Alternating Differential Forms. In case r = n we obtain
ΩnY = ωY ∼= OY (

∑c
i=1mi −N − 1) which implies

ΩnY (logD) ∼= ΩnY (m) ∼= OY (
c∑
i=1

mi −N − 1 +m) ,

where D = Y ∩H with degH = m. The dimensions of Hq(Y,ΩnY (logD)(t)) =
Hq(Y,OY (

∑c
i=1mi −N − 1 +m+ t)) are well known:

If 1 ≤ q ≤ n− 1 then Hq(Y,OY (t)) = 0 ∀t ∈ Z.

dimH0(Y,OY (t)) =
(
t+N

N

)
+

+
c∑
j=1

(−1)j ·
∑

1≤i1<i2<...<ij≤c

(
t+N −mi1 −mi2 − . . .−mij

N

)
dimHn(Y,OY (t)) = dimH0(Y,OY (−t+m1 +m2 + . . .+mc −N − 1))

(cf. e.g. [1] or the proof of Lemma (4.4) in the present paper).
We study the cohomology groups Hq(Y,ΩrY (logD)(t)) with r < dimY = n:

Lemma 4.1. The following sequences are exact.

(a) 0 −→ OX(−mc) −→ OX
ϕ∗−→ OY −→ 0 (12)

(b) 0→ ΩrX(logD∗)(−mc)
α→ ΩrX(logD∗)

β→ OY ⊗OX ΩrX(logD∗)→ 0
(13)

(c) 0→ Ωr−1
Y (logD)(−mc)

γ→ OY ⊗OX ΩrX(logD∗) δ→ ΩrY (logD)→ 0
(14)

Proof. Notice, for r = 1 we have to substitute Ωr−1
Y (logD) by the structure

sheaf OY . The composition δ ◦ β is the restriction of the differential forms on
X to the subvariety Y ⊂ X. Obviously, the sequence (12) is exact and (13)
results by multiplication of (12) with the locally free sheaf ΩrX(logD∗). We
will show that (14) is also an exact sequence. Let U ⊆ X be an open subset
of X and let V = Y ∩ U be an open, nonempty subset of Y . Without loss of
generality we assume U ⊆ Ui = {xi 6= 0}. Moreover, we suppose the existence
of local parameters u1, . . . , un−1, un = F

xmi
, un+1 = Fc

xmci
of X on U such that

their restriction to Y are also local parameters
v1 = ϕ∗(u1), . . . , vn−1 = ϕ∗(un−1), vn = ϕ∗(un) = F

xmi
of Y on V . Then
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Γ(V,OY ⊗OX ΩrX(logD∗)) is a free Γ(V,OY )-module whose rank is equal to(
n+1
r

)
. Let ω ∈ Γ(V,OY ⊗OX ΩrX(logD∗)) be a section of the form

ω =
n−1∑
iν=1

fi1,...,ir dui1 ∧ . . . ∧ duir

+
n−1∑
iν=1

fi1,...,ir−1,n dui1 ∧ . . . ∧ duir−1 ∧
dun
un

+
n−1∑
iν=1

fi1,...,ir−1,n+1 dui1 ∧ . . . ∧ duir−1 ∧ dun+1

+
n−1∑
iν=1

fi1,...,ir−2,n,n+1 dui1 ∧ . . . ∧ duir−2 ∧
dun
un
∧ dun+1 ,

where fi1,...,ir ∈ Γ(V,OY ). The homomorphism δ is defined as follows:

δ(ω) =
n−1∑
iν=1

fi1,...,ir d vi1 ∧ . . .∧d vir +
n−1∑
iν=1

fi1,...,ir−1,n d vi1 ∧ . . .∧d vir−1 ∧
d vn
vn

,

which means that δ(ω) ∈ Γ(V,ΩrY (logD)). The kernel of δ is given by

ker δ =

{
n−1∑
iν=1

fi1,...,ir−1,n+1 dui1 ∧ . . . ∧ duir−1 ∧ dun+1

+
n−1∑
iν=1

fi1,...,ir−2,n,n+1 dui1 ∧ . . . ∧ duir−2 ∧
dun
un
∧ dun+1

}
,

where ker δ ⊆ Γ(V,OY ⊗OX ΩrX(logD∗)). In order to show that the kernel of δ
is isomorphic to Γ(V,Ωr−1

Y (logD)(−mc)), we consider the following homomor-
phisms

ker δ α̃−→ Γ(V,OY (−mc)⊗OX Ωr−1
X (logD∗))

β̃−→ Γ(V,Ωr−1
Y (logD)(−mc)).

Let ξ ∈ ker δ be any element. The mappings α̃ and β̃ are illustrated by

α̃(ξ) =
1
xmci

n−1∑
iν=1

fi1,...,ir−1,n+1 dui1 ∧ . . . ∧ duir−1

+
1
xmci

n−1∑
iν=1

fi1,...,ir−2,n,n+1 dui1 ∧ . . . ∧ duir−2 ∧
dun
un

,

respectively,

β̃(α̃(ξ)) =
1
xmci

n−1∑
iν=1

fi1,...,ir−1,n+1 d vi1 ∧ . . . ∧ d vir−1

+
1
xmci

n−1∑
iν=1

fi1,...,ir−2,n,n+1 d vi1 ∧ . . . ∧ d vir−2 ∧
d vn
vn

.
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Since xmci · dun+1 = xmci · d
Fc
xmci

is a global section of the sheaf

OY (mc) ⊗OX Ω1
X the functions α̃ and β̃ are independent of the index i with

U ⊆ Ui and independent of the choice of the local parameters u1, . . . , un−1.
One can easily see that α̃ and β̃ are monomorphic. The mapping β̃ is the
restriction from X to Y which obviously is epimorphic. While α̃ is generally
not epimorphic, any element of Γ(V,Ωr−1

Y (logD)(−mc)) has a preimage in ker δ.
We can represent an element of Γ(V,Ωr−1

Y (logD)(−mc)) by the form β̃(α̃(ξ))
with functions fi1,...,ir ∈ Γ(V,OY ). In order to find a preimage in ker δ, we use
the same functions fi1,...,ir , and in place of vi we take the local parameters ui
on X and multiply with xmci · dun+1. This proves that the composition β̃ ◦ α̃
is isomorphic, the sequence (14) is exact. �

By means of these exact sequences we are going to prove recursion formulas
about the dimensions of the cohomology groups Hq(Y,ΩrY (logD)(t)). As above
mentioned, for r = n these dimensions are known.

Theorem 4.2.

(a) χ(Y,ΩrY (logD)(t)) = χ(X,ΩrX(logD∗)(t))

−χ(X,ΩrX(logD∗)(t−mc))− χ(Y,Ωr−1
Y (logD)(t−mc)) for r ≥ 1

In the case r = 1 one has to substitute Ωr−1
Y (logD) by the structure

sheaf OY .
(b) Let 0 < q < n, q + r 6= n and r ≥ 0.

Then one has Hq(Y,ΩrY (logD)(t)) = 0 for any t ∈ Z.

(c) dimH0(Y,ΩrY (logD)(t))

= dimH0(X,ΩrX(logD∗)(t))− dimH0(X,ΩrX(logD∗)(t−mc))

−dimH0(Y,Ωr−1
Y (logD)(t−mc)) for 0 < r < n

(d) dimHn(Y,ΩrY (logD)(t)) = dimH0(X,Ωn−rX (logD∗)(−t−m))
−dimH0(X,Ωn−rX (logD∗)(−t−mc −m))
−dimH0(Y,Ωn−r−1

Y (logD)(−t−mc −m))

(e) dimH1(Y,Ωn−1
Y (logD)(t))

= dimH0(Y,Ωn−1
Y (logD)(t)) + dimH0(Y,ΩnY (logD)(t+mc))

+ dimH0(X,ΩnX(logD∗)(t))− dimH0(X,ΩnX(logD∗)(t+mc))

−dimH1(X,ΩnX(logD∗)(t)) + dimH1(X,ΩnX(logD∗)(t+mc))

(f) dimHn−r(Y,ΩrY (logD)(t))

= dimHn−r−1(Y,Ωr+1
Y (logD)(t+mc))−dimHn−r(X,Ωr+1

X (logD∗)(t))

+ dimHn−r(X,Ωr+1
X (logD∗)(t+mc)) for 2 ≤ r < n
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Proof. Under the additional condition q + r < n the proof of (b) will be
shown by complete induction with respect to c = codimY and r. Then the
case q + r > n follows directly from the Serre duality. If c = 0, i.e. Y = PN ,
Theorem 3.3 implies Hq(Y,ΩrY (logD)(t)) = 0 for 0 < q < N and q + r 6= N .
If r = 0 then we get Hq(Y,OY (t)) = 0 for 0 < q < n (cf. e.g. [2, Lemma 1]).
In particular, we have the following induction assumption (c− 1 = codimX) :

(i) From q, r ∈ N , 0 < q, 0 ≤ r and q + r < n+ 1 it follows
Hq(X,ΩrX(logD∗)(t)) = 0 for all t ∈ Z.

Now assume 0 < q, 0 ≤ r and q+ r < n . From (13) we get the exact sequence

. . . −→ Hq(X,ΩrX(logD∗)(t)) −→ Hq(Y,OY (t)⊗OX ΩrX(logD∗)) −→
−→ Hq+1(X,ΩrX(logD∗)(t−mc)) −→ . . . .

Since 0 < q , q + 1 + r < n+ 1 we have by induction assumption (i) :
Hq(X,ΩrX(logD∗)(t)) = 0 and Hq+1(X,ΩrX(logD∗)(t−mc)) = 0. Hence,
Hq(Y,OY (t)⊗OX ΩrX(logD∗)) = 0 for 0 < q , q + r < n and any t ∈ Z.
Now, let r > 0 be a fixed integer. We use the following induction assumption:

(ii) If 0 < q and q+ r−1 < n then Hq(Y,Ωr−1
Y (logD)(t)) = 0 for all t ∈ Z.

To prove: If 0 < q and q + r < n then Hq(Y,ΩrY (logD)(t)) = 0 for all t ∈ Z.
Let 0 < q , q + r < n. We consider the exact sequence which is given by (14)

. . . −→ Hq(Y,OY (t)⊗OX ΩrX(logD∗)) −→ Hq(Y,ΩrY (logD)(t) −→
−→ Hq+1(Y,Ωr−1

Y (logD)(t−mc)) −→ . . . .

By (ii) one has Hq+1(Y,Ωr−1
Y (logD)(t−mc)) = 0 for all t ∈ Z since

q + 1 + r − 1 = q + r < n (and q + 1 < n). Furthermore, we know that
Hq(Y,OY (t)⊗OX ΩrX(logD∗)) = 0 for any t ∈ Z because of 0 < q , q+ r < n .
This implies Hq(Y,ΩrY (logD)(t) = 0 for 0 < q < n and q+r < n for any t ∈ Z.
For the proof of (c) we first consider the exact sequence from (13)

0 −→ H0(X,ΩrX(logD∗)(t−mc)) −→ H0(X,ΩrX(logD∗)(t)) −→
−→ H0(Y,OY (t)⊗OX ΩrX(logD∗) −→ H1(X,ΩrX(logD∗)(t−mc)) −→ . . . ,

(15)

and apply (i) which yields H1(X,ΩrX(logD∗)(t−mc)) = 0 as 1 + r < n+ 1 =
dimX. Because of (14) one gets the exact sequence

0 −→ H0(Y,Ωr−1
Y (logD)(t−mc)) −→ H0(Y,OY (t)⊗OX ΩrX(logD∗)) −→

H0(Y,ΩrY (logD)(t)) −→ H1(Y,Ωr−1
Y (logD)(t−mc)) −→ . . . ,

(16)

and due to 1 + r − 1 = r < n one has H1(Y,Ωr−1
Y (logD)(t−mc)) = 0. State-

ment (c) can be read from (15) and (16). Assertion (d) can easily be shown
by Serre duality. The Euler-Poincare characteristic can be calculated by the
exact sequences (12)–(14). This allows us to specify finally the dimension of
Hn−r(Y,ΩrY (logD)(t)). (e) and (f) also can be shown using the exact coho-
mology sequences. �
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4.2. T -symmetric Differential Forms. Let Y ⊆ PN be the n-dimensional
complete intersection of multidegree (m) = (m1,m2, . . . ,mc). c = N − n
denotes the codimension of Y.
We consider a Young tableau T with r boxes, the row lengths l1 ≥ l2 ≥
. . . ≥ ld > 0 and the column lengths d1 ≥ d2 ≥ . . . ≥ dl > 0. We denote
l = l1 = lengthT and d = d1 = depthT . Let M(T ) be the set of all integer
matrices A = ((di,j)) ∈ N(c+1,l) with c + 1 rows, l columns and with the
following properties:

(1) d1,j = dj ∀j ∈ {1, . . . , l},
(2) di,l ≥ di+1,l ≥ 0 ∀i ∈ {1, . . . , c},
(3) di,j ≥ di+1,j ≥ di,j+1 ∀i ∈ {1, . . . , c} ∀j ∈ {1, . . . , l − 1}.

Let %i(A) =
∑l
j=1 dij be the i-th row sum of A and we put %(A) = %c+1(A).

We denote by

µ =
c∑
j=1

dj (17)

the number of boxes in the first c columns of T , where dj = 0 for j > l. One
can easily see that r − µ ≤ %(A) ≤ r for all A ∈ M(T ). Finally, we define
the subset Ms(T ) of M(T ) by Ms(T ) := {A ∈ M(T ) : %(A) = r − s} for all
s ∈ {0, 1, . . . , µ}. For simplification we set furthermore:

ΩT
′

PN |Y (logD∗) = OY ⊗OPN
ΩT
′

PN (logD∗) , EsT =
⊕

A∈Ms(T )

ΩT
′(A)

PN |Y (logD∗)(t(A))

with t(A) =
c∑
i=1

(%i+1(A)− %i(A)) ·mi.

Here T ′(A) denotes a Young tableau with %(A) boxes and the column lengths
dc+1,1, . . . , dc+1,l, that is, T ′(A) depends only on the last row of A. If %(A) = 0
we need to replace the sheaf ΩT

′(A)

PN |Y (logD∗) by the structure sheaf OY .

Lemma 4.3. There exists following exact sequence:

0 −→ EµT
βµ−→ Eµ−1

T

βµ−1−→ . . .
β2−→ E1

T
β1−→ ΩTPN |Y (logD∗)

β0−→ ΩTY (logD) −→ 0.
(18)

Proof. (18) is the T-Power of the following short exact sequence (cf. [3]):

0 −→
c⊕
i=1

OY (−mi)
α−→ OY ⊗OPN

Ω1
PN (logD∗)

β−→ Ω1
Y (logD) −→ 0 (19)

We need to show that (19) is an exact sequence. Let U ⊆ PN be an open
subset. Without loss of generality we put U ⊆ Ui = {xi 6= 0}. Assume that
there exist local parameters F1

x
m1
i

, . . . , Fc
xmci

, u1, . . . , un−1,
F
xmi

of PN on U such

that the restrictions v1 = ϕ∗(u1), . . . , vn−1 = ϕ∗(un−1), vn = ϕ∗
(
F
xmi

)
are local
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parameters of Y on U ∩ Y . We know that Γ(U ∩ Y,OY ⊗OPN
Ω1

PN (logD∗)) is
a free Γ(U ∩ Y,OY )−module defined by the span

d
F1

xm1
i

, . . . ,d
Fc
xmci

,du1, . . . ,dun−1,
xmi
F
· d F

xmi
.

Γ(U∩Y,Ω1
Y (logD)) is a free Γ(U∩Y,OY )−module with the span d v1, . . . ,d vn.

Let ω ∈ Γ(U ∩ Y,OY ⊗OPN
Ω1

PN (logD∗)) be any element given by

ω =
c∑
j=1

fj · x
mj
i · d

Fj

x
mj
i

+
n−1∑
k=1

gk · duk + h · x
m
i

F
· d F

xmi
.

The homomorphism β maps ω to β(ω) =
∑n−1
k=1 gk · d vk + h · d vn

vn
where the

kernel of this mapping is given by kerβ =
{∑c

j=1 fj · x
mj
i · d

Fj

x
mj
i

}
. We obtain

the following homomorphism

γ :

c⊕
j=1

Γ(U∩Y,OY (−mj)) −→ kerβ with (f1, . . . , fc) 7−→
c∑
j=1

fj ·x
mj
i ·d

Fj

x
mj
i

which is isomorphic and independent of the index i with U ⊆ Ui. �

Lemma 4.4. For an arbitrary Young tableau T ′ there exists the following
exact sequence

0 −→ ΩT
′

PN (logD∗)(−
c∑
i=1

mi)
αc−→

⊕
1≤i≤c

ΩT
′

PN (logD∗)(−
c∑
j=1

mj +mi)
αc−1−→ . . .

. . .
α3−→

⊕
1≤i1<i2≤c

ΩT
′

PN (logD∗)(−mi1 −mi2) α2−→
⊕

1≤i≤c

ΩT
′

PN (logD∗)(−mi)
α1−→

α1−→ ΩT
′

PN (logD∗) α0−→ OY ⊗OPN
ΩT
′

PN (logD∗) −→ 0.
(20)

Proof. We consider the following exact sequence which is called the Koszul
complex:

0 −→ OPN (−
c∑
i=1

mi)
αc−→

⊕
1≤i≤c

OPN (−
c∑
j=1

mj +mi)
αc−1−→ . . .

α3−→
⊕

1≤i1<i2≤c

OPN (−mi1 −mi2) α2−→
⊕

1≤i≤c

OPN (−mi)
α1−→ OPN

α0−→ OY −→ 0.

Multiplying this exact sequence with the local free sheaf ΩT
′

PN (logD∗) yields
the assertion. �

Theorem 4.5. Under the assumption 1 ≤ q < n− depthT − µ one gets

Hq(Y,ΩTY (logD)(t)) = 0 for all t ∈ Z.
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Proof. We write instead of (20) short exact sequences and obtain

0 −→ ΩT
′

PN (logD∗)(−
c∑
i=1

mi) −→
⊕

1≤i≤c

ΩT
′

PN (logD∗)(−
c∑
j=1

mj +mi) −→

−→ Imαc−1 −→ 0

0 −→ Imαc−1 −→
⊕

1≤i1<i2≤c

ΩT
′

PN (logD∗)(−
c∑
j=1

mj +mi1 +mi2) −→

−→ Imαc−2 −→ 0
...

...

0 −→ Imα2 −→
⊕

1≤i≤c

ΩT
′

PN (logD∗)(−mi) −→ Imα1 −→ 0

0 −→ Imα1 −→ ΩT
′

PN (logD∗) −→ OY ⊗OPN
ΩT
′

PN (logD∗) −→ 0.

Using the long exact cohomology sequences yields a vanishing criterion for
Hq(Y,OY ⊗OPN

ΩT
′

PN (logD∗)(t)). We have

Hq(Y,OY ⊗OPN
ΩT
′

PN (logD∗)(t)) = 0 if Hq(PN ,ΩT
′

PN (logD∗)(t)) = 0

and Hq+1(PN , Imα1(t)) = 0

Hq+1(PN , Imα1(t)) = 0 if Hq+1(PN ,
⊕

1≤i≤c

ΩT
′

PN (logD∗)(t−mi)) = 0

and Hq+2(PN , Imα2(t)) = 0
...

Hq+c−1(PN , Imαc−1(t)) = 0

if Hq+c−1(PN ,
⊕

1≤i≤c

ΩT
′

PN (logD∗)(t−
c∑
j=1

mj +mi)) = 0

and Hq+c(PN ,ΩT
′

PN (logD∗)(t−
c∑
i=1

mi) = 0.

Applying Theorem 3.6 (d) yields Hq(Y,OY (t)⊗OPN
ΩT
′

PN (logD∗)) = 0 for 1 ≤
q < n − depthT ′. Now we study Hq(Y,ΩTY (logD)(t)) with the aid of (18).
Decomposing (18) in short exact sequences delivers

0 −→ EµT −→ Eµ−1
T −→ Imβµ−1 −→ 0

0 −→ Imβµ−1 −→ Eµ−2
T −→ Imβµ−2 −→ 0

...
...

0 −→ Imβ2 −→ E1
T −→ Imβ1 −→ 0

0 −→ Imβ1 −→ ΩTPN |Y (logD∗) −→ ΩTY (logD) −→ 0.
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With EsT (t) =
⊕

A∈Ms(T )

ΩT
′(A)

PN |Y (logD∗)(t+ t(A)) one has

Hq(Y,ΩTY (logD)(t)) = 0 if Hq(Y,ΩTPN |Y (logD∗)(t)) = 0

and Hq+1(Y, Imβ1(t)) = 0
...

Hq+µ−1(Y, Imβµ−1(t)) = 0 if Hq+µ−1(Y,Eµ−1
T (t)) = 0

and Hq+µ(Y,EµT (t)) = 0.

This implies Hq(Y,ΩTY (logD)(t)) = 0 for 1 ≤ q < n− depthT − µ. �

Now assume for instance µ < n − depthT . Then for each t ∈ Z it follows
from our exact sequences: Hq(PN , Imαi(t)) = 0 if 1 ≤ q ≤ µ+ i ,

Hq(Y,OY (t)⊗OPN
ΩT
′

PN (logD∗)) = 0 if 1 ≤ q ≤ µ+ c ,
Hq(Y,EjT (t)) = 0 if 1 ≤ q ≤ j , Hq(Y, Imβj(t)) = 0 if 1 ≤ q ≤ j .
In particular, the cohomology groupsH1(. . .) of all these sheaves vanish. There-
fore, we have the opportunity to calculate the dimensions of their cohomology
groups H0(. . .) :
Let hT (t) abbreviating denotes the dimension dimH0(PN ,ΩTPN (logD∗)(t)) as
an integer function of t . Remember that (m) = (m1,m2, . . . ,mc) is the mul-
tidegree of the complete intersection Y . We set

hT(m)(t) := hT (t) +
c∑
s=1

(−1)s ·
∑

1≤i1<i2<...<is≤c

hT (t−mi1 −mi2 − . . .−mis) .

Because of (20) we have dimH0(Y,OY ⊗OPN
ΩT
′

PN (logD∗)(t)) = hT
′

(m)(t) and
using (18) we get the following formula:

Theorem 4.6. If µ < dimY − depthT then

dimH0(Y,ΩTY (logD)(t)) =
∑

A∈M(T )

(−1)r−%(A) · hT
′(A)

(m) (t+ t(A))

with t(A) =
∑c
i=1(%i+1(A)− %i(A)) ·mi.

In particular for t = 0 : H0(Y,ΩTY (logD)) = 0 if µ < dimY − depthT .

Remark 4.7. For regular T -symmetrical tensor differential forms one has
H0(Y,ΩTY ) = 0 if µ < dimY .

4.3. Symmetric Differential Forms. We consider symmetrical differential
forms with logarithmic poles as a special case, that means, T is a Young tableau
with r boxes and only one row (depthT = 1 , l = lengthT = r).
Let D∗ = H be the prime divisor on projective space PNand let D be the
prime divisor on the n-dimensional complete intersection Y as above (n ≥ 2).
Distinguishing the cases r ≤ c and c < r we obtain two exact sequences as
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symmetrical power of (19) : Assume at first r ≤ c :

0 −→
⊕

1≤i1<i2<...<ir≤ c

OY (−mi1 −mi2 − . . .−mir )−→

−→
⊕

1≤i1<...<ir−1≤ c

OY (−mi1 −mi2 − . . .−mir−1)⊗OPN
Ω1

PN (logD∗)−→ . . .

. . .−→
⊕

1≤i≤c

OY (−mi)⊗OPN
Sr−1Ω1

PN (logD∗)−→

−→OY ⊗OPN
SrΩ1

PN (logD∗)−→SrΩ1
Y (logD)−→ 0

In the case c < r the following sequence is exact:

0 −→ OY (−
c∑
j=1

mj)⊗OPN
Ωr−cPN (logD∗)−→

−→
⊕

1≤i≤c

OY (−
c∑
j=1

mj +mi)⊗OPN
Ωr−c+1

PN (logD∗)−→ . . .

. . .−→
⊕

1≤i≤c

OY (−mi)⊗OPN
Sr−1Ω1

PN (logD∗)−→

−→OY ⊗OPN
SrΩ1

PN (logD∗)−→SrΩ1
Y (logD)−→ 0

Furthermore, we have Lemma 4.4 with the sheaf SrΩ1
PN (logD∗) instead of

ΩT
′

PN (logD∗) . With the corresponding cohomology sequences we get:

Theorem 4.8. Assume n = dimY ≥ 2 .

(a) If 1 ≤ q ≤ n− 2 then Hq(Y,OY (t)⊗OPN
SrΩ1

PN (logD∗)) = 0 ∀t ∈ Z
(b)

dimH0(Y,OY (t)⊗OPN
SrΩ1

PN (logD∗)) = dimH0(PN , SrΩ1
PN (logD∗)(t))+

+
c∑
j=1

(−1)j ·
∑

1≤i1<...<ij≤c

dimH0(PN , SrΩ1
PN (logD∗)(t−mi1 − . . .−mij ))

(c) H0(Y,OY (t)⊗OPN
SrΩ1

PN (logD∗)) 6= 0 ⇔ t ≥ r
(d) In case t = 0 : H0(Y,OY ⊗OPN

SrΩ1
PN (logD∗)) = 0 for all r > 0

Theorem 4.9.

(a) If r ≤ c and 1 ≤ q < n− r then Hq(Y, SrΩ1
Y (logD)(t)) = 0 ∀t ∈ Z

(b) If c < r and 1 ≤ q < n− c− 1 then Hq(Y, SrΩ1
Y (logD)(t)) = 0 ∀t ∈ Z

Proof. By Theorem 4.5 we know Hq(Y,ΩTY (logD)(t)) = 0 for all t ∈ Z
if 1 ≤ q < n−depthT−µ. For symmetric differential forms we have depthT = 1
and µ =

∑c
i=1 di = min{c, r}, where di = 1 for i ≤ r and di = 0 for i > r.

This proves (b). Under condition r ≤ c one gets the stronger result (a) since
Hq(Y,OY (t)) = 0 for 1 ≤ q < n and for all t ∈ Z. �
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Theorem 4.10.

(c) If r ≤ c and r < n then

H0(Y, SrΩ1
Y (logD)(t)) = dimH0(Y,OY (t)⊗OPN

SrΩ1
PN (logD∗))+

+
r−1∑
k=1

(−1)k ·
∑

1≤i1<...<ik≤c

dimH0(Y,OY (t−
k∑
j=1

mij )⊗OPN
Sr−kΩ1

PN (logD∗))

+ (−1)r ·
∑

1≤i1<...<ir≤c

dimH0(Y,OY (t−mi1 − . . .−mir )

(d) If c < r and c < n− 1 then

H0(Y, SrΩ1
Y (logD)(t)) = dimH0(Y,OY (t)⊗OPN

SrΩ1
PN (logD∗))+

+
c∑

k=1

(−1)k ·
∑

1≤i1<...<ik≤c

dimH0(Y,OY (t−
k∑
j=1

mij )⊗OPN
Sr−kΩ1

PN (logD∗))

Proof. Statements (c) and (d) follow from the related exact sequences since
under these premises by Theorem 4.8 the cohomology groups H1(. . .) of all
these sheaves vanish (cf. Theorem 4.8 and Theorem 3.7 ). �

Finally, it is easy to see:

Theorem 4.11.

(e) If t < r ≤ min(c, n− 1) then H0(Y, SrΩ1
Y (logD)(t)) = 0 .

(f) If t < r and c < min(r, n− 1) then H0(Y, SrΩ1
Y (logD)(t)) = 0 .

(g) If c < n− 1 then H0(Y, SrΩ1
Y (logD)) = 0 for all r > 0 .

(h) If 0 < r < n then H0(Y, SrΩ1
Y (logD)) = 0 .

Remark 4.12. On the other hand, for regular symmetrical differential
forms on complete intersections it is well known:
If c < n then H0(Y, SrΩ1

Y ) = 0 for all r > 0 .
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