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WELL-POSEDNESS AND LONG-TIME BEHAVIOUR FOR THE
NON-ISOTHERMAL CAHN-HILLIARD EQUATION WITH MEMORY

JAN PRÜSS, VICENTE VERGARA, AND RICO ZACHER

Abstract. In this paper we study a temperature dependent phase field model with memory.
The case where both, the equation for the temperature and that for the order parameter is of

fractional time order is covered. Under physically reasonable conditions on the nonlinearities we

prove global well-posedness in the Lp setting and show that each solution converges to a steady
state as time goes to infinity.

1. Introduction

This paper is concerned with a temperature dependent phase field model with memory. To
describe the model, let Ω ⊂ R3 be a bounded domain with boundary Γ = ∂Ω of class C4, and
J = [0, T ], T > 0. Let ψ denote the phase field (the order parameter), ϑ the temperature field, j
the phase flux, q the heat flux, e the internal energy, and µ the chemical potential. Phase function
and internal energy are assumed to be conserved quantities, the according conservation laws read
as

∂te+ div q = 0, ∂tψ + div j = 0, in J × Ω.

In the classical theory the heat flux q resp. the phase flux j are simply proportional to the gradient
of the local temperature field ϑ resp. to the gradient of the chemical potential µ. Here we consider
a more general model that takes into account memory effects in both the process of heat conduction
and phase changes. Following Coleman and Gurtin [14] we assume that the heat flux is given by

q(t, x) = −a01∇ϑ(t, x)−
∫ t

−∞
a1(t− s)∇ϑ(s, x) ds, t ∈ J, x ∈ Ω,

where a01 is a non-negative constant and a1 ∈ L1,loc(R+) is a positive and nondecreasing kernel.
Analogously, see Binder, Frisch, and Jäckle [6], we assume that the phase flux is given by

j(t, x) = −a02∇µ(t, x)−
∫ t

−∞
a2(t− s)∇µ(s, x) ds, t ∈ J, x ∈ Ω,

where a02 is a nonnegative constant and a2 enjoys the same properties as the kernel a1. The kinetic
equations then become

(1.1)
∂te− a01∆ϑ−

∫ t

−∞
a1(t− s)∆ϑ(s, ·)ds = 0, in J × Ω;

∂tψ − a02∆µ−
∫ t

−∞
a2(t− s)∆µ(s, ·)ds = 0, in J × Ω.
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To ensure that ψ and e are conserved quantities we assume Neumann boundary conditions for µ
and ϑ, i.e.

(1.2) ∂νϑ = ∂νµ = 0, on J × Γ.

Consider the free energy functional

(1.3) F(ψ, ϑ) :=
∫

Ω

(
1
2
|∇ψ|2 + φ(ψ)− λ(ψ)ϑ− 1

2
ϑ2

)
dx,

where φ, the physical potential, and λ are given functions. Typically, they are of the form λ(ψ) =
λ0(ψ−ψc) and φ(ψ) = φ0

4 (ψ2− 1)2, where λ0, φ0 > 0 and ψc are constants; in this case λ0 is called
latent heat and φ a double-well potential.

The chemical potential µ and the internal energy e are defined by means of the functional
derivatives of the free energy via the relations

µ =
∂F
∂ψ

(ψ, ϑ) = −∆ψ + φ′(ψ)− λ′(ψ)ϑ

and

e = −∂F
∂ϑ

(ψ, ϑ) = λ(ψ) + ϑ.

The second line in (1.1) yields an equation of fourth order, therefore in order to obtain well-posedness
a second boundary condition for ψ is needed. Usually one imposes the Neumann boundary condition
∂νψ = 0, which we will also employ in this paper.

For simplicity we assume trivial history up to time t = 0 (i.e. ϑ(t, ·) ≡ 0 and ψ(t, ·) ≡ 0 for
t < 0) and that the system is then exposed to a sudden change of temperature and of the order
parameter.

Denoting by f ∗ g the convolution on R+, that is (f ∗ g)(t) =
∫ t

0
f(t− s)g(s)ds, t ≥ 0, the system

under consideration then reads as follows

∂t(ϑ+ λ(ψ)) = a01∆ϑ+ a1 ∗∆ϑ in J × Ω,(1.4)

µ = −∆ψ + φ′(ψ)− λ′(ψ)ϑ in J × Ω,(1.5)

∂tψ = a02∆µ+ a2 ∗∆µ in J × Ω,(1.6)

∂νµ = ∂νψ = ∂νϑ = 0 on J × Γ,(1.7)

ψ|t=0 = ψ0, ϑ|t=0 = ϑ0 in Ω.(1.8)

A typical example for the kernels ai we have in mind is given by

(1.9) ai(t) =
tαi−1

Γ(αi)
e−γit, t > 0, i = 1, 2,

with αi ∈ (0, 1) and γi > 0, i = 1, 2, and where Γ(·) means the Gamma function. If in addition
a01 = a02 = 0 then equations (1.4) and (1.6) are of fractional time order. For this case no theory
seems to be available.

There is a vast literature on the system (1.4)–(1.8) and variants of it (e.g. with dynamic boundary
conditions) in the isothermal case without memory. Then the problem reduces to the well-known
Cahn-Hilliard equation, see e.g. [7, 16, 23, 21, 10], and the references given therein. For the
nonisothermal Cahn-Hilliard equation with a dynamic boundary condition for the order parameter
global well-posedness and convergence to steady state was obtained in [22]. As to phase-field systems
with memory, in [3] the system (1.4)–(1.8) is studied with a0i > 0, i = 1, 2, a2 = 0, φ a double-well
potential, and with λ(ψ) = λ0(ψ − ψc); in particular it is shown that global bounded solutions
converge to an equilibrium. Global well-posedness in a weak setting for a nonconserved phase-field
model with a memory term in both the equation for ϑ and that for ψ has been established in [24].
In [28] global well-posedness in the Lp setting was obtained for (1.4)–(1.8) in the case a01 ≥ 0,
a02 = 0, nontrivial kernels a1, a2, and λ(ψ) = λ0(ψ − ψc), see also the second author’s thesis [27],
which also contains a similar result in the nonconserved case (see [29]).
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Concerning convergence to steady state of solutions of (1.4)–(1.8) nothing seems to be known in
the situation where a01 = a02 = 0, in particular in the time fractional case. It is the purpose of the
present paper to close this gap. Under physically reasonable conditions on the functions λ, φ and
on the kernels ai we will show that the problem

∂t(ϑ+ λ(ψ)) = a1 ∗∆ϑ in J × Ω,

µ = −∆ψ + φ′(ψ)− λ′(ψ)ϑ in J × Ω,
∂tψ = a2 ∗∆µ in J × Ω,

∂νµ = ∂νψ = ∂νϑ = 0 on J × Γ,

ϑ|t=0 = ϑ0, ψ|t=0 = ψ0, in Ω,

(1.10)

is globally well-posed in the Lp setting, and that the solutions converge to steady states of the
problem in energy norm as t→∞.

Our proof of the local well-posedness uses the contraction mapping principle and optimal Lp

regularity results for the linearized problem. The latter rely on techniques developed in [20] and [34].
Global well-posedness is then established by means of suitable a priori estimates, which are derived
using energy estimates and the Gagliardo-Nirenberg inequality. The proof of the convergence result
is based on appropriate new Lyapunov functionals, compactness properties, and on the  Lojasiewicz-
Simon inequality. We point out that, in general, construction of a Lyapunov functional for problems
with memory is a highly nontrivial task, cf. the remarks in [18, Chapter 14]. Here we make use of
ideas and results recently obtained by Vergara and Zacher [30], the key ingredient being Theorem
3.6 below. The relative compactness of the orbit in the natural energy space is shown by means
of an iteration argument of Nash-Moser type. Finally, the  Lojasiewicz-Simon inequality is the
key tool to prove convergence to steady state. We remark that this method has been used by
many authors to obtain similar convergence results for several types of evolution equations, see e.g.
[2, 1, 19, 3, 8, 17, 32, 9, 22].

The paper is organized as follows. In Section 2 we describe all assumptions and formulate our
main result, Theorem 2.2. Section 3 recalls some basic definitions and auxiliary results concerning
sectorial operators and evolutionary integral equations, and collects important properties of the
operator Bu = d

dt (k ∗u) with nonnegative, nonincreasing kernel k, including the crucial result from
[30]. Section 4 and Section 5 are devoted respectively to well-posedness and long-time behaviour.

2. Assumptions and Main Result

Concerning the nonlinearities we will suppose the subsequent growth conditions.
(H1) φ ∈ C4−(R), and there are constants C > 0, β < 3 such that

|φ′′′(s)| ≤ C(1 + |s|)β , s ∈ R.
(H2) There are constants c0 ∈ R, c1 < λ1 such that

φ(s) ≥ −c1
2
s2 − c0, s ∈ R,

where λ1 > 0 denotes the first nontrivial eigenvalue of the nonnegative Neumann-Laplacian
on Ω.

(H3) λ ∈ C4−(R), and λ′, λ′′, λ′′′ ∈ L∞(R).
Observe that the double-well potential φ(s) = φ0

4 (s2−1)2, and λ(s) = λ0(s−s0), s ∈ R, φ0, λ0 > 0,
satisfy (H1)–(H3), respectively.

To formulate the assumptions on the kernels, let f̂ denote the Laplace transform of the function
f . We recall that a kernel a ∈ L1,loc(R+) of subexponential growth is k-regular (k ∈ N), if there is
a constant M > 0 such that |zj â(j)(z)| ≤ M |â(z)| for all Re z > 0, 0 ≤ j ≤ k, cf. [20, Definition
3.3]. Further, a kernel a ∈ L1,loc(R+) of subexponential growth satisfying â(z) 6= 0, Re z > 0, is
called θ-sectorial (θ > 0) if | arg â(z)| ≤ θ for all Re z > 0, cf. [20, Definition 3.2]. Following [34]
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we say that a kernel a ∈ L1,loc(R+) of subexponential growth belongs to the class K1(α, θ) with
α > 0, θ ≥ 0, if a is 1-regular, θ-sectorial, and a satisfies

lim sup
µ→∞

| â(µ)|µα <∞, lim inf
µ→∞

| â(µ)|µα > 0, lim inf
µ→0

| â(µ)| > 0.

As to the kernels a1, a2 we assume that
(A1) ai ∈ K1(αi, θi) for some αi ∈ (0, 1) and θi ∈ [0, π/2).

This is the basic assumption for local well-posedness. To establish global well-posedness and con-
vergence to equilibrium as t→∞ we need the following additional assumptions.

(A2) There are nonnegative nonincreasing kernels ki ∈ L1,loc(R+) such that

(ki ∗ ai)(t) = 1, t > 0, i = 1, 2.

(A3) There are constants γi > 0 and strictly positive kernels bi ∈ L1(R+) such that

(2.1) bi(t) + γi(1 ∗ bi)(t) = ki(t), t > 0, i = 1, 2.

(A4) a1, a2 are 2-regular, limz→0 âj(z) exists and is not zero, and
(

1
âj(i·)

)′
∈ L1(−1, 1), j = 1, 2.

Remark 2.1. (i) (A2) implies that a1, a2 are completely positive, in particular a1, a2 are nonneg-
ative, see e.g. [12, 13, 20].

(ii) The kernels bi are nonincreasing. This follows from positivity of bi and the assumption that
the kernels ki are nonincreasing (see (A2)). Note that

bi(t) = ki(t)− γi(e−γi· ∗ ki)(t), t > 0, i = 1, 2.

(iii) If we weaken the assumption (A3) by replacing ’strictly positive’ with ’nonnegative’, then by
decreasing γi, we obtain again a decomposition of the form (2.1) with strictly positive bi, see [30,
Remark 3.1].

(iv) Note that (A2) and (A3) entail that ki(t) ≥ limt→∞ ki(t) = γi|bi|L1(R+) =: k∞i > 0.
(v) Condition (A2) is satisfied if and only if [zâi(z)]−1 and −â′i(z)/â2

i (z) are completely mono-
tonic, while (A2) and (A3) hold if and only if [(z + γi)âi(z)]−1 and −â′i(z)/â2

i (z) are completely
monotonic, see [20, Chapter 4].

(vi) Observe that the functions ai(t), tai(t), and tbi(t) belong to L1(R+), i = 1, 2. This can be
seen by looking at their Laplace transforms.

(vii) Observe that (A2) and (A3) imply the second and third condition in (A4).
(viii) Observe that the kernels in (1.9) satisfy conditions (A1)–(A4), here the kernels bi in con-

dition (A3) are given by bi(t) = t−αi

Γ(1−αi)
e−γit, t > 0, i = 1, 2.

For an interval J ⊂ R, a Banach space Y , s > 0 and 1 < p < ∞, by Hs
p(J ;Y ) we mean the

vector-valued Bessel potential space, and by Bs
pp(J ;Y ) the vector-valued Sobolev-Slobodeckij space

of Y -valued functions on J , see e.g. [5, 25].
We are now in position to state our main result. Observe that the system (1.10) for ϑ and ψ is

equivalent to the subsequent system (2.2) for the functions e and ψ.

∂te = a1 ∗∆e− a1 ∗∆
(
λ(ψ)

)
in J × Ω,

µ = −∆ψ + φ′(ψ)− λ′(ψ)
(
e− λ(ψ)) in J × Ω,

∂tψ = a2 ∗∆µ in J × Ω,
∂νµ = ∂νψ = ∂νe = 0 on J × Γ,

e|t=0 = e0, ψ|t=0 = ψ0 in Ω.

(2.2)

Theorem 2.2. Part I (Global Well-Posedness): Let Ω ⊂ R3 be a bounded domain with
boundary Γ of class C4. Suppose that the assumptions (H1)–(H3) and (A1) are satisfied. Let
p ∈ [2,∞) be such that p− 1 /∈ { 4

3(1+α2)
, 2

1+α1
, 4

1+α2
} and αi 6= 1/p, i = 1, 2. Suppose further that

the initial data are subject to the following conditions.
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(i) e0 ∈ B
2(1− 1

p(1+α1) )
pp (Ω), ψ0 ∈ B

4(1− 1
p(1+α2) )

pp (Ω); (regularity)
(ii) ∂νe0 = 0 if p > 1 + 2

1+α1
, ∂νψ0 = 0 if p > 1 + 4

3(1+α2)
,

∂ν∆ψ0 = 0 if p > 1 + 4
1+α2

. (compatibility conditions)

Then for every T > 0 there exists a unique solution (e, ψ) ∈ Z1 × Z2 of the system (2.2) with

Zi = H1+αi
p ([0, T ];Lp(Ω)) ∩ Lp([0, T ];H2i

p (Ω)), i = 1, 2.

The temperature ϑ = e− λ(ψ) belongs to the space Zϑ given by

Zϑ = H1+min{α1,α2}
p ([0, T ];Lp(Ω)) ∩ Lp([0, T ];H2

p (Ω)).

Part II (Long-Time Behaviour): Suppose in addition that the functions φ and λ are real
analytic, and that the assumptions (A2)–(A4) hold. Assume further that the initial data additionally
satisfy ϑ0 ∈ H2

2 (Ω) and ψ0 ∈ H4
2 (Ω) with ∂νϑ0 = ∂νψ0 = ∂ν∆ψ0 = 0 on Γ.

Then the solution (ϑ, ψ) of (1.10) is globally bounded, that is ϑ, ψ ∈ L∞(R+ × Ω). Moreover,
(ϑ, ψ) converges in L2(Ω) × H1

2 (Ω) as time goes to infinity to a stationary solution (ϑ∞, ψ∞) of
(1.10), that is

−∆ψ∞ + φ′(ψ∞)− λ′(ψ∞)ϑ∞ = µ∞, x ∈ Ω,
∂νψ∞ = 0, x ∈ Γ.

Here ϑ∞ and µ∞ are constants, ψ∞ ∈ H2
2 (Ω), and

µ∞ =
1
|Ω|

∫
Ω

(
φ′(ψ∞(x))− λ′(ψ∞(x))ϑ∞

)
dx.

Furthermore, the internal energy e converges in L2(Ω) as t→∞ to e∞ = ϑ∞ + λ(ψ∞).

Remark 2.3. Theorem 2.2 is still valid when the assumption λ′ ∈ L∞(R) is dropped in (H3).
Thus e.g. the function λ(s) = s2 + c, s ∈ R, which is sometimes used in the literature, would
be admissible. For the L∞ bounds and the relative compactness of the orbit (see Section 5.1) it
suffices to have λ′′ ∈ L∞(R). Once these results are established, the remaining part of the proof of
Theorem 2.2 is the same. This has been already observed in [31, Section 3.5] in the case without
memory.

3. Preliminaries

3.1. Sectorial Operators. Let Y be a complex Banach space and A be a closed linear operator
in Y . Then A is called pseudo-sectorial if (−∞, 0) is contained in the resolvent set of A and the
estimate |t(t+A)−1|B(Y ) ≤M , t > 0, holds for some constant M > 0. If in addition the null space
N(A) = {0}, and the domain D(A) as well as the range R(A) of A are dense in Y then A is called
sectorial. The class of sectorial operators in Y is denoted by S(Y ). We recall that in case Y is
reflexive and A pseudo-sectorial, the space Y decomposes as Y = N(A) ⊕ R(A). Thus in such a
situation A is sectorial on R(A). Putting Σθ = {λ ∈ C \ {0} : | arg λ| < θ}, the spectral angle φA ∈
[0, π) of A ∈ S(Y ) is defined by φA = inf{φ : ρ(−A) ⊃ Σπ−φ, sup{λ ∈ Σπ−φ : |λ(λ+A)−1| <∞}}.
We remark that for sectorial operators the Dunford functional calculus is available; in particular
the complex powers Az, z ∈ C are well-defined closed linear operators in X; see e.g. [15].

Let DA denote the domain of A equipped with the graph norm, 1 ≤ p < ∞, and let γ ∈
(0, 1). For A ∈ S(Y ) the real interpolation space (Y,DA)γ,p coincides with the space DA(γ, p)
defined by DA(γ, p) := {y ∈ Y : [y]DA(γ,p) < ∞}, with the seminorm [y]DA(γ,p) = (

∫∞
0

(tγ |A(t +
A)−1y|Y )p dt

t )1/p, see e.g. [11, Proposition 3].
An operator A ∈ S(Y ) is said to admit bounded imaginary powers, if the imaginary powers Ais

form a bounded C0-group on Y . The type θA of this group is called the power angle of A. We
denote the class of operators with bounded imaginary powers by BIP(Y ). For more details on
sectorial operators and the class BIP(Y ) we refer to [4] and [15].

We recall further that a Banach space Y belongs to the class HT , if the Hilbert transform is
bounded on L2(R;Y ).
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3.2. Abstract Volterra Equations. Let Y be a Banach space, A a closed linear, in general
unbounded operator in Y with dense domain D(A), and let a ∈ L1

loc(R+) be a scalar kernel. We
consider the Volterra equation

(3.1) u(t) + (a ∗Au)(t) = f(t), t ∈ J.

Definition 3.1. A family {S(t)}t≥0 ⊂ B(Y ) of bounded linear operators in Y is called a resolvent
for (3.1) if the following conditions are satisfied.

(S1) S(t) is strongly continuous on R+ and S(0) = I;
(S2) S(t) commutes with A, which means that S(t)D(A) ⊂ D(A) and AS(t)y = S(t)Ay for all

y ∈ D(A) and t ≥ 0;
(S3) the resolvent equation holds

S(t)y +
∫ t

0

a(t− s)AS(s)ds = y, for all y ∈ D(A), t ≥ 0.

We remark that if A ∈ S(Y ) with spectral angle φA < π and if the kernel a is 1-regular and
θ-sectorial with θ < π such that the condition of parabolicity θ + φA < π holds, then there is a
resolvent operator S ∈ C((0,+∞);B(Y )) for (3.1), which is also uniformly bounded in R+, see [20,
Proposition 3.1 and Theorem 3.1].

The following result concerns the property of maximal regularity of type Lp for equation (3.1).

Theorem 3.2. Let Y ∈ HT , p ∈ (1,∞), and J = [0, T ]. Suppose that A ∈ BIP(Y ), and
a ∈ K1(α, θa) with α ∈ (0, 2)\{1/p, 1+1/p}. Assume the parabolicity condition θa +θA < π. Then
(3.1) has a unique solution in Z = Hα

p (J ;Y )∩Lp(J ;DA) if and only if the function f satisfies the
subsequent conditions:

(i) f ∈ Hα
p (J ;Y );

(ii) f(0) ∈ DA(1− 1
pα , p), if α > 1/p;

(iii) ḟ(0) ∈ DA(1− 1
α −

1
pα , p), if α > 1 + 1/p.

Theorem 3.2 even holds true in the more general case where A is an R-sectorial operator with
R-angle φR

A < π−θa, see [34, Theorem 3.4]. Note that A ∈ BIP(X) implies that A is an R-sectorial
operator with φR

A ≤ θA provided that the underlying Banach space X belongs to the class HT , cf.
[15].

Remark 3.3. (i) In the situation of Theorem 3.2 there exists a unique operator B ∈ BIP(Lp(J ;Y ))
with power angle θB ≤ θa such that B is invertible satisfying B−1v = a ∗ v for all v ∈ Lp(J ;Y ).
Moreover D(B) = 0H

α
p (J ;Y ) where the subscript 0 means that the function and its derivative

vanish at t = 0 whenever these traces exist. See [34, Corollary 2.1].
(ii) In the special case f = a ∗ g with g ∈ Lp(J ;Y ) the solution u of (3.1) belongs to the

space 0Z = 0H
α
p (J ;Y ) ∩ Lp(J ;DA). Denoting by A the natural extension of A to Lp(J ;Y ), the

solution is given by u = (B + A)−1g, where the sum B + A is defined by (B + A)v = Bv + Av,
v ∈ D(B +A) = D(B) ∩D(A) = 0Z. This follows by the Dore-Venni theorem, see [20, Section 8]
or [34].

The next result concerns the integrability of the resolvent S(·) for the Volterra equation

(3.2) u(t) + (1 ∗ a ∗Au)(t) = f(t), t > 0.

Theorem 3.4. Let Y be a Banach space, A ∈ S(Y ) be an invertible operator with spectral angle φA.
Assume that the kernel a in (3.2) belongs to L1(R+) and that it satisfies the following assumptions:

(i) a is 2-regular and θa-sectorial such that φA + θa < π/2 holds;

(ii) limλ→0 â(λ) 6= 0 and
(

1
â(i·)

)′
∈ L1(−1, 1).

Then there exists a uniform integrable resolvent family S for equation (3.2), i.e. S ∈ L1(R+;B(Y )).
Moreover, for each κ ∈ [0, 1), Aκa ∗ S ∈ L1(R+;B(Y )).
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Theorem 3.4 follows by combining the proofs of Theorem 10.1 and 10.2 in [20] and by using
Lemma 10.2 from the same monograph. For more details we also refer the reader to [27, Lemma
6.13].

3.3. Useful Inequalities. The following results are used in the construction of Lyapunov func-
tionals. The first is a simple lemma, which can be found in [30, Lemma 2.1].

Lemma 3.5. Let H be a real Hilbert space and T > 0. Suppose that l ∈ L1, loc(R+) is nonnegative.
Then for any v ∈ L2([0, T ];H) there holds

|(l ∗ v)(t)|2H ≤ (l ∗ |v|2H)(t) (1 ∗ l)(t), a.a. t ∈ (0, T ).

The next result is the key tool in the construction of Lyapunov functionals for the system (1.10).
It is due to Vergara and Zacher [30]. By 〈·, ·〉H we denote the inner product in the Hilbert space
H.

Theorem 3.6. Let H be a real Hilbert space and T > 0. Let k ∈ L1,loc(R+) be a nonnegative
and nonincreasing kernel. Assume that there is a nonnegative kernel a ∈ L1,loc(R+) such that
k ∗ a = 1 in (0,∞). Let v ∈ L2([0, T ];H) and suppose that k ∗ v ∈ 0H

1
2 ([0, T ];H) as well as

k ∗ |v|2H ∈ 0H
1
1 ([0, T ]). Then

2
〈
d

dt
(k ∗ v) (t), v(t)

〉
H

≥ d

dt
(k ∗ |v|2H)(t) + k(t)|v(t)|2H , for a.a. t ∈ (0, T ).

For a large class of kernels the second regularity assumption on v in Theorem 3.6 follows already
from the first one, as the following result (cf. [30, Proposition 2.1]) and Remark 3.3(i) show.

Proposition 3.7. Let Y be a Banach space of class HT and T > 0. Let a ∈ K1(α, θ) with α ∈ (0, 1)
and θ < π. Assume there exists a kernel k ∈ L1,loc(R+) such that a ∗ k = 1 on (0,∞). Suppose
v ∈ 0H

α
2 ([0, T ];Y ). Then

k ∗ v ∈ 0H
1
2 ([0, T ];Y ) and k ∗ |v|2Y ∈ 0H

1
1 ([0, T ]).

4. Well-Posedness

Let 2 ≤ p <∞, J = [0, T ], T > 0, and let Ω ⊂ R3 be a bounded domain with boundary Γ = ∂Ω
of class C4. Set X = Lp(Ω), Y = {v ∈ X :

∫
Ω
v(x) dx = 0} and define the operator A in Y by

Av := −∆v, v ∈ D(A) := {u ∈ H2
p (Ω) ∩ Y : ∂νu|Γ = 0}. It is well known that A and thus also A2

belongs to the class BIP(Y ) with power angle θA = 0 and θA2 = 0, respectively. Let Pv = v − v̄
with v̄ = 1

|Ω|
∫
Ω
v(x) dx, that is, P is the canonical projection in X onto Y . Let further Ai denote

the natural extension of Ai to Lp(J ;Y ), i = 1, 2. Then Ai belongs to BIP(Lp(J ;Y )) with power
angle θAi = 0, i = 1, 2.

In what follows we will always assume that ψ0 = e0 = ϑ0 + λ(ψ0) = 0. This is not a restriction
of generality. In fact, e and ψ are conserved quantities, hence we may introduce the new variables
ϑ̃ := ϑ − ϑ0, ψ̃ := ψ − ψ0, and replace the functions λ and φ by λ̃(s) = λ(s + ψ0) − λ(ψ0) and
φ̃(s) = φ(s+ψ0)− λ̃(s)ϑ0, respectively. Then ẽ := ϑ̃+ λ̃(ψ̃) = e−e0, and so the problem is reduced
to the previous case.

System (2.2) can then be written in abstract form as follows.

∂te(t) + a1 ∗Ae(t) = a1 ∗APλ(ψ)(t), t ∈ J,(4.1)

∂tψ(t) + a2 ∗A2ψ(t) = −a2 ∗AP
(
φ′(ψ)− λ′(ψ)[e− λ(ψ)]

)
(t), t ∈ J,(4.2)

e(0) = e0,(4.3)

ψ(0) = ψ0.(4.4)

We are looking for a solution (e, ψ) of this system such that (e, ψ) ∈ Z1 ×Z2 where

Zi = H1+αi
p (J ;Y ) ∩ Lp(J ;D(Ai)), i = 1, 2.
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4.1. Local well-posedness. Let p ∈ [2,∞) be as in the first part of Theorem 2.2. Suppose
φ, λ ∈ C4−(R) and that the condition (A1) is satisfied. Observe first that assuming ψ to be known,
the function e can be determined by solving the linear problem (4.1),(4.3). In fact, e = u1 + z1,
where u1 and z1 solve

(4.5) u1 + 1 ∗ a1 ∗Au1 = e0, t ∈ J,

and

(4.6) z1 + 1 ∗ a1 ∗Az1 = 1 ∗ a1 ∗APλ(ψ), t ∈ J,

respectively. Since a1 ∈ K1(α1, θ1) with α1 ∈ [0, 1) and θ1 ∈ [0, π/2), we have 1 ∗ a1 ∈ K1(1 +
α1, θ1 + π/2), see e.g. [33, Lemma 2.6.2] and [20]. By the assumptions on e0 in the first part of
Theorem 2.2, we further have e0 ∈ DA(1 − 1

p(1+α1)
). Thus Theorem 3.2 yields a unique solution

u1 ∈ Z1 of (4.5).
As to z1, suppose that

(4.7) APλ(ψ) ∈ Lp(J ;Y ).

Let B1 ∈ S(Lp(J ;Y )) be the operator (1 ∗ a1∗)−1 from Remark 3.3(i). Then by Theorem 3.2 and
Remark 3.3(ii), (4.6) admits a unique solution z1 ∈ 0Z1 and we have the representation

(4.8) e = u1 + z1 = u1 + (B1 +A)−1APλ(ψ).

Using (4.8) we will now set up a fixed point problem for the function ψ in an appropriate space.
To this purpose let u2 ∈ Z2 denote the solution of

u2 + 1 ∗ a2 ∗A2u2 = ψ0, t ∈ J.

In fact, we have ψ0 ∈ DA2(1− 1
p(1+α2)

) and so once again Theorem 3.2 yields the unique solvability
in the desired regularity class. We may then write

(4.9) e = u1 + (B1 +A)−1APλ(u2) + F (ψ),

where we have set
F (ψ) = (B1 +A)−1AP

(
λ(ψ)− λ(u2)

)
.

Inserting (4.9) into the equation for ψ and integrating gives

(4.10) ψ + 1 ∗ a2 ∗A2ψ = ψ0 − 1 ∗ a2 ∗G(ψ),

with
G(ψ) := AP

[
φ′(ψ)− λ′(ψ)

(
u1 + (B1 +A)−1APλ(u2) + F (ψ)− λ(ψ)

)]
.

By definition of u2, equation (4.10) is equivalent to

(4.11) ψ = u2 − (B2 +A2)−1G(ψ),

provided that G(ψ) ∈ Lp(J ;Y ). Setting z2 = ψ − u2 we obtain the following fixed point problem
for z2:

(4.12) z2 = −(B2 +A2)−1G(z2 + u2) =: T (z2).

The map T : 0Z2 → 0Z2 is well defined, whenever z2 ∈ 0Z2 entails G(z2 + u2) ∈ Lp(J ;Y ). To see
the latter, note first that p ≥ 2 implies the condition p > 3/4 + 1/(1 +α2), and thus the embedding

(4.13) Z2 ↪→ C(J ;B4−4/p(1+α2)
pp (Ω)) ↪→ C(J × Ω),

holds true. We will next prove the following property.

Lemma 4.1. Under the above assumptions there holds the implication

(4.14) ψ ∈ Z2 ⊂ Z2 ⇒ λ(ψ) ∈ Z2.



WELL-POSEDNESS AND LONG-TIME BEHAVIOUR 9

Proof. Suppose ψ ∈ Z2. From (4.13) and (H3) it follows that λ(i)(ψ) ∈ L∞(J×Ω) for all i = 0, . . . , 4.
Hence, to verify that all components of ∇4

(
λ(ψ)

)
belong to Lp(J ;Lp(Ω)) it suffices to show that all

products of the form ∂ς1ψ ∂ς2ψ ∂ς3ψ ∂ς4ψ with multiindices ςj ∈ (N∪{0})3 satisfying
∑4

j=1 |ςj | = 4
do so. If |ςj | = 4 for some j ∈ {1, . . . , 4}, then the desired property is evidently satisfied, by
boundedness of ψ and Hölder’s inequality. By the mixed derivative theorem and Sobolev embedding,
we have for each multiindex ς with |ς| ∈ {1, 2, 3}

∂ςψ ∈H(1+α2)(1−|ς|/4)
p (J ;Lp(Ω)) ∩ Lp(J ;H4−|ς|

p (Ω))

↪→ H(1−|ς|/4)/p
p (J ;H(4−|ς|)(1−1/p)

p (Ω)) ↪→ L4p/|ς|(J × Ω),

where for the last embedding we employ the inequality

(4− |ς|)(1− 1
p

)− 3
p
≥ −3|ς|

4p
,

which is equivalent to

(4.15) 16p+ 7|ς| ≥ 4p|ς|+ 28.

It is easy to check that (4.15) is satisfied for all p ≥ 2 and each |ς| ∈ {1, 2, 3}. Using Hölder’s
inequality, we conclude that ∂ς1ψ ∂ς2ψ ∂ς3ψ ∂ς4ψ ∈ Lp(J ;Lp(Ω)) whenever

∑4
j=1 |ςj | = 4.

It remains to show that λ′(ψ)∂tψ ∈ Hα2
p (J ;Lp(Ω)). From the characterization of the Bessel

potential spaces via differences (see [26]) and Hölder’s inequality, it follows that

(4.16) |uv|Hα2
p (Lp) ≤ C

(
|u|Hα2

σ′1p
(Lr′1p)|v|Lσ1p(Lr1p) + |u|Lσ′2p(Lr′2p)|v|Hα2

σ2p(Lr2p)

)
,

where 1/σi + 1/σ′i = 1/ri + 1/r′i = 1, i = 1, 2. We want to apply (4.16) to u = λ′(ψ) and v = ∂tψ.
Since λ′(ψ) ∈ L∞(J × Ω) and ∂tψ ∈ Hα2

p (J ;Lp(Ω)), the second summand on the right-hand side
of (4.16) is finite when taking r2 = σ2 = 1. The first summand is more involved. By the mixed
derivative theorem,

∂tψ ∈ Hα2
p (J ;Lp(Ω)) ∩ Lp(J ;H

4(1− 1
1+α2

)
p (Ω)) ↪→ Hα2θ

p (J ;H
4α2

1+α2
(1−θ)

p (Ω)), θ ∈ [0, 1].

Therefore ∂tψ ∈ Lσ1p(J ;Lr1p(Ω)) provided that for some θ ∈ [0, 1]

(4.17) α2θ −
1
p
≥ − 1

σ1p
, and

4α2

1 + α2
(1− θ)− 3

p
≥ − 3

r1p
.

Next observe that λ′(ψ) ∈ H1
p (J ;Lp(Ω)) ∩ Lp(J ;H3

p (Ω)). Hence

λ′(ψ) ∈ H θ̃
p (J ;H3(1−θ̃)

p (Ω)) ↪→ Hα2
σ′1p(J ;Lr′1p(Ω)),

provided that for some θ̃ ∈ [α2, 1] there holds

(4.18) θ̃ − 1
p
≥ α2 −

1
σ′1p

, and 1− θ̃ − 1
p
≥ − 1

r′1p
.

Adding the first conditions of (4.17) and (4.18), and adding the second conditions in (4.17) and
(4.18) leads to

(4.19) θ̃ − 1
p
≥ α2(1− θ) ≥ 3(1 + α2)

4
(θ̃ +

1
p
− 1),

that is we need θ̃ ≥ 1/p and

(4.20) θ̃(1− 3α2) ≥ 7 + 3α2

p
− 3(1 + α2) =: η.

For α2 = 1/3 (4.20) is satisfied for any θ̃ ∈ [0, 1] and p ≥ 2. In the case α2 ∈ (0, 1/3) there exists
θ̃ ∈ [η/(1−3α2), 1], thanks to p ≥ 2. In the case α2 ≥ 1/3 there exists θ̃ ∈ [min{α2, 1/p}, η/(1−3α2)]
at least if α2 ≤ 1/2. Assuming the latter we thus find θ̃ ∈ [min{α2, 1/p}, 1] that satisfies (4.20). It
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is then not difficult to see that there are θ ∈ [0, 1] and r1, σ1 ∈ [1,∞] such that all conditions in
(4.17) and (4.18) are fulfilled. So we are done in the case α2 ≤ 1/2.

Suppose now that α2 ≥ 1/2. Replacing the function λ by its derivative λ′ it follows from what
we have just proved that λ′(ψ) ∈ H3/2

p (J ;Lp(Ω)) ∩ Lp(J ;H3
p (Ω)). Therefore

λ′(ψ) ∈ H
3θ̃
2

p (J ;H3(1−θ̃)
p (Ω)) ↪→ Hα2

σ′1p(J ;Lr′1p(Ω)),

provided that θ̃ ≥ 2α2/3 and

(4.21)
3θ̃
2
− 1
p
≥ α2 −

1
σ′1p

, and 1− θ̃ − 1
p
≥ − 1

r′1p
.

Proceeding as above with (4.21) instead of (4.18) leads to the condition

(4.22) θ̃ ≥ η

3(1− α2)
.

The assumption p ≥ 2 ensures that 1 ≥ η/[3(1− α2)], hence there is θ̃ ∈ [2 min{α2, 1/p}/3, 1] such
that (4.22) holds. As above it is now not difficult to see that there are θ ∈ [0, 1] and r1, σ1 ∈
[1,∞] such that all conditions in (4.17) and (4.21) are satisfied. This shows that λ′(ψ)∂tψ ∈
Hα2

p (J ;Lp(Ω)), thereby completing the proof of the lemma. �

Lemma 4.1 shows that λ(z2 + u2) − λ(u2) ∈ 0Z2 for all z2 ∈ 0Z2. By the mixed derivative
theorem 0Z2 ↪→ 0H

(1+α2)/2
p (J ;H2

p (Ω)), and thus AP
(
λ(z2 + u2) − λ(u2)

)
∈ 0H

(1+α2)/2
p (J ;Lp(Ω)).

By boundedness of A(B1 +A)−1P in 0H
(1+α2)/2
p (J ;Lp(Ω)) we then infer that

(4.23) APF (z2 + u2) ∈ 0H
(1+α2)/2
p (J ;Lp(Ω)) for all z2 ∈ 0Z2.

Decomposing G(ψ) according to G(ψ) = G1(ψ) +G2(ψ) with

G1(ψ) = AP
[
φ′(ψ)− λ′(ψ)

(
F (ψ)− λ(ψ)

)]
,

G2(ψ) = −AP
[
λ′(ψ)

(
u1 + (B1 +A)−1APλ(u2)

)]
,

it is then not difficult to see that G2(z2 + u2) is just in Lp(J ;Y ), whereas G1(z2 + u2) belongs to
some space Hε

p(J ;Y ) with ε > 0.
Let now BT

R(0) = {z ∈ 0Z2 : |z|Z2 ≤ R} and BT
R(u2) = u2 + BT

R(0), where R > 0 is a fixed
number. It can be shown that for sufficiently small T > 0 one has T BT

R ⊂ BT
R and that T is a

strict contraction in BT
R. To see this let us indicate the dependence on T by writing ZT

i instead of
Zi, i = 1, 2.

Lemma 4.2. Let α2 ∈ (0, 1), p ≥ 2, and φ, λ ∈ C4−(R). Then there exists a nonincreasing function
c(T ) with c(T ) → 0 as T → 0+ such that for all w, z ∈ BT

R(0),

|T w − T z|ZT
2
≤ c(T )|w − z|ZT

2
,(4.24)

|T w|ZT
2
≤ c(T )[|w|ZT

2
+ |u2|ZT

2
].(4.25)

For the proof of this result note that, it suffices to check that the inequalities

|∆φ′(u)−∆φ′(v)|Lp([0,T ]×Ω) ≤ c(T )|u− v|ZT
2
,

|∆(λ′(u)F (u))−∆(λ′(v)F (v))|Lp([0,T ]×Ω) ≤ c(T )|u− v|ZT
2
,

|∆(λ′(u)f1)−∆(λ′(v)f1)|Lp([0,T ]×Ω) ≤ c(T )|u− v|ZT
2
,

are satisfied for all u, v ∈ BT
R(u2), where f1 ∈ Z1 is defined by f1 = u1 + (B1 + A)−1APλ(u2),

and c(T ) behaves as in the statement of Lemma 4.2. These inequalities can be obtained by similar
arguments as in [22, Proposition 3.2]. The regularity property (4.23) is basic to derive the second
estimate.
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Lemma 4.2 and the contraction mapping principle imply that equation (4.12) possesses a unique
fixed point z2 ∈ 0ZT

2 , provided T is chosen sufficiently small. It is then clear that (e, ψ) defined
by ψ = u2 + z2 and (4.8) belongs to the space ZT

1 × ZT
2 and that it is the unique solution of the

system (4.1)–(4.4).
Summarizing, we have proved the following result.

Theorem 4.3. Let p ∈ [2,∞), φ, λ ∈ C4−(R), and suppose that (A1) holds. Assume that αi 6= 1/p,
i = 1, 2 and that p − 1 /∈ { 4

3(1+α2)
, 2

1+α1
, 4

1+α2
}. Suppose further that the initial data e0 and ψ0

satisfy the regularity and compatibility conditions (i) and (ii) in the first part of Theorem 2.2.
Then there exists T > 0, such that the system (4.1)–(4.4) admits a unique solution (e, ψ) ∈

ZT
1 × ZT

2 . The temperature ϑ = e− λ(ψ) belongs to the space ZT
ϑ given by

ZT
ϑ = H1+min{α1,α2}

p ([0, T ];Lp(Ω)) ∩ Lp([0, T ];H2
p (Ω)).

4.2. Global well-posedness. The local solution obtained in Theorem 4.3 can be continued to
some larger interval [0, T + δ]. In fact, define

MT+δ
z2

:= {w ∈ 0ZT+δ
2 : w|[0,T ] = z2},

where, as above, z2 = ψ − u2. The set MT+δ
z2

is not empty and becomes a complete metric space
when endowed with the metric induced by the norm of ZT+δ

2 . Using the estimates from Lemma
4.2 and the contraction mapping principle, one can show that v = T (v) has a unique fixed point
in MT+δ

z2
provided δ > 0 is selected sufficiently small. This in turn then yields a solution (e, ψ) of

(4.1)–(4.4) on [0, T + δ] with (e, ψ) ∈ ZT+δ
1 × ZT+δ

2 .
Repeating this argument we obtain an interval of maximal existence [0, tmax), i.e. tmax ∈ (0,∞]

is the supremum of all t1 > 0 such that for all T ∈ (0, t1) the system (4.1)-(4.4) has a unique
solution (e, ψ) ∈ ZT

1 × ZT
2 .

Suppose now in addition that φ, λ satisfy the growth conditions from (H1)–(H3). We want to
show that in this situation we have global existence for (4.1)–(4.4), that is tmax = ∞.

To derive suitable a priori estimates, we first remark that the operator A defined at the beginning
of Section 4 is selfadjoint and positive definite in case p = 2, the spectrum σ(A) is independent
of p ∈ (1,∞), it consists of semisimple eigenvalues 0 < λ1 < λ2 < λ3 < . . .. In particular, the
Poincaré-Wirtinger inequality is valid:

(4.26) |∇u|22 = (Au|u) ≥ λ1|u|22, u ∈ D(A).

Here | · |2 and (·|·) stand for the norm and the inner-product of L2(Ω), respectively.
Let T ∈ (0, tmax), and suppose that (e, ψ) ∈ ZT

1 × ZT
2 is the solution of (4.1)-(4.4), which is

equivalent to (1.10) with ϑ = e − λ(ψ). Multiply the first equation of (1.10) by ϑ and the third
equation of that system by µ. Adding the resulting relations and integrating by parts yields the
energy identity

(4.27)
1
2
d

dt

(
|ϑ|22 + |∇ψ|22 + 2

∫
Ω

φ(ψ) dx
)

+ (a1 ∗ ∇ϑ|∇ϑ) + (a2 ∗ ∇µ|∇µ) = 0.

Set

E0(ϑ, ψ) =
1
2
|ϑ|22 +

1
2
|∇ψ|22 +

∫
Ω

φ(ψ) dx, t ∈ [0, T ].

Since the kernels ai, i = 1, 2, are of positive type (see e.g. [18] or [20]), relation (4.27) implies

(4.28) E0(ϑ(t), ψ(t)) ≤ E0(ϑ0, ψ0), t ∈ [0, T ].

On the other hand, we may use (H2) and inequality (4.26) to estimate∫
Ω

φ(ψ) dx ≥ − c1
2
|ψ|22 − c0|Ω| ≥ − c1

2λ1
|∇ψ|22 − c0|Ω|,
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which together with (4.28) gives

λ1 − c1
2λ1

|∇ψ|22 +
1
2
|ϑ|22 ≤ E0(ϑ0, ψ0) + c0|Ω|, t ∈ [0, T ].

This estimate and (4.26) yield a uniform bound

(4.29) |ϑ|L∞([0,T ];L2(Ω)) + |ψ|L∞([0,T ];H1
2 (Ω)) ≤ C(ϑ0, ψ0, |Ω|) =: C.

The following lemma is basic to obtain global existence.

Lemma 4.4. Suppose p ≥ 2 and let ψ ∈ ZT
2 be the second component of the solution of (4.1)-(4.4)

on [0, T ]. Let G(ψ) be as in equation (4.10). Then there exist constants C1,m > 0 and % ∈ (0, 1),
independent of T > 0, such that

|G(ψ)|Lp([0,T ];Lp(Ω)) ≤ C1

(
1 + |ψ|%

ZT
2
|ψ|mL∞([0,T ];H1

2 (Ω))

)
.

The proof of this lemma relies on the Gagliardo-Nirenberg inequality and is basically the same
as in [22, Lemma 4.1], see also [28].

We will now show that |ψ|ZT
2

stays bounded as T ↗ tmax. Note that

|(B2 +A2)−1|B(Lp([0,T ];Y ),ZT
2 ) ≤M

where M > 0 does not depend on T > 0. Using this, the decomposition (4.11), the estimate (4.29),
and Lemma 4.4, we have

|ψ|ZT
2
≤ |u2|ZT

2
+ |(B2 +A2)−1G(ψ)|ZT

2

≤ |u2|ZT
2

+M |G(ψ)|Lp([0,T ];Lp(Ω))

≤ |u2|ZT
2

+MC1

(
1 + |ψ|%

ZT
2
|ψ|mL∞([0,T ];H1

2 (Ω))

)
≤ |u2|ZT

2
+MC1

(
1 + C|ψ|%

ZT
2

)
,

which implies
|ψ|ZT

2
≤ C̃(1 + |u2|ZT

2
),

with some constant C̃ > 0 not depending on T . Hence we have global existence. This completes
the proof of the first part of Theorem 2.2.

Remark 4.5. Global existence and the uniform estimate (4.29) imply that the solution (ϑ, ψ) of
(1.10) belongs to L∞(R+;L2(Ω))× L∞(R+;H1

2 (Ω)).

5. Long-Time Behaviour

In this section we study the long-time behaviour of the solution of the system (1.10). Recall that
we assume without loss of generality ψ0 = e0 = ϑ0 + λ(ψ0) = 0.

5.1. L∞-bounds and relative compactness of the orbit. We show first that the solution (ϑ, ψ)
of (1.10) is globally bounded, that is (ϑ, ψ) ∈ L∞(R+×Ω)2, and that its orbit is relatively compact
in the natural energy space W defined by

W = {(ϑ, ψ) ∈ L2(Ω)×H1
2 (Ω) : ψ̄ = 0}.

The proof relies on a bootstrap (Nash-Moser iteration) argument.
Let A2 denote the operator A in the space {v ∈ L2(Ω) :

∫
Ω
v(x) dx = 0} defined as in Section 4.

Theorem 5.1. Let the assumptions of Theorem 2.2 Part I be satisfied. Suppose in addition that
condition (A4) holds and that (ϑ0, ψ0) ∈ D(A2) × D(A2

2). Then the solution (ϑ, ψ) of (1.10) is
globally bounded and the orbit {(ϑ(t), ψ(t)) : t ≥ 0} is relatively compact in the energy space W .
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Proof. Recall that system (1.10) is equivalent to the system (4.1)–(4.4) for the functions e and ψ.
Let {Si(t)}t≥0 ⊂ B(Y ), i = 1, 2, be the resolvent family for the Volterra equation

(5.1) z + 1 ∗ ai ∗Aiz = 1 ∗ f + z0, t ≥ 0.

Evidently, (5.1) is equivalent to

ż + ai ∗Aiz = f, t ≥ 0, z(0) = z0,

and the variation of parameters formula yields

z(t) = Si(t)z0 +
∫ t

0

Si(t− τ)f(τ) dτ, t ≥ 0.

Hence we can rewrite (4.1)–(4.4) as the system of integral equations

e(t) =S1(t)e0 + (A1/2a1 ∗ S1 ∗A1/2Pλ(ψ))(t), t > 0,(5.2)

ψ(t) =S2(t)ψ0 − (Aa2 ∗ S2 ∗ P [φ′(ψ)− λ′(ψ)(e− λ(ψ))])(t), t > 0.(5.3)

Observe that in view of (ϑ0, ψ0) ∈ D(A2) × D(A2
2) we have S1(·)e0 ∈ L∞(R+;H2

2 (Ω)) as well as
S2(·)ψ0 ∈ L∞(R+;H4

2 (Ω)). Note that here and in the subsequent lines we use the same notation
for the resolvent of (5.1) and the Neumann-Laplacian, respectively, for all p ≥ 2.

We know already (cf. Remark 4.5) that ψ ∈ L∞(R+;H1
2 (Ω)) and ϑ ∈ L∞(R+;L2(Ω)). This is

the starting point for the following iteration argument of Nash-Moser type. Set p0 = 6 and r0 = 2.
Suppose we know already that

ψ ∈ L∞(R+;H1
rn

(Ω)) ↪→ L∞(R+;Lpn(Ω)), with
1
pn

=
1
rn
− 1

3
.

By (H3), we then have λ′(ψ) ∈ L∞(R+ × Ω) and λ(ψ) ∈ L∞(R+;H1
rn

(Ω)), i.e. A1/2Pλ(ψ) ∈
L∞(R+;Lrn

(Ω)), where we use the fact that D(A1/2) = H1
p (Ω)∩ Y . Appealing to Theorem 3.4 we

have A1−δ/2a1 ∗ S1 ∈ L1(R+;B(Lrn
(Ω))), for each δ ∈ (0, 1). Thus (5.2) implies that

e ∈ L∞(R+;H1−δ
rn

(Ω)) ↪→ L∞(R+;Lsn
(Ω)), with

1
sn

=
1
pn

+
δ

3
.

Since λ(ψ) ∈ L∞(R+;H1
rn

(Ω)) we also obtain that ϑ = e− λ(ψ) ∈ L∞(R+;H1−δ
rn

(Ω)). Turning to
the equation for ψ, we have φ′(ψ) ∈ L∞(R+;Lpn/(β+2)(Ω)), by assumption (H1). Therefore

φ′(ψ)− λ′(ψ)ϑ ∈ L∞(R+;Lqn(Ω)), with
1
qn

=
β + 2
pn

+
δ

3
.

Since (A2)(1−δ/2)a2 ∗ S2 ∈ L1(R+;B(Lqn
(Ω)), by Theorem 3.4, it follows from (5.3) that

ψ ∈ L∞(R+;H2−δ
qn

(Ω)) ↪→ L∞(R+;H1
rn+1

(Ω)) ↪→ L∞(R+;Lpn+1(Ω)),

where
1

rn+1
− 1

3
=

1
pn+1

=
β + 2
pn

− 2
1− δ

3
.

Inductively this yields
1
pn

= (β + 2)n

[
1
p0
− 2− δ

3(β + 1)

]
+

2− δ

3(β + 1)
.

Since by assumption β < 3, we may choose 0 < δ < (3 − β)/2 to get the bracket negative. Then
the iteration ends after finitely many steps. As a consequence we obtain

ψ ∈ L∞(R+ × Ω).

It is then also clear that ϑ ∈ L∞(R+ × Ω). Moreover, since H1−δ
rn

(Ω) and H2−δ
qn

(Ω) are compactly
embedded in L2(Ω) and H1

2 (Ω), respectively, it follows that {(ϑ(t), ψ(t)) : t ≥ 0} is relatively
compact in the energy space W . �

Remark 5.2. Observe that the above proof also yields a bound for ψ in the space L∞(R+;H1
3 (Ω)).
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5.2. Lyapunov functional and properties of the ω-limit set. We define an energy functional
E on W by means of

E(ϑ, ψ) =
∫

Ω

(
1
2
|∇ψ|2 + φ(ψ) +

1
2

(
ϑ+ λ(ψ)

)2
)
dx+

|Ω|
2

(λ(ψ))2.

Note that the critical points of E in W with constraint ϑ+ λ(ψ) = 0 are precisely the solutions of

(5.4)
−∆ψ∞ + φ′(ψ∞)− λ′(ψ∞)ϑ∞ = µ∞, x ∈ Ω,

∂νψ∞ = 0, x ∈ Γ,

where ϑ∞ and µ∞ are constants, ψ∞ ∈ H2
2 (Ω), and

(5.5) ψ∞ = ϑ∞ + λ(ψ∞) = 0, µ∞ = φ′(ψ∞)− λ′(ψ∞)ϑ∞,

cf. [10, Proposition 6.4] and [22, Proposition 5.2]). Furthermore, the system (5.4), (5.5) is the
stationary problem to (1.10); recall that we assume ψ0 = ϑ0 + λ(ψ0) = 0.

Moreover, the Fréchet-derivative of E is given by

〈E′(ϑ, ψ)|(k, h)〉W∗×W =
∫

Ω

[
∇ψ · ∇h+ φ′(ψ)h+ λ(ψ)λ′(ψ)h+ (ϑ+ λ(ψ))k

]
dx

+ (ϑ+ λ(ψ))(λ′(ψ)|h), k ∈ L2(Ω), h ∈ Ĥ1
2 (Ω),

(5.6)

where we have set Ĥ1
2 (Ω) = {v ∈ H1

2 (Ω) :
∫
Ω
v(x) dx = 0}. Assuming ψ ∈ D(A2) we thus obtain

with ϑ+ λ(ψ) = 0

(5.7)
1
c

(
|A−1/2

2 PM(ψ)|22 + |Pϑ|22
)1/2

≤ |E′(ϑ, ψ)|W∗ ≤ c
(
|A−1/2

2 PM(ψ)|22 + |Pϑ|22
)1/2

,

where c is a positive constant and

M(ψ) = A2ψ + φ′(ψ) + λ(ψ)λ′(ψ),

see also [10, 22]. In the remaining part of the paper we will suppress the subscript 2 in the notation
for the Neumann-Laplacian on PL2(Ω), that is A := A2.

Using the Neumann boundary conditions for ϑ and µ as well as the property
∫
Ω

(ϑ+ λ(ψ)) = 0,
it follows from the energy relation (4.27) that

(5.8)
d

dt
E(ϑ, ψ) +

(
a1 ∗A1/2Pϑ|A1/2Pϑ

)
+

(
a2 ∗A1/2Pµ|A1/2Pµ

)
= 0.

Hence integrating over [0, t], we obtain

E(ϑ, ψ)(t) +
∫ t

0

[(
a1 ∗A1/2Pϑ|A1/2Pϑ

)
(s) +

(
a2 ∗A1/2Pµ|A1/2Pµ

)
(s)

]
ds = E(ϑ0, ψ0).

Since the kernels ai are of positive type, this implies

E(ϑ, ψ)(t) ≤ E(ϑ0, ψ0).

By assumption (H2) and the Poincaré-Wirtinger inequality (4.26), E(ϑ, ψ) is also bounded from
below on R+, cf. Section 4.2.

Unfortunately, the energy functional E is not a Lyapunov functional since it is not decreasing.
To construct a proper Lyapunov functional we will use the ideas from [30]. For this approach we
need the assumptions (A2) and (A3) on the kernels ai.

Define the functions v1 and v2 by

(5.9)
v1 = a1 ∗A1/2Pϑ = −A−1/2∂t(ϑ+ λ(ψ)) = −A−1/2∂te,
v2 = a2 ∗A1/2Pµ = −A−1/2∂tψ.
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Thanks to (A2) we can then rewrite the second respectively third term on the left-hand side of
(5.8) as follows.

(5.10)
(
a1 ∗A1/2Pϑ|A1/2Pϑ

)
= (∂t(k1 ∗ v1)|v1) ,(

a2 ∗A1/2Pµ|A1/2Pµ
)

= (∂t(k2 ∗ v2)|v2) .

By (A1), vi (i = 1, 2) satisfies the assumptions of Proposition 3.7 with Y = L2(Ω) and a = ai.
Thus we may apply Theorem 3.6, which yields

(5.11) 2(∂t(ki ∗ vi)(t)|vi(t)) ≥ ∂t(ki ∗ |vi|22)(t) + ki(t)|vi(t)|22, a.a. t > 0.

Furthermore, by (A3) we have

(5.12) ∂t(ki ∗ |vi|22)(t) = ∂t(bi ∗ |vi|22)(t) + γi(bi ∗ |vi|22)(t).

Combining (5.8),(5.10), and (5.12) shows that the functional H0 defined by

(5.13) H0(ϑ, ψ)(t) := E(ϑ, ψ)(t) +
1
2

(
b1 ∗ |v1|22

)
(t) +

1
2

(
b2 ∗ |v2|22

)
(t),

is a Lyapunov functional. Indeed, H0 ∈ H1
1,loc(R+) and for a.a. t > 0 there holds

(5.14)
d

dt
H0(ϑ, ψ)(t) ≤ −1

2

(
k1(t)|v1(t)|22 + k2(t)|v2(t)|22 + γ1

(
b1 ∗ |v1|22

)
(t) + γ2

(
b2 ∗ |v2|22

)
(t)

)
.

Since E(ϑ, ψ) is bounded from below on R+, H0(ϑ, ψ) evidently enjoys the same property. Recall
that ki(t) ≥ limt→∞ ki(t) = γi|bi|L1(R+) =: k∞i > 0, i = 1, 2, cf. Remark 2.1(iv). Hence, (5.14)
implies that

(5.15) vi ∈ L2(R+ × Ω), bi ∗ |vi|22 ∈ L1(R+), i = 1, 2.

For the next result we recall that the ω-limit set of the global solution (ϑ, ψ) of (1.10) in the
energy space W is defined by

ω(ϑ, ψ) = {(ϑ∞, ψ∞) ∈W : there exists (tn) ↗∞ s.t. (ϑ(tn), ψ(tn)) → (ϑ∞, ψ∞) in W}.
By Theorem 5.1, ω(ϑ, ψ) 6= ∅ and the orbit {(ϑ(t), ψ(t)) : t ≥ 0} is relatively compact in W . It
follows from well-known results that the ω-limit set is compact and connected.

Proposition 5.3. Let the assumptions of Theorem 5.1 be satisfied. Suppose in addition that (A2)
and (A3) hold. Let (ϑ, ψ) be the global solution of (1.10). Then

(i) A−1/2∂tψ,A
−1/2∂te ∈ L2(R+;L2(Ω));

(ii) The functional E is constant on ω(ϑ, ψ) and limt→∞E(ϑ(t), ψ(t)) exists;
(iii) bi ∗ |vi|22 ∈ C0(R+), i ∈ {1, 2};
(iv) For every (ϑ∞, ψ∞) ∈ ω(ϑ, ψ) there holds that ϑ∞ is constant, ψ∞ ∈ D(A), and (ϑ∞, ψ∞)

solves the stationary problem (5.4) with µ∞ = φ′(ψ∞)− λ′(ψ∞)ϑ∞;
(v) For every (ϑ∞, ψ∞) ∈ ω(ϑ, ψ) one has E′(ϑ∞, ψ∞) = 0.

Proof. The first claim follows directly from (5.15) and the definition of vi in (5.9). Next, let
(ϑ∞, ψ∞) ∈ ω(ϑ, ψ) and let (tn) ↗∞ such that (ϑ(tn), ψ(tn)) → (ϑ∞, ψ∞) in W as n→∞. Then

(5.16) e(tn) = ϑ(tn) + λ(ψ(tn)) → ϑ∞ + λ(ψ∞) =: e∞ in L2(Ω).

Since A−1/2∂tψ ∈ L2(R+;L2(Ω)), we have A−1/2ψ(tn + s) → A−1/2ψ∞ in L2(Ω) for all s ∈ [0, 1].
By the relative compactness of ψ(R+) in Ĥ1

2 (Ω), this also yields ψ(tn + s) → ψ∞ in Ĥ1
2 (Ω) for

all s ∈ [0, 1]. An analogous argument shows that (5.16), the second part of (i), and the relative
compactness of e(R+) in L2(Ω) imply that e(tn + s) → e∞ in L2(Ω) for all s ∈ [0, 1]. Since
ϑ = e− λ(ψ), it follows then that ϑ(tn + s) → ϑ∞ in L2(Ω) for all s ∈ [0, 1]. By continuity, we also
have E(ϑ(tn +s), ψ(tn +s)) → E(ϑ∞, ψ∞) for all s ∈ [0, 1], and thus, by the dominated convergence
theorem,

(5.17) E(ϑ∞, ψ∞) = lim
n→∞

∫ 1

0

E(ϑ(tn + s), ψ(tn + s)) ds.
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Next, integrate (5.13) over [tn, tn + 1] and send n→∞; using (5.17) and the second part of (5.15)
this yields

H∞
0 := lim

t→∞
H0(ϑ(t), ψ(t)) = lim

n→∞

∫ 1

0

H0(ϑ(tn + s), ψ(tn + s)) ds = E(ϑ∞, ψ∞).

Since (ϑ∞, ψ∞) was chosen arbitrarily in ω(ϑ, ψ), this shows that E is constant on ω(ϑ, ψ). More-
over, by relative compactness of the orbit of (ϑ, ψ) in W , we obtain limt→∞E(ϑ(t), ψ(t)) = H∞

0 .
Thus (ii) is proved. Claim (iii) follows from limt→∞H0(ϑ(t), ψ(t)) = limt→∞E(ϑ(t), ψ(t)) = H∞

0

and the positivity of the kernels bi, i = 1, 2.
To establish (iv), let (ϑ∞, ψ∞) ∈ ω(ϑ, ψ) and let (tn) ↗∞ such that (ϑ(tn), ψ(tn)) → (ϑ∞, ψ∞)

in W as n→∞. We know already that this implies (ϑ(tn + s), ψ(tn + s)) → (ϑ∞, ψ∞) in W for all
s ∈ [0, 1]. By (A2), (5.9), and the dominated convergence theorem, we thus have in L2(Ω)

Pϑ∞ = lim
n→∞

∫ 1

0

Pϑ(tn + s) ds

= lim
n→∞

∫ tn+1

tn

d

dt
(k1 ∗ a1 ∗ Pϑ)(s) ds

= lim
n→∞

A−1/2
(

(k1 ∗ v1)(tn + 1)− (k1 ∗ v1)(tn)
)
.

Denote the term in brackets by fn. Using (A3), (5.15), property (iii), and Lemma 3.5 we have

|fn|22 ≤ 3|(b1 ∗ v1)(tn + 1)|22 + 3|(b1 ∗ v1)(tn)|22 + 3γ2
1

∫ tn+1

tn

|b1 ∗ v1|22(s) ds

≤ 3|b1|L1(R+)

(
b1 ∗ |v1|22)(tn + 1) + b1 ∗ |v1|22)(tn) + γ2

1

∫ tn+1

tn

(
b1 ∗ |v1|22

)
(s) ds

)
→ 0

as n tends to ∞. Hence Pϑ∞ = 0, i.e. ϑ∞ is constant.
Using (H1), (H3), ϑ∞ = const, and the global boundedness of ψ we deduce from the convergence

(ϑ(tn + s), ψ(tn + s)) → (ϑ∞, ψ∞) in W for all s ∈ [0, 1] that

A−1/2Pµ(tn + s) → A1/2ψ∞ +A−1/2P
(
φ′(ψ∞)− λ′(ψ∞)ϑ∞

)
=: m∞

in L2(Ω) for all s ∈ [0, 1]. Similarly as above we then have in L2(Ω)

m∞ = lim
n→∞

∫ 1

0

A−1/2Pµ(tn + s) ds

= lim
n→∞

∫ tn+1

tn

A−1/2 d

dt
(k2 ∗ a2 ∗ Pµ)(s) ds

= lim
n→∞

A−1
(

(k2 ∗ v2)(tn + 1)− (k2 ∗ v2)(tn)
)
.

We may now argue as above, employing now the global estimates for v2 and b2 ∗ |v2|22, to see that
the term in brackets tends to 0 as n→∞. Hence m∞ = 0, which in turn implies ψ∞ ∈ D(A) and
(5.4) with µ∞ := φ′(ψ∞)− λ′(ψ∞)ϑ∞. Thus (iv) is proved.

Assertion (v) is a consequence of (iv) by the remarks following the definition of the functional E
at the beginning of this subsection. �

5.3.  Lojasiewicz-Simon Inequality and Modified Lyapunov Functional. The following re-
sult is a key ingredient in the proof of convergence to equilibrium.

Proposition 5.4. Suppose that the assumptions (H1)–(H3) are satisfied and assume in addition
that φ and λ are real analytic on R. Then for any critical point (ϑ∞, ψ∞) of the functional E in
the energy space W there are constants c > 0, σ > 0 and θ ∈ (0, 1/2] such that

(5.18) |E(ϑ, ψ)− E(ϑ∞, ψ∞)|1−θ ≤ c|E′(ϑ, ψ)|W∗ ,

whenever |(ϑ, ψ)− (ϑ∞, ψ∞)|W ≤ σ.
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This has been proved in [22, Proposition 5.3], see also [10, Proposition 6.6].
Let (ϑ, ψ) be the global solution of (1.10). Then we know already that the ω-limit set ω(ϑ, ψ)

is compact in W . Thus we can cover it by a union of finitely many balls with centers in ω(ϑ, ψ).
Since E is constant on ω(ϑ, ψ) (cf. Proposition 5.3(ii)), say E = E∞, there exist uniform constants
c > 0, θ ∈ (0, 1/2], and an open set O ⊃ ω(ϑ, ψ) such that

(5.19) |E(ϑ̃, ψ̃)− E∞|1−θ ≤ c|E′(ϑ̃, ψ̃)|W∗ , for all (ϑ̃, ψ̃) ∈ U.

We will next modify H0 defined in (5.13) in order to produce a new Lyapunov functional which
is suitable for the approach via  Lojasiewicz-Simon inequality.

Multiplying the identity

Pϑ = −A−1∂t[k1 ∗ ∂t(ϑ+ λ(ψ))] = A−1/2∂t(k1 ∗ v1)

by Pϑ and integrating over Ω gives

|Pϑ|22 = (∂t(k1 ∗ v1)|A−1/2Pϑ)

= (∂t(b1 ∗ v1)|A−1/2Pϑ) + γ1(b1 ∗ v1|A−1/2Pϑ)

= ∂t(b1 ∗ v1|A−1/2Pϑ)− (b1 ∗ v1|A−1/2∂tPϑ) + γ1(b1 ∗ v1|A−1/2Pϑ).

Hence

−∂t(b1 ∗ v1|A−1/2Pϑ) =− |Pϑ|22 + γ1(b1 ∗ v1|A−1/2Pϑ)

+ (b1 ∗ v1|v1) + (b1 ∗ v1|A−1/2∂tPλ(ψ)).(5.20)

The last term in (5.20) can be rewritten as follows.

(b1 ∗ v1|A−1/2∂tPλ(ψ)) = −(b1 ∗ v1|A−1/2P [λ′(ψ)A1/2v2])

= −(λ′(ψ)A−1/2(b1 ∗ v1)|A1/2v2)

= (λ′(ψ)A−1/2(b1 ∗ v1)|∆A−1/2v2)

= −
(
[λ′′(ψ)∇ψ]A−1/2(b1 ∗ v1) + λ′(ψ)∇A−1/2(b1 ∗ v1)|∇A−1/2v2

)
L2(Ω)3

.(5.21)

Here we used the property that ∂νA
−1/2v2 = ∂νa2 ∗ Pµ = 0 on R+ × Γ. Note that ∇A−1/2P ∈

B(L2(Ω);L2(Ω)3). Using the L∞-bounds for ψ (cf. Theorem 5.1 and Remark 5.2), Hölder’s and
Young’s inequality as well as assumption (A3) and Lemma 3.5 we conclude from (5.20) and (5.21)
that

(5.22) −∂t(b1 ∗ v1|A−1/2Pϑ) ≤ − 1
2
|Pϑ|22 + C1

(
|v1|22 + |v2|22 + b1 ∗ |v1|22

)
,

for some constant C1 > 0.
Furthermore we have

−∂t(A−1PM(ψ)|A−1/2b2 ∗ v2) = (v2 −A−3/2P [(φ′′(ψ) + λ(ψ)λ′′(ψ))∂tψ]|b2 ∗ v2)

+ (A−3/2Pλ′(ψ)|b2 ∗ v2)|Ω|−1(A1/2Pλ′(ψ)|v2)

+ γ2(A−3/2PM(ψ)|b2 ∗ v2)

+ (A−1PM(ψ)|A−1∂t(k2 ∗ ∂tψ)).(5.23)

By the equation for ψ and due to λ(ψ) + ϑ = 0, there holds

A−1∂t(k2 ∗ ∂tψ) = − Pµ

=P (−Aψ − φ′(ψ) + λ′(ψ)ϑ)

= − PM(ψ) + P (λ′(ψ)Pϑ).(5.24)
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Inserting (5.24) into (5.23) yields

−∂t(A−1PM(ψ)|A−1/2b2 ∗ v2) = (v2 −A−3/2P [(φ′′(ψ) + λ(ψ)λ′′(ψ))∂tψ]|b2 ∗ v2)

+ (A−3/2Pλ′(ψ)|b2 ∗ v2)|Ω|−1(A1/2Pλ′(ψ)|v2)

+ γ2(A−3/2PM(ψ)|b2 ∗ v2)

− |A−1/2PM(ψ)|22 + (A−1PM(ψ)|P (λ′(ψ)Pϑ)).(5.25)

The term (A−3/2P [(φ′′(ψ)+λ(ψ)λ′′(ψ))∂tψ]|b2∗v2) in (5.25) can be rewritten analogously to (5.21).
Employing the L∞-bounds for ψ (cf. Theorem 5.1 and Remark 5.2), we may then proceed similarly
as above to obtain

(5.26) −∂t(A−1PM(ψ)|A−1/2b2 ∗ v2) ≤ − 1
2
|A−1/2PM(ψ)|22 + C2

(
|v2|22 + b2 ∗ |v2|22 + |Pϑ|22

)
,

with some constant C2 > 0.
Define now the function H1 : R+ → R by

H1(t) = H0(t)− δ1(b1 ∗ v1|A−1/2Pϑ)− δ2(A−1PM(ψ)|A−1/2b2 ∗ v2),

where δ1 and δ2 are positive constants. Choosing first δ1 small and then δ2 even smaller we obtain
from the estimates (5.14), (5.22), (5.26), and (5.7) that for a.a. t > 0

− d

dt
H1 ≥C3

(
|v1|22 + |v2|22 + b1 ∗ |v1|22 + b2 ∗ |v2|22 + |Pϑ|22 + |A−1/2PM(ψ)|22

)
≥C4

(
|v1|22 + |v2|22 + b1 ∗ |v1|22 + b2 ∗ |v2|22 + |E′(ϑ, ψ)|2W∗

)
,(5.27)

where C3, C4 > 0 are constants. Thus H1 is decreasing on R+. By Lemma 3.5 and Proposition
5.3(iii),

(|bi ∗ vi|22)(t) ≤ |bi|L1(R+)(bi ∗ |vi|22)(t) → 0 as t→∞, i = 1, 2.

From this, the bounds for (ϑ, ψ), and from Proposition 5.3(ii) we then infer that

lim
t→∞

H1(t) = lim
t→∞

H0(t) = lim
t→∞

E(ϑ, ψ)(t) = E∞.

Define the function H on R+ by H(t) = H1(t)− E∞. Then H is locally absolutely continuous,
nonnegative, and decreasing, and we have limt→∞H(t) = 0. If H(t0) = 0 for some t0 ≥ 0, then
H(t) = 0 for all t ≥ t0, and hence v1 = v2 = 0 on [t0,∞) × Ω, in view of (5.27); but this implies
that (ϑ(t), ψ(t)) is constant in time for t ≥ t0. So we may assume that H(t) > 0 for all t ≥ 0.

From the definition of H1 and (5.7) we deduce by means of Young’s inequality and Lemma 3.5
that for all t ≥ 0

H(t)1−θ ≤C5

(
|E(ϑ(t), ψ(t))− E∞|1−θ + (b1 ∗ |v1|22)(t)

2(1−θ)
2 + (b2 ∗ |v2|22)(t)

2(1−θ)
2

+ |E′(ϑ(t), ψ(t))|W∗ + (b1 ∗ |v1|22)(t)
1−θ
2θ + (b2 ∗ |v2|22)(t)

1−θ
2θ

)
,

for some constant C5 > 0. Observe that θ ∈ (0, 1/2] entails 2(1 − θ) ≥ 1 and (1 − θ)/θ ≥ 1.
Recall that (bi ∗ |vi|22)(t) → 0 as t → ∞ for i = 1, 2 (cf. Proposition 5.3(iii)). Further, since
limt→∞ dist((ϑ(t), ψ(t)), ω(ϑ, ψ)) = 0, there exists a t1 ≥ 0 such that (ϑ(t), ψ(t)) ∈ O for all t ≥ t1.
Hence using the  Lojasiewicz-Simon inequality (5.19) it follows that for all sufficiently large t, say
t ≥ t2 ≥ t1, there holds

(5.28) H(t)1−θ ≤ C6

(
|E′(ϑ(t), ψ(t))|W∗ + b1 ∗ |v1|22(t)

1
2 + b2 ∗ |v2|22(t)

1
2

)
,
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for some constant C6 > 0. From (5.27) and (5.28) we then obtain for a.a. t > t2

− d

dt

(
H(t)θ

)
= − θH(t)θ−1 d

dt
H1(t)

≥C7
|v1(t)|22 + |v2(t)|22 + (b1 ∗ |v1|22)(t) + (b2 ∗ |v2|22)(t) + |E′(ϑ(t), ψ(t))|2W∗

(b1 ∗ |v1|22)(t)1/2 + (b2 ∗ |v2|22)(t)1/2 + |E′(ϑ(t), ψ(t))|W∗

≥C8

(
|v1(t)|2 + |v2(t)|2 + (b1 ∗ |v1|22)(t)1/2 + (b2 ∗ |v2|22)(t)1/2 + |E′(ϑ(t), ψ(t))|W∗

)
≥C8

(
|A−1/2∂tψ|2 + |A−1/2∂te|2

)
,

with some positive constants C7 and C8. This shows that

(5.29) A−1/2∂tψ, A
−1/2∂t(ϑ+ λ(ψ)) ∈ L1(R+;L2(Ω)).

Hence the limits limt→∞A−1/2ψ(t) and limt→∞A−1/2e(t) exist in L2(Ω). By relative compactness
of ψ(R+) in Ĥ1

2 (Ω) and e(R+) in L2(Ω), respectively, this implies that limt→∞ ψ(t) =: ψ∞ and
limt→∞ e(t) =: e∞ exist in Ĥ1

2 (Ω) and L2(Ω), respectively. Hence, as t→∞,

ϑ(t) = e(t)− λ(ψ(t)) → e∞ − λ(ψ∞) =: ϑ∞ in L2(Ω),

by the assumptions on λ. This shows the convergence of (ϑ(t), ψ(t)) in W as t → ∞. The limit
(ϑ∞, ψ∞) is a solution of the stationary problem, by Proposition 5.3(iv). The proof of Theorem 2.2
is complete.
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[19] S. Huang and P. Takáč. Convergence in gradient-like systems which are asymptotically autonomous and analytic.

Nonlinear Anal., 46(5, Ser. A: Theory Methods):675–698, 2001.
[20] J. Prüss. Evolutionary Integral Equations and Applications. Birkhäuser Verlag, Basel-Boston-Berlin, 1993.
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Änderungen, Teil II.

04-08. J. Bruder, Construction and Consistency of Krylov-W-methods for DAE’s.

05-08. P. Brückmann, P. Winkert, T-symmetrical Tensor Differential Forms with Logarith-
mic Poles along a Hypersurface Section.

06-08. R. Denk, J. Prüss, R. Zacher, Maximal Lp-Regularity of Parabolic Problems with
Boundary Dynamics of Relaxation Type.

07-08. P. Winkert, Entire extremal solutions for elliptic inclusions of Clarke’s gradient type

08-08. M. Goebel, Ch. Schlensag, Hans Brandes (1883-1965) Promotion in Halle - Lehrer in
Braunschweig

09-08. J. Prüss, G. Simonett, R. Zacher, On convergence of solutions to equilibria for qua-
silinear parabolic problems

10-08. R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in
Hilbert spaces

11-08. R. Zacher, Boundedness of weak solutions to evolutionary partial integro-differential
equations with discontinuous coefficients

12-08. J. Prüss, G. Simonett, R. Zacher, On normal stability for nonlinear parabolic equa-
tions
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