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Abstract. New results associated with the Extended Riemann Hypothesis on
the zeros of the Dirichlet L-functions are obtained. The presentation of our work
consists of two parts. In the present first part the connection between values of
L-functions and Gauss sums is studied. This leads to a sufficient condition for the
value s = 1

2
to be a zero of a given L-function. A necessary condition for the validity

of the Extended Riemann Hypothesis is found. This involves the signs of the even
derivatives of the analogue ξ(s, χ) of the well-known ξ(s) function associated with
the Riemann zeta-function. It is also proved that if the absolute value of a real
even primitive character χ does not exceed the value 15 or the absolute value of
a real odd primitive character χ does not exceed the value 7, then the value of
the corresponding L-function and all its even derivatives at the point s = 1

2
are

positive. In the second part of the presentation asymptotic formulas will be given
for the even derivatives of the function ξ(s, χ) at s = 1

2
as the order of the derivative

tends to infinity.
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1. Introduction

In recent years, new results concerning the Riemann hypothesis on the zeros of the

classical Riemann zeta function ζ(s) have been obtained (for background see, e.g.,

([3],[9],[10],[23],[24],[25]). Some of these results concern new zero free regions [4] other

results concern new relations of the Riemann hypothesis with other conjectures or

results from other areas, see e.g. [2], [3], [5], [22] (and references therein). Other types

of recent results are related to the work of the second author of this paper. These

results can be divided into two groups. The results relating to the first group are

associated with the construction of an operator acting in a Hilbert space such that

the Riemann problem is equivalent to the problem of the existence of an eigenvector

with eigenvalue λ = −1 for this operator ([13],[18]). The results relating to the

second group ([14] – [17]) are associated with the behavior of the Riemann ξ-function

ξ(s) = 1
2
s(s − 1) π− s

2 Γ
(

s
2

)

ζ(s) and its derivatives at the point s = 1
2
. Because of

the equality ξ(s) = ξ(1 − s) all the odd derivatives of ξ(s) at s = 1
2

are equal to

zero. It turned out that the signs of the even derivatives of ξ(s) at s = 1
2

plays an

important role in the Riemann hypothesis. Namely, if at least one even derivative of

the function ξ(s) at the point s = 1
2

were not positive, the Riemann hypothesis on

the zeros of ζ(s) would be false: in this case there would exist a complex zero of ζ(s)

that does not lie on the line Re s = 1
2

([14], Theorem 2). Further, however, it was

proved ([14], Theorem 1), that all the even derivatives of ξ(s) at the point s = 1
2

are

strictly positive. Moreover, an asymptotics for values of the even derivatives at s = 1
2

as the order of the derivative tends to infinity was found ([15], [16]). These results

permitted to show that the analogue of the Riemann hypothesis does not hold for

an arbitrarily sharp approximation of ζ(s) satisfying the same functional equation as

the function ζ(s) ([17]). This approximation has the same unique pole at s = 1 and
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the real (trivial) zeros at negative even values of s, and assumes real values for real

values of s [10].

The aim of the present work is to generalize the mentioned results relating to the

values of ζ(s) and its derivatives at s = 1
2

to the case of Dirichlet L-functions L(s, χ),

where χ is the Dirichlet character. As for previous work on the zeros of L-functions

see, e.g., [6],[7],[8],[11],[12],[19],[20],[21],[22].

The present work consists of two parts. In the first part (which constitutes the present

paper) the connection between the values of L-functions and the Gauss sums is

studied, which leads to a sufficient condition for the validity of the equality L(1
2
, χ) =

0. A necessary condition for the validity of the Extended Riemann Hypothesis for

L-function is also found. This involves an analysis of the signs of the even derivatives

of the analogue ξ(s, χ) of the function Riemann ξ-function ξ(s). It is also proved that

if the modulo of a real even primitive character χ does not exceed the value 15 or

the modulo of a real odd primitive character χ does not exceed the value 7, then the

values of the corresponding L-functions L(s, χ) and all its even derivatives at s = 1
2

are positive. In the second part of our study [1] asymptotic formulas for the even

derivatives of the function ξ(s, χ) at s = 1
2

as the order of the derivatives tends to

infinity are found. As a consequence of these asymptotic formulas we obtain that all

these even derivatives of sufficiently large order are positive. These results are then

applied to the case of L-functions with characters which are given by a Legendre

symbol.
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2. The connection between Dirichlet L-Functions and Gauss sums

In this section we recall the main definition and the basic facts used later in the paper

concerning L-functions and Gauss sums. For more details see, e.g., [3],[9],[10].

Definition 1. A character χ(n), n ∈ Z modulo k ∈ N, k > 2 is by definition a

function defined on all integer numbers that satisfies the following properties:

1) χ(n) is not identically zero and is periodic with period k; moreover, χ(n) = 0,

if the greatest common divisor (n, k) of n and k is strictly larger than 1, and

χ(n) 6= 0, if (n, k) = 1.

2) χ(n) is completely multiplicative, that is χ(nm) = χ(n)χ(m) for all integers

n and m.

In the following we shall speak shortly of characters instead of characters modulo k.

Definition 2. The principal character, denoted χ0(n), is the character that is equal

to 1 whenever (n, k) = 1.

Definition 3. A non-principal character χ(n) modulo k is called primitive if its

smallest period is equal to k. All other non-principal characters modulo k are called

imprimitive.

Definition 4. A character χ is called real if χ(n) is a real number, for all n ∈ Z. A

character that takes complex values is called complex, and the character whose value

at n is the complex conjugate of χ(n) is called the complex conjugate of χ and is

denoted χ̄.

Because of the multiplicativity of characters, we have

χ2(−1) = 1, i.e. χ(−1) = ±1 .
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Definition 5. A character χ(n) for which χ(−1) = +1 is called even and a character

for which χ(−1) = −1 is called odd.

Example. Let p > 2 be a prime number. We consider the real primitive character

χ(n) =
(

n
p

)

, where
(

n
p

)

is the Legendre symbol: this symbol is equal to 1 if n is a

quadratic residue modulo p, it is equal to −1 if n is a non-quadratic residue modulo

p, and it is equal to 0 if d is divisible by p.

Definition 6. If χ(n) is a character modulo k one calls Gauss sum τ(χ) (associated

with χ) the value

τ(χ) =
k

∑

a=1

χ(a) e2πia
k

Definition 7. Let k be a natural number, and let χ be a character modulo k. An

L-function is a series of the form

L(s, χ) =
∞

∑

n=1

χ(n)

ns
, Re s > 1 .

Lemma 1. Let χ(n) = χ0(n) be a principal character modulo k. Then for Re s > 1

L(s, χ0) = ζ(s)
∏

p\k

(

1 − 1

ps

)

.

Proof. See, e.g. [10].

Lemma 2. Let χ(n) be a primitive character modulo k, set δ ≡







0, if χ(−1) = +1

1, if χ(−1) = −1 ,
and

ξ(s, χ) =
(π

k

)− s+δ
2

Γ

(

s + δ

2

)

L(s, χ).

Then

(2.1) ξ(1 − s, χ̄) =
iδ
√

k

τ(χ)
ξ(s, χ) ,

where τ(χ) is the Gauss sum.
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Proof. See, e.g. [10].

Theorem 1. Let χ be a real primitive character modulo k > 2 such that L(1
2
, χ) 6= 0.

Then

1) if k is odd and χ(−1) = 1, then
k−1

2
∑

a=1

χ(a) cos
2πa

k
=

√
k

2
;

2) if k is even and χ(−1) = 1, then
k
2
−1

∑

a=1

χ(a) cos
2πa

k
− 1

2
χ(

k

2
) =

√
k

2
;

3) if k is odd and χ(−1) = −1, then
k−1

2
∑

a=1

χ(a) sin
2πa

k
=

√
k

2
;

4) if k is even and χ(−1) = −1, then
k
2
−1

∑

a=1

χ(a) sin
2πa

k
=

√
k

2
.

Proof. The proof uses the following Lemma 3:

Lemma 3. Let χ be as in Theorem 1. If χ(−1) = 1, then τ(χ) =
√

k, and if

χ(−1) = −1, then τ(χ) = i
√

k.

Proof. of Lemma 3. Substituting the value s = 1
2

in (2.1) and using the relations

χ = χ̄, L
(

1
2
, χ

)

6= 0, we obtain the equality τ(χ) = iδ
√

k, which proves Lemma 3.

Let χ(−1) = 1. Then for any integer a the equality χ(a) = χ(−a) holds. From

definition 6 it follows that, if k is odd, then

(2.2) τ(χ) = 2

k−1

2
∑

a=1

χ(a) cos
2πa

k
,

and, if k is even, then

(2.3) τ(χ) = 2

k
2
−1

∑

a=1

χ(a) cos
2πa

k
− χ

(

k

2

)

.
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Hence, the statements 1) and 2) of Theorem 1 follow from (2.2), (2.3) and Lemma 3.

Let χ(−1) = −1. Then for any integer a the equality χ(a) = −χ(−a) holds, and, if

k is odd, then

(2.4) τ(χ) = 2i

k−1

2
∑

a=1

χ(a) sin
2πa

k
,

and, if k is even, then

(2.5) τ(χ) = 2i

k
2
−1

∑

a=1

χ(a) sin
2πa

k
.

The statements 3) and 4) of Theorem 1 follow now from (2.4), (2.5) and Lemma 3.

Theorem 1 is thus proved.

Corollary 1. Assume that χ is real primitive character modulo k > 2 and at least

one following condition holds:

1’) if k odd, χ(−1) = 1, then
k−1

2
∑

a=1

χ(a) cos
2πa

k
6=

√
k

2
;

2’) if k is even, χ(−1) = 1, then
k
2
−1

∑

a=1

χ(a) cos
2πa

k
− 1

2
χ

(

k

2

)

6=
√

k

2
;

3’) if k is odd, χ(−1) = −1, then
k−1

2
∑

a=1

χ(a) sin
2πa

k
6=

√
k

2
;

4’) if k is even, χ(−1) = −1, then
k
2
−1

∑

a=1

χ(a) sin
2πa

k
6=

√
k

2
.

Then the value s = 1
2

is a zero of the function L(s, χ).

Remark. For a given real primitive character conditions 1’) – 4’) can be checked

numerically.
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Theorem 2. Let χ be a complex primitive character modulo k > 2 such that

L

(

1

2
, χ

)

def
= |L

(

1

2
, χ

)

| eiψ(χ) 6= 0 .

Then ,

1) if χ(−1) = 1, then

τ(χ) = e2iψ(χ)
√

k ;

2) if χ(−1) = −1, then

τ(χ) = e(2ψ(χ)+ π
2
)i
√

k .

Proof. From the definitions of the functions L(s, χ) and ξ(s, χ) (see Lemma 2) it

follows that L(1
2
, χ) = L(1

2
, χ) and

ξ( 1

2
,χ)

ξ( 1

2
,χ)

= e2iψ(χ) . Hence, substituting the value

s = 1
2

in (2.1), we obtain the statements of Theorem 2.
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3. Necessary conditions for the validity of the Extended Riemann

Hypothesis for L-functions

Theorem 3. Set

ξ0(s, χ) =
1

2
s(s − 1)π− s

2 Γ
(s

2

)

L(s, χ)ζk(s) , where ζk(s) =
∏

p\k

(

1 − 1

ps

)−1

.

Let χ0(n) be a principal character modulo k. Then the equality

(3.1) ξ0(s, χ0) = ξ0(1 − s, χ0)

holds, moreover, if at least one even derivative of the function ξ0(s, χ0) at the point

s = 1
2

were not positive, then the Extended Riemann Hypothesis would be false: in

this case there would exist a complex zero of L(s, χ0) that does not lie on the line

Re s = 1
2

.

Proof. By Lemma 1 the equality ξ0(s, χ0) = ξ(s) holds, where ξ(s) = 1
2
s(s −

1)π− s
2 Γ

(

s
2

)

ζ(s) , ζ(s) is the classical Riemann zeta-function. Hence, the equality

3.1 follows from the equality ξ(s) = ξ(1 − s), and the statement of Theorem 3 on

even derivatives is a corollary of Theorem 2 from [14] on even derivatives of the

function ξ(s). Theorem 3 is proved.

Theorem 4. Let χ be a real primitive character modulo k > 2 such that L
(

1
2
, χ

)

6= 0,

ξ(s, χ) =
(

π
k

)− s+δ
2 Γ

(

s+δ
2

)

L(s, χ), where δ =







0, if χ(−1) = +1 ;

1, if χ(−1) = −1 .

Then the equality

(3.2) ξ(s, χ) = ξ(1 − s, χ)

holds, and if the sign of at least one even derivative of the function ξ(s, χ) at the

point s = 1
2

differs from the sign of the number L
(

1
2
, χ

)

, then the Extended Riemann

Hypothesis is false: in this case there exists a nontrivial zero of L(s, χ) that does not

lie on the line Re s = 1
2
.
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Proof. From the fact that the character χ is real and primitive, by Lemma 2 we

have:

(3.3) ξ(1 − s, χ) =
iδ
√

k

τ(χ)
ξ(s, χ) ,

and since L
(

1
2
, χ

)

6= 0, then substituting s = 1
2

in (3.3), we obtain the equality iδ
√
k

τ(χ)
=

1. Hence, (3.2) follows from (3.3). We consider the function Ξ(t, χ) = ξ
(

1
2

+ it, χ
)

of a complex variable t. By (3.2) Ξ(t, χ) is an even entire function of first order

taking real values for real values of t, and any nontrivial zero z of L(s, χ) has the

form z = 1
2
+ iρ, where ρ is any zero of the function Ξ(t, χ). Therefore it follows from

Weierstrass formula for entire functions that Ξ(t, χ) can be represented in the form

(3.4) Ξ(t, χ) = ±eα+βt

∞
∏

n=1

(

1 − t

ρn

)

e
t

ρn ,

where α and β are constants and the numbers ρn(n ∈ N) run over all zeros of Ξ(t, χ).

Since if ρn is a zero also −ρn is a zero of Ξ(t, χ), the assumption that the Extended

Riemann Hypothesis is satisfied implies by (3.4) and the evenness of Ξ(t, χ) that

(3.5) Ξ(t, χ) = ±eα
∏

n=1

(

1 − t2

ρ̃2
n

)

,

where the product extends over all positive zeros ρ̃n of Ξ(t, χ). If we now expand (3.5)

in a Taylor series Ξ(t) =
∑∞

k=0 ckt
2k at the point t = 0, then it will follow from (3.5)

that for al integers v > 0 the adjacent coefficients cv and cv+1 have opposite signs,

and according to the definition of Ξ(t, χ) this means that all the even derivatives of

ξ(s, χ) at the point s = 1
2

have the same sign as ξ
(

1
2
, χ

)

, which according to the

condition of Theorem 4 is not equal to zero. Theorem 4 is proved.
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4. Estimates of the value of the function ξ(s, χ) and its derivatives

at the point s = 1
2

In this section we consider only real primitive characters modulo k such that L(1
2
, χ) 6=

0. In this case for δ =







0, if χ(−1) = +1

1, if χ(−1) = −1
the function ξ(s, χ) =

(

π
k

)− s+δ
2 Γ

(

s+δ
2

)

L(s, χ)

satisfies the equality ξ(s, χ) = ξ(1− s, χ), and therefore all odd derivatives of ξ(s, χ)

at the point s = 1
2

are equal to zero.

Theorem 5. If χ is an even character modulo k6 15, then the value of ξ(s, χ) and

all its even derivatives at the point s = 1
2

are positive.

Proof. We first state and prove Lemma 4.

Lemma 4. If k 6 15, then for all x > 1 the inequality
∞

∑

n=1

χ(n)e−
n2πx

k > 0

holds.

Proof. of Lemma 4 Let κ = πx
k

, δ = 5κ , ω = e−δ. Then for n > 2 the inequality

e−κ(n+1)2

e−κn2
= exp(−κ(2n + 1)) 6 e−δ

holds, and, consequently,

(4.1)

∞
∑

n=2

e−
n2πx

k <
e−

4πx
k

1 − exp
(

−5πx
k

) =
e−

4πx
k

1 − ω
.

We have:

− ln (1 − ω) =

∞
∑

ν=1

ων

ν!
<

ω

1 − ω
=

1

eδ − 1
.

Hence, by (4.1)

(4.2) ln
(

e
−πx

k

)

− ln
∞

∑

n=2

e−
n2πx

k >
3δ

5
− ln (1 − ω) =

3δ

5
− 1

eδ − 1
> 0 ,

if δ > 1. Since, according to the condition k 6 15 for x > 1 the inequality δ = 5πx
k

> 1

holds, then by 4.2 and by relations χ(1) = 1, |χ(n)| 6 1
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we have:
∞

∑

n=1

χ(n)e−
n2πx

k > e−
πx
k −

∞
∑

n=2

e−
n2πx

k > 0 .

Lemma 4 is proved.

According to the well-known equality ([10])

ξ(s, χ) =
1

2

∫ ∞

1

x
s
2
−1θ(x, χ)dx +

1

2

√
k

τ(χ)

∫ ∞

1

x
s
2
− 1

2 θ(x, χ)dx ,

where χ is even primitive character modulo k and

(4.3) θ(x, χ) = 2

∞
∑

n=1

χ(n)e−
n2πx

k ,

and, consequently, by Lemma 3 we have:

(4.4) ξ(s, χ) =
1

2

∫ ∞

1

(

x
s
2
−1 + x− s

2
− 1

2

)

θ(x, χ)dx .

By dominated convergence we have then, for any even number m > 2:

(4.5)
dmξ

dsm

(

1

2
, χ

)

=

(

1

2

)m ∫ ∞

1

(lnm x) x− 3

4 θ(x, χ)dx .

Now the statements of theorem 5 follow from (4.3)-(4.5) and Lemma 4. Theorem 5

is proved.

Theorem 6. If χ is odd character modulo k6 7, then the value of the function ξ(s, χ)

and all its even derivatives at the point s = 1
2

are positive.

Proof. We first state and prove the following :

Lemma 5. If k 6 7, then for all x > 1 the inequality
∑∞

n=1 nχ(n)e−
n2πx

k > 0 holds.

Proof. of Lemma 5. Let κ = πx
k

, δ = 5κ, ε = ln 3
2

. For n > 2 we obtain:

(n + 1)e−κ(n+1)2

ne−κn2
<

3

2
exp(−δ) = exp (−δ + ε) ,

and, consequently,

(4.6)
∞

∑

n=2

ne−
n2πx

k <
2e−

4πx
k

1 − exp(−δ + ε)
.
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We have:

− ln(1 − exp(−δ + ε)) <
1

exp(δ − ε) − 1
.

Hence, by (4.6),

(4.7) ln
(

e−
πx
k

)

− ln
∞

∑

n=2

ne−
n2πx

k >
3δ

5
− ln 2 − 1

exp(δ − ε) − 1
.

We prove, that, if δ > 2, then the right-hand side in (4.7) is greater then zero. To

this end, we use the estimates

(4.8) ln 2 < 0, 7 , ε = ln
3

2
< 0, 41 .

Since δ > 2, then, by (4.8), we have:

5

3δ − 5 ln 2
< 2 , and exp(δ − ε) > e1,59 − 1 > 3, 8 .

Hence, 3δ−5 ln 2
5

> 1
exp(δ−ε)−1

, and the right-hand side in the inequality (4.7) is positive

for δ > 2. Since, according to condition of Lemma 5 the inequality k 6 7 is valid,

then for x > 1 the inequality δ = 5πx
k

> 2 holds, and by (4.7) and by relations

χ(1) = 1, |χ(n)| 6 1 we have:
∑∞

n=1 nχ(n)e−
n2πx

k > e−
πx
k −

∑∞
n=2 ne−

n2πx
k > 0 .

Lemma 5 is proved.

The following well-known equality holds (see, e.g., [10]):

ξ(s, χ) =
1

2

∫ ∞

1

θ1(x, χ)x
s−1

2 +
i
√

k

2τ(χ)

∫ ∞

1

θ1(x, χ)x− s
2 dx ,

where χ is an odd primitive character modulo k and

(4.9) θ1(x, χ) =
∞

∑

n=−∞
nχ(n)e−

n2πx
k ,

and, consequently,

(4.10) ξ(s, χ) =
1

2

∫ ∞

1

(

x
s−1

2 + x− s
2

)

θ1(x, χ)dx .

Using dominated convergence we derive, for any even number m > 2:

(4.11)
dmξ

dsm

(

1

2
, χ

)

=

(

1

2

)m ∫ ∞

1

(lnm x) x− 1

4 θ1(x, χ)dx .
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Since the character χ is odd, then χ(−1) = −1, and, by (4.9), we have:

(4.12) θ1(x, χ) = 2

∞
∑

n=1

nχ(n)e−
n2πx

k .

Now the statements of Theorem 6 follow from (4.10)-(4.12) and Lemma 5. Theorem

6 is proved.

5. The case where the character is a Legendre symbol

In this section we apply the result of section 4 for functions L(s, χ) with the character

χ(n) equal to Legendre’s symbol
(

n
k

)

modulo the prime number k > 3. In this

connection we will not assume the validity of the inequality L
(

1
2
, χ

)

6= 0, in contrast

to section 4.

Theorem 7. Assume that k is a prime number satisfying inequalities 3 6 k 6

13,
(

k−1
k

)

= 1, and χ = χ(n) =
(

n
k

)

. Then the value of the function ξ(s, χ) and all

its derivatives at the point s = 1
2

are positive.

Proof. Only numbers k = 5 and k = 13 are the only prime numbers with 3 6 k 6

13 and
(

k−1
k

)

=
(−1
k

)

= 1. Hence, it is enough to prove Theorem 7 for k = 5 and

k = 13. In this cases χ(n) =
(

n
k

)

is an even character (see definition 5), and therefore,

the Gauss sum τ(χ) (see definition 6) satisfies the equality (2.2). It is well-known

(see [25]) that τ(χ) satisfies the equality

(5.1) |τ(χ)| =
√

k .

In view of (2.2), τ(χ) is a real number, and it follows from (5.1) that τ(χ) can take

only two values : τ(χ) = +
√

k and τ(χ) = −
√

k. In addition, according to equality

(2.2) the equality τ(χ) = +
√

k holds, if
∑

k−1

2

a=1 χ(a) cos 2πa
k

=
√
k

2
, and the equality

τ(χ) = −
√

k holds, if
∑

k−1

2

a=1 χ(a) cos 2πa
k

= −
√
k

2
. By numerical calculations we see
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that for k = 5 and k = 13 the equality
∑

k−1

2

a=1 χ(a) cos 2πa
k

=
√
k

2
holds. Therefore, in

these cases the equality τ(χ) =
√

k holds. Substituting this expression for τ(χ) to

the equality

ξ(s, χ) =
1

2

∫ ∞

1

x
s
2
−1θ(x, χ)dx +

1

2

√
k

τ(χ

∫ ∞

1

x− s
2
−1θ(x, χ)dx

with even character χ, in which θ(x, χ) has the form of (4.3), we obtain the equality

(4.4), and the equality (4.5) for any even number m > 2. Now the statement of

Theorem 7 follows from (4.3)-(4.5) and Lemma 4. Theorem 7 is proved.

Theorem 8. Assume that k is a prime number satisfying the inequality 3 6 k 6 7,
(

k−1
k

)

= −1, and χ = χ(n) =
(

n
k

)

. Then the value of the function ξ(s, χ) and all its

derivatives at the point s = 1
2

are positive.

Proof. k = 3 and k = 7 are the only prime numbers for which 3 6 k 6 7 and
(

k−1
k

)

=
(−1
k

)

= −1. Hence, it is enough to prove Theorem 8 for k = 5 and

k = 13. In these cases χ(n) =
(

n
k

)

is an odd character (definition 5), and therefore,

the Gauss sum τ(χ) (definition 6) satisfies the equality (2.4). According to (2.4)

and (5.1) τ(χ) is imaginary number, it can take only two values : τ(χ) = i
√

k,

τ(χ) = −i
√

k. In addition, according to (2.4) the equality τ(χ) = i
√

k holds, if the

equality
∑

k−1

2

a=1 χ(a) sin 2πa
k

=
√
k

2
does holds, and the equality τ(χ) = −i

√
k hold, if

the equality
∑

k−1

2

a=1 χ(a) sin 2πa
k

= −
√
k

2
does hold. By numerical calculations, we see

that for k = 3 and k = 7 the equality
∑

k−1

2

a=1 χ(a) sin 2πa
k

=
√
k

2
holds. Therefore, in

these cases the equality τ(χ) = i
√

k holds. Substituting this expression for τ(χ) in

to the equality

ξ(s, χ) =
1

2

∫ ∞

1

x
s
2
− 1

2 θ1(x, χ)dx +
i
√

k

2τ(χ)

∫ ∞

1

x− s
2 θ1(x, χ)dx
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with an odd character χ, in which θ1(x, χ) has the form (4.9), we obtain the equality

(4.10) and the equality (4.11) for any even number m > 2. Now the statement of

Theorem 8 follows from (4.10)-(4.12) and Lemma 5. Theorem 8 is proved.
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