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Report No. 19 (2008)



Editors:
Professors of the Institute for Mathematics, Martin-Luther-University Halle-Wittenberg.

Electronic version: see http://www2.mathematik.uni-halle.de/institut/reports/



Solution concepts in vector optimization.

A fresh look at an old story

Frank Heyde
Andreas Löhne
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Abstract

Over the last decades various solution concepts for vector optimization problems have
been established and used, among them efficient, weakly efficient and properly efficient
solutions. In contrast to the classical approach, we define a solution to be a set of efficient
solutions on which the infimum of the objective function with respect to an appropriate
complete lattice (the space of self-infimal sets) is attained. The set of weakly efficient
solutions is not considered to be a solution, but, weak efficiency is essential in the con-
struction of the complete lattice. In this way, two classic concepts are involved in a
common approach.

Several different notions of semicontinuity are compared. Using the space of self-
infimal sets, we can show that various originally different concepts coincide. A Weierstrass
existence result is proved for our solution concept.

A slight relaxation of the solution concept yields a relationship to properly efficient
solutions.

1 Introduction

The theory of vector optimization [19, 16] has a number of structural differences in contrast
to scalar optimization. For instance, the objective space, which is a partially ordered linear
space extended by ±∞, is in contrast to the extended real numbers R := R∪ {+∞}∪ {−∞}
not necessarily totally ordered. Moreover, there are several ”competing” solution concepts,
such as efficient solutions, weakly efficient solutions and properly efficient solutions. In the
literature one can observe a long discussion about the advantages and disadvantages of the
different concepts. Efficient solutions are usually motivated by applications and weakly or
properly efficient solutions are motivated to be beneficial for the theory and sometimes easier
to calculate.

Another difference is the fact that in the vectorial case one is usually interested in the set
of all solutions (of certain type), and not only in a single one. The idea of vector optimization
is to present the decision maker all or at least a representative choice of efficient solutions.
The task of the decision maker is to select one efficient solution. A single efficient solution
can be calculated by scalarization, which is not more complicated than solving a comparable
scalar optimization problem. However, it is a priori not clear how to choose the ”right” or
the ”best” scalarization.

The concept of infimum (and supremum) is important in (scalar) optimization. It is used
to describe a solution, is involved in important concepts like conjugate function, directional
derivative and support function. It is also important for duality theory. But, even the infimum
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(in the sense of a greatest lower bound in the complete lattice) is not appropriate to define the
most of the mentioned concepts and results if the vectorial objective space is a complete lattice
(which is only true in special cases); see e.g. [22] for such an approach. As a consequence,
the infimum (and supremum) with respect to a complete lattice is usually not taken into
account in vector optimization. Therefore, the formulations of several important results in
vector optimization, such as duality theorems, existence results and optimality conditions
differ from their scalar counterparts.

One has started to overcome these structural shortcomings in some recent works [18, 13]
by a set-valued approach. It turned out that it is possible to formulate and prove vectorial
duality theorems very similar to the corresponding scalar results if the vectorial image space
is replaced by a certain, more flexible subset of the power set of this vector space, the space of
self-infimal subsets. This space provides a complete lattice and the infimum with respect to
this complete lattice is closely related to the classic solution concepts in vector optimization.
Nevertheless, neither of the classical notions can be characterized as the attainment of a
certain infimum. A solution concept which meets this requirement is developed in this article.

Our solution concept is not a further modification of the existing ones, but rather it
involves several classic concepts. It can be motivated by both a theoretic as well as an
applicatory point of view. We demonstrate its advantages by a Weierstrass existence result,
which is based on a variety of semicontinuity concepts. In contrast to the traditional approach,
these semicontinuity concepts can be shown to be equivalent in our theory.

The article is organized as follows. The solution concept is developed in two steps, in
Section 2 and 4. Section 3 is devoted to the construction of the complete lattice, the space
of self-infimal sets. In Section 5 we discuss several general semicontinuity concepts as well as
their relationships. These results are applied in Section 6 to the case of vector optimization.
The equivalence of several concepts as well as a Weierstrass existence result are shown. A
relaxed solution concept, its relationship to properly efficient solutions and its relevance for
the duality theory is discussed in Section 7.

2 Solution concept. Part I

In this section we consider a general complete-lattice-valued optimization problem and discuss
a solution concept which is based on the attainment of the infimum. At the end of this section
we see that the direct application of this approach to vector optimization is not yet useful.
The problems, however, will be solved in the subsequent sections.

Throughout this article let f : X → Z, where X is an arbitrary set and (Z,≤) is a
partially ordered set. For a nonempty subset A ⊆ X, called feasible set, we consider the
following optimization problem:

Minimize f : X → Z with respect to ≤ over A. (1)

A classical solution concept is the following.

Definition 2.1. An element x̄ ∈ A is called an efficient solution of (1) if

[x ∈ A ∧ f(x) ≤ f(x̄)] =⇒ f(x) = f(x̄).

The set of all efficient solutions of (1) is denoted by Eff (f,A).
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For B ⊆ Z we denote by

MinB := {z ∈ B| (y ∈ B ∧ y ≤ z)⇒ y = z}

the set of minimal elements of B. Using the notation

f [A] := {f(x)| x ∈ A}

it holds
Min f [A] = f [Eff (f,A)].

As demonstrated by the following two examples, the set Eff (f,A) without any further re-
quirement is unsatisfactory as a solution concept for vector optimization.

Example 2.2. Let X = Z = R2, Z partially ordered by the natural ordering cone R2
+. Let

f be the identity map and

A =
{
x ∈ R2| x1 > 0, x2 > 0, x1 + 100x2 > 100

}
∪
{

(100, 0)T
}
.

We have Eff (f,A) =
{

(100, 0)T
}

. But the nonempty set Eff (f,A) does not yield a sufficient
amount of information about the problem. From a practical point of view, for instance, the
feasible, non-efficient point (1, 1)T could be more interesting than the set of efficient solutions.

On the other hand, there are vector optimization problems where it is already sufficient
for the decision maker to know a proper subset of Eff (f,A).

Example 2.3. Let X = Z = R2, Z partially ordered by R2
+, and

A =
{
x ∈ R2| x1 ≥ 0, x2 ≥ 0, 2x1 + x2 ≥ 2, x1 + 2x2 ≥ 2

}
.

The objective f : X → Z is defined as f(x) = (0, x2)T . It holds

Eff (f,A) =
{
x ∈ R2| x1 ≥ 2, x2 = 0

}
.

In typical applications the decision maker selects a point in the image f [Eff (f,A)] of Eff (f,A)
with respect to f . We have f [Eff (f,A)] =

{
(0, 0)T

}
. But, the same image is already obtained

by any nonempty subset of Eff (f,A).

Concerning Example 2.3, we can relax the solution concept to be a set X̄ ⊆ A such that
f [X̄] = Min f [A]. It is possible to avoid the situation in Example 2.2 by assuming the well-
known domination property, which is recalled and discussed below. We do not proceed in
this way. Instead, the attainment of the infimum is involved into the discussion. In order
to ensure the existence of the infimum (and supremum), we need to assume (Z,≤) to be a
complete lattice. Let us recall the definition.

Given a partially ordered set (Z,≤), we say z̄ ∈ Z is a lower bound of Y ⊆ Z if z̄ ≤ y for
all y ∈ Y . The element z̄ ∈ Z is called the infimum of Y ⊆ Z (written z̄ = inf Y ) if z̄ is a
lower bound of Y and for every other lower bound ẑ of Y it holds ẑ ≤ z̄. As the ordering ≤ is
antisymmetric, the infimum, if it exists, is uniquely defined. The partially ordered set (Z,≤)
is called a complete lattice if every subset of Z has an infimum and a supremum, where the
supremum is defined analogously and is denoted by supY . For more details about complete
lattices; see, e.g., [2, 26].

From now on, let (Z,≤) be a complete lattice. The infimum of f over A ⊆ X is defined
as

inf
x∈A

f(x) := inf {f(x)| x ∈ A} = inf f [A].
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Definition 2.4. Let A ⊆ X and x̄ ∈ X. We say the infimum of f over A is attained in x̄ if

x̄ ∈ A ∧ f(x̄) = inf
x∈A

f(x).

In case such a point x̄ exists (does not exist), we say the infimum of f over A is (not) attained.

The attainment of the infimum is an important concept in optimization. In vector opti-
mization it is, however, very hard to fulfill as the following example shows.

Example 2.5. Let X = R2, Z = R2 ∪ {+∞}∪ {−∞}, R2 partially ordered by the cone R2
+.

The ordering is denoted by ≤ and extended to Z by setting −∞ ≤ z ≤ +∞ for all z ∈ Z.
Then, (Z,≤) is a complete lattice. Let

A =
{
x ∈ R2| x1 ≥ 0, x2 ≥ 0, 2x1 + x2 ≥ 2, x1 + 2x2 ≥ 2

}
and let f be the identity map. Then the infimum of f over A is not attained. Indeed, we
have infx∈A f(x) = 0, but there is no x̄ ∈ A with f(x̄) = 0.

A further aspect can be observed in the previous example. We enforce that the infimum
is attained in a single vector. As already discussed in the introduction, we expect a solution
to be a set of vectors. To this end, we introduce the canonical extension of the function f ,
namely the function

F : 2X → Z, F (U) := inf
x∈U

f(x).

Of course, it holds f(x) = F ({x}) for all x ∈ X. Working with the canonical extension F
instead of f , we make the following two observations. The attainment of the infimum is now
easier to realize. And, the infimum is now attained in a set, not in a single element of X.

We now give a characterization of the attainment of the infimum of the canonical extension
F in terms of f .

Proposition 2.6. Let A ⊆ X. The following statements are equivalent:

(i) The infimum of F over 2A is attained in X̄, i.e.,

X̄ ∈ 2A ∧ F (X̄) = inf
U∈2A

F (U).

(ii) X̄ ⊆ A ∧ inf
x∈X̄

f(x) = inf
x∈A

f(x).

Proof. It remains to prove the equality

inf
U∈2A

F (U) = inf
x∈A

f(x). (2)

For all x ∈ A we have
inf

U∈2A
F (U) ≤ F ({x}) = f(x).

The infimum over x ∈ A yields ≤ in (2). For all U ⊆ A it holds

F (U) = inf
x∈U

f(x) ≥ inf
x∈A

f(x).

Taking the infimum over all U ∈ 2A we get ≥ in (2).
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Next we define a solution concept for the complete-lattice-valued problem (1).

Definition 2.7. A nonempty set X̄ with f [X̄] = Min f [A] is called a solution of (1) if the
infimum of the canonical extension F over 2A is attained in X̄.

It is easily seen that, if a solution exists, then Eff (f,A) is a solution. Of course, if
Eff (f,A) is a solution, every subset X̄ of Eff (f,A) with f [X̄] = Min f [A] is a solution, too.
If X̄ = Eff (f,A) is the only solution of (1), we say X̄ is a unique solution.

In Example 2.2 (where a complete lattice Z is obtained by extending R2 by two elements
±∞), Eff (f,A) is not a solution; whence a solution does not exist. A natural condition
ensuring that Eff (f,A) is a solution is the well-known domination property, see, e.g., [4].

Proposition 2.8. The set Eff (f,A) is a solution of (1) if the domination property holds,
that is,

∀x ∈ A, ∃x̄ ∈ Eff (f,A) : f(x̄) ≤ f(x). (3)

Proof. Set X̄ := Eff (f,A). Of course, we have X̄ ∈ 2A. According to Proposition 2.6, the
attainment of the infimum of the canonical extension F over 2A in X̄ is equivalent to

inf
x∈X̄

f(x) = inf
x∈A

f(x). (4)

From (3) we get infx∈X̄ f(x) ≤ infx∈A f(x) and the opposite inequality in (4) follows from
X̄ ⊆ A.

The domination property is not necessary for a solution to exist. An example is given
below (Example 4.5).

In order to apply our solution concept to vector optimization, we need a suitable complete
lattice (Z,≤). Originally, the image space of a vector optimization problem is a partially
ordered vector space (Y,≤). In some cases, Y can be extended to a complete lattice by
setting

Z := Y ∪ {−∞} ∪ {+∞},
where the ordering is extended in the usual way:

∀z ∈ Z : −∞ ≤ z ≤ +∞.

This procedure has two disadvantages. On the one hand, in many cases we do not obtain a
complete lattice in this way. On the other hand, even if a complete lattice is obtained, our
solution concept is unsatisfactory with this choice of Z. This is demonstrated by the following
two examples.

Example 2.9. Let Y = R3 and let C be the polyhedral convex cone which is spanned by the
vectors (0, 0, 1)T , (0, 1, 1)T , (1, 0, 1)T , (1, 1, 1)T . Then (Z,≤C) is not a complete lattice. For
instance there is no supremum of the set {(0, 0, 0)T , (1, 0, 0)T }.

Example 2.10. Let X = R2, (Z,≤) the complete lattice from Example 2.5, f the identity
map and

A :=
{
x ∈ R2| x1 > 0, x2 > 0, x1 + x2 > 1

}
∪ {x ∈ R2| x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ 2}.

Then X̄ :=
{

(0, 2)T , (2, 0)T
}

is a solution. This is unsatisfactory from the viewpoint of vector
optimization, because this set does not contain enough information.

In the next section we introduce a suitable complete lattice (Z,≤) which allows us to treat
vector optimization problems.
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3 The complete lattice I of self-infimal sets

The infimal set (resp. supremal set) of a given set A ⊆ Rq was introduced by Nieuwenhuis [21].
The concept was extended by Tanino [24], and slightly modified with respect to the elements
±∞ by Löhne and Tammer [18]. The space I of self-infimal sets (A is self-infimal, if A equals
its infimal set) was shown in [18] to be a complete lattice. In [18, 13] it was demonstrated
that the complete lattice I is useful for the duality theory in vector optimization.

Throughout let C ( Rq be a closed convex cone with nonempty interior. The set of weakly
minimal points of a subset A ⊆ Rq (with respect to C) is defined by

wMinA := {y ∈ A| ({y} − intC) ∩A = ∅} .

The upper closure (with respect to C) of A ⊆ Rq is defined (see e.g. [4]) to be the set

Cl +A := {y ∈ Rq| {y}+ intC ⊆ A+ intC} .

It is an easy task to show that for every (not necessarily convex) set A ⊆ Rq it holds

Cl +A = cl (A+ intC) = cl (A+ C).

If A 6= ∅ we have [21, Th. I-18]

wMin Cl +A = ∅ ⇐⇒ A+ intC = Rq ⇐⇒ Cl +A = Rq.

The definition of the upper closure can be extended for subsets of the space Rq := Rq ∪
{−∞} ∪ {+∞}. For a subset A ⊆ Rq we set

Cl +A :=
{

Rq if −∞ ∈ A
{y ∈ Rq| {y}+ intC ⊆ A \ {+∞}+ intC} else.

Clearly, the upper closure of a subset of Rq is always a subset of Rq. The infimal set of A ⊆ Rq

(with respect to C) is defined by

Inf A :=


wMin Cl +A if ∅ 6= Cl +A 6= Rq

{−∞} if Cl +A = Rq

{+∞} if Cl +A = ∅.

We see that the infimal set of A ⊆ Rq with respect to C coincides essentially with the set of
weakly minimal elements of the set cl (A+C). By our conventions, Inf A is a nonempty set for
every A ⊆ Rq. Clearly, if −∞ belongs to A, we have Inf A = {−∞}, in particular, Inf {−∞} =
{−∞}. Furthermore, it holds Inf ∅ = Inf {+∞} = {+∞} and Cl +A = Cl +(A ∪ {+∞}) and
hence Inf A = Inf(A ∪ {+∞}) for all A ⊆ Rq. For all A,B ⊆ Rq it holds

(A ⊆ B =⇒ Cl +A ⊆ Cl +B) and Cl + Inf A = Cl +A (5)

Moreover, for A ⊆ Rq with ∅ 6= Cl +A 6= Rq it holds

Inf A = {y ∈ Rq| y 6∈ A+ intC, {y}+ intC ⊆ A+ intC} (6)

A+ intC = Inf A+ intC (7)
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More details about infimal and upper closed sets can be found in [21, 24, 18]. One can
define analogously, using the set wMaxA := −wMin(−A) of weakly maximal elements of
A ⊆ Rq, the lower closure Cl−A and the set SupA of supremal elements of A ⊆ Rq and there
are analogous statements.

Let I := IC
(
Rq
)

be the family of all self-infimal subsets of Rq, i.e., all sets A ⊆ Rq

satisfying Inf A = A. In I we introduce an order relation 4 as follows:

A 4 B :⇐⇒ Cl +A ⊇ Cl +B.

We denote by F := FC(Rq) the space of all upper closed subsets of Rq (with respect to C).
Of course, (F ,⊇) is complete lattice and for any nonempty subset A ⊆ F it holds

inf A = cl
⋃

A∈A
A, supA =

⋂
A∈A

A.

It is sometimes easier to work with the complete lattice (F ,⊇) instead of (I,4). A corre-
sponding statement for (I,4) is then easily obtained using the following result.

Theorem 3.1 ([18]). The map A
j7−→ Cl +A is an isotone (i.e. order-preserving) one-to-one

map from (I,4) onto (F ,⊇). The inverse map is B
j−1

7−→ Inf B.

One of the central preliminary result is the following.

Theorem 3.2 ([18]). The partially ordered set (I,4) is a complete lattice. For nonempty
sets A ⊆ I it holds

inf A = Inf
⋃

A∈A
A, supA = Sup

⋃
A∈A

A.

In every complete lattice the infimum (supremum) over the empty set equals to the largest
(smallest) element. In our case this means inf ∅ = {+∞} and sup ∅ = {−∞}. Note that an
addition and a multiplication by nonnegative real numbers can be introduced in I so that it
is possible to deal with convexity; see [18, 13] for more details.

4 Solution concept. Part II

The ideas of Section 2 and Section 3 are now combined in order to get an adequate solution
concept for vector optimization problems.

Let X be a set and A ⊆ X. Let C ( Rq be a closed convex pointed (i.e. C ∩ (−C) = {0})
cone with nonempty interior and let f : X → Rq. The cone C induces a partial ordering ≤C

on Rq, which can be extended to Rq. The extended ordering is again denoted by ≤C . We
consider the following vector optimization problem:

Minimize f : X → Rq with respect to ≤C over A. (8)

Note that (Rq,≤C) is not necessarily a complete lattice, compare Example 2.9. As already
discussed in Section 2, a solution in the sense of Definition 2.7 is not suitable for problem (8),
despite whether (Rq,≤C) is a complete lattice or not.

Thus we assign to (8) a corresponding I-valued-problem, i.e., a problem of type (1), where
the complete lattice (Z,≤) = (I,4) is used. Note that (I,4) is defined with respect to the
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ordering cone C of the vector optimization problem. The space (I,4) (with respect to C) is
always a complete lattice, even if (Rq,≤C) is not.

Given a function f : X → Rq, we set f̄ : X → I, f̄(x) := Inf{f(x)} and we assign to (8)
the following problem.

Minimize f̄ : X → I with respect to 4 over A. (9)

Problem (9) is said to be the lattice extension of the vector optimization problem (8). This
terminology can be motivated by the fact that the lattice extension of the vector optimization
problem allows us to handle the problem in the framework of complete lattices. Next, we see
that both problems (8) and (9) are related by having the same efficient solutions.

Proposition 4.1. A feasible element x̄ ∈ A is an efficient solution of the vector optimization
problem (8) if and only if it is an efficient solution of its lattice extension (9).

Proof. Follows from the fact that f(x) ≤C f(v) if and only if Inf{f(x)} 4 Inf{f(v)}.

We now define our solution concept for the vector optimization problem (8).

Definition 4.2. A set X̄ ⊆ X is called a solution of the vector optimization problem (8), if
X̄ is a solution of the corresponding lattice extension (9).

We next investigate some properties of a solution of (8).

Theorem 4.3. A set X̄ ⊆ X is a solution of the vector optimization problem (8) if and only
if the following three conditions are satisfied:

(i) X̄ ⊆ A,

(ii) f [X̄] = Min f [A],

(iii) Inf f [X̄] = Inf f [A].

Proof. This is a direct consequence of Proposition 2.6 and Theorem 3.2.

Example 4.4. Consider the vector optimization problem (8) with a linear objective function
f and a polyhedral convex feasible set A. Then, the set Eff (f,A) is a solution, whenever it
is nonempty. As shown in [12, Lemma 2.1] (note that the cone has to be pointed there) the
domination property is fulfilled in this case. Thus Proposition 2.8 yields that Eff (f,A) is a
solution.

Example 4.5. Consider the vector optimization problem (8) with f : R2 → R2 the identity
map, C = R2

+ and let

A := {x ∈ R2| x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ 1} \ {(0, 1)T }.

Then X̄ := Eff (f,A) = {λ (0, 1)T +(1−λ) (1, 0)T | 0 ≤ λ < 1} is a solution, but the domination
property is not satisfied.

The following example shows that a our solution concept is also relevant for problems
which are not a lattice extension of a given vector optimization problem.
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Example 4.6. (Duality theory for linear vector optimization problems [13]) Consider the
vector optimization problem (8) with the following specification to a linear problem; let
C = Rq

+, f(x) = Mx for some matrix M ∈ Rq×n and A = {x ∈ Rn| Bx ≥ b} for some matrix
B ∈ Rm×n and b ∈ Rm. The following I-valued dual problem was introduced in [13]:

Maximize H : Rm × Rq → I with respect to 4 over U. (10)

where we set k := (1, . . . , 1)T and

H : Rm × Rq → I, H(u, c) := Inf
{
y ∈ Rq| cT y = bTu

}
,

U :=
{

(u, c) ∈ Rm×Rq| (u, c) ≥ 0, kT c = 1, BTu = MT c
}
.

In [13], strong duality between the lattice extension of the given problem and the dual problem
(10) is shown. Furthermore, it is proved that the supremum of the dual problem is attained
in the set of efficient solutions, whenever A 6= ∅ and U 6= ∅. Using the terminology of the
present paper, this means that a solution of the dual problem exists.

5 Semicontinuity

In this section we analyse several notions of lower semicontinuity for functions with values in
Z, where Z is a partially ordered set and sometimes even a complete lattice. We are mainly
interested in the general case without any a priori topology on Z but also in the special case
that Z = Ȳ := Y ∪ {±∞} is the extension of a partially ordered topological vector space
Y . In particular we examine Rq- and F-valued functions (note that F is isomorphic to I,
see Theorem 3.1). Moreover we state a Weierstrass type result ensuring the validity of the
domination property for the general optimization problem (1).

If f : X → Z = Ȳ is a function from a topological space X into the topological lattice
of extended real numbers (i.e., Y = R) then the following five properties are equivalent
characterizations of lower semicontinuity of the function f .

(a) For all z ∈ Z the level sets Lf (z) := {x ∈ X| f(x) ≤ z} are closed.

(b) For all y ∈ Y the level sets Lf (y) are closed.

(c) For all x0 ∈ X,
f(x0) ≤ sup

U∈N (x0)
inf
x∈U

f(x) =: lim inf
x→x0

f̄(x)

holds true, where N (x0) is a fundamental system of neighborhoods of x0.

(d) For every x0 ∈ X, every y0 ∈ Y with y0 ≤ f(x0) and every neighborhood V of y0 there is
some neighborhood U of x0 such that

∀x ∈ U ∃y ∈ V : f(x) ≥ y.

(e) The epigraph of f , epi f := {(x, y) ∈ X × Y | f(x) ≤ y}, is closed.

In more general cases of Z these five properties do not coincide any longer. If Z is merely
a complete lattice without any additional structure then only the properties (a) and (c) are
applicable. Following [8] and [20] we introduce the following notions.
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Definition 5.1. Let X be a topological space, (Y,≤) and (Z,≤) partially ordered sets. A
function f : X → Z is called level closed if property (a) holds. f : X → Ȳ is called weakly
level closed if property (b) holds. In case Z is a complete lattice a function f : X → Z is
called lattice-l.s.c. if property (c) holds. In case Y is a partially ordered topological space
f : X → Ȳ is called topologically l.s.c. if property (d) holds and epi-closed if (e) holds.

Remark 5.2. In [20] the concept of level closedness is used for property (b). We call a
function level closed if all level sets are closed and denote the weaker property (b) by weak
level closedness.

The notions of lattice- and topological semicontinuity are introduced in [8]. Our definition
of lattice semicontinuity coincides with that of [8] but the definition of topological semicon-
tinuity differs slightly from that in [8] since we do not require a topological structure on the
whole set Ȳ but it coincides with the concept denoted simply by lower semicontinuity in [20].
Note also that [8] deals with upper not with lower semicontinuity.

In the following we investigate the relationships between these properties. First we clarify
the connection between the two notions that do not require further structural assumption for
the image space Z in addition to the lattice property.

Proposition 5.3. Let X be a topological space and (Z,≤) a complete lattice. Then a function
f : X → Z is level closed if it is lattice-l.s.c..

Proof. Assume that f is lattice-l.s.c. but not level closed, i.e., there is some z0 ∈ Z such that
Lf (z0) is not closed. Then there is some x0 ∈ X with x0 6∈ Lf (z0) such that for all U ∈ N (x0)
there exists some x ∈ U with x ∈ Lf (z0). This implies

sup
U∈N (x0)

inf
x∈U

f(x) ≤ z0,

hence f(x0) ≤ z0 by (c), contradicting x0 6∈ Lf (z0).

The converse is not true in general as the following example shows. But it was shown in
[17, Theorem 3.6.] that every level closed function f : X → Z is lattice-l.s.c. if and only if Z
is a completely distributive lattice.

Example 5.4. Let X := R, Z := R2 with R2 partially ordered by R2
+. The function

f : X → Z, defined by

f(x) =

{
(1, 0)T if x ≥ 0,
(0,−1/x)T if x < 0

is level closed since

Lf (y) = {x ∈ X| f(x) ≤ y} =



[0,+∞) if y2 = 0, y1 ≥ 1
(−∞,−1/y2] ∪ [0,+∞) if y2 > 0, y1 ≥ 1
(−∞,−1/y2] if y2 > 0, 0 ≤ y1 < 1
R if y = +∞
∅ otherwise.

But f is not lattice-l.s.c. at x0 = 0. If we take the set of open ε-intervals as fundamental
system of neighborhoods of x0 = 0, i.e., N (0) = {(−ε,+ε)| ε > 0}, we obtain, for every
U = (−ε,+ε) ∈ N (0),

inf
x∈U

f(x) = inf
{

(0, 1/ε)T , (1, 0)T
}

= (0, 0)T
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hence
sup

U∈N (0)
inf
x∈U

f(x) = (0, 0)T 6≥ (1, 0)T = f(0).

The following relations between epi-closedness, weak level closedness and level closedness
follow immediately from the definitions.

Proposition 5.5. Let X be a topological space, (Y,≤) a partially ordered topological space
and f : X → Ȳ . The following statements hold.

(i) If f is epi-closed, then it is weakly level closed.

(ii) If f is level closed, then it is weakly level closed.

The converse implications are only true under some additional assumptions.

Proposition 5.6. Let X be a topological space.

(i) Assume that (Y,≤C) is a topological vector space ordered by a pointed closed convex cone
C with nonempty interior. If a function f : X → Ȳ is weakly level closed, then it is
epi-closed.

(ii) Assume that (Y,≤) is a partially ordered set having no least element. If a function
f : X → Ȳ is weakly level closed, then it is level closed.

Proof. (i) Assume that f is weakly level closed, i.e., for every x0 ∈ X and y ∈ Y it holds

(∀U ∈ N (x0) ∃x ∈ U : f(x) ≤C y) =⇒ f(x0) ≤C y. (11)

In order to prove that f is epi-closed we assume that (x0, y0) ∈ cl (epi f), i.e.,

∀U ∈ N (x0), V ∈ V ∃x ∈ U, y ∈ V : f(x) ≤C y0 + y (12)

where V denotes a fundamental system of neighborhoods of 0 in Y . We must show that
f(x0) ≤C y0. Since for every e ∈ intC there is some V ∈ V with V ⊆ e − C we obtain from
(12),

∀e ∈ intC,U ∈ N (x0) ∃x ∈ U : f(x) ≤C y0 + e.

Now, (11) implies that f(x0) ≤C y0 + e for all e ∈ intC hence f(x0) ≤C y0 since C is closed.
(ii) It remains to show that Lf (+∞) and Lf (−∞) are closed. Lf (+∞) = X is closed by

definition. Since Y has no least element, for z ∈ Ȳ we have z = −∞ if and only if z ≤ y for
all y ∈ Y . Hence

Lf (−∞) =
⋂
y∈Y

Lf (y)

is a closed set as well.

In the appendix of [8] several examples are given showing that in general no inclusion
holds between the sets of lattice-l.s.c., topologically l.s.c. and epi-closed functions. Sufficient
conditions under which some of the inclusions hold can be found in [23], [8] and [20]. In this
context we only mention the following two results.
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Proposition 5.7. Let X be a topological space, (Y,≤) be a partially ordered topological space
that has no greatest element. If the ordering of Y is closed (i.e., the set G := {(z, y) ∈
Y × Y | z ≤ y} is closed) then every topologically l.s.c. function f : X → Ȳ is epi-closed.

Proof. In order to prove that epi f is closed we take a pair (x0, y0) ∈ (X×Y )\(epi f) and show
that there are neighborhoods U ∈ N (x0) and W ∈ V(y0) such that (U ×W ) ∩ (epi f) = ∅.

If (x0, y0) ∈ (X × Y ) \ (epi f) then f(x0) 6= −∞ and (f(x0), y0) 6∈ G. Let ȳ ∈ Y be
chosen such that ȳ ≤ f(x0) and (ȳ, y0) 6∈ G. Such an element ȳ always exist. In fact, in case
f(x0) ∈ Y , ȳ = f(x0) would work and in case f(x0) = +∞, if no such ȳ would exist then y0

would be the greatest element of Y , a contradiction. Since (ȳ, y0) 6∈ G and G is closed there
exist neighborhoods V of ȳ and W of y0 such that (V ×W )∩G = ∅. Since f is topologically
l.s.c. there exists a neighborhood U ∈ N (x0) such that

∀x ∈ U ∃y ∈ V : y ≤ f(x). (13)

This implies (U × W ) ∩ (epi f) = ∅ since otherwise there would exist x̃ ∈ U, ỹ ∈ W with
f(x̃) ≤ ỹ and, by (13) there would exist y ∈ V with y ≤ f(x̃) hence y ≤ ỹ in contradiction to
(V ×W ) ∩G = ∅.

Remark 5.8. Proposition 5.7 is slightly different from [23], Proposition 1.3.a) but the proof
goes essentially along the lines of the one in [23].

Proposition 5.9 ([20], Propositions 3.1 and 3.5). Let X be a topological space and Y be a
topological vector space ordered by a pointed closed convex cone C with nonempty interior
such that Ȳ is a complete lattice. The following statements hold true.

(i) Every topologically l.s.c. function f : X → Ȳ is lattice-l.s.c.

(ii) If C is Daniell then every lattice-l.s.c. function is topologically l.s.c.

Remark 5.10. In [20] X and Y are supposed to be metrizable spaces but the proofs of
Propositions 3.1 and 3.5 do not require these assumptions.

In summary we can say that, if Y is a partially ordered topological space with a closed
ordering that has no greatest element such that Ȳ is a complete lattice, then for functions
f : X → Ȳ the concept of weak level closedness is the weakest one. It is equivalent with
level closedness if Y has no least element. In case Y = Rq is ordered by a closed convex
pointed cone C with nonempty interior such that (Rq,≤C) is a complete lattice, lattice- and
topological lower semicontinuity coincide. Moreover, epi-closedness, level closedness and weak
level closedness coincide and the first two concepts are stronger than the last three.

Next, we study the relationship of the concepts for functions with values in Z = F . Since
F is a priori not equipped with a topology we only consider the concepts of level closedness
and lattice-semicontinuity. We are interested in characterizations of these concepts with the
help of the topology of the underlying space Rq. A topology for F is not considered in this
article. We have the following characterizations.

Proposition 5.11. A function f : X → F is lattice-l.s.c. if and only if

gr f := {(x, y) ∈ X × Rq| y ∈ f(x)}

is closed.
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Proof. We have
sup

U∈N (x0)
inf
x∈U

f(x) =
⋂

U∈N (x0)

cl
⋃
x∈U

f(x).

Hence

y0 ∈ sup
U∈N (x0)

inf
x∈U

f(x) ⇐⇒ ∀U ∈ N (x0), V ∈ V(y0) ∃x ∈ U, y ∈ V : y ∈ f(x) (14)

where V(y0) denotes a fundamental system of neighborhoods of y0 in Rq. Consequently f is
lattice-l.s.c. if and only if for all (x0, y0) satisfying one of the equivalent conditions in (14) it
holds y0 ∈ f(x0). But, this is equivalent to gr f being closed.

Proposition 5.12. A function f : X → F is level closed if and only if for all y ∈ Rq the sets
{x ∈ X| y ∈ f(x)} are closed.

Proof. If f is level closed then the sets Lf (Cl + {y}) are closed for all y ∈ Rq. Since y ∈ f(x)
if and only if Cl + {y} ⊆ Cl +f(x) = f(x) the ”only if”-part follows. The ”if”-part follows
from the fact that

Lf (A) =
⋂
y∈A

{x ∈ X| y ∈ f(x)}

and that the intersection of closed sets is closed again.

Corollary 5.13. Let f : X → Rq be a vector function and f̃ : X → F its F-valued extension,
defined by f̃(x) := Cl + {f(x)}. Then f̃ is level closed if and only if f is weakly level closed.

Proof. By Proposition 5.12 f̃ is level closed if and only if for all y ∈ Rq the sets {x ∈ X| y ∈
f̃(x)} are closed. Since y ∈ f̃(x) if and only if y ≥ f(x) the statement follows.

We are able to show that for functions with values in F , lattice-semicontinuity and level
closedness are equivalent.

Proposition 5.14. A function f : X → F is lattice-l.s.c. if and only if it is level closed.

Proof. By Proposition 5.3 each lattice-l.s.c. function is also level closed. We next prove the
converse implication. Assume that f is level closed. We show that gr f is closed, hence f is
lattice-l.s.c. by Proposition 5.11. Assume that (x0, y0) ∈ X × Y is given such that for all
U ∈ N (x0), V ∈ V(y0) there exist x ∈ U, y ∈ V with y ∈ f(x). We must show that y0 ∈ f(x0).

Take a ∈ {y0} + intC arbitrarily. Then there exists some neighborhood Ṽ ∈ V(y0) such
that y ≤C a, i.e., a ∈ Cl + {y} holds for all y ∈ Ṽ . Hence, for all U ∈ N (x0) there exist some
x ∈ U and some y ∈ Ṽ with y ∈ f(x), hence a ∈ Cl + {y} ⊆ f(x). This implies by Proposition
5.12

x0 ∈ cl {x ∈ X| a ∈ f(x)} = {x ∈ X| a ∈ f(x)} .

Thus we have y0 + intC ⊆ f(x0) and consequently y0 ∈ cl (y0 + intC) ⊆ f(x0).

Next we formulate a sufficient condition for the domination property of the general op-
timization problem (1). As in the classical Weierstrass theorem, the assumptions are lower
semicontinuity of f and compactness of the feasible set. The appropriate semicontinuity
condition for the function f in the general case is level closedness.
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Proposition 5.15. Let X be a compact topological space, (Z,≤) be a partially ordered set
and f : X → Z a level closed function. Then the domination property holds, i.e., for every
x ∈ X there exists a minimal point y ∈ f [X] with y ≤ f(x).

Proof. We must show that for every x ∈ X the set {y ∈ f [X]| y ≤ f(x)} = f [Lf (f(x))] has
minimal points. Because of Zorn’s lemma it suffices to show that every chain in f [Lf (f(x))]
has a lower bound in f [Lf (f(x))]. Since every lower bound (in f [X]) of any subset W of
f [Lf (f(x))] is obviously in f [Lf (f(x))] itself, it is enough to prove that every chain in f [X]
has a lower bound.

Let W be a chain in f [X]. A subset W of f [X] has a lower bound in f [X] if and only if
the set

{x ∈ X| ∀w ∈W : f(x) ≤ w} =
⋂

w∈W

Lf (w)

is nonempty. If B is a finite subset of W then
⋂

b∈B Lf (b) is nonempty since every finite chain
in f [X] has a smallest element hence a lower bound. Since all the sets Lf (w) are closed, X
being compact implies that

⋂
w∈W Lf (w) is nonempty, too. Hence W has a lower bound.

6 A vectorial Weierstrass theorem

In this section we apply the results of the previous section to vector optimization problems.
In particular, we formulate an existence theorem of Weierstrass type for a solution of the
vector optimization problem (8).

Consider the vector optimization problem (8) and its lattice extension (9). The objective
function f̄ of (9) is I-valued. The semicontinuity concept that we need for the existence
result can be characterized in the following ways:

Theorem 6.1. For the objective function f : X → Rq of (8) and the objective function
f̄ : X → I, f̄(x) := Inf {f(x)} of the lattice extension (9) of (8) the following statements are
equivalent:

(i) f is epi-closed, i.e., the epigraph of f is closed.

(ii) f is level closed, i.e., f has closed level sets for all levels in Rq.

(iii) f is weakly level closed, i.e., f has closed level sets for all levels in Rq.

(iv) f̄ is level closed, i.e., f̄ has closed level sets for all levels in I.

(v) f̄ is lattice-l.s.c., i.e., for all x0 ∈ X it holds f̄(x0) 4 lim infx→x0 f̄(x).

Proof. The equivalence of (i) - (iii) follows directly from Proposition 5.5 and Proposition
5.6. The equivalence of (iii) - (v) follows from Corollary 5.13, Proposition 5.14, the fact
(see Theorem 3.1) that a function g : X → I is level closed (lattice l.s.c.) if and only if
j ◦ g : X → F is level closed (lattice l.s.c.) and the fact that for the I-valued extension f̄ and
the F-valued extension f̃ of a function f : X → Rq, f̃ = j ◦ f̄ holds true.

Applying Proposition 5.15 we can formulate the following existence result for a solution
of a vector optimization problem. The result is a complete analogon of the classical existence
theorem of Weierstrass.
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Theorem 6.2. If one of the equivalent characterizations of lower semicontinuity in the pre-
ceding theorem is satisfied for the objective function f : X → Rq of (8) and if A is a compact
subset of X, then (8) has a solution.

Proof. This is a direct consequence of Proposition 2.8, Proposition 5.15 and Theorem 6.1.

The preceding two results show a further advantage of our solution concept. For the
I-valued extension of a vector function f lattice-semicontinuity and level closedness always
coincide whereas for f this is not the case in general. So the analogy between vectorial and
scalar Weierstrass existence results was improved.

7 Mild solutions

For a solution X̄ of (1) we assume that f [X̄] = Min f [A]. This condition is relaxed in this
section.

Definition 7.1. A nonempty set X̂ with f [X̂] ⊆ Min f [A] is called a mild solution of (1) if
the infimum of the canonical extension F over 2A is attained in X̂.

The principle of a mild solution can be explained as follows. A mild solution X̂ is allowed
to be a smaller set than a solution. But, as the attainment of the infimum is required, the
set X̂ cannot become arbitrarily small, which ensures that it contains a sufficient amount of
information. Of course, every solution of (1) is also a mild solution of (1). In general, a mild
solution can be a proper subset of a solution.

Theorem 7.2. If a mild solution of (1) exists, then there exists a solution of (1).

Proof. Let X̂ be a mild solution of (1). Set X̄ := Eff (f,A), then A ⊇ X̄ ⊇ X̂ 6= ∅. Since
infx∈A f(x) = infx∈X̂ f(x), we get infx∈A f(x) = infx∈X̄ f(x). Thus X̄ is a solution of (1).

Example 7.3. Consider again the I-valued dual problem (10) of the lattice extension of a
given linear vector optimization problem, which we already discussed in Example 4.6.

It was also shown in [13, Theorem 20] that the supremum of this problem is attained in
a finite set, whenever A 6= ∅ and U 6= ∅. In fact, the supremum is attained in the set of
those vertices of U that are efficient solutions. In the terminology of the present paper this
means, that a mild solution of the dual problem exists, and, this mild solution is a finite set.
The solution is not a finite set in general. In this example, a mild solution already contains
the information which is necessary to give a dual description of the optimal value of both
problems.

Definition 7.4. A set X̂ is called mild solution of the vector optimization problem (8) if it
is a mild solution of its lattice extension (9).

For the special case of a vector optimization problem, we have the following characteriza-
tion of a mild solution.

Theorem 7.5. Assume that a solution for (8) exists. A set X̂ ⊆ A is a mild solution of (8)
if and only if

f [X̂] ⊆ Min f [A] ⊆ Inf f [X̂]. (15)
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Proof. If f(x) = −∞ for some x ∈ A, then for every nonempty set X̂ ⊆ {x ∈ X| f(x) = −∞}
it holds

{−∞} = f [X̂] = Min f [A] = Inf f [A] = Inf f [X̂].

In the case that f(x) = +∞ for all x ∈ A we have

{+∞} = f [X̂] = Min f [A] = Inf f [A] = Inf f [X̂]

for every nonempty subset X̂ ⊆ A. In both cases the statement is obvious. Since Min f [A] =
Min(f [A] \ {+∞}) and Inf f [A] = Inf(f [A] \ {+∞}), we can assume that f [A] ⊆ Rq.

(i) If X̂ is a mild solution of (8), we have

∅ 6= X̂ ⊆ A, f [X̂] ⊆ Min f [A] Inf f [X̂] = Inf f [A].

It remains to show Min f [A] ⊆ Inf f [X̂]. Let y ∈ Min f [A], i.e.,

y ∈ f [A] ∧ y 6∈ f [A] + C \ {0}.

It follows
{y}+ intC ⊆ f [A] + intC ∧ y 6∈ f [A] + intC.

It follows that ∅ 6= Cl +f [A] 6= Rq. By (6) we get y ∈ Inf f [A] = Inf f [X̂].
(ii) Let X̄ be a solution of (8) and let (15) be satisfied. It follows f [X̂] ⊆ f [X̄] ⊆ Inf f [X̂].

From (5) we get Cl +f [X̄] = Cl +f [X̂]. Theorem 3.1 yields Inf f [X̄] = Inf f [X̂]. Hence X̂ is
a mild solution of (8).

We next focus on a relationship to properly efficient solutions. The famous theorem
by Arrow Barankin Blackwell [1] and related results state that, under certain assumptions,
the set of properly minimal vectors is a dense subset of the set of minimal vectors. In the
literature, there are a many density results for different types of proper efficiency; see e.g.
[3, 6, 7, 10, 15]. The following theorem shows that the set of proper efficient solutions is an
example of a mild solution, whenever (under certain assumptions) a corresponding density
result holds.

Theorem 7.6. Assume that a solution for (8) exists. Let X̂ ⊆ A be a set such that f [X̂] ⊆ Rq

and
f [X̂] ⊆ Min f [A] ⊆ cl f [X̂]. (16)

Then is X̂ is a mild solution of (8).

Proof. Let X̄ be a solution of (8). Then Min f [A] is nonempty hence cl f [X̂] is nonempty and
thus X̂ is nonempty, too. It holds

f [X̂] ⊆ Min f [A] = f [X̄] ⊆ cl f [X̂].

Using (5) and the fact Cl +cl f [X̂] = Cl +f [X̂], we get Cl +f [X̄] = Cl +f [X̂]. Theorem 3.1
yields Inf f [X̄] = Inf f [X̂]. Hence X̂ is a mild solution of (8).

In general, (16) does not hold for a mild solution X̂ of (8).
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Example 7.7. Let X = R2, q = 2, C = R2
+, f the identity map and

A :=
{
x ∈ R2| x1 > 0, x2 > 0, x1 + x2 ≥ 1

}
∪ {x ∈ R2| x1 = 0, x2 ≥ 2}.

Then X̂ := {λ (0, 1)T + (1− λ) (1, 0)T | λ ∈ (0, 1)} is a mild solution. But (0, 2)T ∈ Min f [A] \
cl f [X̂], hence (16) is violated.

If we additionally assume that f [A] +C is closed, we obtain that a mild solution satisfies
(16). For instance, if A is a polyhedral convex set, C polyhedral and f linear, then f [A] +C
is closed. Also, the assumptions of the Weierstrass existence result, Theorem 6.2, imply that
f [A] + C is closed (this follows from epi f being closed and A compact).

Theorem 7.8. Let X̂ be a mild solution of (8), f [A] ⊆ Rq and let f [A] +C be closed. Then
it holds

f [X̂] ⊆ Min f [A] ⊆ cl f [X̂].

Proof. It remains to show the second inclusion. Let y ∈ Min f [A], i.e.,

y ∈ f [A] ⊆ cl (f [A] + C) = Cl +f [A].

and (taking into account that C is pointed and f [A] + C is closed)

y 6∈ f [A] + C \ {0} = (f [A] + C) + C \ {0} = cl (f [A] + C) + C \ {0} = Cl +f [A] + C \ {0}.

This yields y ∈ Min Cl +f [A]. As X̂ is a mild solution, we have Inf f [X̂] = Inf f [A]; Theorem
3.1 implies Cl +f [X̂] = Cl +f [A]. Thus, we have y ∈ Min Cl +f [X̂].

It remains to show that Min Cl +f [X̂] ⊆ cl f [X̂]. Assuming the contrary, there exists some
y ∈ Cl +f [X̂] = cl (f [X̂] + C) such that y 6∈ cl f [X̂] and(

y − C \ {0}
)
∩ cl (f [X̂] + C) = ∅. (17)

Let (bn) and (cn) be sequences, respectively, in f [X̂] and C such that bn +cn → y. There is no
subsequence of cn that converges to 0, because otherwise we get the contradiction y ∈ cl f [X̂].
Hence there exists n0 ∈ N and α > 0 such that ‖cn‖ ≥ α for all n ≥ n0. There is a subsequence
(cn)n∈M (M an infinite subset of {n ∈ N| n ≥ n0}) such that

c̃n :=
αcn
‖cn‖

M−→ c̃ ∈ C \ {0}.

It follows

bn +
(

1− α

‖cn‖

)
cn = bn + cn − c̃n

M−→ y − c̃.

We obtain y − c̃ ∈ cl (f [X̂] + C) which contradicts (17).

Note that, in contrast to all other results, in the proof of the preceding result arguments
of finite dimensional vector spaces are used.
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8 Final Remarks

This paper is a continuation of the articles [18] and [13], where it is shown that vector
optimization can be treated in the framework of complete lattices. This approach has several
advantages. On the one hand the analogy to the scalar optimization theory can be improved
which makes vector optimization easier to understand. On the other hand this approach is
promising for applications. This can be seen by the connections between the papers [13], [14]
and [5].

The solution concept is based on two classical concepts, efficient solutions and weakly
efficient solutions, where the first concept is part of the definition and the latter is involved in
the construction of the complete lattice. This approach might shed a new light to the ”endless
competition” between the practically relevant efficient solutions and the theoretically more
convenient weakly efficient solutions.

References

[1] Arrow, K.J.; and Barankin, E.W.; and Blackwell, D.: Admissible points of convex sets,
Contrib. Theory of Games, II, Ann. Math. Stud. 28, (1953), 87-91

[2] Birkhoff, G.: Lattice Theory, (3rd ed.) Am. Math. Soc. Coll. Publ. 25. Providence, 1976

[3] Borwein, J.M.: The geometry of Pareto efficiency over cones, Math. Operationsforsch.
Stat., Ser. Optimization 11, (1980), 235-248

[4] Dolecki, S.; Malivert C.: General duality in vector optimization, Optimization 27, No.1–
2, (1993), 97–119
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01-08. R. I. Boţ, A. Löhne, On totally Fenchel unstable functions in finite dimensional
spaces.
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