Inverse Spectral Problems for Coupled Oscillating Systems: Reconstruction by Three Spectra

Sergio Albeverio, Rostyslav Hryniv, Yaroslav Mykytyuk

no. 236
INVERSE SPECTRAL PROBLEMS FOR COUPLED OSCILLATING SYSTEMS: RECONSTRUCTION BY THREE SPECTRA

SERGIO ALBEVERIO∗ ROSTYSŁAV HRYNIV†‡ YAROSŁAV MYKYTYUK†

ABSTRACT. We study an inverse spectral problem for a compound oscillating system consisting of a singular string and \(N \) masses joined by springs. The operator \(\mathcal{A} \) corresponding to this system acts in \(L_2(0,1) \times \mathbb{C}^N \) and is composed of a Sturm–Liouville operator in \(L_2(0,1) \) with a distributional potential and a Jacobi matrix in \(\mathbb{C}^N \), which are coupled in a special way. We solve the problem of reconstructing the system by three spectra—namely, by the spectrum of \(\mathcal{A} \) and the spectra of its decoupled parts. A complete description of possible spectra is given.

1. INTRODUCTION

The main aim of the present paper is to solve an inverse spectral problem for a class of oscillating systems composed of a singular string and \(N \) masses joined by springs. Mathematically such a system is described by a Sturm–Liouville operator \(S \) coupled in a special way to a Jacobi operator \(J \).

Namely, assume that \(q \) is a real-valued distribution from \(W_2^{-1}(0,1) \) and denote by \(S \) a Sturm–Liouville operator in \(L_2(0,1) \) that is formally given by the differential expression

\[
l := -\frac{d^2}{dx^2} + q
\]

and the Robin or the Dirichlet boundary condition at the point \(x = 0 \). The precise definition of \(S \) is based on regularisation of \(l \) by quasi-derivatives \([19, 20]\) and goes as follows. We fix a real-valued distributional primitive \(\sigma \in L_2(0,1) \) of \(q \) and rewrite \(ly \) as

\[
l_\sigma y := -(y' - \sigma y)' - \sigma y'
\]

on the natural domain

\[
\mathcal{D}(l_\sigma) = \{ y \in W_1^1(0,1) \mid y' - \sigma y \in W_1^1(0,1), l_\sigma y \in L_2(0,1) \}.
\]

In what follows, we shall abbreviate the quasi-derivative \(y' - \sigma y \) to \(y^{[1]}_\sigma \) or simply to \(y^{[1]} \) when \(\sigma \) is fixed by the context. We define now the operator \(S \) by \(Sy = l_\sigma y \) on the
domain
\[\mathcal{D}(S) = \{ y \in \mathcal{D}(l_\sigma) \mid y^{[1]}(0) = hy(0) \} \]
for some \(h \in \mathbb{R} \cup \{\infty\} \), \(h = \infty \) corresponding to the Dirichlet boundary condition \(y(0) = 0 \).

Assume that \(J \) is a Jacobi matrix in \(\mathbb{C}^N \), \(N \in \mathbb{N} \), i.e., that \(J \) in the standard basis \(e_1, \ldots, e_N \) of \(\mathbb{C}^N \) is a symmetric matrix with with real entries \(b_1, \ldots, b_N \) on the main diagonal and positive entries \(a_1, \ldots, a_{N-1} \) on the main sub- and super-diagonals.

Denote also by \(B \) the intertwining operator between \(L_2(0,1) \) and \(\mathbb{C}^N \) given on \(\mathcal{D}(S) \) by \(By = a_0 y^{[1]}(1)e_1 \) for some \(a_0 > 0 \).

Finally, we consider the operator
\begin{equation}
\mathcal{A} := \begin{pmatrix} S & 0 \\ B & J \end{pmatrix}
\end{equation}
that acts in the product space \(\mathcal{H} := L_2(0,1) \times \mathbb{C}^N \) on the domain
\[\mathcal{D}(\mathcal{A}) := \{ (y, d) \in \mathcal{H} \mid y \in \mathcal{D}(S), \ d = (d(1), \ldots, d(N)), \ y(1) = a_0 d(1) \}. \]

It is known [1] that \(\mathcal{A} \) is self-adjoint and bounded below in \(\mathcal{H} \) and has a simple discrete spectrum. Adding if necessary a sufficiently large constant to the potential \(q \) and to the numbers \(b_1, \ldots, b_m \), we can make the operator \(\mathcal{A} \) positive and shall assume this without loss of generality.

Remark 1.1. We observe that although the Sturm–Liouville differential expression \(l_\sigma \) is independent of the particular choice of the primitive \(\sigma \), the quasi-derivative \(y^{[1]} \) in the interface condition and in the boundary condition for \(S \) if \(h \) is finite—and thus the whole operator \(\mathcal{A} \)—depends on \(\sigma \). We notice, however, that \(\mathcal{A} \) is invariant under the simultaneous change \(\sigma \mapsto \sigma + C, \ h \mapsto h + C \), and \(b_i \mapsto b_i + a_0 C \) for any real \(C \). This invariance will be used in Section 4.

Along with \(\mathcal{A} \) we consider two operators, \(\mathcal{A}_0 := S_N \oplus J \) and \(\mathcal{A}_\infty := S_D \oplus J_{(1)} \), where \(S_N \) and \(S_D \) are the restrictions of \(S \) by the “Neumann” boundary condition \(y^{[1]}(1) = 0 \) and the Dirichlet boundary condition \(y(1) = 0 \) respectively, and \(J_{(1)} \) is the Jacobi matrix obtained by removing the top row and the most-left column of \(J \).

The operators \(\mathcal{A}_0 \) and \(\mathcal{A}_\infty \) formally correspond to two extreme cases of the coupling not allowed in \(\mathcal{A} \): first with no coupling at all, and the second with infinite, i.e., rigid coupling. It is easily seen that \(\mathcal{A} \) and \(\mathcal{A}_0 \) are self-adjoint extensions of the same symmetric operator with defect indices \((1,1) \) specifying the interface condition at the point \(x = 1 \), and the same holds for \(\mathcal{A} \) and \(\mathcal{A}_\infty \). Therefore, as in the papers [8,13,16,17], it is natural to study the question, to which extent \(\mathcal{A} \) is determined by the spectra of \(\mathcal{A} \) and \(\mathcal{A}_0 \), or those of \(\mathcal{A} \) and \(\mathcal{A}_\infty \). As in the purely continuous case of a Sturm–Liouville operator [8,13,17] or of a purely discrete case of a Jacobi matrix [16], one has to know the spectra of \(S_N \) and \(J \) or those of \(S_D \) and \(J_{(1)} \) separately—and not just their union—in order to reconstruct \(\mathcal{A} \).

Thus the **inverse spectral problem** we are going to solve is that of the reconstruction of the operator \(\mathcal{A} \) from the spectra of \(\mathcal{A}, S_N, \) and \(J \) or from those of \(\mathcal{A}, S_D, \) and \(J_{(1)} \). It generalizes the inverse spectral problems by three spectra for the standard Sturm–Liouville operators or for Jacobi matrices treated in the above-cited papers and is related to the inverse spectral problem for Sturm–Liouville operators with rationally dependent boundary conditions, see [1,3–6].

We shall solve the above inverse problem by reducing it to that of reconstructing \(\mathcal{A} \) from its spectrum and the sequence of the corresponding norming constants. The latter
problem was studied in detail in [1] (see also [3–5] for the related inverse problem for a Sturm–Liouville operator with rationally dependent boundary conditions), and this allows a complete description of the spectra for the operators involved. We shall prove that the operator \(\mathcal{A} \) is recovered uniquely if and only if the three spectra do not intersect. This establishes in this special case the conjecture raised in [8] for Sturm–Liouville operators, which was later established in [13]; the case of finite Jacobi matrices was studied in [16].

The treatments of the Dirichlet boundary condition (\(h = \infty \)) and the Robin boundary condition (\(h \in \mathbb{R} \)) at the point \(x = 0 \) are completely analogous, and we shall consider in detail only the Dirichlet case. In the next section we shall derive some useful formulae (e.g., for the resolvent of \(\mathcal{A} \) and the norming constants) that will be used in the subsequent analysis. In Sections 3 and 4 we reconstruct the operator \(\mathcal{A} \) from the spectra of \(\mathcal{A} \), \(S_D \), and \(J^{(1)} \) and from the spectra of \(\mathcal{A} \), \(S_N \), and \(J \) respectively.

Notations. Throughout the paper, the prime will denote the derivative in \(x \in [0, 1] \), and the overdot will stand for differentiation in the complex variable \(\lambda \) or \(z \). Given two strictly increasing (finite or infinite) sequences \((a_n)\) and \((b_n)\), we shall denote by \((c_n) := (a_n) \sqcup (b_n)\) the non-decreasing sequence obtained by amalgamating the sequences \((a_n)\) and \((b_n)\) and listing the common elements twice. We shall write \(\sigma(T) \) for the spectrum of a linear operator \(T \) acting in a Hilbert space.

2. Preliminaries

It is known [1] that the operator \(\mathcal{A} \) of (1.1) is self-adjoint, lower semi-bounded, and has discrete spectrum \(\lambda_1 < \lambda_2 < \ldots \); we recall our standing and nonrestrictive assumption that \(\lambda_1 > 0 \).

For every nonzero \(\lambda \in \mathbb{C} \), we define the “fundamental system of solutions” \(Y_{-}(:, \lambda) \) and \(Y_{+}(:, \lambda) \) corresponding to the eigenvalue problem \(\mathcal{A} Y = \lambda Y \). Namely, the element \(Y_{-}(0, \lambda) = 0, \ Y_{+}^{(1)}(0, \lambda) = \sqrt{\lambda} \), and satisfies the system \(\mathcal{A} Y = \lambda Y \) in the \(L_2(0, 1) \)-component and in the first \(N - 1 \) components of \(\mathbb{C}^N \). In other words, there is a unique \(c = c(\lambda) \in \mathbb{C} \) such that

\[
(\mathcal{A} - \lambda) Y_{-}(:, \lambda) = \begin{pmatrix} 0 \\ e e_N \end{pmatrix} ;
\]

in particular, \(c(\lambda) = 0 \) if and only if \(\lambda \) is in the spectrum of \(\mathcal{A} \), in which case \(Y_{-}(:, \lambda) \) is a corresponding eigenelement. The element \(Y_{+}(:, \lambda) := (y_{+}(:, \lambda), d_{+}(:, \lambda))^t \) is normalized by the terminal condition \(d_{+}(N, \lambda) = 1 \), satisfies the system

\[
l y_{+} - \lambda y_{+} = 0 ,
\]

\[
a_0 y_{+}^{(1)}(1)e_1 + (J - \lambda)d_{+} = 0 ,
\]

and the interface condition \(y_{+}(1, \lambda) = a_0 d_{+}(1, \lambda) \), but need not satisfy the initial condition \(y_{+}(0, \lambda) = 0 \). Moreover, \(y_{+}(0, \lambda) = 0 \) holds if and only if \(\lambda \) is in the spectrum of \(\mathcal{A} \), in which case \(Y_{+}(:, \lambda) \) is a corresponding eigenelement.

Using the elements \(Y_{\pm}(:, \lambda) \), it is possible to construct the Green function of the operator \(\mathcal{A} \) and to find the explicit form of its resolvent, similarly to such constructions for a Sturm–Liouville equation.
Lemma 2.1. Assume that $\lambda \in \mathbb{C}$ belongs to the resolvent set of the operators J and \mathcal{A} and that $(g, v)^{t}$ is an arbitrary element of \mathcal{H}. Then the element

$$(y, d) := (\mathcal{A} - \lambda)^{-1}(g, v)$$

is given by

$$y(x) = \frac{y_{-}(x, \lambda)}{W(\lambda)} \int_{x}^{1} y_{+} + (v, d_{+}(\cdot, \lambda))_{CN} + \frac{y_{+}(x, \lambda)}{W(\lambda)} \int_{0}^{x} y_{-} - g$$

$$d(k) = (J - \lambda)^{-1} v(k) + \frac{d_{+}(k, \lambda)}{W(\lambda)} \left[\int_{0}^{1} y_{-} - g + \frac{y_{+}[1](1, \lambda)}{y_{+}[1](1, \lambda)} (v, d_{+}(\cdot, \lambda))_{CN} \right],$$

where $W(\lambda) := y_{+}(x, \lambda)y_{+}[1](x, \lambda) - y_{+}[1](x, \lambda)y_{-}(x, \lambda)$ is the Wronskian of the solutions y_{+} and y_{-}.

Proof. The function y solves the equation $Sy = \lambda y + g$ and thus is equal to $y_{0} + \alpha y_{-}$, with

$$y_{0}(x) := \frac{y_{-}(x, \lambda)}{W(\lambda)} \int_{x}^{1} y_{+} + \frac{y_{+}(x, \lambda)}{W(\lambda)} \int_{0}^{x} y_{-} - g$$

being a particular solution to the above non-homogeneous problem and α some complex number. Since $d_{+}(\cdot, \lambda) = -a_{0}y_{+}[1](1, \lambda)(J - \lambda)^{-1}e_{1}$, the relation

$$(2.1) \quad a_{0}y_{+}1e_{1} + (J - \lambda)d = v$$

implies that $d = d_{0} + \beta d_{+}(\cdot, \lambda)$ with $d_{0} := (J - \lambda)^{-1}v$ and some $\beta \in \mathbb{C}$.

The constants α and β must be such that the interface condition $y(1) = a_{0}d(1)$ and relation (2.1) hold. By virtue of the relation

$$d_{0}(1) = (J - \lambda)^{-1} v, \quad e_{1} = -\frac{(v, d_{+}(\cdot, \lambda))_{CN}}{a_{0}y_{+}[1](1, \lambda)},$$

the interface condition transforms into

$$\alpha y_{-}(1, \lambda) - \beta y_{+}(1, \lambda) = -\frac{y_{+}(1, \lambda)}{W(\lambda)} \int_{0}^{1} y_{-} - g - \frac{(v, d_{+}(\cdot, \lambda))_{CN}}{y_{+}[1](1, \lambda)}.$$

Similarly, equation (2.1) can be recast as

$$\alpha y_{+}[1](1, \lambda) - \beta y_{-}[1](1, \lambda) = -\frac{y_{+}[1](1, \lambda)}{W(\lambda)} \int_{0}^{1} y_{-} - g.$$

The above two equations form a linear system for α and β, solving which we find that

$$\alpha = \frac{(v, d_{+}(\cdot, \lambda))_{CN}}{W(\lambda)}, \quad \beta = \frac{\int_{0}^{1} y_{-} - g}{W(\lambda)} + \frac{y_{+}[1](1, \lambda)}{y_{+}[1](1, \lambda)} (v, d_{+}(\cdot, \lambda))_{CN},$$

and the required formula for $(y, d)^{t}$ follows. \hfill \Box

The sequence $(Y_{\cdot}(\cdot, \lambda_{n}))_{n \in \mathbb{N}}$ forms an orthogonal basis of the space \mathcal{H}. We denote by $\alpha_{n} := \|Y(\cdot, \lambda_{n})\|^{-2}$ the norming constant corresponding to the eigenvalue λ_{n}. A useful formula for the norming constants is given by the following lemma.
Lemma 2.2. Assume that $\lambda_n \in \sigma(A)$ is not in the spectrum of J. Then the corresponding norming constant $\alpha_n := \|Y_-(\cdot, \lambda_n)\|^{-2}$ satisfies the equalities

\[\alpha_n = -\frac{y_+^{[1]}(1, \lambda_n)}{\sqrt{\lambda_n y_-^{[1]}(1, \lambda_n) y_+(0, \lambda_n)}}. \]

Similarly, if $\lambda_n \in \sigma(A)$ is not in the spectrum of $J(1)$, then

\[\alpha_n = -\frac{y_+(1, \lambda_n)}{\sqrt{\lambda_n y_-(1, \lambda_n) y_+(0, \lambda_n)}}. \]

Proof. We take an arbitrary function $g \in L_2(0, 1)$, put $G := (g, 0)^t$, and calculate the L_2-component \hat{g} of the element $(A - \lambda)^{-1}G$ in two ways. On the one hand, the resolution of identity of the operator A gives

\[\hat{g}(x) = \sum_{k=1}^{\infty} \alpha_k (g, y_-(\cdot, \lambda_k))_{CN} y_-(x, \lambda_k). \]

On the other hand, using Lemma 2.1, we find that

\[\hat{g}(x) = \frac{y_-(x, \lambda)}{W(\lambda)} \int_x^1 y_+g + \frac{y_+(x, \lambda)}{W(\lambda)} \int_0^x y_+y. \]

Equating the residues at the point $\lambda = \lambda_n$ and noting that the functions $y_-(\cdot, \lambda_n)$ and $y_+(\cdot, \lambda_n)$ are collinear and that λ_n is a simple zero of W, we conclude that

\[\alpha_n y_-(x, \lambda_n) (g, y_-(\cdot, \lambda_n))_{CN} = -\frac{y_+(x, \lambda_n)}{W(\lambda_n)} (g, y_-(\cdot, \lambda_n))_{CN}, \]

or, on account of the relation $W(\lambda) \equiv \sqrt{\lambda} y_+(0, \lambda)$,

\[\alpha_n = -\frac{y_+(x, \lambda_n)}{\sqrt{\lambda_n y_-(x, \lambda_n) y_+(0, \lambda_n)}} \frac{1}{y_+(0, \lambda_n)}. \]

Finally, the ratio $y_+(x, \lambda_n)/y_-(x, \lambda_n)$ does not depend on x, and, moreover,

\[\frac{y_+(x, \lambda_n)}{y_-(x, \lambda_n)} = \frac{y_+(1, \lambda_n)}{y_-(1, \lambda_n)} \]

if $y_-(1, \lambda_n) \neq 0$ and

\[\frac{y_+(x, \lambda_n)}{y_-(x, \lambda_n)} = \frac{y_+^{[1]}(1, \lambda_n)}{y_-^{[1]}(1, \lambda_n)}, \]

if $y_+^{[1]}(1, \lambda_n) \neq 0$, and the required formulae follow. It remains to recall [1] that, for λ_n in the spectrum of A, the equality $y_-(1, \lambda_n) = 0$ holds if and only if λ_n is an eigenvalue of J and that $y_+^{[1]}(1, \lambda_n) = 0$ if and only if λ_n is an eigenvalue of $J(1)$.

It is known (see [6] for the case $q \in L_1(0, 1)$ and [1] for the case $q \in W^{-1}_2(0, 1)$) that the eigenvalues (λ_n) and the corresponding norming constants (α_n) determine the operator A uniquely. Moreover, the cited papers give the algorithm of reconstruction of A from these spectral data. The next proposition gives also the complete description of the spectral data, cf. [1, 6].

Proposition 2.3. The eigenvalues (λ_n) of A and the corresponding norming constants (α_n) obey the asymptotics

\[\lambda_n = [\pi(n - N) + \hat{\lambda}_n]^2, \quad \alpha_n = 2 + \hat{\alpha}_n, \]
where the sequences \((\tilde{\lambda}_n)\) and \((\tilde{\alpha}_n)\) belong to \(\ell_2\).

Conversely, any sequences \((\lambda_n)\) and \((\alpha_n)\) of real numbers such that

(a) the \(\lambda_n\) strictly increase and have the representation \(\lambda_n = [\pi(n - N) + \tilde{\lambda}_n]^2\) for some \(N \in \mathbb{N}\) and an \(\ell_2\)-sequence \((\tilde{\lambda}_n)\);

(b) the \(\alpha_n\) are positive and equal \(2 + \tilde{\alpha}_n\) for some \(\ell_2\)-sequence \((\tilde{\alpha}_n)\)

are the sequences of eigenvalues and the norming constants for a unique operator \(\mathcal{A}\) of the form (1.1).

In the following, we denote by \(\mu_{n,D}\) (resp. \(\mu_{n,N}\)) the eigenvalues of the operator \(S_D\) (resp. of the operator \(S_N\)), and by \(\nu_{1,j}, \ldots, \nu_{N,j}\) (resp. \(\nu_{1}^{(1)}, \ldots, \nu_{N-1}^{(1)}\)) the eigenvalues of \(J\) (resp. of \(J_{(1)}\)), all labelled in increasing order. It is well known that the operators \(S_D\) and \(S_N\) and the Jacobi matrices \(J\) and \(J_{(1)}\) have simple discrete spectra. We recall and derive next some properties of these spectra.

Proposition 2.4 ([10, 19, 20]). There exist sequences \((\tilde{\mu}_{n,D})\) and \((\tilde{\mu}_{n,N})\) belonging to \(\ell_2(\mathbb{N})\) such that

(a) \(\mu_{n,D} = [\pi n + \tilde{\mu}_{n,D}]^2\);

(b) \(\mu_{n,N} = [\pi(n - \frac{1}{2}) + \tilde{\mu}_{n,N}]^2\).

We observe that the numbers \(\mu_{n,D}\) are zeros of the function \(y_{-}(1, \lambda)\) and \(\mu_{n,N}\)—those of \(y_{-}^{[1]}(1, \lambda)\). Since both functions are exponential in \(\lambda\) of order \(\frac{1}{2}\), they can be reconstructed from their zeros in the following way.

Proposition 2.5 ([11]). The following equalities hold:

\[
y_{-}(1, \lambda) = \sqrt{\lambda} \prod_{k=1}^{\infty} \frac{\mu_{k,D} - \lambda}{\pi^2 k^2}, \quad y_{-}^{[1]}(1, \lambda) = \sqrt{\lambda} \prod_{k=1}^{\infty} \frac{\mu_{k,N} - \lambda}{\pi^2 (k - \frac{1}{2})^2}.
\]

Simple considerations show that the functions \(y_{+}(1, \lambda)\) and \(y_{+}^{[1]}(1, \lambda)\) are related to the eigenvalues of \(J\) and \(J_{(1)}\) as follows.

Lemma 2.6. The following equalities hold:

\[
y_{+}(1, \lambda) = \frac{a_0}{a_1 \cdots a_{N-1}} \prod_{k=1}^{N-1} (\lambda - \nu_k^{(1)}), \quad y_{+}^{[1]}(1, \lambda) = \frac{1}{a_0 a_1 \cdots a_{N-1}} \prod_{k=1}^{N} (\lambda - \nu_k^{(1)}).
\]

Proof. To find the representation for \(y_{+}^{[1]}(1, \lambda)\), it suffices to establish an analogous formula for \(d_{+}(1, \lambda)\). Using the relation \((J - \lambda) d_{+}(:, \lambda) = -a_0 y_{+}^{[1]}(1, \lambda) e_1\) and the normalization \(d_{+}(N, \lambda) = 1\), we find recursively that \(d_{+}(N - k, \lambda)\) is a polynomial in \(\lambda\) of degree \(k\) with leading coefficient \((a_{N-1} \cdots a_{N-k})^{-1}\). Therefore \(y_{+}^{[1]}(1, \lambda)\) is a polynomial in \(\lambda\) of degree \(N\) with leading coefficient \((a_0 a_1 \cdots a_{N-1})^{-1}\), and since it vanishes at the points \(\nu_{1,j}, \ldots, \nu_{N,j}\), the above formula follows.

Analogously, \(y_{+}(1, \lambda) = a_0 d_{+}(1, \lambda)\) is a polynomial in \(\lambda\) of degree \(N - 1\) and leading term \(a_0 / (a_1 \cdots a_{N-1})\) that vanishes at the points \(\nu_1^{(1)}, \ldots, \nu_{N-1}^{(1)}\), and the result follows.

Finally, we find below an explicit expression for \(y_{+}(0, \lambda)\) in terms of the eigenvalues \(\lambda_n\) of the operator \(\mathcal{A}\).

Lemma 2.7. The following holds:

\[
y_{+}(0, \lambda) = -(a_0 a_1 \cdots a_{N-1})^{-1} \prod_{k=1}^{N} (\lambda - \lambda_k) \prod_{k=1}^{\infty} \frac{\lambda_{k+N} - \lambda}{\pi^2 k^2}.
\]
Proof. In what follows, \(\lambda \) is an arbitrary nonzero complex number. We recall that \(y_+(x, \lambda) \) is a solution of the equation \(ly = \lambda y \) satisfying the terminal conditions \(y(1) = y_+(1, \lambda) \) and \(y^{[1]}(1) = y_+^{[1]}(1, \lambda) \), whence

\[
y_+(x, \lambda) = y_+(1, \lambda)u(x, \lambda) + y_+^{[1]}(1, \lambda)v(x, \lambda),
\]
where \(u(\cdot, \lambda) \) and \(v(\cdot, \lambda) \) are solutions of the problems

\[
\begin{align*}
L_\sigma u &= \lambda u, \\
u(1) &= 1, \\
u^{[1]}(1) &= 0,
\end{align*}
\]

Recalling [12] that \(u(x, \lambda) \) and \(v(x, \lambda) \) have the integral representations

\[
\begin{align*}
u(x, \lambda) &= \cos \sqrt{\lambda}(x - 1) + \int_x^1 k_1(x, t) \cos \sqrt{\lambda}(t - 1) \, dt, \\
v(x, \lambda) &= \sin \sqrt{\lambda}(x - 1) + \int_x^1 k_2(x, t) \sin \sqrt{\lambda}(t - 1) \, dt
\end{align*}
\]
for some upper-diagonal kernels \(k_j \) such that \(k(x, \cdot) \) belongs to \(L_2(0, 1) \) for every \(x \in [0, 1] \), and that by Lemma 2.6 \(y_+^{[1]}(1, \lambda) \) and \(y_+(1, \lambda) \) are polynomials in \(\lambda \) of degrees \(N \) and \(N - 1 \) respectively, we find that

\[
y_+(0, \lambda) = -\frac{\lambda^{N-\frac{1}{2}} \sin \sqrt{\lambda}}{a_0 a_1 \cdots a_{N-1}} [1 + o(1)]
\]
as \(\lambda \to -\infty \).

Since \(y_+(0, \lambda) \) is an entire function of \(\lambda \) of exponential type \(\frac{1}{2} \) and since its zeros coincide with the eigenvalues of \(\mathcal{A} \), we conclude that

\[
y_+(0, \lambda) = C_1 \prod_{k \in \mathbb{N}} \left(1 - \frac{\lambda}{\lambda_n} \right)
\]
for some constant \(C_1 \in \mathbb{C} \). Now we find that

\[
\begin{align*}
-1 &= \lim_{\lambda \to -\infty} \frac{a_0 a_1 \cdots a_{N-1} y_+(0, \lambda)}{\lambda^{N-\frac{1}{2}} \sin \sqrt{\lambda}} \\
&= \lim_{\lambda \to -\infty} \frac{C_1 a_0 a_1 \cdots a_{N-1}}{\lambda^N} \prod_{k \in \mathbb{N}} \left(1 - \frac{\lambda}{\lambda_k} \right) \prod_{k \in \mathbb{N}} \left(1 - \frac{\lambda}{\pi^2 k^2} \right) \\
&= \lim_{\lambda \to -\infty} \frac{C_1 a_0 a_1 \cdots a_{N-1}}{\lambda^N} \prod_{k=1}^{N} \left(1 - \frac{\lambda}{\lambda_k} \right) \frac{\prod_{k \in \mathbb{N}} \lambda_{k+N} - \lambda \pi^2 k^2}{\lambda_{k+N} \pi^2 k^2} \\
&= (-1)^N \frac{C_1 a_0 a_1 \cdots a_{N-1}}{\lambda_1 \cdots \lambda_N} \prod_{k \in \mathbb{N}} \frac{\pi^2 k^2}{\lambda_{k+N}},
\end{align*}
\]
since the above products converge uniformly on \(\mathbb{C} \), whence

\[
y_+(0, \lambda) = \frac{(-1)^N \lambda_1 \cdots \lambda_N}{a_0 a_1 \cdots a_{N-1}} \prod_{k=1}^{N} \left(1 - \frac{\lambda}{\lambda_k} \right) \prod_{k=1}^{\infty} \frac{\lambda_{k+N} - \lambda}{\pi^2 k^2} \\
= \frac{a_0 a_1 \cdots a_{N-1}}{(-1)^N} \prod_{k=1}^{N} \left(\lambda - \lambda_k \right) \prod_{k=1}^{\infty} \frac{\lambda_{k+N} - \lambda}{\pi^2 k^2}.
\]
The lemma is proved. \hfill \Box

We shall use several times the following statement about integral representations of some entire functions, cf. [15, Lemma 3.4.2].

Proposition 2.8 ([11]). Assume that the numbers a_n and b_n are such that $a_n = \pi n + \bar{a}_n$ and $b_n = \pi (n - \frac{1}{2}) + \bar{b}_n$ with some ℓ_2-sequences (\bar{a}_n) and (\bar{b}_n). Put

$$\phi(z) := \sqrt{z} \prod_{n \in \mathbb{N}} \frac{a_n^2 - z}{\pi^2 n^2}, \quad \psi(z) := \prod_{n \in \mathbb{N}} \frac{b_n^2 - z}{\pi^2 (n - \frac{1}{2})^2},$$

then there exist functions $\hat{\phi}$ and $\hat{\psi}$ in $L_2(0, 1)$ such that

$$\phi(z) = \sin \sqrt{z} + \int_0^1 \hat{\phi}(t) \sin \sqrt{zt} \, dt, \quad \psi(z) = \cos \sqrt{z} + \int_0^1 \hat{\psi}(t) \cos \sqrt{zt} \, dt.$$

3. **Reconstruction from \mathcal{A}, S_D, and $J_{(1)}$**

Given an arbitrary operator matrix \mathcal{A} of the form (1.1), we denote by $(\lambda_n)_{n \in \mathbb{N}}$, $(\mu_n, D)_{n \in \mathbb{N}}$, and $(\nu_n)_{n=1}^N$ the eigenvalue sequences of \mathcal{A}, the operator S_D, and the Jacobi matrix $J_{(1)}$ respectively. Put also $(\lambda'_n)_{n \in \mathbb{N}} := (\mu_n, D) \Pi (\nu_n)_{n=1}^N$, where the amalgamation operation Π was defined in the Introduction. An interesting property of the spectra involved is that every multiple element of (λ'_n) is an eigenvalue of \mathcal{A} and any eigenvalue of \mathcal{A} that belongs also to (λ'_n) occurs therein twice. In other words, the following statement holds true.

Proposition 3.1 ([1]). $\sigma(\mathcal{A}) \cap \sigma(S_D) = \sigma(\mathcal{A}) \cap \sigma(J_{(1)}) = \sigma(S_D) \cap \sigma(J_{(1)})$.

This allows us to establish the weak interlacing property of the sequences (λ_n) and (λ'_n) in the following sense.

Lemma 3.2. The sequences (λ_n) and (λ'_n) weakly interlace, i.e., $\lambda_1 < \lambda'_1$ and for every $n \in \mathbb{N}$ either $\lambda'_n < \lambda_{n+1} < \lambda'_n + 1$ or $\lambda'_n = \lambda_{n+1} = \lambda'_n + 1$.

Proof. Denote by δ_x the Dirac delta-function at the point $x = 1$ and put $D_1 := (\delta_1, 0)^1$. It is known that the domain of the Sturm–Liouville operator S is contained in $W_2^1(0, 1)$; in particular, the functions $y_{\pm}(:, \lambda)$ belong to $W_2^1(0, 1)$. The explicit formula for the resolvent of the operator \mathcal{A} derived in Lemma 2.1 shows that the expression

$$f(\lambda) := ((\mathcal{A} - \lambda)^{-1} D_1, D_1)$$

makes sense for any λ not in the spectrum of \mathcal{A} and, moreover, that

$$f(\lambda) = \frac{y_+(1, \lambda) y_-(1, \lambda)}{W(\lambda)}.$$

Since $f(\lambda)$ is a Nevanlinna function, its zeros and poles interlace. On the other hand, the zeros of f coincide with λ'_k and the poles with those λ_k which do not appear in (λ'_n). In view of Proposition 3.1 and the known asymptotics of λ_n and μ_n, D this justifies the claim. \hfill \Box

The asymptotics of λ_n and μ_n, D shows that $\lambda_{n+N} - \mu_n, D = o(n)$ as $n \to \infty$. In fact, this result can be improved, cf. [5] for the case $q \in L_1(0, 1)$.

Lemma 3.3. There exists an ℓ_2-sequence (b_n) such that

$$\lambda_{n+N} - \mu_n, D = 2a_0^2 (1 + b_n).$$
By Propositions 2.5 and 2.8, there is also \(g \) due to the asymptotics of (3.1) the norming constant \(\alpha_{n+N} \) holds. Using the representation of the functions \(y_+(0, \lambda) \) and \(y_+(1, \lambda) \), we find that

\[
\alpha_{n+N} = \frac{a_0^2 \prod_{k=1}^{N-1} (\lambda_{n+N} - \nu_k)}{y_-(1, \lambda_{n+N}) \prod_{k=1}^{N} (\lambda_{n+N} - \lambda_k)} \int \frac{d}{d\lambda} \left(\sqrt{\lambda} \prod_{k=1}^{N} \frac{\lambda_{k+N} - \lambda}{\pi^2 k^2} \right) \bigg|_{\lambda = \lambda_{n+N}}.
\]

Due to the asymptotics of \(\lambda_n \) and Proposition 2.8 the function

\[
\phi(\lambda) := \sqrt{\lambda} \prod_{k \in \mathbb{N}} \frac{\lambda_{k+N} - \lambda}{\pi^2 k^2}
\]

can be represented in the form

\[
\phi(\lambda) = \sin \sqrt{\lambda} + \int_0^1 f(t) \sin \sqrt{\lambda} \, dt
\]

for some \(f \in L_2(0, 1) \), whence

\[
\dot{\phi}(\lambda_{n+N}) = \frac{1}{2\sqrt{\lambda_{n+N}}} \left(\cos \sqrt{\lambda_{n+N}} + \int_0^1 tf(t) \cos \sqrt{\lambda_{n+N}} \, dt \right).
\]

By Propositions 2.5 and 2.8, there is also \(g \in L_2(0, 1) \) such that

\[
\psi(\lambda) := y_-(1, \lambda) = \sin \sqrt{\lambda} + \int_0^1 g(t) \sin \sqrt{\lambda} \, dt.
\]

In view of the mean value theorem there are numbers \(\xi_n \) between \(\mu_{n,D} \) and \(\lambda_{n+N} \) such that

\[
\psi(\lambda_{n+N}) = (\lambda_{n+N} - \mu_{n,D}) \dot{\psi}(\xi_n)
\]

\[
= \frac{\lambda_{n+N} - \mu_{n,D}}{2\sqrt{\xi_n}} \left(\cos \sqrt{\xi_n} + \int_0^1 t g(t) \cos \sqrt{\xi_n} \, dt \right).
\]

Due to the asymptotics of \(\lambda_n \) and \(\xi_n \) the sequences \(\cos \sqrt{\lambda_{n+N}} t \) and \(\cos \sqrt{\xi_n} t \) form Riesz bases of \(L_2(0, 1) \) [9] and hence

\[
\cos \sqrt{\lambda_{n+N}} + \int_0^1 tf(t) \cos \sqrt{\lambda_{n+N}} \, dt = (-1)^{n+N}(1 + c_n),
\]

\[
\cos \sqrt{\xi_n} + \int_0^1 t g(t) \cos \sqrt{\xi_n} \, dt = (-1)^{n+N}(1 + d_n)
\]

with square summable sequences \((c_n)_{n \in \mathbb{N}} \) and \((d_n)_{n \in \mathbb{N}} \). Therefore (3.1) can be recast as

\[
\alpha_{n+N}(1 + c_n)(1 + d_n) = \frac{4a_0^2}{\lambda_{n+N} - \mu_{n,D} \lambda_{n+N} - \lambda_N} \prod_{k=1}^{N-1} \frac{\lambda_{n+N} - \nu_k}{\lambda_{n+N} - \lambda_k},
\]

which, on account of the asymptotics of \(\alpha_n \) of Proposition 2.3, implies that

\[
\frac{2a_0^2}{\lambda_{n+N} - \mu_{n,D}} = 1 + \hat{\alpha}_n, \quad (\hat{\alpha}_n) \in \ell_2,
\]

and the result follows.

\(\square \)

Definition 3.4. We denote by \(\mathcal{L}_N \) the set of all triples \(\Lambda := (\lambda_n)_{n=1}^\infty, (\mu_n)_{n=1}^\infty, (\nu_n)_{n=1}^{N-1} \) of strictly monotone sequences such that the following holds:

1. there is an \(\ell_2 \)-sequence \((\hat{\lambda}_n) \) such that \(\lambda_n = [\pi (n - N) + \hat{\lambda}_n]^2; \)
Lemma 3.3 shows that β.

Due to the weak interlacing property of Λ the numbers β.

(3.3) $\Phi(z)$ satisfies the relation holds for all n.

In the reverse direction, we shall prove that any element of L_N the corresponding spectral triple $((\lambda_n), (\mu_n, D), (\nu^1_n))$ forms an element of L_N. In the reverse direction, we shall prove that any element of L_N is the spectral triple of the above form.

Theorem 3.5. For any $\Lambda := ((\lambda_n), (\mu_n), (\nu_n)) \in L_N$ there exists an operator A of the form 1.1 such that λ_n, μ_n, and ν_n are the eigenvalues of the operators A, S_D, and $J_{(1)}$ respectively. Such an operator A is unique if and only if the set A is empty.

Proof. We start with constructing the functions

$$
\phi(z) := \sqrt{\frac{z}{2}} \prod_{n \in \mathbb{N}} \frac{\lambda_n + z - x}{\pi^2 n^2}, \quad \psi(z) := \sqrt{\frac{z}{2}} \prod_{n \in \mathbb{N}} \frac{\mu_n - z}{\pi^2 n^2},
$$

and for $n \in B_A$ put (cf. (3.1))

$$
\beta_n := \frac{\gamma_0 \prod_{k=1}^{N-1} (\lambda_n - \mu_k)}{2 \psi(\lambda_n)} \left\{ \frac{d}{d\lambda} \left(\phi(\lambda) \prod_{k=1}^{N} (\lambda - \lambda_k) \right) \right\}_{\lambda = \lambda_n}.
$$

Due to the weak interlacing property of Λ the numbers β_n are positive and the proof of Lemma 3.3 shows that $\beta_n = 2 + \beta_n$ for a sequence (β_n) belonging to $l_2(B_A)$.

Now we define the sequence (α_n) with $\alpha_n = \beta_n$ if $n \in B_A$ and take α_n to be an arbitrary positive number if $n \in A_A$. The sequences (λ_n) and (α_n) satisfy all the requirements of Proposition 2.3 and thus there exists an operator A of the form (1.1) whose eigenvalues and norming constants coincide respectively with (λ_n) and (α_n).

It remains to prove that the sequences $(\mu_n)_{n \in \mathbb{N}}$ and $(\nu^n_{n=1})_{n=1}$ we have started with coincide with the eigenvalues $\mu_n, D_{n=1}$ and $(\nu^1_n)_{n=1}^{N-1}$ of the related operator S_D and Jacobi matrix $J_{(1)}$ respectively. Since for the norming constants α_n with $n \in B_A$ formula (2.3) holds, we conclude that, for such n,

$$
\frac{a^2_0 \prod_{k=1}^{N-1} (\lambda_n - \mu_k^1)}{\psi(\lambda_n)} = \frac{\gamma_0 \prod_{k=1}^{N-1} (\lambda_n - \mu_k)}{2 \psi(\lambda_n)},
$$

i.e., that

$$
\frac{2a^2_0 \psi(\lambda_n)}{\sqrt{\lambda_n}} \prod_{k=1}^{N-1} (\lambda_n - \mu_k^1) - \frac{\gamma_0 y_{(1, \lambda_n)}}{\sqrt{\lambda_n}} \prod_{k=1}^{N-1} (\lambda_n - \mu_k) = 0.
$$

Recalling that $\psi(\lambda_n) = 0 = \prod_{k=1}^{N-1} (\lambda_n - \mu_k)$ for $n \in A_A$, we conclude that equality (3.2) holds for all $n \in \mathbb{N}$. We observe that (3.2) takes the form $\Phi(\lambda_n) = 0$, where the function Φ satisfies the relation

$$
\Phi(z) = O(|z|^{N-3/2}e^{\text{Im} \sqrt{|z|}})
$$

as $|z| \to \infty$. We shall prove that $\Phi \equiv 0$.
Assume not, and observe that Φ has then no zeros other than λ_n, $n \in \mathbb{N}$. Indeed, in view of (3.3) Jensen’s formula gives

\begin{equation}
\int_1^r \frac{n(t)}{t} \, dt \leq \frac{1}{2\pi} \int_0^{2\pi} \log |\Phi(re^{i\theta})| \, d\theta + C_1
\end{equation}

\begin{equation}
\leq (N - \frac{3}{2}) \log r + \frac{\sqrt{r}}{2\pi} \int_0^{2\pi} |\sin \theta/2| \, d\theta + C_2
\end{equation}

\begin{equation}
= (N - \frac{3}{2}) \log r + \frac{2\sqrt{r}}{\pi} + C_2,
\end{equation}

where $n(t)$ denotes the number of zeros of Φ in the closed circle of radius t centered at the origin and C_1 and C_2 are some positive constants. On the other hand, if Φ had at least one additional zero, then for any $\varepsilon > 0$ and all sufficiently large t we would have

$$n(t) \geq \left[\frac{\sqrt{t}}{\pi} - \varepsilon \right] + N + 1 \geq \frac{\sqrt{t}}{\pi} + N - \varepsilon,$$

which contradicts (3.4). Now Φ, being of exponential type $\frac{1}{2}$, equals

$$\Phi(z) = C_3 \prod_{n=1}^{\infty} \left(1 - \frac{z}{\lambda_n}\right)$$

for some constant C_3. Using the canonical product for $\sin \sqrt{z}$ and the asymptotics of λ_k, we conclude that

$$\lim_{z \to -\infty} \frac{\Phi(z)}{z^{N-\frac{1}{2}} \sin \sqrt{z}} =: C_4 \neq 0,$$

which contradicts (3.3).

Thus we have proved that $\Phi \equiv 0$, i.e., that

$$2a_0^2 \prod_{k \in \mathbb{N}} \frac{\mu_k - z}{\pi^2 k^2} \prod_{k=1}^{N-1} (z - \nu^1_k) \equiv 0 \prod_{k=1}^{\infty} \frac{\mu_k, D - z}{\pi^2 k^2} \prod_{k=1}^{N-1} (z - \nu_k).$$

It follows that every ν_n that does not occur in (μ_k) is an eigenvalue of $J_{(1)}$ and, similarly, every μ_n that does not occur in (ν_k) is an eigenvalue of S_D. Since the sequences (λ_n) and $(\mu_{n,D})$ (ν^1_n) weakly interlace in the sense of Lemma 3.2, and since the same is true of (λ_n) and (λ'_n), simple considerations show that every multiple element of (λ_n) belongs to the spectra of both S_D and $J_{(1)}$, cf. [13, Sect. 6]. Thus all μ_n are eigenvalues of S_D and all ν_n—those of $J_{(1)}$. Since neither $J_{(1)}$ nor S_D can have other eigenvalues due to the size and asymptotics limitations respectively, Λ is the spectral triple for the operator \mathcal{A} found.

If the set A_{Λ} is empty, then the norming constants α_n are uniquely determined by Λ, so that \mathcal{A} is unique in view of Proposition 2.3. If A_{Λ} is non-empty, then different choices of α_n for $n \in A_{\Lambda}$ lead to different operators \mathcal{A}. The proof is complete. \qed

Remark 3.6. It follows from the proof of Theorem 3.5 that the set of Λ-isospectral operators \mathcal{A} of the form (1.1) (i.e., the set of operators \mathcal{A} such that the spectra of \mathcal{A}, S_D, and $J_{(1)}$ form the prescribed triple $\Lambda \in \mathcal{L}_N$) is a manifold of dimension equal to the cardinality of the set A_{Λ}.

4. Reconstruction from the Spectra of \mathcal{A}, S_N, and J

Treatment of the inverse problem of reconstructing the operator \mathcal{A} from the spectra of the operators \mathcal{A}, S_N, and the Jacobi matrix J parallels in general that of the inverse problem of Section 3. One essential difference is that the invariance of \mathcal{A} with respect to changing the primitive σ to $\sigma + C$ and b_1 to $b_1 + a_0 C$ (mentioned in Remark 1.1) is important here as it changes the spectra of both the operator S_N and the Jacobi matrix J. Thus the more correct inverse problem should be not only to reconstruct the operator \mathcal{A} per se, but also to fix the appropriate quasi-derivative σ of the potential q and the corresponding Jacobi matrix J.

Given an arbitrary operator matrix \mathcal{A} of the form (1.1) (with fixed σ), we denote by $(\lambda_n)_{n \in \mathbb{N}}, (\mu_{n,N})_{n \in \mathbb{N}}$, and $(\nu_{n,3})_{n=1}^N$ the eigenvalue sequences of \mathcal{A}, S_N, and J respectively. Put also $(\lambda'_n)_{n \in \mathbb{N}} := (\mu_{n,D}) \Pi (\nu_{n,3})_{n=1}^N$. The above three spectra have the same intersection property as those of Section 3, namely

Proposition 4.1 (\[1\]). $\sigma(\mathcal{A}) \cap \sigma(S_N) = \sigma(\mathcal{A}) \cap \sigma(J) = \sigma(S_N) \cap \sigma(J)$.

Lemma 4.2. The sequences (λ'_n) and (λ_n) weakly interlace, i.e., for every $n \in \mathbb{N}$ either $\lambda'_n < \lambda_n < \lambda'_{n+1}$ or $\lambda'_n = \lambda_n = \lambda'_{n+1}$.

Proof. We observe that (λ'_n) is the sequence of eigenvalues of the operator $\mathcal{A}_0 = S_N \oplus J$ counting multiplicities and that \mathcal{A} and \mathcal{A}_0 are self-adjoint extensions of the symmetric operator \mathcal{A}', which is the restriction of \mathcal{A}' onto the domain

$$\mathcal{D}(\mathcal{A}') := \{(y, d)^t \in \mathcal{D}(\mathcal{A}) \mid y^{[1]}(1) = 0\}$$

and has deficiency indices (1,1). We denote by \mathcal{H}' a maximal subspace of $\mathcal{D}(\mathcal{A}')$ that is invariant with respect to \mathcal{A}' and put $\mathcal{H}'' := \mathcal{H} \ominus \mathcal{H}'$. The restrictions of the operators \mathcal{A} and \mathcal{A}_0 onto \mathcal{H}' coincide (with \mathcal{A}') and $\dim \mathcal{H}' \leq N$ since if $Y = (y, d)^t$ is an eigenvector of \mathcal{A} that belongs to \mathcal{H}', then d is an eigenvector of J. It follows from [7] (see also [2, Ch. 1.2]) that the spectra of the restrictions of \mathcal{A} and \mathcal{A}_0 onto the subspace \mathcal{H}'' strictly interlace. Combining the two parts together, we see that either $\lambda'_n \leq \lambda_n$ for all $n \in \mathbb{N}$ or $\lambda'_n \geq \lambda'_n$ for all $n \in \mathbb{N}$; however, the inequality $\lambda_n \leq \lambda'_n$ is ruled out for all n sufficiently large by the asymptotics of λ_n and $\mu_{n,N}$, see Propositions 2.3 and 2.4. Taking into account the intersection property of Proposition 4.1, we conclude that the spectra weakly interlace in the specified sense. \hfill \Box

Definition 4.3. We denote by \mathcal{L}'_N the set of all triples of strictly monotone sequences $\Lambda := ((\lambda_n)_{n \in \mathbb{N}}, (\mu_{n,N})_{n \in \mathbb{N}}, (\nu_{n,3})_{n=1}^N)$ satisfying the following properties:

1. there is an ℓ_2-sequence $\tilde{\lambda}_n$ such that $\lambda_n = \lceil \pi(n - N) + \tilde{\lambda}_n \rceil^2$;
2. there is an ℓ_2-sequence $\tilde{\mu}_n$ such that $\mu_n = \lceil \pi(n - \frac{1}{2}) + \tilde{\mu}_n \rceil^2$;
3. the sequences (λ_n) and $(\lambda'_n) := (\mu_{n,D}) \Pi (\nu_{n,3})$ weakly interlace in the sense of Lemma 4.2.

We denote by A_Λ the set of $n \in \mathbb{N}$ such that $\lambda_n = \lambda'_n$ and put $B_\Lambda := \mathbb{N} \setminus A_\Lambda$.

The results obtained so far show that, for any operator \mathcal{A} of the form (1.1), the corresponding spectral triple $((\lambda_n), (\mu_{n,N}), (\nu_{n,3}))$ form an element of \mathcal{L}'_N. In the reverse direction, we shall prove that any element of \mathcal{L}'_N is the spectral triple of the above form. The approach lies in reducing the problem to that of reconstruction of \mathcal{A} from the eigenvalues and the norming constants. Lemmata 2.2, 2.6, and 2.7 imply that the three spectra determine uniquely the norming constants α_n for $n \in B_\Lambda$. Hence, if a given triple $\Lambda \in \mathcal{L}'_N$ is composed of the spectra of some \mathcal{A} and its two parts, then the corresponding norming constants must be related to Λ by the corresponding formula.
As a preliminary, we show that any triple in L_N' produces in this way the numbers with correct asymptotics.

Lemma 4.4. Assume that $\Lambda = ((\lambda_n), (\mu_n), (\nu_n)) \in L_N'$ and define the functions $\phi, \psi,$ and χ by the formulae

\[
\phi(\lambda) = \prod_{k=1}^{N} (\lambda - \lambda_k) \prod_{k=1}^{\infty} \frac{\lambda_{k+N} - \lambda}{\pi^2 k^2},
\]

\[
\psi(\lambda) = \sqrt{\lambda} \prod_{k=1}^{\infty} \frac{\mu_k - \lambda}{\pi^2 (k - \frac{1}{2})^2},
\]

\[
\chi(\lambda) = \prod_{k=1}^{N} (\lambda - \nu_k).
\]

Then the numbers

\[
\beta_n := \frac{\chi(\lambda_n)}{\sqrt{\lambda_n} \phi(\lambda_n) \psi(\lambda_n)}, \quad n \in B_\Lambda,
\]

have the asymptotics

\[
\beta_n = 2 + \tilde{\beta}_n
\]

where the sequence $\tilde{\beta}_n$ belongs to $\ell_2(B_\Lambda)$.

Proof. It clearly suffices to prove that

\[
\frac{1}{\beta_n} = \frac{\sqrt{\lambda_n} \phi(\lambda_n) \psi(\lambda_n)}{\chi(\lambda_n)} = \frac{1}{2} + \tilde{\beta}_n
\]

for some sequence $\tilde{\beta}_n \in \ell_2$. In view of the asymptotics of (λ_k) and Proposition 2.8, there exists a function $f \in L_2(0, 1)$ such that

\[
\phi(\lambda) = \left(\frac{\sin \sqrt{\lambda}}{\sqrt{\lambda}} + \int_0^1 f(t) \frac{\sin \sqrt{\lambda} t}{\sqrt{\lambda}} dt \right) \prod_{k=1}^{N} (\lambda - \lambda_k)
\]

and thus, for $n > N$,

\[
\dot{\phi}(\lambda_n) = \frac{\cos \sqrt{\lambda_n} + \int_0^1 t f(t) \cos \sqrt{\lambda_n} t dt}{2\lambda_n} \prod_{k=1}^{N} (\lambda - \lambda_k).
\]

Similarly, for some $g \in L_2(0, 1)$ it holds

\[
\psi(\lambda) = \sqrt{\lambda} \cos \sqrt{\lambda} + \sqrt{\lambda} \int_0^1 g(t) \cos \sqrt{\lambda} t dt.
\]

Since the system $\{\sin \sqrt{\lambda_n} t\}_{n>N}$ forms a Riesz basis of $L_2(0, 1)$ [9], for any $h \in L_2(0, 1)$ the sequence

\[
\int_0^1 h(t) \cos \sqrt{\lambda_n} t dt, \quad n > N,
\]

is square summable. The asymptotics of λ_n implies that $\cos \sqrt{\lambda_n} = (-1)^{n+N}(1 + b_n)$, where the sequence (b_n) is in ℓ_2. Combining these relations, we arrive at the representation

\[
\sqrt{\lambda_n} \dot{\phi}(\lambda_n) \psi(\lambda_n) \chi(\lambda_n) = \frac{1}{2} \left(1 + d_n \right) \prod_{k=1}^{N} \frac{\lambda_n - \lambda_k}{\lambda_n - \nu_k}
\]
with \((d_n) \in \ell_2\), which yields the result. \(\square\)

Theorem 4.5. For any \(\Lambda := (\lambda_n, (\mu_n), (\nu_n)) \in \mathcal{S}_N^\prime\) there exist \(a_0 > 0\), a function \(\sigma \in L_2(0, 1)\) and a Jacobi matrix \(J\) of size \(N\) such that \((\lambda_n)\) is the spectrum of the corresponding operator \(A\) in \(L_2(0, 1) \times \mathbb{C}^N\) of the form (1.1), \((\mu_n)\) is the spectrum of the operator \(S_N\), and \((\nu_n)\) is the spectrum of the Jacobi matrix \(J\). The operator \(A\) is unique if and only if the set \(A\) is empty.

Proof. We start with constructing the functions \(\phi, \psi, \) and \(\chi\) of Lemma 4.4 and defining the numbers \(\beta_n\) as in (4.1). Next, we put \(\alpha_n = \beta_n\) for \(n \in B_A\), and take \(\alpha_n\) arbitrary positive for \(n \in A_A\). According to Lemma 4.4, \(\alpha_n\) obey the asymptotics \(\alpha_n = 2 + \tilde{\alpha}_n\) with some \((\tilde{\alpha}_n) \in \ell_2\).

By Proposition 2.3, there exists an operator \(A\) of the form (1.1), whose eigenvalues are \(\lambda_n\) and the corresponding norming constants are \(\alpha_n\). We claim that one can fix a primitive of the potential \(q\) of the operator \(S\) and a Jacobi matrix \(J\) in the representation of \(A\) in such a way that \(\mu_n\) are the eigenvalues of the operator \(S_N\) and \(\nu_n\) are the eigenvalues of \(J\).

We take \(k^*\) such that \(\mu_{k^*}\) is not an eigenvalue of \(A\) just found, fix the unique primitive \(\sigma\) of the potential \(q\) of the Sturm–Liouville operator \(S\) such that the relation \((y', - \sigma y')(1, \mu_{k^*}) = 0\) holds, and determine the corresponding Jacobi matrix \(J\) giving the representation (1.1) of \(A\). We denote by \(\mu_{n,N}\) and \(\nu_{n,j}\) the eigenvalues of \(S_N\) and \(J\) and observe that the above choice of \(\sigma\) makes \(\mu_{k^*}\) an eigenvalue of \(S_N\). Due to the construction of \(\beta_n\) and formula (2.2) for \(\alpha_n\), we have the equality

\[
\frac{\psi(\lambda_n)}{\chi(\lambda_n)} = \sqrt{\lambda_n} \prod_{k=1}^N \frac{\mu_{k,N} - \lambda_n}{\pi^2(k - \frac{1}{2})^2} \prod_{k=1}^N (\lambda_n - \nu_{k,j})
\]

for all \(n \in B_A\). Recalling that \(\psi(\lambda_n) = \chi(\lambda_n) = 0\) for \(n \in A_A\), we see that

\[
\psi(\lambda_n) \prod_{k=1}^N (\lambda_n - \nu_{k,j}) = \sqrt{\lambda_n} \chi(\lambda_n) \prod_{k=1}^N \frac{\mu_{k,N} - \lambda_n}{\pi^2(k - \frac{1}{2})^2}
\]

for all \(n \in \mathbb{N}\).

Put

\[
\Phi_1(z) := \frac{\psi(z)}{\sqrt{z}} \prod_{k=1}^N (z - \nu_{k,j}), \quad \Phi_2(z) := \chi(z) \prod_{k=1}^N \frac{\mu_{k,N} - z}{\pi^2(k - \frac{1}{2})^2};
\]

then \(\Phi_1(\lambda_n) = \Phi_2(\lambda_n)\) for all \(n \in \mathbb{N}\), and also \(\Phi_1(\mu_{k^*}) = \Phi_2(\mu_{k^*}) = 0\) (the latter relation follows from the fact that \(\mu_{k^*}\) is among \(\mu_{n,N}\) by the construction of \(S_N\)). In view of Proposition 2.8 the functions \(\Phi_j\) have the form

\[
\Phi_j(z) = p_j(z) \left(\cos \sqrt{z} + \int_0^1 g_j(t) \cos \sqrt{z} t dt \right)
\]

for some monic polynomials \(p_j\) of degree \(N\) and some functions \(g_j \in L_2(0, 1), j = 1, 2\). It follows that \(\Phi := \Phi_1 - \Phi_2\) is an entire function of exponential type \(\frac{1}{2}\) with zeros \(\{\lambda_n\}_{n \in \mathbb{N}} \cup \{\mu_{k^*}\}\) such that

\[
(4.2) \quad \Phi(z) = o\left(z^N e^{\text{Im} \sqrt{z}} \right)
\]

as \(|z| \to \infty\). Next we show as in the proof of Theorem 3.5 that \(\Phi \equiv 0\) by noticing that otherwise \(\Phi\) would have no zeros other than \(\lambda_n, n \in \mathbb{N}\), and \(\mu_{k^*}\), and that the canonical product for \(\Phi\) then would contradict the estimate (4.2).
Thus $\Phi_1 \equiv \Phi_2$, which together with the weak interlacing property of (λ_n) and (λ_n') as well as of (λ_n) and $(\mu_{n,N})$ $(\nu_{n,1})$ shows that $\mu_n = \mu_{n,N}$ for all $n \in \mathbb{N}$ and that $\nu_k = \nu_{k,1}$ for $k = 1, \ldots, N$. Uniqueness statement follows from Proposition 2.3, and the proof is complete.

We remark that the set of Λ-isospectral operators \mathcal{A} is again a manifold of dimension equal to the cardinality of the set A_Λ.

Acknowledgements. The research of R. H. was partially supported by the Alexander von Humboldt Foundation.

References

Verzeichnis der erschienenen Preprints ab No. 220

220. Otto, Felix; Rump, Tobias; Slepčev, Dejan: Coarsening Rates for a Droplet Model: Rigorous Upper Bounds

221. Gozzi, Fausto; Marinelli, Carlo: Stochastic Optimal Control of Delay Equations Arising in Advertising Models

222. Griebel, Michael; Oeltz, Daniel; Vassilevsky, Panayot: Space-Time Approximation with Sparse Grids

223. Arndt, Marcel; Griebel, Michael; Novák, Václav; Šitný, Petr; Roubíček, Tomáš: Martensitic Transformation in NiMnGa Single Crystals: Numerical Simulation and Experiments

224. DeSimone, Antonio; Knüpfer, Hans; Otto, Felix: 2-d Stability of the Néel Wall

225. Griebel, Michael; Metsch, Bram; Oeltz, Daniel; Schweitzer, Marc Alexander: Coarse Grid Classification: A Parallel Coarsening Scheme for Algebraic Multigrid Methods

226. De Santis, Emilio; Marinelli, Carlo: Stochastic Games with Infinitely many Interacting Agents

228. Verleye, Bart; Kiltz, Margrit; Croce, Roberto; Roose, Dirk; Lomov, Stepan; Verpoest, Ignasi: Computation of Permeability of Textile Reinforcements; erscheint in: Proceedings, Scientific Computation IMACS 2005, Paris (France), July 11-15, 2005

229. Albeverio, Sergio; Pustylnikov, Lev; Lokt, Tatiana; Pustylnikov, Roman: New Theoretical and Numerical Results Associated with Dirichlet L-Functions

231. Albeverio, Sergio; Pratsiovytyi, Mykola; Torbin, Grygoriy: Singular Probability Distributions and Fractal Properties of Sets of Real Numbers Defined by the Asymptotic Frequencies of their S-Adic Digits

232. Philipowski, Robert: Interacting Diffusions Approximating the Porous Medium Equation and Propagation of Chaos

233. Hahn, Atle: An Analytic Approach to Turaev's Shadow Invariant
234. Hildebrandt, Stefan; von der Mosel, Heiko: Conformal Representation of Surfaces, and Plateau’s Problem for Cartan Functionals

235. Grunewald, Natalie; Otto, Felix; Reznikoff, Maria G.; Villani, Cédric: A Two-Scale Proof of a Logarithmic Sobolev Inequality

236. Albeverio, Sergio; Hryniv, Rostyslav; Mykytyuk, Yaroslav: Inverse Spectral Problems for Coupled Oscillating Systems: Reconstruction by Three Spectra