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Abstract
In this note we establish the Harnack inequality for the Riemann-Liouville fractional
derivation operator 9§ of order « € (0,1). Here the function under consideration is assumed
to be globally nonnegative. We show that the Harnack inequality in general fails if this
global positivity assumption is replaced by a local one. A Harnack estimate is also derived
for nonnegative solutions of a class of nonhomogeneous fractional differential equations.
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1 Introduction

Harnack inequalities have been proved to be an important tool in the theory of linear and
nonlinear partial differential equations. We refer to the recent survey [7] for an introduction into
this subject. A variant of the classical Harnack inequality for the Laplace operator can be stated
as follows. Denote by B,(y) the open ball in R™ with radius p > 0 and center y € R™. Suppose
that u is a nonnegative harmonic function in By, (y). Then

sup u < 3" inf wu,
B,(y) By (y)

see e.g. [5, Section 2.3]. The classical parabolic Harnack inequality (i.e. for the heat operator)
is due to Hadamard [6] and Pini [12]. The following version was introduced by Moser [11] in a
more general context, see also [4]. Letting p > 0, 0 € (0,1), and y € R™ we define the boxes

Q- = (—p*,—0p®) x B,(y), Q4 = (0%, p*) x B,(y).

Then there exists a constant M > 0 depending only on n and ¢ such that for any nonnegative
and sufficiently smooth function u in (—4p?, p?) x Ba,(y) satisfying

Ou—Au=0 in (—4p p*) x By,(y),
there holds the inequality

supu < M inf u.
Q_ Q+
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For more general results on Harnack inequalities in the elliptic and parabolic case we refer to [3],
[5], [7] [10], and the references given therein.

Concerning non-local operators it is known that the Harnack inequality also holds for frac-
tional powers of the negative Laplacian. Let « € (0,1) and suppose that u is a sufficiently smooth
function on R™ that is nonnegative everywhere and satisfies (—A)*u = 0 in By,(y). Then

sup u < M inf w,
B,(y) Bﬂ(y)

where the constant M depends only on « and n, cf. [2, Theorem 5.1]. We point out that here
the Harnack inequality fails, if the global positivity assumption is replaced by a local one, cf.
[8]. This is due to the non-local nature of (—A)*. More general results on Harnack estimates
for integro-differential operators like (—A)® can be found in [1].

The main objective of this note is to show that a Harnack inequality also holds for the
Riemann-Liouville fractional derivation operator 0§ with o € (0,1) defined by

t
Ofv(t) = 3t/ g1—a(t —T)v(T)dr, t>0,
0

where 9y is the usual derivation operator and gg stands for the Riemann-Liouville (or standard)
kernel given by
0=t
95() = T
RE)

To state the main result we need some notation. By fi * fo we denote the convolution defined
by (f1* f2)(t) = f(f filt = 1) fa(T)dr, t > 0, of two functions fi1, fo supported on the positive
half-line. Given 0 < t; < to we define the space Z(t1,t2) by

t>0, B>0.

Z(t1,t2) = {u € C([0,t2]) : g1—a * g, 1 € Hi ([t1,t2])}.
For ¢, > 0,0 < 01 < 02 < g3, and p > 0 we introduce the intervals

W_ = (ts + o1p,ts + 02p), Wy = (t. + 02p,tx + 03p).
Then the main result is the following.

Theorem 1.1 Let t, > 0, 0 < 01 < 02 < 03, and p > 0. Let further a € (0,1) and ug > 0.
Then for any function u € Z(t,t. + osp) that is nonnegative on (0,t, + o3p) and that satisfies

Of(u—ug)(t) =0, a.atée (t,ts+ o3p), (1)
there holds the inequality
o3 .
supu < — inf u. 2
WE) oo Wy @

Note that in Theorem 1.1 we do not assume that u(0) = ug. So by setting uy = 0 we obtain the
Harnack inequality for the Riemann-Liouville fractional derivative. If we assume in addition that
1u(0) = uo then Theorem 1.1 yields the Harnack inequality for the so-called Caputo fractional
derivation operator, which is a regularized version of the Riemann-Liouville fractional derivative,
cf. the monographs [9] and [13].



We will also show that, similarly to the case of the fractional Laplacian, the Harnack in-
equality fails if the global positivity assumption is replaced by a local one. Furthermore, we will
demonstrate that the above Harnack estimate breaks down if the relation 95 (u —ug) = 0 is only
satisfied on the smaller interval (t. + o1p, t« + o3p).

In the last section of this note we generalize Theorem 1.1 to nonnegative solutions of the
fractional differential equation

O (u —up)(t) + pu(t) = f(t), a.a.te€ (t, ts +o3p), (3)

where ug, u > 0 and f € Ly([t«, t« + o3p]) for some p > 1/, see Theorem 4.1 below.
It is highly desirable to have a Harnack inequality also for nonnegative solutions of fractional
evolution equations the prototype of which reads

O (u—up)(t,z) — Au(t,z) =0, t€(0,T), z €9, (4)

where T' > 0, Q is a domain in R™, a € (0,1), and ug is a given function depending only on z.
This is an open problem. However, our results indicate that a Harnack inequality should hold
in this situation, too. In this sense our results can be regarded as an important step towards a
better understanding of fractional evolution equations of the type (4). We remark that in the
very recent work [15], it is shown that the weak maximum principle is valid for (4), which also
supports the conjecture that a Harnack inequality holds in this case, too.

As to literature, hardly anything seems to be known about Harnack estimates for time frac-
tional equations. To the author’s knowledge the only paper on this subject is [14], where a weak
Harnack inequality is established for nonnegative supersolutions of (3). Adopting the notation
of the present note and assuming for simplicity that f = 0 and p = 0 it is shown in [14] that for
any function u € Z(t.,t. + o3p) that is nonnegative on (0, %, + o3p) and that satisfies

O (u—up)(t) >0, aa.te (ts,ts +o3p), u(0)=u,

we have
p_l/p‘u|Lp((t*,t*+(71p)) <C g/lfw (5)

forall 0 < p < ﬁ, where the constant C' > 0 depends only on 0 < 01 < 02 < 03, p, and

a € (0,1). The critical exponent ﬁ is optimal. Notice that on the left of (5) we have the
interval (t.,t. + o1p), not W_ as in (2).

2 Proof of the Harnack inequality

Suppose u € Z(t.,t« + o3p) is nonnegative on (0,t. + o3p) and satisfies (1). We introduce the
shifted time s = ¢ — ¢, and define the function @ by means of @(s) = u(s+t.), s € (0,03p). Then
(1) implies that

0%U(s) = g1—a(ts + s)up + h(s), s € (0,03p), (6)

where the history term h(s) is given by

h(s)z/o*[—g'l_a(t*+s—7')]u(7')d7', s € (0,03p). 7)



Since (g1—q *@)(0) = 0 and g, * g1—o = 1, we have
Go ¥ 05U = go * 05(g1—0 * U) = Os(go * g1—a * U) = 1.

Therefore convolving (6) with g, yields

i(s) = uo(ga * g1-al- + 1)) (s) + (g0 + h)(5), s € (0,03p). ®)
The first term on the right-hand side of (8) can be rewritten by the use of the identity

(90 * 010l 4 £)9) = [ 0ls = D)1t + ) do
= 8/0 a8 —18)g1—a(ts +1rs)dr

1 t
:/0 ga(l—r)gl_a(rJr;)dr (9)
=:¢(s), s€(0,03p).

Similarly, we have for the second term

(ga x h)(s) = /0S Ja(s—0) /0 *[—91_0,(25* + o0 —7)|u(r)drdo

=:1(s), se€(0,03p).

Consequently, (8) is equivalent to

1/0 gau—r)/o*[—gl,a(rﬂ*:)]u(ﬂdmr (10)

u(s) = upp(s) +1(s), se€(0,03p).

Let now s € (o1p,02p) and 3 € (o2p,03p). Since g1_, is nonincreasing, we evidently have
o(s) < p(5). As to 1), we use the positivity of u on (0,¢,) and the monotonicity of —g1_, to
estimate as follows.

1 1 t -
06) < o [Laat=0) [Trialr+ S (e drar
1 Ty _
<2 [ga-n / 1alr + 2= DYu(r) drdr
= Zy(s).
g1

By positivity of ug, we thus obtain
~ 03 ., _
u(s) < —u(s),
01

which immediately implies inequality (2). This completes the proof of Theorem 1.1.

Remark 2.1 Note that in case t. = 0 relation (1) implies u(t) = ug for all ¢ € [0, 03p], thus the
Harnack inequality (2) trivially holds with the constant g—f > 1 being replaced by 1.



3 Counterexamples

Example 3.1 We show first that the Harnack inequality fails for nonnegative functions u €
Z(t« + 01p,ts + o3p) satisfying the relation 95 (u — ug) = 0 only on the smaller interval (¢, +

o1p,ts + 03p).
To this purpose fix W_ = (1,2) and W, = (2,3) and consider the family of functions wu.,

€ (0,1], defined by
0 :0<t<1l—¢
uf(t)_{i(t—lﬁ—s):l—eétﬁla )

and
Ofu:. =0, aa.te(l,3). (12)

Apparently u.|j1] € H{([0,1]) so that (12) means that with s = ¢ — 1 and @ (s) = u.(s + 1) we
have
e (s) = (9o * he)(s), s €(0,2), (13)

where .
he(s) = / [—01—a(l+s—T)uc(r)dr, s€(0,2).
0
Observe that . is nonnegative on (0,3) and that u. € Z(1,3) for all € € (0,1]. From u. =0 in

[0,1 —¢] and u. <1 in [1 — ¢, 1] we infer the estimate

hs(s) S /1 [791—04(14’5*7_)] dT:gl—a(s) 791—04(54’5)3 s € (032)

—&

In view of (13) this gives for s € (1,2)
109 < [ gals = DNar-alo) = 1-alo + 2 do
= [ 9alt=Dlorat) = gr-alr + )l

< / Ga(1 = P)[g1-a(r) — g1a(r + )] dr = 3(c).
0

By the dominated convergence theorem, d(¢) vanishes as € — 0+. Hence

lim infu. = 0.
e—0+ Wi

On the other hand we have u.(1) = @(0) = 1 for all € € (0, 1], and therefore

supus > 1, €€ (0,1].
w_

This shows that an estimate of the form

supu < M inf u
wW_ Wy

with M independent of w cannot hold.



Example 3.2 We next show that the Harnack inequality fails if the positivity assumptions
ug > 0 and u > 0 in (0, t,) are dropped.
Fix t, > 0 and consider the family of functions u., € > 0, defined by

1
U (t) = g(tft*Jrz—:), 0<t<t,,

and
O (ue —upe) =0, a.a.t>t,, (14)
where y
uge = ue(0) =1 - z*

Observe that u. has negative values in [0,¢,] if and only if € € (0,t.). Setting s = ¢t — ¢, and
Ue(s) = ue(s+ts), s >0, (14) is equivalent to

Ue(5) = to,c (o * g1—a( + 1)) (5) + (g0 * he)(s), 5> 0, (15)

where

hAS):té*[—mfa@*+s-—TﬂuAT)dT

T=t,

t.
- / Gi—a(ts + 8 — 7)0(7)dr
0

1
€

- {Ql—a(t* +s- T)UE(T)} =0

=g1-a(5) — g1—a(ts + $)uoe + = (92-a(s) — g2—a(s + 1)), s> 0.

Inserting the last identity into (15) yields
1
Ue(s) =1+ z (Ga * [92—a — g2—a(- +t)])(s), s>0.

In particular @, is differentiable in (0, 00) and we have

e(5) = = (90 % 91— 91+ £)(S) — = gals)g2-a(t)

| =

< (1 — ga(s)gg_a(t*)), s> 0.

€
This shows that 4. is strictly decreasing in the interval [0, s.] with

t*
[D(a)D(2 — )/

Sy =

Selecting
€= (ga * [92—(1(' + t*) - gZ—a])(S*)a
we have
Ue(s:) =0 and a(s) >0, s€[0,s.). (16)

Note that € < t,, for otherwise we would have ug. > 0 and u. > 0 in (0,¢,], which by (15),
entails strict positivity of ., a contradiction.



Choosing the parameters in such a way that s. = t. + o3p, (16) shows that an estimate of
the form
5 < M inf
sup ue < %/{’1+ Uge

cannot hold.

4 Nonhomogeneous fractional differential equations

In this section we derive a Harnack estimate for nonnegative solutions of the more general
equation
O (u—up)(t) + pu(t) = f(t), a.a.t e (t«,ts + o3p), (17)

here p > 0 is another parameter and we assume that f € L,([t,t. + o3p]) for some p > 1/a.
The other parameters are as before.

Suppose u € Z(t«,t«+03p) is nonnegative on (0,t.+03p) and satisfies (17). Setting s = t—t.
and 4(s) = u(s +t.), f(s) = f(s+ 1), G1—a(s) = g1—a(s+ ts), s € (0,03p), we infer from (17)
that

02u(s) + pa(s) = gi—a(s)ug + h(s) + f(s), s€(0,03p), (18)

where h(s) is given by (7). Let r, , denote the resolvent kernel corresponding to (17), that is
To, 1u(8) + 1T, u * 9a)(8) = ga(s), s >0.
Equation (18) then implies
U(s) = (o * [G1-ato + b+ f)(5), 5 € (0,03p). (19)
It is well-known (see e.g. [14, Section 2.1]) that
oo () = T(@)ga(5) Eaa(—pis™), 5> 0,

where F, 3 denotes the generalized Mittag-Leffler-function defined by

oo ZTL
E,p(z) = nz:% a1 9 zeC.

Let now w > 0 be a fixed constant and assume that
pp® < w.
By continuity and strict positivity of F, o in (—o0,0] we then have

0<ecp:= min FE,o(—2) < Epa(—ps*) < max FEuo(—2) =:c2, s€(0,03p).

z€[0,wog] 2€[0,wo§]
Setting C; = Ci(a,w,03) = ¢;I'(a), i = 1,2, we thus have

Clga(s) < Ta,u(s) < 02904(5)7 s € (07 0'3,0). (20)



Further,

- ~ a—l z
SET[%E};;p](Qa #[F1)(8) < galr, (0.05o) | flL,(0.050) = C3p™ | flL,(0,050)) (21)

with
oy
T(a)[(a—1)p +1]1/7""

Using the functions ¢ and ¢ from Section 2, we infer from (19), (20), and (21) that

1
P

Cs =

a(s) < Ca(p(s)ug +v(s) + CSP(X_%|f~|Lp([0703p]))7 s € (0,03p), (22)

as well as o
a(s) > Cr(p(s)uo 4+ ¢(s)) — Co2Csp™ #|flp, (0,050 5 € (0,03p). (23)
Suppose now that s € (o1p,09p) and § € (o2p, o3p). Employing (22), (23), and the estimates
for ¢ and 9 from Section 2, we have

. _ o3, a_l z
(s) < Ca(p(5)uo + ;jqﬁ(s) + C3p® "7 | flL, ([0,050]))

(Cile(5)ug + (s)] — CyCap® 7 1L, (0.050]))

Caos
010'1

_ 1. ~
)P" 7 FlL,(0,050)

020'3
Cyo

a—1) 7
)0° 7| Ly (10,050 -

We have thus proved the following result.

Theorem 4.1 Let w > 0 be fizred. Let tu,p >0, 0 < 01 < 09 < 03, and p > 0. Let further
a€(0,1),up >0, and f € Ly([ts, tu+o03p]) for somep > 1/a. Assume that up® < w. Then there
exists a positive constant M = M (a, p,01,03,w) such that for any function u € Z(t.,t« + o3p)
that is nonnegative on (0,t,. + o3p) and that satisfies (17) there holds the inequality

supu < M (g}fu+Pa_ﬂf‘llp([t*,t*-‘:-ogpl))' (24)
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