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Abstract

We study the asymptotic behaviour, as t → ∞, of bounded solutions to a second order
integro-differential equation in finite dimensions where the damping term is of memory
type and can be of arbitrary fractional order less than 1. We derive appropriate Lyapunov
functions for this equation and prove that any global bounded solution converges to an
equilibrium of a related equation, if the nonlinear potential E occurring in the equation
satisfies the  Lojasiewicz inequality.

AMS subject classification: 45G05, 45M05

Keywords: integro-differential equations, completely positive kernel, fractional derivative, Lya-
punov function, convergence to steady state,  Lojasiewicz inequality, weak damping of memory
type, viscoelasticity

1 Introduction

In this paper we study the asymptotic behaviour, as t → ∞, of bounded solutions to integro-
differential equations of the form

ü(t) +∇E(u(t)) + (k ∗ u̇)(t) = f(t), t > 0, u(0) = u0, u̇(0) = u1. (1)

Here u : R+ → Rn, k ∈ L1, loc(R+) is a nonnegative kernel, and k ∗ v stands for the convolution
on the positive halfline, i.e. (k ∗ v)(t) =

∫ t

0
k(t− τ)v(τ) dτ , t ≥ 0. The scalar nonlinearity E lies

in C2(Rn); by ∇E we mean the gradient of E . The vectors u0, u1 ∈ Rn as well as the function
f ∈ L1, loc(R+; Rn) are given data.

An important example for the kernel k we have in mind is given by

k(t) = g1−α(t)e−γt, t > 0, α ∈ (0, 1), γ > 0, (2)

where gβ denotes the Riemann-Liouville kernel

gβ(t) =
tβ−1

Γ(β)
, t > 0, β > 0.

In this case, k is a singular kernel and the damping term k ∗ u̇ in (1) is of fractional order
α ∈ (0, 1).

Concerning applications we primarily regard (1) as a finite-dimensional model problem for
more complex evolutionary integral equations in infinite dimensions, which arise in mathematical
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physics, e.g. in the theory of viscoelasticity. For example, the equation for the viscoelastic Euler-
Bernoulli beam with nonlinear load is given by

utt + e0utxxxx + e1 ∗ utxxxx + e∞uxxxx + f(x, u) = 0. (3)

Here e∞ > 0 denotes the elasticity modulus, e0 ≥ 0 a Newtonian viscosity, and e1 ∈ L1,loc(R+)∩
C0((0,∞)) is the viscoelastic stress relaxation modulus, see the monograph [24, Section 9.1] and
[13]. In this case we view equation (1) as a finite-dimensional model problem for (3) with e0 = 0.

The main objective of this paper is to establish results asserting the convergence to equilibrium
as t → ∞ of any global bounded solution of (1). Here by ’equilibrium’ we mean a steady state
of the related equation ü + ∇E(u) + k ∗ u̇ = 0, that is a vector u∗ ∈ Rn satisfying ∇E(u∗) = 0.
As to the nonlinearity E , the crucial assumption is that given any bounded solution u of (1), E
fulfills the  Lojasiewicz inequality near some u∗ in the ω-limit set ω(u) of u. This means there
are constants θ ∈ (0, 1/2] and σ, M > 0 such that

|E(x)− E(u∗)|1−θ ≤M |∇E(x)| for all x ∈ Rn with |x− u∗| ≤ σ. (4)

In a seminal paper  Lojasiewicz was able to prove that any real analytic function E : U → R
defined on an open set U ⊂ Rn satisfies the  Lojasiewicz inequality near each point u∗ ∈ U , see
[21, Thm. 4]. There exist examples of non-analytic functions satisfying this inequality (see e.g.
[5] and [19]). Thus, for the sake of generality, we state the validity of the  Lojasiewicz inequality
in the formulation of our main result. Note, however, that in general it is very difficult to verify
(4) for a non-analytic function.

Using inequality (4),  Lojasiewicz ([21], [22]) proved that any bounded solution of the first
order ODE system in Rn

u̇(t) +∇E(u(t)) = 0, t > 0, (5)

converges to an equilibrium provided that E is analytic. It is worth noticing that compared with
LaSalle’s invariance principle, a significant advantage of the approach based on the  Lojasiewicz
inequality consists in the fact that this method also works when the set of equilibria is not
discrete.

Haraux and Jendoubi [18] established the corresponding result for second order ODE systems
in Rn of the prototypical form

ü(t) + µu̇(t) +∇E(u(t)) = 0, t > 0, µ > 0. (6)

These results have also been extended to the infinite dimensional case ([26], [20]). A seminal
contribution was made by Simon [26], who was able to generalize the  Lojasiewicz inequality to
some analytic functionals defined on Hilbert spaces, and to prove convergence to steady state of
bounded solutions of the abstract first order equation u̇+E ′(u) = 0 under natural regularity and
compactness assumptions on E ′ and u. During the last decade the  Lojasiewicz inequality and its
generalizations to the infinite dimensional case, often called  Lojasiewicz-Simon inequality, have
been used in many papers to prove convergence to steady state for different evolution equations,
see e.g. [5], [7], [14], [17], [19], [25], and the references given therein.

Concerning integro-differential equations, there are only a few papers that derive results on
convergence to equilibrium of the type described above. In [1], [2], and [6], first and second
order problems with additional memory terms are investigated. Chill and Fašangová [6] study
abstract equations in a Hilbert space setting the prototype of which in the finite dimensional
case is basically of the form

ü(t) + µu̇(t) +∇E(u(t)) + (k ∗ u̇)(t) = 0, t > 0, (7)
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with µ > 0 and k as in (2). Recently, Vergara and Zacher [27] used the  Lojasiewicz inequality
to establish convergence to equilibrium for a class of integro-differential equations that includes
problems of fractional order both between 1 and 2 and less than 1.

The novelty of the present paper is in proving convergence to equilibrium for a second order
system that does not contain a damping term of first order - as in [18] and [6] - , but instead
respectively only a weak damping term of memory type. This term can be of arbitrary fractional
order α ∈ (0, 1) as in the important example (2). It turns out, somewhat surprisingly, that our
result still holds when we send α → 0 in (2), that is for the regular kernel k(t) = e−γt, t ≥ 0,
γ > 0, which leads to a friction term of order 0.

One of the main difficulties in the proof consists in constructing an appropriate Lyapunov
function (LF) for (1). We point out that finding an LF for an integro-differential equation, in
general, is a highly nontrivial task, see the remarks in Section 14.1 in the monograph [16], the
standard reference for such equations in the finite dimensional case. In [1], [2], and [6] Lyapunov
functions are constructed by the use of a technique that basically goes back to Dafermos [12].
This technique leads to rather tedious estimates and does not seem to work for the type of
problems to be studied in this paper.

In order to succeed we apply and substantially develop further the method used by Vergara
and Zacher in [27], the key ingredient being the basic inequality (9) (see below) for nonnegative,
nonincreasing kernels. As we will show, this inequality is closely connected to the notion of
a completely positive kernel, see assumption (K1) and Theorem 3.1 below. This concept also
plays a crucial role in the work of Clément and Nohel [10] on nonlinear Volterra equations in
Banach spaces with accretive nonlinearity; we further refer to [8], [9], [11], [16] and [24]. Another
significant idea in the construction of a suitable LF for (1) is to look at higher energy estimates.
Only with the aid of these estimates we are able to obtain an L2(R+) bound for |u̇|, which is
an important intermediate step in our proof of the convergence result. Note that in the case of
equation (6) as well as (7) with µ > 0 such a bound immediately follows from the basic energy
estimate. We remark that the method of higher order energies and the techniques from [27] have
been recently used in Alabau-Boussouira et al. [3] to prove polynomial energy decay for a wave
equation with purely boundary memory damping. In Section 4, Step 2 and 3, we make use of
some ideas from [3].

We point out that the results of this paper can be generalized to evolutionary equations in
a suitable Hilbert space setting, see e.g. the setting in [6]. Assuming sufficiently regular data
ensures that the solutions possess the regularity required for the derivation of the higher energy
estimates. This way, it is possible to obtain, e.g., results on the convergence to equilibrium for
semilinear wave equations with weak damping terms of memory type. Furthermore, the results
in [6] can be improved by allowing vanishing first order damping terms.

The paper is organized as follows. In Section 2 we formulate our main result, Theorem 2.1,
and give some further remarks. Section 3 provides the basic inequalities which will be repeatedly
used in the paper. The key inequality, Theorem 3.1, is formulated in the abstract setting of
functions taking values in some Hilbert space. The proof of the main result is given in Sections
4–6.

2 The main result and remarks

We will suppose that the following assumptions are satisfied.

(K1) k ∈ L1,loc(R+) is completely positive, that is, there exist b0 ≥ 0 and a nonnegative and
nonincreasing kernel b ∈ L1,loc(R+) such that

b0k(t) + (b ∗ k)(t) = 1, t ≥ 0;
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(K2) there are γ > 0 and a ∈ L1(R+) strictly positive and nonincreasing such that

b(t) = a(t) + γ(1 ∗ a)(t), t > 0; (8)

(K3) there exists T0 > 0 such that k ∈ H1
2 ([T0,∞)), and∫ ∞

T0

(
∫ ∞

t

(k(τ)2 + k̇(τ)2) dτ)
1
2 dt <∞;

(HE) the function E belongs to C2(Rn);

(Hf) f ∈ H1
2 (R+; Rn) and there is T1 ≥ 0 such that f ∈ H2

2 ([T1,∞); Rn) and∫ ∞

T1

(
∫ ∞

t

(|f(τ)|2 + |ḟ(τ)|2 + |f̈(τ)|2) dτ)1/2 dt <∞.

Remarks 2.1 (i) Condition (K1) implies that k is nonnegative, see e.g. [10], [11], and [24]. For
equivalent definitions of complete positivity we refer to [9], [10], and [24]. Sufficient conditions
which insure that k is completely positive are: k ∈ L1,loc(R+) is nonnegative, nonincreasing,
and log k is convex, see e.g. [10], [23], and [24]. In particular, completely monotonic kernels are
completely positive, see [23], [24]. We further remark that assuming (K1) k is locally absolutely
continuous on [0,∞) if and only if b0 > 0; in this case b0 = k(0)−1.

(ii) If we weaken the assumption (K2) by replacing ’strictly positive’ with ’nonnegative and
not identically 0’, then by decreasing γ, we obtain again a decomposition of the form (8) with a
strictly positive and nonincreasing, see Remark 3.1(i) in [27].

(iii) Note that (K1) and (K2) imply that b(t) ≥ b∞ := lims→∞ b(s) = γ|a|L1(R+) > 0, t > 0.
(iv) It follows further from (K1) and (K2) that k ∈ L1(R+). Indeed, since k is nonnegative

(cp. (i)), (K1) implies (b ∗ k)(t) ≤ 1, t ≥ 0. Using the lower bound for b from (iii) and positivity
of k, we see that |k|L1(R+) ≤ 1/b∞.

(v) The kernels k in (2) as well as k(t) = e−µt, t ≥ 0, µ > 0, satisfy conditions (K1)–(K3),
see Examples 3.1 and 3.2 below.

(vi) (K3) and (Hf) are technical conditions. Note that (K3) entails k ∈ H1
1 ([T0,∞)), and

(Hf) implies f ∈ H2
1 ([T1,∞); Rn), see [19, Chap. 3, Sec. 4].

Definition 2.1 For T > 0 we say that a function u ∈ H2
1 ([0, T ]; Rn) is a solution of (1) on

[0, T ] if (1) holds a.e. on [0, T ]. A function u ∈ H2
1,loc([0,∞); Rn) is called a global solution

of (1) if for any J = [0, T ], T > 0, the function u|J is a solution of (1) on J . A global solution
u of (1) is called global bounded solution if |u|L∞(R+;Rn) <∞.

Remarks 2.2 Under the above assumptions local existence and uniqueness for (1) can be shown
by means of a simple fixed point argument, cp. the monograph [16]. Observe further that
the assumptions on the data imply that any solution u of (1) on [0, T ] lies in the space u ∈
H3

1 ([0, T ]; Rn).

We are now in position to state our main result.

Theorem 2.1 Suppose (K1), (K2), (K3), (HE), and (Hf) are satisfied. Let u0, u1 ∈ Rn and u
be a global bounded solution of (1). Assume further that there exists some u∗ ∈ ω(u) such that
E fulfills the  Lojasiewicz inequality near u∗, i.e. there are constants θ ∈ (0, 1/2] and σ, M > 0
such that

|E(x)− E(u∗)|1−θ ≤M |∇E(x)| for all x ∈ Rn with |x− u∗| ≤ σ.

Then limt→∞ u(t) = u∗, and ∇E(u∗) = 0.
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Remarks 2.3 It is instructive to have a look at the case E ≡ 0. Suppose u is a global solution
of (1) with k ≥ 0 not identically 0 and that limt→∞ u(t) = u∞. Then, by a well-known Abelian
theorem, see e.g. [4, Theorem 4.1.2], u(t) converges to u∞ in the sense of Abel as t → ∞, that
is the Laplace transform û(λ) exists for Reλ > 0 and limλ↓0 λû(λ) = u∞. Taking the Laplace
transform we infer from (1) that(

λ+ k̂(λ)
)
λû(λ) = f̂(λ) + λu0 + u1 + k̂(λ)u0,

which shows that it is natural to assume k ∈ L1(R+) and f ∈ L1(R+; Rn). We then obtain

u∞ = u0 +
u1 +

∫∞
0
f(t) dt∫∞

0
k(t) dt

.

3 Preliminaries

Let H denote a real Hilbert space with inner product 〈·, ·〉H. For an interval J ⊂ R, s ≥ 0 an
integer, and 1 ≤ p < ∞, by Hs

p(J ;H) we mean the Sobolev space of H-valued functions on J .
We write Hs

p(J) = Hs
p(J ; R) for short.

The following result is basic to deriving suitable energy estimates for solutions of (1). In the
special case b0 = 0 it is due to Vergara and Zacher [27, Theorem 2.1 and Remark 2.1].

Theorem 3.1 Let H be a real Hilbert space, T > 0, and b ∈ L1, loc(R+) be nonnegative and
nonincreasing such that b0k + b ∗ k = 1 in (0,∞) for some b0 ≥ 0 and some nonnegative kernel
k ∈ L1, loc(R+). Then for any function v ∈ H1

1 ([0, T ];H),〈
v(t),

d

dt
(b ∗ v)(t)

〉
H
≥ 1

2
d

dt
(b ∗ |v|2H)(t) +

1
2
b(t)|v(t)|2H, a.a. t ∈ (0, T ). (9)

Proof: It remains to prove the statement in the case b0 > 0. We proceed similarly as in [27].
Let v ∈ H1

1 ([0, T ];H) and x = v(0) ∈ H. The computations in Step 1 of the proof of Theorem
2.1 in [27] show that v satisfies the inequality (9) whenever v − x does so, thus we may restrict
ourselves to the case v ∈ 0H

1
1 ([0, T ];H), where the 0 means vanishing trace at t = 0.

Define the operators

B1u = b0
d

dt
u+

d

dt
(b ∗ u), D(B1) = 0H

1
1 ([0, T ]),

B2u = b0
d

dt
u+

d

dt
(b ∗ u), D(B2) = 0H

1
1 ([0, T ];H).

Then B1 and B2 are known to be m-accretive in X1 := L1([0, T ]) and X2 := L1([0, T ];H),
respectively, see [8], [11], and [15]. Their Yosida approximations Bi, n, n ∈ N, i = 1, 2, defined
by

Bi, n = nBi(n+Bi)−1, n ∈ N, i = 1, 2,

enjoy the property that for any u ∈ D(Bi), we have Bi, nu → Biu in Xi as n → ∞. We will
show that

Bi,nu =
d

dt
(nsn ∗ u), u ∈ Xi, i = 1, 2, (10)

where the kernels sn ∈ H1
1 ([0, T ]) are defined as solutions of the scalar Volterra equations

sn(t) + n(k ∗ sn)(t) = 1, t > 0, n ∈ N. (11)
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Since k is completely positive, we know that sn is nonnegative and nonincreasing, cf. [10, Section
2] or [24, Prop. 4.5]. Let i ∈ {1, 2}, n ∈ N, and suppose that u ∈ D(Bi) satisfying

nu+ b0
d

dt
u+

d

dt
(b ∗ u) = f on (0, T ). (12)

Convolving (12) with k and employing the identity b0k + b ∗ k = 1 as well as u(0) = 0 and
(b ∗ u)(0) = 0 results into

n(k ∗ u) + u = k ∗ f on (0, T ). (13)

We then convolve (13) with sn and use (11), thereby obtaining 1 ∗ u = sn ∗ k ∗ f , that is

u = (n+Bi)−1f =
d

dt
(sn ∗ k ∗ f) on (0, T ). (14)

In fact, it is not difficult to see that the relation (14) with f ∈ Xi also implies (12). From (14)
and b0k + b ∗ k = 1 we then deduce that

Bi, nf = nb0
d2

dt2
(sn ∗ k ∗ f) + n

d

dt

(
b ∗ d

dt
(sn ∗ k ∗ f)

)
= nb0

d2

dt2
(sn ∗ k ∗ f) + n

d2

dt2
(sn ∗ [1− b0k] ∗ f),

which yields (10) with u replaced by f .
Putting bn = nsn we have bn ∈ H1

1 ([0, T ]), and bn is nonnegative and nonincreasing. Conse-
quently, by [27, Lemma 2.2],〈

v(t),
d

dt
(bn ∗ v)(t)

〉
H
≥ 1

2
d

dt
(bn ∗ |v|2H)(t) +

1
2
bn(t)|v(t)|2H, a.a. t ∈ (0, T ), (15)

for every n ∈ N. Further, by definition of bn,

bn =
d

dt
(bn ∗ 1) =

d

dt

(
bn ∗ (b0k + b ∗ k)

)
= b0

d

dt
(bn ∗ k) +

d

dt
(bn ∗ k ∗ b)

= b0(−ṡn) +
d

dt
(bn ∗ k ∗ b).

Since sn is nonincreasing, this together with (15) yields〈
v(t),

d

dt
(bn ∗ v)(t)

〉
H
≥ 1

2
d

dt
(bn ∗ |v|2H)(t) +

1
2
|v(t)|2H

d

dt
(bn ∗ k ∗ b)(t), a.a. t ∈ (0, T ). (16)

Recall that v ∈ 0H
1
1 ([0, T ];H), that is v ∈ D(B2) as well as |v(·)|2H ∈ D(B1). Therefore, we have

d

dt
(bn ∗ v) → b0

d

dt
v +

d

dt
(b ∗ v) in L1([0, T ];H) as n→∞, (17)

d

dt
(bn ∗ |v|2H) → b0

d

dt
|v|2H +

d

dt
(b ∗ |v|2H) in L1([0, T ]) as n→∞. (18)

Notice as well that k ∈ H1
1 ([0, T ]) implies k ∗ b ∈ D(B1), and thus

d

dt
(bn ∗ k ∗ b) → b0

d

dt
(k ∗ b) +

d

dt
(b ∗ k ∗ b) = b in L1([0, T ]) as n→∞. (19)
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By choosing an appropriate subsequence of (bn), again denoted by (bn), we may assume that the
sequences in (17), (18), and (19) converge also pointwise a.e. in (0, T ). Using these properties
we may send n→∞ in (16), to the result〈

v(t), b0
d

dt
v +

d

dt
(b ∗ v)(t)

〉
H
≥ b0

2
d

dt
|v(t)|2H +

1
2
d

dt
(b ∗ |v|2H)(t) +

1
2
b(t)|v(t)|2H,

for a.a. t ∈ (0, T ), which in turn implies the desired inequality (9). �

The subsequent simple lemma (cf. [27, Lemma 2.1]) will be frequently used in the estimates
below.

Lemma 3.1 Let H be a real Hilbert space and T > 0. Suppose that l ∈ L1, loc(R+) is nonnegative.
Then for any v ∈ L2([0, T ];H) there holds

|(l ∗ v)(t)|2H ≤ (l ∗ |v|2H)(t) (1 ∗ l)(t), a.a. t ∈ (0, T ).

We next describe two important examples of kernels k satisfying the conditions (K1)–(K3). We
first consider the case of singular kernels.

Example 3.1 Let α ∈ (0, 1) and γ > 0. Set

k(t) = g1−α(t)e−γt and b(t) = gα(t)e−γt + γ(1 ∗ [gα(·)e−γ·])(t), t > 0. (20)

Then both kernels are strictly positive and decreasing; observe that ḃ(t) = ġα(t)e−γt < 0, t > 0.
Their Laplace transforms are given by

k̂(λ) =
1

(λ+ γ)1−α
, b̂(λ) =

1
(λ+ γ)α

(
1 +

γ

λ

)
, Re λ > 0,

which shows that k ∗ b = 1 on (0,∞). It is readily seen that k satisfies all of the conditions
(K1)–(K3).

The next example describes a smooth kernel which is admissible.

Example 3.2 Let µ > 0. Set

k(t) = e−µt, b0 = 1, and b(t) = µ, t ≥ 0. (21)

Then b0k + b ∗ k = 1 on [0,∞). Letting γ > 0 and setting

a(t) = µe−γt, t ≥ 0,

the kernel b decomposes as b = a+ γ(1 ∗ a) on [0,∞). It is then easy to see that k satisfies the
conditions (K1)–(K3).

4 Lyapunov functions

We commence by deriving suitable energy estimates. We proceed in several steps.
1. The basic energy estimate. Letting u be a global solution of (1), we take the inner

product of (1) and u̇ to find that

d

dt

(1
2
|u̇|2 + E(u)

)
+ 〈u̇, k ∗ u̇〉 = 〈f, u̇〉, t > 0. (22)
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Introducing the function
v = k ∗ u̇

we use property (K1) to write

u̇ =
d

dt
([b0k + b ∗ k] ∗ u̇) = b0

d

dt
v +

d

dt
(b ∗ v), (23)

which yields

〈u̇, k ∗ u̇〉 =
b0
2
d

dt
|v|2 + 〈v, d

dt
(b ∗ v)〉.

By Theorem 3.1,

〈v(t),
d

dt
(b ∗ v)(t)〉 ≥ 1

2
d

dt
(b ∗ |v|2)(t) +

1
2
b(t)|v(t)|2, t > 0.

Combining (22) and the preceding relations, and using the decomposition b = a+ γ(1 ∗ a) from
(K2) it follows that

d

dt

(1
2
|u̇|2 + E(u) +

b0
2
|v|2 +

1
2
a ∗ |v|2

)
≤ −b∞

2
|v|2 − γ

2
a ∗ |v|2 + 〈f, u̇〉, t > 0. (24)

Here b∞ := limt→∞ b(t) = γ|a|1 with |a|1 := |a|L1(R+). As to the term 〈f, u̇〉 we have, by (23),
(K2), Lemma 3.1, and Young’s inequality,

〈f, u̇〉 = 〈f, b0v̇ +
d

dt
(b ∗ v)〉 = 〈f, b0v̇ +

d

dt
(a ∗ v)〉+ γ〈f, a ∗ v〉

=
d

dt
〈f, b0v + a ∗ v〉 − 〈ḟ , b0v + a ∗ v〉+ γ〈f, a ∗ v〉

≤ d

dt
〈f, b0v + a ∗ v〉+ 2|a|1γ|f |2 +

(
2|a|1γ−1 +

b20
b∞

)
|ḟ |2 +

b∞
4
|v|2 +

γ

4|a|1
|a ∗ v|2

≤ d

dt
〈f, b0v + a ∗ v〉+M

(
|f |2 + |ḟ |2

)
+
b∞
4
|v|2 +

γ

4
a ∗ |v|2, t > 0, (25)

where M = max{2|a|1γ, 2|a|1γ−1 + b20b
−1
∞ }. Setting

F (t) =
1
2
|u̇(t)|2 + E(u(t)) +

b0
2
|v(t)|2 +

1
2

(a ∗ |v|2)(t)− 〈f(t), b0v(t) + (a ∗ v)(t)〉

+M

∫ ∞

t

(|f(τ)|2 + |ḟ(τ)|2) dτ, t ≥ 0, (26)

we infer from (24) and (25) that

Ḟ ≤ −b∞
4
|v|2 − γ

4
a ∗ |v|2, t > 0. (27)

2. Higher energy estimates. Let now u be a global bounded solution of (1). Differentiating
(1) we find that w := u̇ satisfies

ẅ(t) +∇2E(u(t))w(t) + (k ∗ ẇ)(t) + k(t)u1 = ḟ(t), t > 0, w(0) = u1, (28)

recall Remark 2.2. Let
z = k ∗ ü = k ∗ ẇ
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and

G1(t) =
1
2
|ẇ(t)|2 +

b0
2
|z(t)|2 +

1
2

(a ∗ |z|2)(t)− 〈ḟ(t), b0z(t) + (a ∗ z)(t)〉

+M

∫ ∞

t

(|ḟ(τ)|2 + |f̈(τ)|2) dτ, t ≥ T1.

Taking the inner product of (28) and ẇ, and arguing as in Step 1 we obtain

Ġ1(t) + 〈∇2E(u(t))w(t), ẇ(t)〉+ 〈k(t)u1, ẇ(t)〉 ≤ −b∞
4
|z(t)|2 − γ

4
(a ∗ |z|2)(t), t > T1. (29)

The second term can be rewritten as follows.

〈∇2E(u)w, ẇ〉 =
d

dt
〈∇E(u), ẇ〉 − 〈∇E(u), ẅ〉

=
d

dt
〈∇E(u), ẇ〉+ 〈∇E(u),∇2E(u)w + z + k(t)u1 − ḟ〉

=
d

dt
〈∇E(u), ẇ〉+

1
2
d

dt
|∇E(u)|2 + 〈∇E(u), v̇〉 − 〈∇E(u), ḟ〉

=
d

dt
〈∇E(u), ẇ〉+

1
2
d

dt
|∇E(u)|2 +

d

dt
〈∇E(u), v〉

− 〈∇2E(u)u̇, v〉 − 〈∇E(u), ḟ〉. (30)

Turning to the third term in (29), observe that

w = 1 ∗ ü+ w(0) = (b0k + b ∗ k) ∗ ü+ w(0)
= b0z + b ∗ z + u1 = b0z + a ∗ z + γ(1 ∗ a ∗ z) + u1, (31)

and thus

d

dt
〈k(t)u1, b0z + a ∗ z〉 = 〈k(t)u1, ẇ(t)〉 − γ〈k(t)u1, a ∗ z〉+ 〈k̇(t)u1, b0z + a ∗ z〉, t > T0. (32)

Since
ẇ +∇E(u) + v = f,

by (1), it follows from (29), (30), and (32) that the function G2 defined by

G2 =
1
2
|v − f |2 +

b0
2
|z|2 +

1
2

(a ∗ |z|2)− 〈ḟ , b0z + a ∗ z〉+ 〈∇E(u), v〉

+ 〈k(t)u1, b0z + a ∗ z〉+M

∫ ∞

t

(|ḟ(τ)|2 + |f̈(τ)|2) dτ, t ≥ T2 := max{T0, T1},

satisfies

Ġ2 ≤− b∞
4
|z|2 − γ

4
a ∗ |z|2 + 〈∇2E(u)u̇, v〉

+ 〈∇E(u), ḟ〉 − γ〈k(t)u1, a ∗ z〉+ 〈k̇(t)u1, b0z + a ∗ z〉, t > T2. (33)

Using Young’s inequality and Lemma 3.1, we have

|γ〈k(t)u1, a ∗ z〉| ≤
γ

16
a ∗ |z|2 + 4γ|a|1k(t)2|u1|2,

9



and similarly

|〈k̇(t)u1, b0z + a ∗ z〉| ≤ b∞
8
|z|2 +

γ

16
a ∗ |z|2 +

( 4|a|1
γ

+
2b20
b∞

)
k̇(t)2|u1|2.

By (HE) and global boundedness, we evidently have |∇2E(u)|L∞(R+;Rn×n) ≤ C1 for some constant
C1 > 0. Therefore

|〈∇2E(u)u̇, v〉| ≤ C1|u̇| |v| ≤ ε1|u̇|2 +
C2

1

4ε1
|v|2,

for all ε1 > 0. Further,

|〈∇E(u), ḟ〉| ≤ ε2|∇E(u)|2 +
1

4ε2
|ḟ |2, ε2 > 0.

Letting

G3(t) = G2(t) + 2M |u1|2
∫ ∞

t

(k(τ)2 + k̇(τ)2) dτ +
1

4ε2

∫ ∞

t

|ḟ(τ)|2 dτ, t ≥ T2,

we infer from (33) and the preceding estimates that

Ġ3 ≤ −b∞
8
|z|2 − γ

8
a ∗ |z|2 + ε1|u̇|2 + ε2|∇E(u)|2 +

C2
1

4ε1
|v|2, t > T2. (34)

3. Estimating |u̇|2. The |u̇|2 term can be controlled by what we have obtained so far. In
fact, observe first that (31) gives

u̇ = b0z + a ∗ z + γ(1 ∗ a ∗ k ∗ ü) + u1

= b0z + a ∗ z + γ(a ∗ k ∗ [u̇− u1]) + u1

= b0z + a ∗ z + γ(a ∗ v)− γ(1 ∗ a ∗ k)u1 + (b0k + b ∗ k)u1

= b0z + a ∗ z + γ(a ∗ v) + (b0k + a ∗ k)u1.

Convolving the identity a+ γ(1 ∗ a) = b with k we see that the function ζ = a ∗ k is subject to

ζ + γ(1 ∗ ζ) = 1− b0k, t ≥ 0.

In case b0 = 0 this immediately implies (a ∗ k)(t) = e−γt, t ≥ 0. If b0 > 0, ζ solves the problem

ζ̇ + γζ = −b0k̇, t > 0, ζ(0) = 0,

hence

ζ(t) = −b0(e−γ· ∗ k̇)(t) = −b0k(t) + e−γt + b0γ(e−γ· ∗ k)(t), t ≥ 0.

Consequently, we have in the general case (b0 ≥ 0)

u̇ = b0z + a ∗ z + γ(a ∗ v) +
(
e−γt + b0γ(e−γ· ∗ k)(t)

)
u1, (35)

which in turn implies

|u̇|2 ≤ 4b20|z|2 + 4|a|1(a ∗ |z|2 + γ2a ∗ |v|2) + 4
(
e−γt + b0γ(e−γ· ∗ k)(t)

)2

|u1|2

≤ C2(b20|z|2 + a ∗ |z|2 + a ∗ |v|2 + ψ(t)|u1|2), (36)
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where C2 = C2(γ, |a|1, |k|1, b0) is a positive constant (recall Remark 2.1(iv)), and

ψ(t) = e−2γt + (e−2γ· ∗ k)(t), t ≥ 0.

We next choose
ε1 = min

{ b∞
16C2b20

,
γ

16C2

}
(with the obvious interpretation in case b0 = 0) and define the higher energy function G by

G(t) := G3(t) + ε1C2|u1|2
∫ ∞

t

ψ(τ) dτ, t ≥ T2.

Then (34) and (36) yield

Ġ ≤ −b∞
16

|z|2 − γ

16
a ∗ |z|2 +

C2
1

4ε1
|v|2 + ε1C2 a ∗ |v|2 + ε2|∇E(u)|2, t > T2. (37)

4. Modifying the higher energy to control |∇E(u)|2. By (1), we have

d

dt
〈∇E(u), u̇〉 = 〈∇2E(u)u̇, u̇〉+ 〈∇E(u), ü〉

= 〈∇2E(u)u̇, u̇〉+ 〈∇E(u),−∇E(u)− v + f〉

≤C1|u̇|2 −
1
2
|∇E(u)|2 + |v|2 + |f |2.

Setting

H(t) = 〈∇E(u(t)), u̇(t)〉+
∫ ∞

t

|f(τ)|2 dτ + C1C2|u1|2
∫ ∞

t

ψ(τ) dτ, t ≥ T2,

and using (36) it follows that

Ḣ ≤ − 1
2
|∇E(u)|2 + C1C2(a ∗ |v|2 + a ∗ |z|2 + b20|z|2) + |v|2, t > T2. (38)

Next, we set (with the obvious interpretation in case b0 = 0)

δ =
1

32C1C2
min

{
γ,
b∞
b20

}
, ε2 =

δ

4
.

Combining (37) and (38) then yields

d

dt

(
G+ δH

)
≤ −C3

(
|z|2 + a ∗ |z|2 + |∇E(u)|2

)
+ C4

(
|v|2 + a ∗ |v|2

)
, t > T2, (39)

where C3, C4 are positive constants that depend only on γ, |a|1, and C1.
5. Constructing a suitable new Lyapunov function. It is easy to see that the C4 term

on the right of (39) can be absorbed when adding a term ωF to G+ δH with ω > 0 sufficiently
large. In fact, putting

ω =
4(C3 + C4)
min{b∞, γ}

,

we conclude from (27) and (39) that

d

dt

(
ωF +G+ δH

)
≤ −C3

(
|v|2 + a ∗ |v|2 + |z|2 + a ∗ |z|2 + |∇E(u)|2

)
, t > T2. (40)
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Recalling the definitions of F, G, and H, it follows from (40) that there exist constants M1, C > 0
such that the function V defined on [T2,∞) by

V =
1
2
|u̇|2 + E(u) +

b0
2
|v|2 +

1
2
a ∗ |v|2 − 〈f, b0v + a ∗ v〉+

δ

ω
〈∇E(u), u̇〉

+
1
ω

(1
2
|v − f |2 +

b0
2
|z|2 +

1
2
a ∗ |z|2 − 〈ḟ , b0z + a ∗ z〉+ 〈∇E(u), v〉

+ 〈k(t)u1, b0z + a ∗ z〉
)

+M1|u1|2
∫ ∞

t

(ψ(τ) + k(τ)2 + k̇(τ)2) dτ

+M1

∫ ∞

t

(|f(τ)|2 + |ḟ(τ)|2 + |f̈(τ)|2) dτ, (41)

satisfies
V̇ ≤ −C

(
|v|2 + a ∗ |v|2 + |z|2 + a ∗ |z|2 + |∇E(u)|2

)
, t > T2. (42)

6. Strictness of the Lyapunov functions. The functions F and V are strict Lyapunov
functions in the sense that if F resp. V is constant on some interval [t0, t1] (t0 < t1) in the
domain of the function considered, then this implies that u is constant on [0, t1]. In fact, if F is
constant on [t0, t1] ⊂ [0,∞), then by (27), this means that (a ∗ |v|2)(t) = 0 for all t ∈ (t0, t1),
which in turn entails v = 0 in [0, t1], by (K2). By definition of v, we have

b ∗ v = b ∗ k ∗ u̇ = (1− b0k) ∗ u̇ = u− u0 − b0v,

and hence u = u0 in [0, t1]. The argument for V is the same.
Summarizing we have proved

Proposition 4.1 Let (K1), (K2), (K3), (HE), and (Hf) be satisfied. Let u0, u1 ∈ Rn. Assume
that u is a global bounded solution of (1). Then the functions F and V defined by (26) and
(41), respectively, are locally absolutely continuous and nonincreasing on R+ resp. [T2,∞) with
T2 = max{T0, T1}, and the estimates (27) and (42) hold in the a.e. sense. Both F and V are
strict Lyapunov functions in the sense described in Step 6 above.

5 Properties of the ω-limit set

We recall that the ω-limit set of a global solution u of (1) is defined by

ω(u) = {u∗ ∈ Rn : there exist tn ↑ ∞ s.t. lim
n→∞

u(tn) = u∗}.

For every global bounded solution u of (1), ω(u) is nonempty, compact, and connected.

Proposition 5.1 Suppose (K1), (K2), (K3), (HE), and (Hf) are fulfilled. Let u0, u1 ∈ Rn and
assume that u is a global bounded solution of (1). Then

(i) |v|2, a ∗ |v|2, |z|2, a ∗ |z|2 ∈ L1(R+).

(ii) u̇ ∈ L2(R+; Rn) and limt→∞ |u̇(t)| = 0.

(iii) The potential E is constant on ω(u) and limt→∞ E(u(t)) exists.

(iv) ∇E(u∗) = 0 for every u∗ ∈ ω(u).

(v) Each of the terms |v(t)|, (a ∗ |v|2)(t), b0|z(t)|, and (a ∗ |z|2)(t) tends to 0 as t→∞.
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(vi) limt→∞∇E(u(t)) = 0.

Proof: We show first that V is bounded below on [T2,∞). Clearly, E(u) enjoys this property. The
modulus of each of the mixed terms 〈f, b0v+a∗v〉, 〈∇E(u), u̇〉, 〈ḟ , b0z+a∗z〉, and 〈k(t)u1, b0z+
a ∗ z〉 can be estimated by a small multiple of some nonnegative term appearing in V and some
bounded quantity. Likewise,

|〈∇E(u), v〉| ≤ ε|v|2 +
1
4ε
|∇E(u)|2

≤ 2ε|v − f |2 + 2ε|f |2 +
1
4ε
|∇E(u)|2,

where the last two terms are bounded. The remaining terms in V are obviously nonnegative, and
so V is bounded below. Since V is nonincreasing, by Proposition 4.1, the limit limt→∞ V (t) =
inft≥T2 V (t) =: V∞ exists. Assertion (i) is then an immediate consequence of estimate (42). The
first part of (ii) follows from (i) and (36).

A similar (even simpler) argument shows that F is bounded below and nonincreasing, too,
and so the limit limt→∞ F (t) = inft≥0 F (t) =: F∞ exists as well.

Next, let u∗ ∈ ω(u) and tn ↑ ∞ such that limn→∞ u(tn) = u∗. Since u̇ ∈ L2(R+; Rn), we
have for every n ∈ N and any s ∈ [0, 1],

|u(tn + s)− u∗| ≤ |u(tn)− u∗|+
∫ tn+s

tn

|u̇(τ)| dτ

≤ |u(tn)− u∗|+ (
∫ tn+s

tn

|u̇(τ)|2 dτ)1/2, (43)

where both terms on the right-hand side of (43) tend to zero as n→∞. Thus u(tn + s) → u∗ as
n→∞ for all s ∈ [0, 1]. By continuity of E , this in turn yields E(u(tn + s)) → E(u∗) as n→∞
for all s ∈ [0, 1], and therefore

E(u∗) = lim
n→∞

∫ 1

0

E(u(tn + s)) ds, (44)

by the dominated convergence theorem. Integrating F (tn + ·) (where tn ≥ T2), we obtain∫ 1

0

F (tn + s) ds =
∫ 1

0

E(u(tn + s)) ds+
1
2

∫ tn+1

tn

(
|u̇(s)|2 + b0|v(s)|2 + (a ∗ |v|2)(s)

)
ds

+
∫ tn+1

tn

(
− 〈f(s), b0v(s) + (a ∗ v)(s)〉+M

∫ ∞

s

(|f(τ)|2 + |ḟ(τ)|2) dτ
)
ds,

which shows that

F∞ = lim
n→∞

∫ 1

0

F (tn + s) ds = E(u∗), (45)

where we use (44), (Hf), (i), and u̇ ∈ L2(R+; Rn) as well as the simple estimate

|
∫ tn+1

tn

〈f(s), (a ∗ v)(s)〉 ds|2 ≤ |a|1
∫ tn+1

tn

|f(s)|2 ds
∫ tn+1

tn

(a ∗ |v|2)(s) ds.

Since u∗ was an arbitrary element of ω(u), (45) implies that E is constant on ω(u). More-
over, by the relative compactness of the orbit of u, we see that limt→∞ E(u(t)) = F∞, that is
limt→∞ F (t)−E(u∗) = 0. Since f(t) and the last term in the definition of F tend to 0 as t→∞,
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it follows that 1
2 |u̇|

2 + 1
4 (b0|v|2 + a ∗ |v|2) is bounded above by a continuous function that goes

to 0 as t→∞. Hence limt→∞ |u̇(t)| = limt→∞(a ∗ |v|2)(t) = 0.
To establish (iv), let u∗ ∈ ω(u) and choose tn ↑ ∞ such that limn→∞ u(tn) = u∗. We know

already that this entails u(tn+s) → u∗ as n→∞ for all s ∈ [0, 1]. Thus ∇E(u(tn+s)) → ∇E(u∗)
as n→∞ for all s ∈ [0, 1]. Using the dominated convergence theorem and the equation for u we
have

∇E(u∗) = lim
n→∞

∫ 1

0

∇E(u(tn + s)) ds

= lim
n→∞

∫ 1

0

(
− ü(tn + s)− v(tn + s) + f(tn + s)

)
ds

= lim
n→∞

(
u̇(tn)− u̇(tn + 1)

)
+ lim

n→∞

∫ tn+1

tn

(
− v(s) + f(s)

)
ds = 0,

by (i), (ii), (Hf), and Hölder’s inequality. Thus (iv) is proved. By the relative compactness of
the orbit of u, we have limt→∞∇E(u(t)) = ∇E(u∗), which together with (iv) implies (vi).

It remains to prove (v). Letting u∗ ∈ ω(u), we integrate V (tn + ·) (with tn ≥ T2) from 0 to
1 and argue similarly as before for F , making use of (i), (Hf), and (K3), to the result that

V∞ = lim
n→∞

∫ 1

0

V (tn + s) ds = E(u∗). (46)

Therefore limt→∞ V (t)− E(u∗) = 0. We can then estimate

V − E(u∗) ≥
1
2
|u̇|2 +

(
E(u)− E(u∗)

)
+
b0
4
|v|2 +

δ

ω
〈∇E(u), u̇〉

+
1
4

(
a ∗ |v|2 +

1
ω
|v|2 +

1
ω
a ∗ |z|2 +

b0
ω
|z|2

)
− C0

(
|f |2 + |ḟ |2 + |∇E(u)|2 + k(t)2|u1|2

)
+M1|u1|2

∫ ∞

t

(ψ(τ) + k(τ)2 + k̇(τ)2) dτ

+M1

∫ ∞

t

(|f(τ)|2 + |ḟ(τ)|2 + |f̈(τ)|2) dτ,

provided C0 > 0 is selected sufficiently large. Thus, in view of (ii), (vi), the assumptions on k
and f , and since limt→∞ V (t) = limt→∞ E(u(t)) = E(u∗), the nonnegative term

1
4

(
a ∗ |v|2 +

1
ω
|v|2 +

1
ω
a ∗ |z|2 +

b0
ω
|z|2

)
is dominated by a continuous function that goes to 0 as t→∞. Hence (v) is satisfied. The proof
is complete. �

6 Convergence to equilibrium

We will now show that any global bounded solution of (1) converges to a solution u∗ ∈ Rn of
∇E(u∗) = 0 as t → ∞, thereby proving our main result, Theorem 2.1. The argument relies on
Propositions 4.1, 5.1, and the  Lojasiewicz inequality.
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Proof of Theorem 2.1: Suppose u is a global bounded solution of (1), and let u∗ ∈ ω(u) be
as in the statement of Theorem 2.1. Set

W (t) = V (t)− E(u∗), t ≥ T2.

Then, by Proposition 4.1 and relation (46), W is nonincreasing on [T2,∞), and limt→∞W (t) = 0.
Moreover, there exists a constant C > 0 such that

Ẇ ≤ −C
(
|v|2 + a ∗ |v|2 + |z|2 + a ∗ |z|2 + |∇E(u)|2

)
, t > T2. (47)

If W (t1) = 0 for some t1 ≥ T2, then W (t) = 0 for all t ≥ t1, and hence u(t) = u∗, since V is a
strict Lyapunov function. So we may assume that W (t) > 0 for all t ≥ T2.

By the definitions of V and W , the property a ∈ L1(R+), Lemma 3.1, and Young’s inequality,
we may estimate on [T2,∞),

W 1−θ ≤C1

{
|E(u)− E(u∗)|1−θ + |u̇|2(1−θ) + (a ∗ |v|2)

2(1−θ)
2 + |∇E(u)|2(1−θ)

+ |v|2(1−θ) + (a ∗ |z|2)
2(1−θ)

2 + (k(t)|u1|)2(1−θ) + |f |2(1−θ) + |ḟ |2(1−θ)

+ b0|z|2(1−θ) + |u1|2(1−θ)(
∫ ∞

t

(ψ(τ) + k(τ)2 + k̇(τ)2) dτ)1−θ

+ (
∫ ∞

t

(|f(τ)|2 + |ḟ(τ)|2 + |f̈(τ)|2) dτ)1−θ
}
, (48)

with some constant C1 > 0. Note that θ ∈ (0, 1/2] implies 2(1− θ) ≥ 1. Using the assumptions
on k and f as well as Proposition 5.1 (ii), (v), (vi), it follows that for t sufficiently large, say
t ≥ T ≥ T2, we have

W 1−θ ≤C2

{
|E(u)− E(u∗)|1−θ + |u̇|+ (a ∗ |v|2)

1
2 + |∇E(u)|

+ |z|+ |v|+ (a ∗ |z|2)
1
2 + Λ(t)

}
, (49)

where C2 > 0 is some constant, and

Λ(t) = k(t)|u1|+ |f |+ |ḟ |+ |u1|(
∫ ∞

t

(ψ(τ) + k(τ)2 + k̇(τ)2) dτ)
1
2

+ (
∫ ∞

t

(|f(τ)|2 + |ḟ(τ)|2 + |f̈(τ)|2) dτ)
1
2 , t ≥ T2.

Observe that the assumptions on k and f ensure that Λ ∈ L1((T2,∞)). Here we use Young’s
inequality for convolutions to estimate the convolution term appearing in ψ:∫ ∞

t

(e−2γ· ∗ k)(τ) dτ ≤ |k|L1((t,∞))

∫ ∞

t

e−2γτ dτ ≤ |k|1
2γ

e−2γt, t ≥ T2.

In view of (36), there holds

|u̇| ≤ C3

(
(a ∗ |v|2)

1
2 + (a ∗ |z|2)

1
2 + |z|+ Λ(t)

)
, t ≥ T2, (50)

with some constant C3 > 0.
Define next the set Ωσ ⊂ (T,∞) by

Ωσ = {t ∈ (T,∞) : |u(t)− u∗| < σ}.
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By continuity of u, Ωσ is an open set in R. Restricting t in (49) to Ωσ, we may employ the
 Lojasiewicz inequality for E near u∗ to obtain

W 1−θ ≤ C4

{
|∇E(u)|+ |u̇|+ (a ∗ |v|2)

1
2 + |v|+ (a ∗ |z|2)

1
2 + |z|+ Λ(t)

}
, t ∈ Ωσ, (51)

for some constant C4 > 0. From (47), (50), and (51) we then deduce that

− d

dt
W θ = −θW θ−1Ẇ

≥ θC{|v|2 + a ∗ |v|2 + |z|2 + a ∗ |z|2 + |∇E(u)|2}
C5{|∇E(u)|+ (a ∗ |v|2)

1
2 + |v|+ (a ∗ |z|2)

1
2 + |z|+ Λ(t)}

≥ C6

(
|v|2 + a ∗ |v|2 + a ∗ |z|2 + |z|2 + |∇E(u)|2

) 1
2 − C7Λ(t)

≥ C8

(
|v|+ (a ∗ |v|2)

1
2 + (a ∗ |z|2)

1
2 + |z|+ |∇E(u)|

)
− C7Λ(t), t ∈ Ωσ, (52)

where Ci > 0, i = 5, . . . , 8 are constants. Integrating (52) over Ωσ and using Λ ∈ L1((T2,∞))
shows that each of the functions (a ∗ |v|2)

1
2 , (a ∗ |z|2)

1
2 , and |z| belongs to L1(Ωσ). This together

with (50) yields u̇ ∈ L1(Ωσ; Rn). By a standard argument, see e.g. [19] or [27, p. 301, 302], we
then conclude that u̇ ∈ L1(R+; Rn), which implies limt→∞ u(t) = u∗. Finally, Proposition 5.1
yields ∇E(u∗) = 0. �
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