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Abstract

We prove existence and uniqueness of weak solutions to certain abstract evolutionary
integro-differential equations in Hilbert spaces, including evolution equations of fractional
order less than 1. Our results apply, e.g., to parabolic partial integro-differential equations
in divergence form with merely bounded and measurable coefficients.
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1 Introduction

Let V and H be real separable Hilbert spaces such that V is densely and continuously embedded
into H. Identifying H with its dual H′ we have V ↪→ H ↪→ V ′, and

(h, v)H = 〈h, v〉V′×V , h ∈ H, v ∈ V, (1)

where (·, ·)H and 〈·, ·〉V′×V denote the scalar product in H and the duality pairing between V ′
and V, respectively.

In this paper we study the abstract problem

d

dt

(
[k ∗ (u− x)](t), v

)
H

+ a(t, u(t), v) = 〈f(t), v〉V′×V , v ∈ V, a.a. t ∈ (0, T ), (2)

where d/dt means the generalized derivative of real functions on (0, T ), k ∈ L1, loc(R+) is a
scalar kernel that belongs to a certain kernel class (k is of type PC, see Definition 2.1 below),
k ∗ u stands for the convolution on the positive halfline, i.e. (k ∗ u)(t) =

∫ t

0
k(t − τ)u(τ) dτ ,

t ≥ 0, and a : (0, T ) × V × V → R is a bounded V-coercive bilinear form. Further, x ∈ H and
f ∈ L2([0, T ];V ′) are given data.

We seek a solution u of (2) in the regularity class

W (x,V,H) := {u ∈ L2([0, T ];V) : k ∗ (u− x) ∈ 0H
1
2 ([0, T ];V ′)},

where the zero means vanishing trace at t = 0. The vector x can be regarded as initial data for
u, at least in a weak sense. If e.g. u, and d

dt (k∗ [u−x]) belong to C([0, T ];V ′), then the condition
k ∗ (u− x)(0) = 0 implies u(0) = x, see Section 3.

∗Work partially supported by the Deutsche Forschungsgemeinschaft (DFG), Bonn, Germany.
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An important example for the kernel k we have in mind is given by

k(t) = g1−α(t)e−µt, t > 0, α ∈ (0, 1), µ ≥ 0, (3)

where gβ denotes the Riemann-Liouville kernel

gβ(t) =
tβ−1

Γ(β)
, t > 0, β > 0.

In this case, (2) amounts to an abstract differential equation of fractional order α ∈ (0, 1). Recall
that for a (sufficiently smooth) function v on R+, the Riemann-Liouville fractional derivative
Dβ

t v of order β ∈ (0, 1) is defined by Dβ
t v = d

dt (g1−β ∗ v).
In this paper we prove that the problem (2) possesses exactly one solution in the class

W (x,V,H). This result can be regarded as the analogue of the well-known existence and unique-
ness result for the corresponding abstract parabolic equation

d
dt (u(t), v)H + a(t, u(t), v)= 〈f(t), v〉V′×V , v ∈ V, a.a. t ∈ (0, T ),

u(0)= x ∈ H,
u ∈ H1

2 ([0, T ];V ′)∩L2([0, T ];V),
(4)

see e.g. Theorem 4.1 and Remark 4.3 in Chapter 4 in [7] or [12, Section 23]. We point out
that concerning time regularity the bilinear form a is only assumed to be measurable in t. This
allows, e.g., to treat parabolic partial integro-differential equations in divergence form with merely
bounded and measurable coefficients, see Section 4.

The proof of the main result is based on the Galerkin method and suitable a priori estimates
for weak solutions of (2). These estimates are derived by means of the basic identity (17) (see
below) for absolutely continuous kernels. It has been known before but does not seem to appear
in the literature in the context of problems of the form (2). We remark that recently ([9]) the
identity (17) was successfully employed to construct Lyapunov functions for certain nonlinear
differential equations of fractional order between 0 and 2.

In order to be able to apply (17), we approximate the kernel k by the sequence (kn) which
is obtained from the Yosida approximation of the operator B defined by Bv = d

dt (k ∗ v), e.g. in
L2([0, T ]). This method was already used in [9], we also refer to [5], where a more general class
of integro-differential operators (in time) is studied.

Note that (2) is equivalent to the equation

d

dt
[k ∗ (u− x)](t) +A(t)u(t) = f(t), a.a. t ∈ (0, T ), (5)

in V ′, where the operator A(t) : V → V ′ is defined by

〈A(t)u, v〉V′×V = a(t, u, v), u, v ∈ V. (6)

For equations of the form (5) with A(t) ≡ A there exists a vast literature, even in general
Banach spaces, see e.g. [5], and [8] and the references given therein. However, in the case
of time-dependent A and without smoothness assumption nothing seems to be known in the
literature concerning existence and uniqueness.

The paper is organized as follows. In Section 2 we introduce the notion of kernels of type
PC, and describe the approximation of such kernels used in this paper. We further prove a
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trace theorem for functions in the class W (x,V,H), and state the basic identity (17). Section 3
contains the main result on existence and uniqueness as well as some further interpolation results
for functions from W (x,V,H). We also look at the special case of fractional evolution equations.
In Section 4 we apply the abstract results to second-order parabolic partial integro-differential
equations in divergence form.

2 Preliminaries

The following class of kernels is basic to our treatment of (2).

Definition 2.1 A kernel k ∈ L1, loc(R+) is called to be of type PC if it is nonnegative and
nonincreasing, and there exists a kernel l ∈ L1, loc(R+) such that k ∗ l = 1 in (0,∞). In this case,
we say that (k, l) is a PC pair and write (k, l) ∈ PC.

From (k, l) ∈ PC it follows that l is completely positive (see e.g. Theorem 2.2 in [2]), in particular
l is nonnegative, cf. [2, Proposition 2.1].

An important example is given by

k(t) = g1−α(t)e−µt and l(t) = gα(t)e−µt + µ(1 ∗ [gαe
−µ·])(t), t > 0, (7)

with α ∈ (0, 1) and µ ≥ 0. Both k and l are strictly positive and decreasing; observe that
l′(t) = g′α(t)e−µt < 0, t > 0. The Laplace transforms are given by

k̂(λ) =
1

(λ+ µ)1−α
, l̂(λ) =

1
(λ+ µ)α

(
1 +

µ

λ

)
, Re λ > 0,

which shows that k ∗ l = 1 on (0,∞). Hence we have both (k, l) ∈ PC, and (l, k) ∈ PC.
PC pairs enjoy a useful stability property with respect to exponential shifts. Writing kµ(t) =

k(t)e−µt, t > 0, µ ≥ 0, we have

(k, l) ∈ PC ⇒ (kµ, lµ + µ(1 ∗ lµ)) ∈ PC, µ ≥ 0. (8)

To prove (8), we first note that for any µ ≥ 0, kµ is evidently nonnegative and nonincreasing,
and lµ + µ(1 ∗ lµ) is nonnegative. Multiplying k ∗ l = 1 by 1µ(t) = e−µt gives kµ ∗ lµ = 1µ,
which in turn implies that µkµ ∗ 1 ∗ lµ = µ1 ∗ 1µ = 1 − 1µ. Adding these relations, we see that
kµ ∗ [lµ + µ(1 ∗ lµ)] = 1.

We next discuss an important method of approximating kernels of type PC. Let (k, l) ∈ PC,
T > 0, and H be a real Hilbert space. Then the operator B defined by

Bu =
d

dt
(k ∗ u), D(B) = {u ∈ L2([0, T ];H) : k ∗ u ∈ 0H

1
2 ([0, T ];H)},

is known to be m-accretive in L2([0, T ];H), cf. [1], [3], and [5]. Its Yosida approximations Bn,
defined by Bn = nB(n + B)−1, n ∈ N, enjoy the property that for any u ∈ D(B), one has
Bnu→ Bu in L2([0, T ];H) as n→∞. Furthermore, we have the representation

Bnu =
d

dt
(kn ∗ u), u ∈ L2([0, T ];H), n ∈ N, (9)
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where kn = nsn, with sn being the solution of the scalar-valued Volterra equation

sn(t) + n(l ∗ sn)(t) = 1, t > 0, n ∈ N,

see e.g. [9]. The kernels sn, n ∈ N, are nonnegative and nonincreasing in (0,∞), and sn ∈
H1

1 ([0, T ]), cf. [8, Prop. 4.5]. Consequently, the kernels kn, n ∈ N, enjoy the same properties.
Moreover, kn → k in L1([0, T ]) as n→∞.

Let now V and H be real Hilbert spaces as described above, that is V ↪→ H ↪→ V ′. In the
theory of abstract parabolic equations the continuous embedding

H1
2 ([0, T ];V ′) ∩ L2([0, T ];V) ↪→ C([0, T ];H) (10)

is well-known, see e.g. Proposition 2.1 and Theorem 3.1 in Chapter 1 of [7], or Proposition 23.23
in [12]. The following theorem provides the analogue of (10) in the case of the space W (x,V,H).

Theorem 2.1 Let V and H be real Hilbert spaces as described above (V ↪→ H ↪→ V ′). Let
further T > 0, and k ∈ L1, loc(R+) be of type PC. Suppose that x ∈ H, and u ∈ W (x,V,H).
Then k ∗ (u−x) and k ∗u belong to the space C([0, T ];H) (after possibly being redefined on a set
of measure zero). The mapping {t 7→ |k ∗ u|2H(t)} is absolutely continuous on [0, T ], with

d

dt
|k ∗ u|2H(t) = 2

〈
[k ∗ (u− x)]′(t), [k ∗ u](t)]

〉
V′×V

+ 2k(t)
(
x, (k ∗ u)(t)

)
H

(11)

for a.a. t ∈ [0, T ]. Furthermore,

|k ∗ u|C([0,T ];H) ≤ C
(∣∣∣ d
dt

[k ∗ (u− x)]
∣∣∣
L2([0,T ];V′)

+ |u|L2([0,T ];V) + |x|H
)
, (12)

the constant C depending only on T , |k|L1([0,T ]), and the constant of the embedding V ↪→ H.

We remark that in the case x = 0, the property k ∗ u ∈ C([0, T ];H) follows immediately from
the embedding (10). In fact, u ∈ L2([0, T ];V) implies k ∗u ∈ L2([0, T ];V), by Young’s inequality,
and so

k ∗ u ∈ H1
2 ([0, T ];V ′) ∩ L2([0, T ];V) ↪→ C([0, T ];H).

We point out that for x 6= 0 this simple reduction is not feasible.

Proof of Theorem 2.1. Note first that (k ∗ x)(·) = (1 ∗ k)(·)x ∈ H1
1 ([0, T ];H) ↪→ C([0, T ];H).

Thus k ∗ (u− x) ∈ C([0, T ];H) if and only if k ∗ u ∈ C([0, T ];H).
Let kn ∈ H1

1 ([0, T ]), n ∈ N, be the kernel associated with the Yosida approximation Bn of
the operator

Bv =
d

dt
(k ∗ v), D(B) = {v ∈ L2([0, T ];V ′) : k ∗ v ∈ 0H

1
2 ([0, T ];V ′)}. (13)

Then kn ∗ u ∈ H1
2 ([0, T ];V), and we have for n, m ∈ N,

d

dt

∣∣∣(kn ∗ u)(t)− (km ∗ u)(t)
∣∣∣2
H

= 2
(
[kn ∗ u]′(t)− [km ∗ u]′(t), [kn ∗ u](t)− [km ∗ u](t)

)
H
.
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Thus, in view of (1) and Young’s inequality,∣∣∣(kn ∗ u)(t)− (km ∗ u)(t)
∣∣∣2
H

=
∣∣∣(kn ∗ u)(s)− (km ∗ u)(s)

∣∣∣2
H

+ 2
∫ t

s

〈
[kn ∗ (u− x)]′(τ)− [km ∗ (u− x)]′(τ), [kn ∗ u](τ)− [km ∗ u](τ)

〉
V′×V

dτ

+ 2
∫ t

s

[kn(τ)− km(τ)]
(
x, [kn ∗ u](τ)− [km ∗ u](τ)

)
H
dτ

≤
∣∣∣(kn ∗ u)(s)− (km ∗ u)(s)

∣∣∣2
H

+
∣∣∣ d
dt

[kn ∗ (u− x)]− d

dt
[km ∗ (u− x)]

∣∣∣2
L2([0,T ];V′)

+
∣∣∣kn ∗ u− km ∗ u

∣∣∣2
L2([0,T ];V)

+ 2|x|2H|kn − km|2L1([0,T ]) +
1
2

∣∣∣kn ∗ u− km ∗ u
∣∣∣2
C([0,T ];H)

(14)

for all s, t ∈ [0, T ]. Since kn → k in L1([0, T ]) as n→∞, we have kn ∗ u→ k ∗ u in L2([0, T ];H)
as well as in L2([0, T ];V). Further, u− x ∈ D(B) implies that d

dt [kn ∗ (u− x)] → d
dt [k ∗ (u− x)]

in L2([0, T ];V ′).
We fix now a point s ∈ (0, T ) for which

(kn ∗ u)(s) → (k ∗ u)(s) in H as n→∞.

Taking then in (14) the maximum over all t ∈ [0, T ] and absorbing the last term, it follows that
(kn ∗ u) is a Cauchy sequence in C([0, T ];H). Thus kn ∗ u converges in C([0, T ];H) to some
v ∈ C([0, T ];H). Since we also know that kn ∗ u → k ∗ u in L2([0, T ];H), we deduce k ∗ u = v
a.e. in [0, T ], proving the first part of the theorem.

Similarly as above we see that

|(kn ∗ u)(t)|2H = |(kn∗ u)(s)|2H + 2
∫ t

s

〈
[kn ∗ (u− x)]′(τ), [kn ∗ u](τ)

〉
V′×V

dτ

+ 2
∫ t

s

kn(τ)
(
x, (kn ∗ u)(τ)

)
H
dτ

for all s, t ∈ [0, T ], and n ∈ N. Taking the limits as n→∞ we obtain

|(k ∗ u)(t)|2H = |(k∗ u)(s)|2H + 2
∫ t

s

〈
[k ∗ (u− x)]′(τ), [k ∗ u](τ)

〉
V′×V

dτ

+ 2
∫ t

s

k(τ)
(
x, (k ∗ u)(τ)

)
H
dτ (15)

for all s, t ∈ [0, T ]. Hence {t 7→ |k ∗ u|2H(t)} is absolutely continuous on [0, T ], and (11) holds
true.

To obtain (12), we estimate the integral terms in (15) similarly as for (14) and integrate with
respect to s. This yields

|(k ∗ u)(t)|2H ≤ 1
T
|(k ∗ u)|2L2([0,T ];H) +

∣∣∣ d
dt

[k ∗ (u− x)]
∣∣∣2
L2([0,T ];V′)

+ |k ∗ u|2L2([0,T ];V) + 2|x|2H|k|2L1([0,T ]) +
1
2
|k ∗ u|2C([0,T ];H) (16)
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for all t ∈ [0, T ]. We then take the maximum over all t ∈ [0, T ], absorb the last term, and use
Young’s inequality for convolutions, to the result

1
2
|k ∗ u|2C([0,T ];H) ≤

1
T
|k|2L1([0,T ])|u|

2
L2([0,T ];H) +

∣∣∣ d
dt

[k ∗ (u− x)]
∣∣∣2
L2([0,T ];V′)

+ |k|2L1([0,T ])|u|
2
L2([0,T ];V) + 2|x|2H|k|2L1([0,T ]),

which implies (12). �

The following lemma is of fundamental importance with regard to a priori estimates for (2)
and certain interpolation results for functions in the class W (x,V,H).

Lemma 2.1 Let H be a real Hilbert space and T > 0. Then for any k ∈ H1
1 ([0, T ]) and any

v ∈ L2([0, T ];H) there holds( d

dt
(k ∗ v)(t), v(t)

)
H

=
1
2
d

dt
(k ∗ |v(·)|2H)(t) +

1
2
k(t)|v(t)|2H

+
1
2

∫ t

0

[−k̇(s)] |v(t)− v(t− s)|2H ds, a.a. t ∈ (0, T ). (17)

The assertion of Lemma 2.1 follows from a straightforward computation. We remark that a more
general version of (17) (with H = Rn) in integrated form can be found in [6, Lemma 18.4.1].

3 The main existence and uniqueness result

In this section we are concerned with existence and uniqueness for the abstract problem (2).
Recall that V and H are real separable Hilbert spaces such that V is densely and continuously
embedded into H. Identifying H with its dual H′, we have V ↪→ H ↪→ V ′, and the relation (1)
holds. It will be assumed that dimV = ∞.

We will suppose that the following assumptions are satisfied.

(Hk) (k, l) ∈ PC for some l ∈ L1, loc(R+).

(Hd) x ∈ H, f ∈ L2([0, T ];V ′).

(Ha) For a.a. t ∈ (0, T ), the mapping a(t, ·, ·) : V × V → R is bilinear, and there exist constants
M > 0, c > 0, and d ≥ 0, which are independent of t, such that

|a(t, u, v)| ≤M |u|V |v|V , (18)

a(t, u, u) ≥ c|u|2V − d|u|2H, (19)

for all u, v ∈ V and a.a. t ∈ (0, T ). Moreover, the function {t 7→ a(t, u, v)} is measurable
on (0, T ) for all u, v ∈ V.

We seek a solution of (2) in the space

W (x,V,H) = {u ∈ L2([0, T ];V) : k ∗ (u− x) ∈ 0H
1
2 ([0, T ];V ′)}.
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Note that the vector x plays the role of the initial data for u, at least in a weak sense. If e.g.
u, and d

dt (k ∗ [u − x]) =: f̃ belong to C([0, T ];V ′), then the assumption (Hk) and the condition
k ∗ (u− x)(0) = 0 entail that

u− x =
d

dt
(l ∗ k ∗ [u− x]) = l ∗ f̃

in C([0, T ];V ′), and therefore u(0) = x.
In order to construct a solution in the desired class, we will use the Galerkin method. We

will assume that

(Hb) {w1, w2, . . .} is a basis in V, and (xm) is a sequence in H such that xm ∈ span{w1, . . . , wm},
m ∈ N, and xm → x in H as m→∞.

Setting

um(t) =
m∑

j=1

cjm(t)wj , xm =
m∑

j=1

βjmwj ,

and replacing u, x, and v in (2) by um, xm, and wi, respectively, we formally obtain for every
m ∈ N, the system of Galerkin equations

m∑
j=1

d

dt
[k ∗ (cjm − βjm)](t)(wj , wi)H +

m∑
j=1

cjm(t)a(t, wj , wi) = 〈f(t), wi〉V′×V , (20)

for a.a. t ∈ (0, T ), where i runs through the set {1, . . . ,m}.
The main result in this section is the following.

Theorem 3.1 Let T > 0, and V and H be real Hilbert spaces as described above. Suppose the
assumptions (Hk), (Hd), (Ha), and (Hb) hold. Then the problem (2) has exactly one solution u
in the space W (x,V,H). The mapping (x, f) 7→ u is linear, and there exists a constant M0 > 0
such that

|k ∗ (u− x)|H1
2 ([0,T ];V′) + |u|L2([0,T ];V) ≤M0

(
|x|H + |f |L2([0,T ];V′)

)
(21)

for all x ∈ H and f ∈ L2([0, T ];V ′). Moreover, for every m ∈ N, the Galerkin equation (20)
possesses precisely one solution um ∈W (xm,V,H). The sequence (um) converges weakly to u in
L2([0, T ];V) as m→∞.

Proof. Uniqueness. Suppose that u1, u2 ∈ W (x,V,H) are solutions of (2). The difference
u = u1 − u2 then belongs to the space W (0,V,H) and satisfies the equation

〈(k ∗ u)′(t), v〉V′×V + a(t, u(t), v) = 0, v ∈ V, a.a. t ∈ (0, T ).

We may take v = u(t), thereby getting

〈(k ∗ u)′(t), u(t)〉V′×V + a(t, u(t), u(t)) = 0, a.a. t ∈ (0, T ). (22)

Let kn ∈ H1
1 ([0, T ]), n ∈ N, be the kernel associated with the Yosida approximation Bn of the

operator B defined in (13). Then (22) is equivalent to

〈(kn ∗ u)′(t), u(t)〉V′×V + a(t, u(t), u(t)) = hn(t), a.a. t ∈ (0, T ), (23)
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where
hn(t) = 〈(kn ∗ u)′(t)− (k ∗ u)′(t), u(t)〉V′×V , a.a. t ∈ (0, T ).

Since kn ∗ u ∈ H1
2 ([0, T ];H), we may apply (1) to the first term in (23), to the result( d

dt
(kn ∗ u)(t), u(t)

)
H

+ a(t, u(t), u(t)) = hn(t), a.a. t ∈ (0, T ), (24)

for all n ∈ N.
The kernels kn are nonnegative and nonincreasing. Thus, by Lemma 2.1,

1
2
d

dt
(kn ∗ |u(·)|2H)(t) ≤

( d

dt
(kn ∗ u)(t), u(t)

)
H
, a.a. t ∈ (0, T ).

The second term in (24) is estimated by means of the abstract G̊arding inequality (19) in (Ha).
Proceeding this way, it follows from (24) that

d

dt
(kn ∗ |u(·)|2H)(t) ≤ 2d|u(t)|2H + 2hn(t), a.a. t ∈ (0, T ). (25)

Observe that all terms in (25) viewed as functions of t belong to L1([0, T ]). Therefore we may
convolve (25) with the kernel l from assumption (Hk). Letting then n go to ∞ and selecting an
appropriate subsequence, if necessary, we arrive at

|u(t)|2H ≤ 2d (l ∗ |u(·)|2H)(t), a.a. t ∈ (0, T ). (26)

Here we use the fact that hn → 0 in L1([0, T ]), which entails l ∗ hn → 0 in L1([0, T ]), and that

l ∗ d

dt
(kn ∗ |u(·)|2H) =

d

dt
(kn ∗ l ∗ |u(·)|2H) → d

dt
(k ∗ l ∗ |u(·)|2H) = |u(·)|2H

in L1([0, T ]) as n→∞.
Since l is nonnegative, (26) implies that |u(t)|2H = 0 a.e. in (0, T ), by the abstract Gronwall

lemma [11, Prop. 7.15], i.e. u = 0.
Existence. 1. We show first that for every m ∈ N, the system of Galerkin equations (20)

admits a unique solution ψ := ψm := (c1m, . . . , cmm)T on [0, T ] in the class W (ξ,Rm,Rm), where
ξ := ξm := (β1m, . . . , βmm)T .

Since the vectors w1, . . . , wm are linearly independent, the matrix ((wj , wi)H) ∈ Rm×m is
invertible. Hence (20) can be solved for d

dt [k ∗ (cjm−βjm)], which leads to an equivalent system
of the form

d

dt
[k ∗ (ψ − ξ)](t) = B(t)ψ(t) + g(t), a.a. t ∈ (0, T ), (27)

where B ∈ L∞([0, T ]; Rm×m), and g ∈ L2([0, T ]; Rm), by the assumptions (Ha) and (Hd). In
order to solve (27), we transform it into the system of Volterra equations

ψ(t) = ξ + l ∗ [B(·)ψ(·)](t) + (l ∗ g)(t), a.a. t ∈ (0, T ),

which has a unique solution ψ ∈ L2([0, T ]; Rm), see e.g. [6, Chapter 9]. But then ψ ∈
W (ξ,Rm,Rm), and hence it is also a solution of (27). This shows that for every m ∈ N, the
Galerkin equation (20) has exactly one solution um ∈W (xm,V,H).
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2. We next derive a priori estimates for the Galerkin solutions. The Galerkin equations (20)
are equivalent to( d

dt
[k ∗ (um − xm)](t), wi

)
H

+ a(t, um(t), wi) = 〈f(t), wi〉V′×V , a.a. t ∈ (0, T ), (28)

i = 1, . . . ,m. Multiplying (28) by cim and summing over i, we obtain( d

dt
[(k ∗ (um − xm)](t), um(t)

)
H

+ a(t, um(t), um(t)) = 〈f(t), um(t)〉V′×V . (29)

Let kn ∈ H1
1 ([0, T ]), n ∈ N, be as in the uniqueness part above. Then (29) can be written as( d

dt
(kn ∗ um)(t), um(t)

)
H

+ a(t, um(t), um(t))

= kn(t)(xm, um(t))H + 〈f(t), um(t)〉V′×V + hmn(t), a.a. t ∈ (0, T ), (30)

with
hmn(t) = 〈[kn ∗ (um − xm)]′(t)− [k ∗ (um − xm)]′(t), um(t)〉V′×V .

Using Lemma 2.1 and inequality (19), we find that

1
2
d

dt
(kn ∗ |um(·)|2H)(t) +

1
2
kn(t)|um(t)|2H + c|um(t)|2V

≤ d|um(t)|2H + kn(t)(xm, um(t))H + 〈f(t), um(t)〉V′×V + hmn(t),

which, by Young’s inequality, yields the estimate

d

dt
(kn ∗ |um(·)|2H)(t) + c|um(t)|2V ≤ 2d|um(t)|2H + kn(t)|xm|2H +

1
c
|f(t)|2V′ + 2hmn(t). (31)

Similarly as in the uniqueness part, we see that l ∗ hmn → 0 and

l ∗ d

dt
(kn ∗ |um(·)|2H) → |um(·)|2H

in L1([0, T ]) as n→∞. Consequently, if we convolve (31) with l, and let n tend to ∞, selecting
an appropriate subsequence, if necessary, we obtain the estimate

|um(t)|2H ≤ 2d (l ∗ |um(·)|2H)(t) + |xm|2H +
1
c

(l ∗ |f(·)|2V′)(t) (32)

for a.a. t ∈ (0, T ), and all m ∈ N. By positivity of l, it follows from (32) that

|um|L2([0,T ];H) ≤ C
(
|xm|H + |f |L2([0,T ];V′)

)
, (33)

where the constant C depends only on c, d, l, T .
Returning to (31), we may integrate from 0 to T - note that (kn ∗ |um(·)|2H)(0) = 0 - and then

let n go to ∞ to find that

c

∫ T

0

|um(t)|2V dt ≤ 2d
∫ T

0

|um(t)|2H dt+ |k|L1([0,T ])|xm|2H +
1
c

∫ T

0

|f(t)|2V′ dt.
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This, together with (33) and the assumption xm → x in H, yields the a priori bound

|um|L2([0,T ];V) ≤ C1

(
|x|H + |f |L2([0,T ];V′)

)
, m ∈ N, (34)

with some C1 > 0 being independent of m ∈ N.
3. By (34) there exists a subsequence of (um), which we will again denote by (um), such that

um ⇀ u in L2([0, T ];V) as m→∞, (35)

for some u ∈ L2([0, T ];V). We will show that u ∈W (x,V,H), and that u is a solution of (2).
Let ϕ ∈ C1([0, T ]; R) with ϕ(T ) = 0. Multiplying (28) by ϕ and using integration by parts,

we obtain

−
∫ T

0

ϕ′(t)([k ∗ (um − xm)](t), wi)H dt+
∫ T

0

ϕ(t)a(t, um(t), wi) dt

=
∫ T

0

ϕ(t)〈f(t), wi〉V′×V (36)

for all m ≥ i, because [k∗ (um−xm)](0) = 0. We apply then the limits (35), and xm → x in H to
equation (36). By means of (18), the embedding V ↪→ H, and Young’s and Hölder’s inequality,
one easily verifies that this leads to

−
∫ T

0

ϕ′(t)([k ∗ (u− x)](t), wi)H dt+
∫ T

0

ϕ(t)a(t, u(t), wi) dt =
∫ T

0

ϕ(t)〈f(t), wi〉V′×V (37)

for all i ∈ N. Observe that ([k ∗ (u − x)](t), wi)H = 〈[k ∗ (u − x)](t), wi〉V′×V , by (1). It is not
difficult to see that the terms in (37) represent linear continuous functionals on the space V, with
respect to wi. Consequently, in light of (Hb), (37) implies

−
∫ T

0

ϕ′(t)〈[k ∗ (u− x)](t), v〉V′×V dt+
∫ T

0

ϕ(t)a(t, u(t), v) dt =
∫ T

0

ϕ(t)〈f(t), v〉V′×V (38)

for all v ∈ V.
Since (38) holds in particular for all ϕ ∈ C∞0 (0, T ), we infer that k ∗ (u−x) has a generalized

derivative on (0, T ) with

d

dt
[k ∗ (u− x)](t) +A(t)u(t) = f(t), a.a. t ∈ (0, T ), (39)

where the operator A(t) : V → V ′ is defined as in (6). From u ∈ L2([0, T ];V) and |A(t)u(t)|V′ ≤
M |u(t)|V for a.a. t ∈ (0, T ), we deduce that A(·)u ∈ L2([0, T ];V ′). Since f ∈ L2([0, T ];V ′), too,
it follows that [k ∗ (u− x)]′ ∈ L2([0, T ];V ′).

To see that u ∈W (x,V,H), it remains to show that [k∗(u−x)](0) = 0. We set z := k∗(u−x).
Then z ∈ H1

2 ([0, T ];V ′) ↪→ C([0, T ];V ′), and by (38) and (39), there holds

−
∫ T

0

ϕ′(t)〈z(t), v〉V′×V dt =
∫ T

0

ϕ(t)〈z′(t), v〉V′×V (40)
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for all v ∈ V, and all ϕ ∈ C1([0, T ]; R) with ϕ(T ) = 0. Choosing ϕ such that ϕ(0) = 1, and
approximating z in H1

2 ([0, T ];V ′) by a sequence of functions zn ∈ C1([0, T ];V ′), it follows from
(40) and the formula of integration by parts that 〈z(0), v〉V′×V = 0 for all v ∈ V. Hence z(0) = 0.

Summarizing, we have found a function u ∈ W (x,V,H) that solves the operator equation
(39). Since (39) is equivalent to (2), the existence proof is complete.

Moreover, (39) has exactly one solution in the class W (x,V,H). Consequently, all subse-
quences of the original sequence (um) that are weakly convergent in L2([0, T ];V) have the same
limit u. Hence, the original sequence (um) converges weakly to u in L2([0, T ];V).

Continuous dependence on the data. From um ⇀ u in L2([0, T ];V) and the estimate
(34), it follows by means of the theorem of Banach and Steinhaus, that

|u|L2([0,T ];V) ≤ lim inf
m→∞

|um|L2([0,T ];V) ≤ C1

(
|x|H + |f |L2([0,T ];V′)

)
.

Using this estimate, together with |A(·)u|L2([0,T ];V′) ≤M |u|L2([0,T ];V), (Hd), and (39), we obtain
the desired estimate (21). �

If not only the kernel l in (Hk) but also some p-th power of it with p > 1 belongs to L1([0, T ]),
then one can get an additional estimate for solutions of (2). This is the consequence of the first
part of the subsequent interpolation result for functions in the space W (x,V,H). It also contains
the analogue of∫ T

0

t−1|u(t)|2H dt <∞ for all u ∈ 0H
1
2 ([0, T ];V ′) ∩ L2([0, T ];V),

see [7, Chap. 3, Prop. 5.3 and Prop. 5.4], in the case of the space W (x,V,H).
By Lp,w([0, T ]), p ∈ [1,∞) we mean the weak Lp space of Lebesgue measurable functions on

(0, T ).

Theorem 3.2 Let V and H be real Hilbert spaces as described above (V ↪→ H ↪→ V ′). Let further
T > 0, (k, l) ∈ PC, and suppose that x ∈ H, and u ∈W (x,V,H). Then the following statements
hold.

(i) If l ∈ Lp,w([0, T ]) for some p > 1 then u ∈ L2p,w([0, T ];H), and there holds

|u|L2p,w([0,T ];H) ≤ C
(∣∣∣ d
dt

[k ∗ (u− x)]
∣∣∣
L2([0,T ];V′)

+ |u|L2([0,T ];V) + |x|H
)
, (41)

the constant C depending only on T , and |l|Lp,w([0,T ]). If l ∈ Lp([0, T ]) for some p > 1 then
u ∈ L2p([0, T ];H), and the estimate corresponding to (41) holds.

(ii) There holds the estimate

(
∫ T

0

k(t)|u(t)|2H dt)1/2 ≤ C1

(∣∣∣ d
dt

[k ∗ (u− x)]
∣∣∣
L2([0,T ];V′)

+ |u|L2([0,T ];V) + |x|H
)
,

where the constant C1 only depends on |k|L1([0,T ]).
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Proof. We proceed similarly as in the proof of the previous result. The key idea again is to apply
the identity (17) from Lemma 2.1.

Let (kn) be the sequence of approximating kernels used above, and put

g(t) = 〈(k ∗ [u− x])′(t), u(t)〉V′×V , t ∈ (0, T ),

and
hn(t) = 〈(kn ∗ [u− x])′(t)− (k ∗ [u− x])′(t), u(t)〉V′×V , t ∈ (0, T ).

Then ( d

dt
(kn ∗ u)(t), u(t)

)
H

= kn(t)(x, u(t))H + g(t) + hn(t), a.a. t ∈ (0, T ),

with each term being in L1([0, T ]). Using (17) and the inequality ab ≤ 1
4a

2 + b2 it follows that

1
2
d

dt
(kn ∗ |u(·)|2H)(t) +

1
4
kn(t)|u(t)|2H ≤ kn(t)|x|2H + g(t) + hn(t), a.a. t ∈ (0, T ). (42)

To prove (i), we drop the second term on the left, which is nonnegative, convolve the resulting
inequality with l, and send n to ∞. Arguing as in the proof of Theorem 3.1 we obtain

|u(t)|2H ≤ 2
(
|x|2H + (l ∗ g)(t)

)
, a.a. t ∈ (0, T ).

Young’s inequality for weak type Lp spaces (see e.g. [4, Theorem 1.2.13]) then gives

|u|2L2p,w([0,T ];H) =
∣∣∣|u(·)|2H∣∣∣

Lp,w([0,T ])
≤ 2

(
|l|Lp,w([0,T ])|g|L1([0,T ]) + T 1/p|x|2H

)
,

which together with

2|g|L1([0,T ]) ≤
∣∣∣ d
dt

[k ∗ (u− x)]
∣∣∣2
L2([0,T ];V′)

+ |u|2L2([0,T ];V)

implies the first desired bound in (i). If l ∈ Lp([0, T ]) one may apply Young’s classical inequality
for convolutions to establish the asserted estimate in (i).

As to (ii), we integrate (42) from 0 to T , and drop the term kn ∗ |u(·)|2H)(T ), to the result∫ T

0

kn(t)|u(t)|2H dt ≤ 4
(
(1 ∗ kn)(T )|x|2H + |g|L1([0,T ]) + |hn|L1([0,T ])

)
.

Observe that (1∗kn)(T ) → (1∗k)(T ), and |hn|L1([0,T ]) → 0 as n→∞. Therefore, for sufficiently
large n we have ∫ T

0

kn(t)|u(t)|2H dt ≤ 8
(
(1 ∗ k)(T )|x|2H + |g|L1([0,T ])

)
.

Since kn → k in L1([0, 1]), the assertion then follows from Fatou’s lemma. �

In the case of fractional evolution equations we have the following corollary. Here we set

0H
α
2 ([0, T ];V ′) := {v|[0,T ] : v ∈ Hα

2 (R;V ′) and supp v ⊆ R+},

where Hα
2 (R;V ′) stands for the Bessel potential space of order α of V ′-valued functions on the

line.
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Corollary 3.1 Let T > 0, and V and H be real Hilbert spaces as described above. Suppose (Hd),
(Ha), and (Hb), and assume that k(t) = g1−α(t)e−µt, t > 0, with α ∈ (0, 1), and µ ≥ 0. Then
the problem (2) admits exactly one solution u in the space

W (α;x,V,H) := {u ∈ L2([0, T ];V) : u− x ∈ 0H
α
2 ([0, T ];V ′)}.

Furthermore, we have

(g1−αe
−µ·) ∗ u ∈ C([0, T ];H), u ∈ L 2

1−α , w([0, T ];H), and
∫ T

0

t−α|u(t)|2H dt <∞.

There exists a constant M = M(α, µ, T ) > 0 such that

|u− x|0Hα
2 ([0,T ];V′) + |u|L2([0,T ];V)+|(g1−αe

−µ·) ∗ u|C([0,T ];H) + |u|L 2
1−α

, w
([0,T ];H)

+(
∫ T

0

t−α|u(t)|2H dt)1/2 ≤M
(
|x|H + |f |L2([0,T ];V′)

)
,

for all x ∈ H and f ∈ L2([0, T ];V ′).

Proof. Let l as in (7). Then

0H
α
2 ([0, T ];V ′) = {l ∗ v : v ∈ L2([0, T ];V ′)}

= {v ∈ L2([0, T ];V ′) : (g1−αe
−µ·) ∗ v ∈ 0H

1
2 ([0, T ];V ′),

for the first equals sign see e.g. [10, Corollary 2.1]; the second one follows from k ∗ l = 1. Note
further that l ∈ L1/(1−α),w([0, T ]). So the assertions of the corollary follow immediately from the
previous results. �

Note that taking formally the limit α → 1 in the above estimates (with µ = 0) we recover
the well-known estimates for solutions of the abstract parabolic equation (4).

4 Example

Let T > 0, and Ω be a bounded domain in RN with N ≥ 3. We consider the problem ∂t(k ∗ (u− u0))− div (ADu) + b ·Du+ cu= g, t ∈ (0, T ), x ∈ Ω,
u(t, x) = 0, t ∈ (0, T ), x ∈ ∂Ω,
u(0, x) = u0(x), x ∈ Ω.

(43)

Here Du denotes the gradient of u w.r.t. the spatial variables, and z1 · z2 means the scalar
product of z1, z2 ∈ RN . We make the following assumptions on the kernel k, the coefficients, and
the data.

(Hk) (k, l) ∈ PC for some l ∈ L1, loc(R+).

(Hd) u0 ∈ L2(Ω), g ∈ L2([0, T ];L 2N
N+2

(Ω)).
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(HA) A ∈ L∞((0, T )× Ω; RN×N ), and ∃ν > 0 such that

A(t, x)ξ · ξ ≥ ν|ξ|2, for a.a. t ∈ (0, T ), x ∈ Ω, and all ξ ∈ Rn.

(Hc) b ∈ L∞((0, T )× Ω; RN ), c ∈ L∞((0, T )× Ω).

We set V = °H1
2 (Ω), and H = L2(Ω), endowed with the inner product (u, v)H =

∫
Ω
uv dx. Define

a(t, u, v) =
∫

Ω

(
A(t, x)Du(x) ·Dv(x) + (b(t, x) ·Du(x))v(x) + c(t, x)u(x)v(x)

)
dx

and
〈f(t), v〉V′×V =

∫
Ω

g(t, x)v(x) dx, a.a. t ∈ (0, T ).

Then the weak formulation of (43) reads

d

dt

(
[k ∗ (u− u0)](t), v

)
H

+ a(t, u(t), v) = 〈f(t), v〉V′×V , v ∈ V, a.a. t ∈ (0, T ), (44)

and we seek a solution in the class

W (u0, °H1
2 (Ω), L2(Ω))={u ∈ L2([0, T ]; °H1

2 (Ω)) : k ∗ (u− u0) ∈ 0H
1
2 ([0, T ];H−1

2 (Ω))}.

It is folklore that in the described setting the assumptions (Hd), and (Ha) in Theorem 3.1 are
satisfied. Concerning (Hb), we could take {w1, w2, . . .} to be the complete set of eigenfunctions
for −∆ in °H1

2 (Ω). Consequently, we obtain

Corollary 4.1 Suppose the assumptions (Hk), (Hd), (HA), and (Hc) hold. Then the problem
(43) has a unique weak solution u ∈ W (u0, °H1

2 (Ω), L2(Ω)) in the sense that (44) is satisfied.
Further, k ∗ u ∈ C([0, T ];L2(Ω)). In the case k(t) = g1−α(t)e−µt, t > 0, with α ∈ (0, 1), and
µ ≥ 0, we have

u ∈ L 2
1−α , w([0, T ];L2(Ω)) ∩ L2([0, T ]; °H1

2 (Ω)), and u− u0 ∈ 0H
α
2 ([0, T ];H−1

2 (Ω))}.

Of course, a corresponding result also holds in the case N ≤ 2 with the assumption on f
appropriately modified.
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