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Abstract

In this note we establish the Harnack inequality for the Riemann-Liouville fractional
derivation operator ∂α

t of order α ∈ (0, 1). Here the function under consideration is assumed
to be globally nonnegative. We show that the Harnack inequality in general fails if this
global positivity assumption is replaced by a local one. A Harnack estimate is also derived
for nonnegative solutions of a class of nonhomogeneous fractional differential equations.
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1 Introduction

Harnack inequalities have been proved to be an important tool in the theory of linear and
nonlinear partial differential equations. We refer to the recent survey [7] for an introduction into
this subject. A variant of the classical Harnack inequality for the Laplace operator can be stated
as follows. Denote by Bρ(y) the open ball in Rn with radius ρ > 0 and center y ∈ Rn. Suppose
that u is a nonnegative harmonic function in B4ρ(y). Then

sup
Bρ(y)

u ≤ 3n inf
Bρ(y)

u,

see e.g. [5, Section 2.3]. The classical parabolic Harnack inequality (i.e. for the heat operator)
is due to Hadamard [6] and Pini [12]. The following version was introduced by Moser [11] in a
more general context, see also [4]. Letting ρ > 0, σ ∈ (0, 1), and y ∈ Rn we define the boxes

Q− = (−ρ2,−σρ2)×Bρ(y), Q+ = (σρ2, ρ2)×Bρ(y).

Then there exists a constant M > 0 depending only on n and σ such that for any nonnegative
and sufficiently smooth function u in (−4ρ2, ρ2)×B4ρ(y) satisfying

∂tu−∆u = 0 in (−4ρ2, ρ2)×B4ρ(y),

there holds the inequality
sup
Q−

u ≤ M inf
Q+

u.
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For more general results on Harnack inequalities in the elliptic and parabolic case we refer to [3],
[5], [7] [10], and the references given therein.

Concerning non-local operators it is known that the Harnack inequality also holds for frac-
tional powers of the negative Laplacian. Let α ∈ (0, 1) and suppose that u is a sufficiently smooth
function on Rn that is nonnegative everywhere and satisfies (−∆)αu = 0 in B4ρ(y). Then

sup
Bρ(y)

u ≤ M inf
Bρ(y)

u,

where the constant M depends only on α and n, cf. [2, Theorem 5.1]. We point out that here
the Harnack inequality fails, if the global positivity assumption is replaced by a local one, cf.
[8]. This is due to the non-local nature of (−∆)α. More general results on Harnack estimates
for integro-differential operators like (−∆)α can be found in [1].

The main objective of this note is to show that a Harnack inequality also holds for the
Riemann-Liouville fractional derivation operator ∂α

t with α ∈ (0, 1) defined by

∂α
t v(t) = ∂t

∫ t

0

g1−α(t− τ)v(τ) dτ, t > 0,

where ∂t is the usual derivation operator and gβ stands for the Riemann-Liouville (or standard)
kernel given by

gβ(t) =
tβ−1

Γ(β)
, t > 0, β > 0.

To state the main result we need some notation. By f1 ∗ f2 we denote the convolution defined
by (f1 ∗ f2)(t) =

∫ t

0
f1(t − τ)f2(τ) dτ, t ≥ 0, of two functions f1, f2 supported on the positive

half-line. Given 0 ≤ t1 < t2 we define the space Z(t1, t2) by

Z(t1, t2) = {u ∈ C([0, t2]) : g1−α ∗ u|[t1,t2] ∈ H
1
1 ([t1, t2])}.

For t∗ ≥ 0, 0 < σ1 < σ2 < σ3, and ρ > 0 we introduce the intervals

W− = (t∗ + σ1ρ, t∗ + σ2ρ), W+ = (t∗ + σ2ρ, t∗ + σ3ρ).

Then the main result is the following.

Theorem 1.1 Let t∗ ≥ 0, 0 < σ1 < σ2 < σ3, and ρ > 0. Let further α ∈ (0, 1) and u0 ≥ 0.
Then for any function u ∈ Z(t∗, t∗ + σ3ρ) that is nonnegative on (0, t∗ + σ3ρ) and that satisfies

∂α
t (u− u0)(t) = 0, a.a. t ∈ (t∗, t∗ + σ3ρ), (1)

there holds the inequality
sup
W−

u ≤ σ3

σ1
inf
W+

u. (2)

Note that in Theorem 1.1 we do not assume that u(0) = u0. So by setting u0 = 0 we obtain the
Harnack inequality for the Riemann-Liouville fractional derivative. If we assume in addition that
u(0) = u0 then Theorem 1.1 yields the Harnack inequality for the so-called Caputo fractional
derivation operator, which is a regularized version of the Riemann-Liouville fractional derivative,
cf. the monographs [9] and [13].
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We will also show that, similarly to the case of the fractional Laplacian, the Harnack in-
equality fails if the global positivity assumption is replaced by a local one. Furthermore, we will
demonstrate that the above Harnack estimate breaks down if the relation ∂α

t (u−u0) = 0 is only
satisfied on the smaller interval (t∗ + σ1ρ, t∗ + σ3ρ).

In the last section of this note we generalize Theorem 1.1 to nonnegative solutions of the
fractional differential equation

∂α
t (u− u0)(t) + µu(t) = f(t), a.a. t ∈ (t∗, t∗ + σ3ρ), (3)

where u0, µ ≥ 0 and f ∈ Lp([t∗, t∗ + σ3ρ]) for some p > 1/α, see Theorem 4.1 below.
It is highly desirable to have a Harnack inequality also for nonnegative solutions of fractional

evolution equations the prototype of which reads

∂α
t (u− u0)(t, x)−∆u(t, x) = 0, t ∈ (0, T ), x ∈ Ω, (4)

where T > 0, Ω is a domain in Rn, α ∈ (0, 1), and u0 is a given function depending only on x.
This is an open problem. However, our results indicate that a Harnack inequality should hold
in this situation, too. In this sense our results can be regarded as an important step towards a
better understanding of fractional evolution equations of the type (4). We remark that in the
very recent work [15], it is shown that the weak maximum principle is valid for (4), which also
supports the conjecture that a Harnack inequality holds in this case, too.

As to literature, hardly anything seems to be known about Harnack estimates for time frac-
tional equations. To the author’s knowledge the only paper on this subject is [14], where a weak
Harnack inequality is established for nonnegative supersolutions of (3). Adopting the notation
of the present note and assuming for simplicity that f = 0 and µ = 0 it is shown in [14] that for
any function u ∈ Z(t∗, t∗ + σ3ρ) that is nonnegative on (0, t∗ + σ3ρ) and that satisfies

∂α
t (u− u0)(t) ≥ 0, a.a. t ∈ (t∗, t∗ + σ3ρ), u(0) = u0,

we have
ρ−1/p|u|Lp((t∗,t∗+σ1ρ)) ≤ C inf

W+
u, (5)

for all 0 < p < 1
1−α , where the constant C > 0 depends only on 0 < σ1 < σ2 < σ3, p, and

α ∈ (0, 1). The critical exponent 1
1−α is optimal. Notice that on the left of (5) we have the

interval (t∗, t∗ + σ1ρ), not W− as in (2).

2 Proof of the Harnack inequality

Suppose u ∈ Z(t∗, t∗ + σ3ρ) is nonnegative on (0, t∗ + σ3ρ) and satisfies (1). We introduce the
shifted time s = t− t∗ and define the function ũ by means of ũ(s) = u(s+ t∗), s ∈ (0, σ3ρ). Then
(1) implies that

∂α
s ũ(s) = g1−α(t∗ + s)u0 + h(s), s ∈ (0, σ3ρ), (6)

where the history term h(s) is given by

h(s) =
∫ t∗

0

[−ġ1−α(t∗ + s− τ)]u(τ) dτ, s ∈ (0, σ3ρ). (7)
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Since (g1−α ∗ ũ)(0) = 0 and gα ∗ g1−α = 1, we have

gα ∗ ∂α
s ũ = gα ∗ ∂s(g1−α ∗ ũ) = ∂s(gα ∗ g1−α ∗ ũ) = ũ.

Therefore convolving (6) with gα yields

ũ(s) = u0

(
gα ∗ g1−α(·+ t∗)

)
(s) + (gα ∗ h)(s), s ∈ (0, σ3ρ). (8)

The first term on the right-hand side of (8) can be rewritten by the use of the identity(
gα ∗ g1−α(·+ t∗)

)
(s) =

∫ s

0

gα(s− σ)g1−α(t∗ + σ) dσ

= s

∫ 1

0

gα(s− rs)g1−α(t∗ + rs) dr

=
∫ 1

0

gα(1− r)g1−α(r +
t∗
s

) dr (9)

=: ϕ(s), s ∈ (0, σ3ρ).

Similarly, we have for the second term

(gα ∗ h)(s) =
∫ s

0

gα(s− σ)
∫ t∗

0

[−ġ1−α(t∗ + σ − τ)]u(τ) dτ dσ

=
1
s

∫ 1

0

gα(1− r)
∫ t∗

0

[−ġ1−α(r +
t∗ − τ

s
)]u(τ) dτ dr (10)

=: ψ(s), s ∈ (0, σ3ρ).

Consequently, (8) is equivalent to

ũ(s) = u0ϕ(s) + ψ(s), s ∈ (0, σ3ρ).

Let now s ∈ (σ1ρ, σ2ρ) and s̄ ∈ (σ2ρ, σ3ρ). Since g1−α is nonincreasing, we evidently have
ϕ(s) ≤ ϕ(s̄). As to ψ, we use the positivity of u on (0, t∗) and the monotonicity of −ġ1−α to
estimate as follows.

ψ(s) ≤ 1
σ1ρ

∫ 1

0

gα(1− r)
∫ t∗

0

[−ġ1−α(r +
t∗ − τ

σ2ρ
)]u(τ) dτ dr

≤ σ3

σ1s̄

∫ 1

0

gα(1− r)
∫ t∗

0

[−ġ1−α(r +
t∗ − τ

s̄
)]u(τ) dτ dr

=
σ3

σ1
ψ(s̄).

By positivity of u0, we thus obtain
ũ(s) ≤ σ3

σ1
ũ(s̄),

which immediately implies inequality (2). This completes the proof of Theorem 1.1.

Remark 2.1 Note that in case t∗ = 0 relation (1) implies u(t) = u0 for all t ∈ [0, σ3ρ], thus the
Harnack inequality (2) trivially holds with the constant σ3

σ1
> 1 being replaced by 1.
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3 Counterexamples

Example 3.1 We show first that the Harnack inequality fails for nonnegative functions u ∈
Z(t∗ + σ1ρ, t∗ + σ3ρ) satisfying the relation ∂α

t (u − u0) = 0 only on the smaller interval (t∗ +
σ1ρ, t∗ + σ3ρ).

To this purpose fix W− = (1, 2) and W+ = (2, 3) and consider the family of functions uε,
ε ∈ (0, 1], defined by

uε(t) =
{

0 : 0 ≤ t ≤ 1− ε
1
ε (t− 1 + ε) : 1− ε ≤ t ≤ 1, (11)

and
∂α

t uε = 0, a.a. t ∈ (1, 3). (12)

Apparently uε|[0,1] ∈ H1
1 ([0, 1]) so that (12) means that with s = t− 1 and ũε(s) = uε(s+ 1) we

have
ũε(s) = (gα ∗ hε)(s), s ∈ (0, 2), (13)

where

hε(s) =
∫ 1

0

[−ġ1−α(1 + s− τ)]uε(τ) dτ, s ∈ (0, 2).

Observe that uε is nonnegative on (0, 3) and that uε ∈ Z(1, 3) for all ε ∈ (0, 1]. From uε = 0 in
[0, 1− ε] and uε ≤ 1 in [1− ε, 1] we infer the estimate

hε(s) ≤
∫ 1

1−ε

[−ġ1−α(1 + s− τ)] dτ = g1−α(s)− g1−α(s+ ε), s ∈ (0, 2).

In view of (13) this gives for s ∈ (1, 2)

ũ(s) ≤
∫ s

0

gα(s− σ)[g1−α(σ)− g1−α(σ + ε)] dσ

=
∫ 1

0

gα(1− r)[g1−α(r)− g1−α(r +
ε

s
)] dr

≤
∫ 1

0

gα(1− r)[g1−α(r)− g1−α(r + ε)] dr =: δ(ε).

By the dominated convergence theorem, δ(ε) vanishes as ε→ 0+. Hence

lim
ε→0+

inf
W+

uε = 0.

On the other hand we have uε(1) = ũ(0) = 1 for all ε ∈ (0, 1], and therefore

sup
W−

uε ≥ 1, ε ∈ (0, 1].

This shows that an estimate of the form

sup
W−

u ≤ M inf
W+

u

with M independent of u cannot hold.

5



Example 3.2 We next show that the Harnack inequality fails if the positivity assumptions
u0 ≥ 0 and u ≥ 0 in (0, t∗) are dropped.

Fix t∗ > 0 and consider the family of functions uε, ε > 0, defined by

uε(t) =
1
ε

(t− t∗ + ε), 0 ≤ t ≤ t∗,

and
∂α

t (uε − u0,ε) = 0, a.a. t > t∗, (14)

where
u0,ε = uε(0) = 1− t∗

ε
.

Observe that uε has negative values in [0, t∗] if and only if ε ∈ (0, t∗). Setting s = t − t∗ and
ũε(s) = uε(s+ t∗), s ≥ 0, (14) is equivalent to

ũε(s) = u0,ε

(
gα ∗ g1−α(·+ t∗)

)
(s) + (gα ∗ hε)(s), s > 0, (15)

where

hε(s) =
∫ t∗

0

[−ġ1−α(t∗ + s− τ)]uε(τ) dτ

=
[
g1−α(t∗ + s− τ)uε(τ)

]τ=t∗

τ=0
−

∫ t∗

0

g1−α(t∗ + s− τ)u̇ε(τ) dτ

= g1−α(s)− g1−α(t∗ + s)u0,ε +
1
ε

(
g2−α(s)− g2−α(s+ t∗)

)
, s > 0.

Inserting the last identity into (15) yields

ũε(s) = 1 +
1
ε

(gα ∗ [g2−α − g2−α(·+ t∗)])(s), s ≥ 0.

In particular ũε is differentiable in (0,∞) and we have

˙̃uε(s) =
1
ε

(gα ∗ [g1−α − g1−α(·+ t∗)])(s)−
1
ε
gα(s)g2−α(t∗)

<
1
ε

(
1− gα(s)g2−α(t∗)

)
, s > 0.

This shows that ũε is strictly decreasing in the interval [0, s∗] with

s∗ =
t∗

[Γ(α)Γ(2− α)]1/(1−α)
.

Selecting
ε = (gα ∗ [g2−α(·+ t∗)− g2−α])(s∗),

we have
ũε(s∗) = 0 and ũε(s) > 0, s ∈ [0, s∗). (16)

Note that ε < t∗, for otherwise we would have u0,ε ≥ 0 and uε > 0 in (0, t∗], which by (15),
entails strict positivity of ũε, a contradiction.
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Choosing the parameters in such a way that s∗ = t∗ + σ3ρ, (16) shows that an estimate of
the form

sup
W−

uε ≤ M inf
W+

uε

cannot hold.

4 Nonhomogeneous fractional differential equations

In this section we derive a Harnack estimate for nonnegative solutions of the more general
equation

∂α
t (u− u0)(t) + µu(t) = f(t), a.a. t ∈ (t∗, t∗ + σ3ρ), (17)

here µ ≥ 0 is another parameter and we assume that f ∈ Lp([t∗, t∗ + σ3ρ]) for some p > 1/α.
The other parameters are as before.

Suppose u ∈ Z(t∗, t∗+σ3ρ) is nonnegative on (0, t∗+σ3ρ) and satisfies (17). Setting s = t−t∗
and ũ(s) = u(s + t∗), f̃(s) = f(s + t∗), g̃1−α(s) = g1−α(s + t∗), s ∈ (0, σ3ρ), we infer from (17)
that

∂α
s ũ(s) + µũ(s) = g̃1−α(s)u0 + h(s) + f̃(s), s ∈ (0, σ3ρ), (18)

where h(s) is given by (7). Let rα, µ denote the resolvent kernel corresponding to (17), that is

rα, µ(s) + µ(rα, µ ∗ gα)(s) = gα(s), s > 0.

Equation (18) then implies

ũ(s) = (rα, µ ∗ [g̃1−αu0 + h+ f̃ ])(s), s ∈ (0, σ3ρ). (19)

It is well-known (see e.g. [14, Section 2.1]) that

rα, µ(s) = Γ(α)gα(s)Eα,α(−µsα), s > 0,

where Eα,β denotes the generalized Mittag-Leffler-function defined by

Eα,β(z) =
∞∑

n=0

zn

Γ(nα+ β)
, z ∈ C.

Let now ω > 0 be a fixed constant and assume that

µρα ≤ ω.

By continuity and strict positivity of Eα,α in (−∞, 0] we then have

0 < c1 := min
z∈[0,ωσα

3 ]
Eα,α(−z) ≤ Eα,α(−µsα) ≤ max

z∈[0,ωσα
3 ]
Eα,α(−z) =: c2, s ∈ (0, σ3ρ).

Setting Ci = Ci(α, ω, σ3) = ciΓ(α), i = 1, 2, we thus have

C1gα(s) ≤ rα, µ(s) ≤ C2gα(s), s ∈ (0, σ3ρ). (20)
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Further,

max
s∈[0,σ3ρ]

(gα ∗ |f̃ |)(s) ≤ |gα|Lp′ ([0,σ3ρ])|f̃ |Lp([0,σ3ρ]) = C3ρ
α− 1

p |f̃ |Lp([0,σ3ρ]), (21)

with

C3 =
σ

α− 1
p

3

Γ(α)[(α− 1)p′ + 1]1/p′
.

Using the functions ϕ and ψ from Section 2, we infer from (19), (20), and (21) that

ũ(s) ≤ C2

(
ϕ(s)u0 + ψ(s) + C3ρ

α− 1
p |f̃ |Lp([0,σ3ρ])

)
, s ∈ (0, σ3ρ), (22)

as well as
ũ(s) ≥ C1

(
ϕ(s)u0 + ψ(s)

)
− C2C3ρ

α− 1
p |f̃ |Lp([0,σ3ρ]), s ∈ (0, σ3ρ). (23)

Suppose now that s ∈ (σ1ρ, σ2ρ) and s̄ ∈ (σ2ρ, σ3ρ). Employing (22), (23), and the estimates
for ϕ and ψ from Section 2, we have

ũ(s) ≤ C2

(
ϕ(s̄)u0 +

σ3

σ1
ψ(s̄) + C3ρ

α− 1
p |f̃ |Lp([0,σ3ρ])

)
≤ C2σ3

C1σ1

(
C1[ϕ(s̄)u0 + ψ(s)]− C2C3ρ

α− 1
p |f̃ |Lp([0,σ3ρ])

)
+ C2C3

(
1 +

C2σ3

C1σ1

)
ρα− 1

p |f̃ |Lp([0,σ3ρ])

≤ C2σ3

C1σ1
ũ(s̄) + C2C3

(
1 +

C2σ3

C1σ1

)
ρα− 1

p |f̃ |Lp([0,σ3ρ]).

We have thus proved the following result.

Theorem 4.1 Let ω > 0 be fixed. Let t∗, µ ≥ 0, 0 < σ1 < σ2 < σ3, and ρ > 0. Let further
α ∈ (0, 1), u0 ≥ 0, and f ∈ Lp([t∗, t∗+σ3ρ]) for some p > 1/α. Assume that µρα ≤ ω. Then there
exists a positive constant M = M(α, p, σ1, σ3, ω) such that for any function u ∈ Z(t∗, t∗ + σ3ρ)
that is nonnegative on (0, t∗ + σ3ρ) and that satisfies (17) there holds the inequality

sup
W−

u ≤ M
(

inf
W+

u+ ρα− 1
p |f |Lp([t∗,t∗+σ3ρ])

)
. (24)
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