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Thin-film flow influenced by thermal noise

Günther Gr̈un∗, Klaus Mecke†, and Markus Rauscher‡

Abstract

We study the influence of thermal fluctuations on the dewetting dynam-
ics of thin liquid films. Starting from the incompressible Navier-Stokes
equations with thermal noise, we derive a fourth-order degenerate parabolic
stochastic partial differential equation which includes a conservative, mul-
tiplicative noise term—the stochastic thin-film equation. Technically, we
rely on a long-wave-approximation and Fokker-Planck-type arguments. We
formulate a discretization method and give first numerical evidence for our
conjecture that thermal fluctuations are capable of accelerating film rupture
and that discrepancies with respect to time-scales between physical exper-
iments and deterministic numerical simulations can be resolved by taking
noise effects into account.

1 Introduction

Thin films of liquid are ubiquitous in nature and play a great role in techno-
logical processes. Progressive miniaturization in the production of semicon-
ductor devices requires nowadays thicknesses of photo resists of the order
of a few nanometers. In order to guarantee stability of these films reliable
predictions of the dynamics (in particular of the dewetting dynamics) gain
an important role. But also in the emerging field of micro and nano fluidics,
i.e., the art of miniaturizing chemical devices, one deals with fluid films of
down to a few nanometers thickness.

The flow of viscous liquid films with thicknesses in the range of a few
nanometers up to a micron has been studied extensively in the thin-film
limit of hydrodynamic free surface flow [1]. While earlier studies focused
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on spreading of droplets and the moving three phase contact line, the dewet-
ting of thermodynamically unstable liquid films and the resulting dewetting
patterns have attracted more attention recently. In particular, the develop-
ment of efficient numerical algorithms for the thin-film equation (see [2, 3]
and the references therein) and of quantitative methods based on integral
measures (Minkowsky functionals) for describing and comparing film mor-
phologies [4] made it possible to test the thin-film equation quantitatively.
While the spatial stochastic features of the pattern formation process which
appear in the experiment are the same as those predicted by the thin-film
equation [5], the time evolution of the patterns does not match. The quanti-
ties which characterize the morphology of the experimental films as a func-
tion of time indicate a power law behavior while the numerical results for
the deterministic thin film equation show two distinct time scales, one for
film rupture and one for droplet formation, see [6]. We take this as a hint that
thermal noise might play a role in the dynamics of the dewetting of these
thin films. Power law behaviour can indicate the absence of explicit time
scales, which is characteristic for thermal fluctuations modeled by white
noise.

The effect of thermal noise has already been introduced phenomenologi-
cally into hydrodynamics by Landau and Lifšic [7]. A microscopic justifica-
tion for the noisy hydrodynamical equations has been provided by showing
that the form proposed can be derived from the deterministic Boltzmann
equation by a long-wave approximation [8]. The noisy hydrodynamical
equations have been discussed for example in the context of turbulence in
randomly stirred fluids [9, 10] as well as for the onset of instabilities in
Rayleigh-B́enard convection [11] and Taylor-Couette flow [12].

Comparing molecular dynamics simulations and numerical solutions of
deterministic and stochastic hydrodynamical equations [13] it has recently
become evident that noise plays a significant role in the breakup of fluid
nanojets. The geometry is cylindrical rather than planar but a long-wave
approximation similar to the one discussed in this paper is used. This result
corroborates our conjecture that thermal noise can play a significant role in
the dewetting and flow of thin liquid films.

The importance of thermal fluctuations in film rupture has been demon-
strated by direct visual observation in a colloidal system with confocal mi-
croscopy [14]. Suspended colloids can phase-separate into regions of high
density (“colloidal liquid”) and low density (“colloidal gas”). The coales-
cence of two drops of “colloidal liquid” involves the rupture of a thin film
of “colloidal gas” which has been monitored directly. The importance of
fluctuations is obvious from visual inspection but has not been quantified
yet.

Let us give the outline of the paper. Starting from the incompressible
Navier-Stokes equations with thermal noise, we formulate in Section2.1the
free surface problem for thin-film flow under the influence of fluctuations.
In Section2.2, we derive a first version of a stochastic thin-film equation
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via long-wave approximation. It contains a rather complicated noise term
which involves a stochastic integral with respect to the vertical coordinate.
By requiring the corresponding Fokker-Planck equations to be identical, we
come up with a simplified stochastic thin-film equation which involves a
noise term only depending on planar coordinates and time. The scaling of
the off-diagonal components of the noisy stress tensor is crucial for the for-
mulation of both equations. Our choice guarantees that the invariant mea-
sure is given by the Gibbs distribution.

Section3 is devoted to the study of effects thermal fluctuations have
on dewetting dynamics. We base our results on numerical simulations and
propose a finite-volume/finite-element scheme for the discretization of the
stochastic thin-film equation first. Our numerical experiments give first in-
dication that noise can accelerate the transition from a nearly flat film to a
locally ruptured film. In contrast, the time-scale of droplet formation is not
affected by fluctuations in these experiments. Therefore, the ratio

rupture time-scale
droplet-formation time-scale

is diminished. This leads us to believe, that discrepancies with respect to
time-scales between deterministic numerical simulations and physical ex-
periments observed in [5] might be overcome by taking thermal fluctuations
into account. To give further evidence for this conjecture, we estimate the
strength of the noise term in the experimental setting of [5]. It turns out that
the acceleration factor observed in the numerical experiments presented here
has the right order of magnitude to resolve the aforementioned discrepan-
cies.

Finally, AppendixA contains the computation of the Kramers-Moyal
coefficients needed in Section2.2, and AppendixB reviews the numerical
scheme for the deterministic thin-film equation. In AppendixC we show,
that the Fokker-Planck equation of the stochastic thin film quation derived
in Section2.2is independent of the stochastic calculus (Ito or Stratonovich)
used.

2 The stochastic thin-film equation

2.1 Noise in the hydrodynamic equations

For the ease of presentation, we consider a film of an incompressible New-
tonian liquid on a one-dimensional flat substrate as sketched in Fig.1. The
generalization to two-dimensional films is straightforward. Since we do not
want to discuss boundary conditions at the boundaries of the substrate, we
suppose the substrate to be infinite. We assume that the liquid-vapour in-
terface can be described as a graph over the substrate, and we parameterize
it by the film thicknessh(x, t). The incompressibility condition and the
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Figure 1: A thin liquid film on a flat one-dimensional substrate (coinciding with
thex-axis). The film surface (i.e., the moving boundary) is parameterized by the
film thicknessh(x, t). The flow is characterized by the flow velocityu = (ux, uy)
and the pressurep.

momentum conservation are given by [7]

0 = ∇ · u (1)

ρ
Du
Dt

= η∇2u−∇p+∇ · S, (2)

with the convective derivativeDDt = ∂
∂t + u ·∇. By u andp, we denote

velocity and pressure field, respectively. The mass densityρ is constant
within the fluid andη is the shear viscosity. The random stress fluctuations
S represent the effect of molecular motion.S is symmetric, has zero mean
〈S〉 = 0 and the correlator is given as〈
Sij(r, t)Slm(r′, t′)

〉
=

2 η kB T δ(r− r′) δ(t− t′) (δil δjm + δim δjl). (3)

S is spatially uncorrelated, and therefore the divergence ofS in Eq. (2)
poses mathematical questions we do not want to enter into this point. From
a physical point of view, hydrodynamical equations are only valid at a scale
large as compared to the molecular scale. Therefore,δ(r − r′) in Eq. (3)
might be replaced by a correlation function of small but finite width. In order
to show that equilibria are charcterized by Gaussian velocity distributions as
required by thermodynamics we need spatially uncorrelated noise. For this
reason, we keep the notation common in physical literature.

We assume that the substrate is impermeable and that there is no slip
between the fluid and the substrate. The boundary conditions at the substrate
are therefore

uy = 0 and ux = 0 at y = 0. (4)

At the free surfacez = h(x, t) the normal and tangential stresses are bal-
anced. Neglecting the exchanges with the vapour phase, the boundary con-
dition is

(σ + S) · n̂ = (Π + γ κ) n̂, (5)
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whereσij = η (∂iuj+∂jui)− p δij is the stress tensor for an incompressible
fluid, κ is the mean curvature of the surface,n̂ = (−∂xh, 1)/

√
1 + (∂xh)2

the surface normal vector, andγ is the surface tension coefficient. For later
use we also introduce the tangent vectort̂ = (1, ∂xh)/

√
1 + (∂xh)2 to

the surface. The so-called disjoining pressureΠ = −∂Φ(h)
∂h is the negative

derivative of the effective interface potentialΦ(h) with respect to the film
thicknessh. The origin of the disjoining pressure are molecular interactions
between liquid molecules and between liquid and substrate molecules. The
disjoining pressure determines the characteristic wetting properties of a sub-
strate, for instance the equilibrium contact angle. In general, the disjoining
pressure can depend onx andy. Additional external forces on the fluid such
as gravity or Marangoni forces can be included in a straightforward manner.

Finally, assuming that the fluid is non-volatile, the component of the
flow velocity normal to the surface is identical to the surface normal velocity
and we get

∂h

∂t
= uy − ux ∂xh at y = h (6a)

= −∂xj, (6b)

with the total flow current in the film at positionx

j(x, t) =
∫ h(x,t)

0
ux(x, y, t) dy. (7)

2.2 Long-wave approximation of stochastic Navier-
Stokes equations

The long-wave approximation permits to approximate the free surface prob-
lem for thin films stated in Sec.2.1by a dimension-reduced evolution equa-
tion for the film height. The small parameterε = d/λ � 1 in this ap-
proximation is the ratio of the characteristic film heightd and the length
scaleλ over which the film thickness and substrate properties (e.g.,Π) vary
laterally, see Fig.1. This approach is well described in [1] but we will re-
capitulate the main steps with an emphasis on the noise termS, which was
not considered in [1]. In order to implement the long-wave expansion, we
express all quantities in Eqs. (1) to (7) in terms of dimensionless quanti-
ties denoted by a tilde. Introducing a characteristic velocityU in the film
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parallel to the substrate, we use the rescaling relations

x = λ x̃, y = d ỹ, p =
U η

d ε
p̃,

∂x =
1
λ
∂̃x, ∂y =

1
d
∂̃y, Π =

U η

d ε
Π̃, (8)

ux = U ũx, uy = εU ũy, t =
λ

U
t̃,

γ =
U η

ε3
γ̃, κ =

ε2

d
κ̃, h = d h̃,

Sxy =
U η

d
S̃xy (Sxx,Syy) =

U η

λ
(S̃xx, S̃yy) T =

η U λ2

ε kB
T̃ .

Thereby we assume that the components of the noise tensor scale like the
dominant term (lowest order inε) in the corresponding components of the
strain tensor. ForSxx andSyy these areη ∂xux andη ∂yuy, respectively. For
Sxy (which is equal toSyx due to symmetry) this isη ∂yux. Hence, the noise
tensor will appear in the lowest order equations of motion in such a way that
the stationary height distribution of the resulting thin-film equation (17) is
the one required by thermodynamics (see Sec.2.3). This justifies our way
of rescaling retrospectively. The final result would remain unchanged ifSxx
andSyy scaled in the same way asSxy. In addition toε � 1, lubrication
approximation assumes that the flow is not too fast and that the viscosity is
not too low so that the Reynolds number Re= ρU d/η is of order one or
smaller. We note that the surface tension coefficientγ is scaled withε−3.
This ensures that surface tension is kept in the equations to lowest order in
the thin-film limit ε → 0. Unless explicitly stated otherwise, all quantities
are nondimensional from this point on and we therefore drop the tilde.

The incompressibility condition Eq. (1) remains unchanged under these
rescalings. For the parallel and normal components of the momentum equa-
tion (2) we get

εRe
Dux
Dt

= (ε2 ∂2
x + ∂2

y)ux − ∂x(p+ Π)

+ε2 ∂xSxx + ∂ySyx (9a)

ε3 Re
Duy
Dt

= ε2 (ε2 ∂2
x + ∂2

y)uy − ∂y(p+ Π)

+ε2 ∂xSxy + ε2 ∂ySyy. (9b)

Clearly, the noise term will only appear in the equation forux, and we get
the principal equations

0 = −∂x(p+ Π) + ∂2
yux + ∂ySyx (10a)

0 = −∂y(p+ Π). (10b)

The boundary conditions at the substrate (4) as well as the kinematic
condition (6) remain unchanged. We discuss the boundary conditions at the
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surface (5) in the following. The curvature is to lowest orderκ = ∂2
xh +

O
(
ε4
)

and the normal component of the normal surface stress isn̂ · (σ +
S) · n̂ = −p + O

(
ε2
)
. Therefore we get the boundary condition for the

pressure at the liquid-vapor interface

p = −γ ∂2
xh at y = h. (11)

The tangential component of the normal surface stress is

t̂ · (σ + S) · n̂ =
(∂xh) (∂yux + Syx)

|∂xh|
+O

(
ε2
)

at y = h (12)

and we obtain the following boundary condition forux at the film surface

∂yux + Syx = 0 at y = h. (13)

Apparently, onlySyx = Sxy appears in the lowest order equations (10) to
(13). For simplicity of notation we omit the subscriptxy in the following
by settingS = Sxy.

In order to calculateux we integrate Eq. (10a) twice with respect toy
and determine the two integration constants using the boundary conditions
Eq. (4) and (13). Since the reduced pressurep+ Π is independent ofy (see
Eq. (10b), a first integration w.r.t. the vertical coordinate fromh to y yields
together with Eq. (13)

(y − h) ∂x(p+ Π) = ∂yux + S. (14)

Integrating with respect to the vertical coordinate from zero toy gives

ux =
(
y2

2
− y h

)
∂x (p+ Π)−

∫ y

0
S(y′) dy′, (15)

where we used the substrate boundary condition Eq. (4). Inserting Eq. (15)
into the kinematic condition (6) leads to the stochastic thin-film equation.
Since the reduced pressurep + Π does not depend ony, we can evaluate
p + Π at the film surface and replacep by the boundary condition (11).
RewritingΠ in terms of the effective interface potentialΦ, we get

∂h

∂t
= ∂x

{
h3

3
∂x
[
Φ′(h)− γ ∂2

xh
]

+
∫ h

0

∫ y

0
S(y′) dy′ dy

}
. (16)

Integrating the noise term by parts with respect toy entails

∂h

∂t
= ∂x ·

{
h3

3
∂x
[
Φ′(h)− γ ∂2

xh
]

+
∫ h

0
(h− y)S(y) dy

}
. (17)

The correlator of the nondimensional noiseS is〈
S(x, y, t)S(x′, y′, t′)

〉
= 2T δ(x− x′) δ(y − y′) δ(t− t′). (18)
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In contrast to the thermal noise in the original hydrodynamic equa-
tions (2), the noise term in Eq. (17) is multiplied by a function which de-
pends onh(x, t) and therefore on the noise, too. Now the question arises
which meaning to give to this product (or the corresponding stochastic in-
tegral

∫∫
(h − y)S dy dt). Two common ways of interpretation are Ito and

Stratonovich calculus. In App.C we show that the corresponding Fokker-
Planck equation (47) does not depend on the choice of calculus. This is
mainly due to the conservative character of noise in Eq. (17). Therefore Ito
and Stratonovich calculus are equivalent here. For simplicity we will use
the Ito formalism in the following.

2.3 Simplifying the noise term

The noise term in Eq. (17) still depends on the vertical coordinate. This
is in contradiction to the spirit of long-wave approximation to model film
evolution solely in terms of time and planar coordinates. In this section we
will show that the following stochastic partial differential equation involving
a multiplicative conserved noise term depending only onx andt

∂h

∂t
= ∂x ·

{
h3

3
∂x
[
Φ′(h)− γ ∂2

xh
]

+

√
h3

3
N

}
, (19)

with

〈N (x, t)〉 = 0 and
〈
N (x, t)N (x′, t′)

〉
= 2T q(x−x′) δ(t− t′), (20)

andq(x) = δ(x) can be considered identical to Eq. (17) in an appropriate
weak sense1. Let us make this more precise. Initially, our goal has been
to investigate the impact thermal fluctuations have on time-scales of dewet-
ting. Therefore, we are mostly interested in results on the distribution of
film profiles at given time-instantst > 0. For this reason, we will weakly
identify stochastic partial differential equations if the time-evolution of the
corresponding distribution functions is identical. In this spirit, we will dis-
cretize Eqs. (17) and (19) in space and we will show that the corresponding
systems of stochastic differential equations gives rise to the same Fokker-
Planck equation, as the spatial discetization parameter tends to zero.

Moreover, we will show that the distribution function which satisfies the
detailed balance condition is given by

Weq[h] = Z−1 exp
(
− 1
T
H[h]

)
(21)

with the partition functionZ (a normalization constant) and the effective
interface Hamiltonian

H[h] =
∫

Φ(h) +
γ

2
|∂xh|2dx, (22)

1In Eq. (20) we introduce the symmetric correlatorq(x) ≥ 0 because in Sec.3.2 we will
consider also finite correlation lengths in space to study the influence of spatial correlations on the
dewetting dynamics.
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as expected from thermodynamics [15]. The integrandΦ(h) + γ
2 |∂xh|

2 is
the local energy density for the given interface profileh(x).

Note that equation (19) has some features in common with stochastic
Cahn-Hilliard equations (see for instance [16] and [17] and the references
therein). Both equations are fourth-order parabolic, and they admit for
Lyapunov-functionals of a similar structure. In contrast to the stochastic
Cahn-Hilliard equations studied so far in the literature, the parabolicity in
(19) degenerates. For this reason, analytical techniques to establish the ex-
istence of stochastic processes, as presented in [19] and in [18], cannot be
applied.

Let us show now, that the Eqs. (17) and (19) are identical in the sense
formulated above. First we rewrite these equations using the Hamiltonian
in Eq. (22) and the mobility factorM(h) = h3

3 . We get

∂h

∂t
= ∂x

[
M(h) ∂x

δH
δh

+
∫ h

0
(h− y)S(y) dy

]
and (23)

∂h

∂t
= ∂x

[
M(h) ∂x

δH
δh

+
√
M(h)N

]
, (24)

respectively. Next we discretize in space with lattice constanta. The film
thickness then becomes a vectorh with hi = h(a i). We replace the in-
tegration with respect tox in Eq. (22) by the corresponding Riemann sum

H(h) = a
∑
i

Ei(h), (25)

with the local energy density at lattice sitei

Ei = Φ(hi) +
γ

2
[(∇s · h)i]

2 . (26)

Here we use the symmetric finite difference operator(∇s ·f)i = 1
2 a (fi+1−

fi−1). We can also interpret∇s as an infinite matrix with entries∇sij =
1

2 a (δi,j−1 − δi,j+1) and∇s · f as the multiplication of the matrix with a
vector. In the discretized equation, the variational derivativeδH

δh becomes
the sum over the partial derivatives ofH(h) with respect toh, namely(

δH(h)
δh

)
i

=
∑
j

∂Ej(h)
∂hi

=
1
a

∂H(h)
∂hi

. (27)

Note that the variational and the partial derivative ofH(h) with respect to
h differ by a factora.

We discretize the noise termsS`i (t) =
(
S`(t)

)
i

= S(a i, a `, t) and
Ni(t) = (N (t))i = N (a i, t). The discretized versions of Eqs. (17) and
(19) are then

∂h
∂t

= ∇s · j with (28a)

ji = M(hi)
(
∇s · δH

δh

)
i

+
int(hi/a)∑
`=0

a (hi − a `)S`i (28b)
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and

∂h
∂t

= ∇s · j with (29a)

ji = M(hi)
(
∇s · δH

δh

)
i

+Ni, (29b)

respectively. With int(hi/a) we denote the integer part ofhi/a. If hi is
not an integer multiple ofa, we make an error ofO (a) by approximating
the integral with respect toy by summation with respect tò. However, we
are interested in the limita → 0 and we assume here that this error is not
important. The discretized correlators are obtained from Eq. (18) and (20)
usingδ(x− x′) 7→ 1

aδij etc. and we get〈
S`i (t)Smj (t′)

〉
=

2T
a2

δij δ`m δ(t− t′) (30)〈
Ni(t)Nj(t′)

〉
=

2T
a
δij δ(t− t′). (31)

With this we can write the discretized thin-film equations (28) and (29) as

∂h
∂t

= F +
∞∑
`=0

∇s ·
[
q`(h)S

`(t)
]

and (32)

∂h
∂t

= F +∇s ·
[
q(h)N (t)

]
, (33)

with

q`(x) =
{

0 for ` > x/a
a (x− a `) for 0 ≤ ` ≤ x/a and (34)

q(x) =

√
x3

3
=
√
M(x). (35)

Here we introduce the following notation. For a given scalar functionf(x)
and two discretized functions (i.e., vectors)g andh we define

(
f(g)h

)
i

=
f(gi)hi. With this notation, we can write the deterministic part in Eqs. (32)
and (33) as

F =∇s ·
[

M(h)

(
∇s · δH

δh

)]
. (36)

In order to calculate the Fokker-Planck equation corresponding to the
Eqs. (32) and (33) we need the first and second Kramers-Moyal expansion
coefficient. The coefficients for Eq. (33) are given in the literature [20, 21]
and those for Eq. (32) we calculate in App.A. The expansion coefficients
of order three and higher are zero because both equations (32) and (33) are
Markovian [20, 21].

In Ito calculus the first Kramers-Moyal coefficients of Eqs. (32) and (33)
are equal and simply given by the deterministic part

D(1)(h) = F(h), (37)
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see Eq. (81) and (87), respectively. From Eqs. (83) and (88) we get with
G`ij(h) = ∇sij q`(hj) andGij(h) = ∇sij q(hj) the second coefficients for
Eq. (32) and (33),

D
(2S)
ij (h) =

T

a2

∑
k

∞∑
`=0

∇sik q`(hk)∇sjk q`(hk) and (38)

D
(2N )
ij (h) =

T

a

∑
k

∇sik q(hk)∇sjk q(hk), (39)

respectively. Since the∇sik on the right-hand side of Eqs. (38) and (39) are
only the components of the symmetric finite difference operator∇s, i.e.,
numbers, and not the operator itself, we can rearrange the factors in the
summands to get

D
(2S)
ij (h) =

∑
k

∇sik∇sjk
T

a2

∞∑
`=0

q`(hk) q`(hk) and (40)

D
(2N )
ij (h) =

∑
k

∇sik∇sjk
T

a
q(hk) q(hk). (41)

Apparently a sufficient condition for the two coefficients to be equal is

a [q(x)]2 =
∞∑
`=0

[
q`(x)

]2
. (42)

With the definition in Eq. (34) and (35) the condition above is satisfied up
to orderO (a) since the sum on the right-hand side givesa x3

3 + a2 x2

2 + a3 x
6

and the left-hand side isa x
3

3 . In other words, in the continuum limita→ 0
the coefficients are the same and in this sense, the Langevin equations (17)
and (19) are equivalent. Withq(hk) from Eq. (35) we can write the second
Kramers-Moyal coefficient as

D
(2N )
ij (h) =

∑
k

∇sik
T

a
M(hk)∇sjk. (43)

The Fokker-Planck equation corresponding to Eq. (33) gives the time
evolution of the probability densityW(h) of findingh as solution of Eq. (33)
at timet

dW(h)
dt

= − ∂

∂h
·
{[

D(1)(h)− ∂

∂h
·D(2N )(h)

]
W(h)

}
. (44)

The discrete analog to the canonical distribution in Eq. (21) isWeq(h) =
Z−1 exp

(
− 1
T H(h)

)
. In order to show that the canonical distribution sat-

isfies the detailed balance condition, we first demonstrate that the diffusion
term (the term∂

∂h ·D
(2N )(h) within the square brackets) can be written as

∇s ·M(h)∇s · ∂
∂h . First we have to write the diffusion term with the help
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of Eq. (43) with indices and apply the product rule for the derivative with
respect toh

∑
j,k

T

a

∂

∂hj
∇sikM(hk)∇sjkW(h) =

∑
j,k

T

a

[
∇sik

∂M(hk)
∂hj

∇sjkW(h) +∇sikM(hk)∇sjk
∂W(h)
∂hj

]
. (45)

The first term on the right-hand side vanishes because∂M(hk)
∂hj

= δjk
∂M(hj)
∂hj

is symmetric inj andk while∇sjk is antisymmetric. We then transpose∇sjk
in the second term (which produces a minus sign) and we get for the Fokker-
Planck equation

dW(h)
dt

= − ∂

∂h
·
[
∇s ·M(h) ·∇s ·

(
δH(h)
δh

+ T
δ

δh

)
W(h)

]
. (46)

Here we insert the deterministic part from Eq. (36) and make use of1a
∂
∂h =

δ
δh , see Eq. (27). In the continuum limita→ 0 the Fokker-Planck equation
has the form

dW[h]
dt

= −
∫

δ

δh

[
∂xM(h)∂x

(
δH[h]
δh

+ T
δ

δh

)
W[h]

]
dx. (47)

A sufficient condition for detailed balance is that the probability current
density, i.e., the term in square brackets in Eq. (46) or (47), is identical zero.
The reason for this is that the height functionh (as well as the discreteh) is
an even function, meaning it does not change the sign under time reversal (in
contrast to velocities for example), see [21, Sec. 5.3.5, comment (i)]. Using
the chain rule for the derivative of (21) with respect to the film thickness
this is obviously the case for the discrete equation (46) as well as for the
continuum equation (47).

3 Thermal noise and time-scales of dewet-
ting

In this section, we present numerical studies on the effect thermal noise
has on dewetting dynamics. Our objective is to give—at the moment on a
qualitative level only—numerical evidence for the conjecture that thermal
fluctuations may accelerate the transition from a flat, slightly perturbed film
to a locally ruptured film. After the first instant of local film rupture, we
expect the deterministic terms, i.e., those containing the augmented Laplace
pressure−∇2

xh + Φ′(h), to dominate the dynamics again—at least under
the assumption of moderate noise intensities. This way, we expect noise
terms to overcome the discrepancies in the ratio of dewetting time-scales be-
tween experiment and deterministic numerical studies which were observed
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in [5]. Before presenting our numerical results, let us formulate a numerical
scheme for the computation of sample paths of the stochastic process related
to the stochastic thin-film equation (19).

The particular structure of the noise term (convective, multiplicative)
as well as the degeneracies and singularities inherent in the determinis-
tic thin-film equation make the discretization of equation (19) an intricate
problem. Although the deterministic equation is fourth-order and compar-
ison principles do not hold, rigorous mathematical results show that glob-
ally non-negative solutions exist, provided initial data are non-negative, see
[3, 22, 23, 24, 25]. This is a consequence of the mobilityM(h) vanishing at
zero. To guaranteenon-negativityproperties of discrete solutions, it is cru-
cial that the numerical scheme mimics the degeneracy of the mobility (see
our choice of harmonic integral means in App.B). If the effective interface
potential is+∞ at zero film thickness with sufficiently high order, even a
pathway to strictpositivity opens up. To establish this, it is sufficient to
split Φ into a sum of a non-negative convex and a concave component and
to discretize the first one implicitly, the second one explicitly. Finally, as
the stochastic processN (x, t) appears inside a convective term, numerical
diffusion becomes an issue. We use upwinding concepts to minimize this
effect.

To have a perspective of numerical analysis, we will formulateN (x, t)
in the framework ofQ-Wiener processes. It turns out that the corresponding
structure carries over to the discrete setting.

Summing up, the plan of this section is as follows. First, we formu-
late equation (19) as an initial-boundary-value problem and we recall the
essentials of the concept ofQ-Wiener processes. We transfer this con-
cept to a discrete setting and formulate a scheme for the convective term
∂x[
√
M(h)N (x, t)]. For the reader’s convenience, the main ideas for the

efficient discretization of the deterministic thin-film equation are summa-
rized in App.B. At the end of Sec.3.1, we arrive at a numerical scheme. In
Sec.3.2we present first numerical results.

3.1 A numerical scheme for the stochastic thin-film
equation

In this section, we consider an initial-boundary-value problem related to the
stochastic thin-film equation (19). In particular, we give a meaning to the
stochastic processN (x, t) in terms ofQ-Wiener processes. This formalism
at hand we will formulate a numerical method subsequently. We will con-
sider Eq. (19) on the space-time cylinderΩT := (0, L) × (0, T ) subjected
to spatially periodic boundary conditions. We choose non-negative initial
data with finite energy. We require the correlation functionq introduced in
Eq. (20) to beL−periodic. Recall that it is even and non-negative, too. For
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simplicity2 we assumeq to be continuous. It is well known (see, e.g. [26]
or [27]) that space-time noiseN (x, t) satisfying Eq. (20) can be written as
the formal time-derivative of theQ-Wiener processW (x, t), namely

N (x, t) =
∂W

∂t
(x, t) =

+∞∑
k=−∞

λk β̇k(t) gk(x). (48)

Theβk, k ∈ Z, form a family of mutually independent Brownian motions
with respect to time and the dot denotes the time-derivative.λ2

k, k ∈ Z are
the eigenvalues of the Hilbert-Schmidt operatorQ

(Qf)(x) := 2T
∫ L

0
q(y − x) f(y)dy (49)

corresponding to the complete system of orthonormal eigenfunctions

gk(x) :=


√

2
L cos(2π k x

L) for k ∈ N√
1
L for k = 0√
2
L sin(2π k x

L) for − k ∈ N.

(50)

Sinceq is real and symmetric we haveλ2
k = λ2

−k ≥ 0.
For the discretization of Eq. (19), a number of side conditions have to

be respected. To enhance the numerical performance, it is recommended
to solve the equation in a finite-element/finite-volume setting. An approach
based on Fourier-series (suggested by the trigonometric eigenfunctions of
Q in Eq. (50)) has the disadvantage that the nonlinearities inherent in equa-
tion (19) give rise to linear systems involving full matrices. In addition, it
is not known whether a Fourier-approach allows for non-negativity results
for discrete solutions—in particular if the effective interface potential is not
+∞ ath = 0.

We describe now the ingredients of the numerical scheme we are going
to use. ForN ∈ N we are given a uniform discretization of the interval
Ω = [0, L] with grid parametera := L

N and nodal pointsxi := i a, with
i = 0, · · · , N. Corresponding to this, we consider the periodic linear finite-
element space

V N
per := {v ∈ H1

per(Ω) : v|(xi,xi+1) is linear∀ i = 0, · · · , N − 1}.

Here,H1
per(Ω) := {v ∈ H1

loc(R) : v(x) = v(x + L) a.e. inR} where
H1
loc(R) is the usual Sobolev space of measurable, locally square-integrable

functions which have locally square-integrable weak derivatives of first or-
der. A basis ofV N

per is given by functionsφj ∈ V N
per satisfyingφj(xi) =

2Since only spatially discrete noise enters the numerical simulations, assumingq(x) to be
continuous does not mean any restriction—even not in the case of discrete approximations of
white noise. Just assume suppq to be sufficiently small.
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δij , i, j = 1, · · · , N . We introduce the nodal projection operatorIN :
H1
per(Ω) → V N

per which mapsu ∈ H1
per(Ω) to the unique elementINu ∈

V N
per satisfyingu(xi) = INu(xi) for all i = 0, · · · , N . The graph ofINu is

a polygon through the points(xi, u(xi)), i = 0, · · · , N . This way, we may
define the lumped masses scalar product

(Θ,Ψ)N :=
∫ L

0
IN (Θ ·Ψ). (51)

The diagonal and positive definite lumped mass matrixMN is given by
(MN )ij = (φi, φj)N = a δij , andLN stands for the stiffness matrix(LN )ij =
(∇φi,∇φj), where we write(u, v) for the usualL2−scalarproduct onΩ.

In the followingHn ∈ V N
per denotes the discrete approximation to the

solutionh(x, tn) of Eq. (19) aftern time steps. Introducing the coefficient
vectorH̄ ∈ RN , we can writeHn =

∑N
i=1 H̄

n
i φi.

Discretization of the stochastic part. Let us concentrate now on the
stochastic part of Eq. (19). Ignoring for a moment the deterministic terms
on the right-hand side, we are formally left with the scalar conservation law

∂h

∂t
= ∂x

[√
M(h)N (x, t)

]
. (52)

We discretize this equation in two steps. Formulating first a discretization of
the noise term, we insert it in the second step into a standard upwind scheme
for the convective term.

In Eq. (48), the noise term is written as an infinite sum of mutually
independent stochastic processes. In the discrete setting, the number of pro-
cesses is to be chosen identical to the dimension ofV N

per. Therefore, we
need onlyN processes, and we discretize the correlation function in the
following way. For each nodal pointi = 0, · · · , N , we consider

qNi := a−1

∫ xi+
a
2

xi−a2
q(x)dx (53)

as the discrete substitute ofq. By periodicity ofq, we haveqN0 = qNN .
ExtendingqNi, i = 0, · · · , N, to a mappingq : Z × Z → R

+
0 according to

the rules

qij = qi+l j+l and qi+N j = qi j+N = qij for each i, j, l ∈ Z, (54)

we get a discrete substitute for the Hilbert-Schmidt operatorQ. It is the
operatorQN : RN → R

N which fory ∈ RN is defined as

(QN y)i := 2T a
N∑
j=1

qij yj . (55)

Note in particular thatQN = 2T Id
RN if q|(−L/2,L/2) is a continuous ap-

proximation ofδ(x) supported in(−a/2, a/2). The following lemmata can
easily be proven.
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Lemma 3.1 LetN ∈ N be an odd number. Fork ∈ {−N−1
2 , · · · , N−1

2 }
considergk ∈ RN defined asgki := gk(xi), i = 1, · · · , n. Then there exist
numbersσ2

k(N), k ∈ {−N−1
2 , · · · , N−1

2 }, with σ2
−k(N) = σ2

k(N), such
that

QN · gk = σ2
k(N) gk ∀ k ∈ {−N − 1

2
, · · · , N − 1

2
}. (56)

Thegk, k = −N−1
2 , · · · , N−1

2 form an orthonormal basis ofRN with re-

spect to the scalar product〈x,y〉N := a
∑N

i=1 xiyi.
If q ∈ L2(0, L) with λ2

k, k ∈ Z, the eigenvalues of the corresponding
Hilbert-Schmidt operatorQ, then we have for eachk ∈ Z

lim
N→∞

σ2
k(N) = λ2

k. (57)

Lemma 3.2 LetN ∈ N be an odd number. Fork ∈ {−N−1
2 , · · · , N−1

2 },
the functionsINgk form an orthonormal basis ofV N

per with respect to the
lumped masses scalar product(·, ·)N .

For a mutually independent family of Brownian motionsβk with respect to
time, k ∈ {−N−1

2 , · · · , N−1
2 }, we consider the spatially discretizedQN -

Wiener processWa(x, t) and the corresponding spatially discrete noise

Na(x, t) :=
∂Wa

∂t
(x, t) =

N−1
2∑

k=−N−1
2

σk(N) β̇k(t) INgk(x), (58)

for which we can easily establish the following results.

Lemma 3.3 For timest, s ∈ [0, T ], a positionx ∈ [0, L], and node num-
bersi, j ∈ {1, · · · , N}we have〈Na(x, t)〉 = 0 and〈Na(xi, t)Na(xj , s)〉 =
2T δ(t− s) qij .

Note that this way the structure ofQ−Wiener-processes is transferred to
the discrete setting. In fact, (49) has its analogue in (55), the eigenfunc-
tions INgk are orthonormal w.r.t. the lumped masses scalar product, and
the properties stated in (20) correspond to those stated in Lemma3.3.

To discretize the time-Wiener-processes in the framework of Ito-calculus,
we replaceβ̇k(tn) at a time-steptn by the forward difference quotient

βk(tn+1)− βk(tn)
tn+1 − tn

. (59)

The differenceβk(tn+1) − βk(tn) is normal distributed and the variance is
given by the time-incrementτn := tn+1 − tn. On the discrete level, we
approximate the difference quotient (59) by

Nnk√
τn

, k ∈ {−N−1
2 , · · · , N−1

2 }.
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Here,n is the index of time-stepping, andN n
k are computer generated ran-

dom numbers which are approximatelyN(0, 1)−distributed. Altogether,
the space-time-discrete noise term is given by

N n
a,τn(x) :=

1
√
τn

N−1
2∑

k=−N−1
2

σk(N)N n
k INgk(x). (60)

By construction, bothNa(x, t) andN n
a,τn(x) areL-periodic inx.

The second ingredient is an upwind discretization for the scalar conser-
vation law in Eq. (52) subjected to periodic boundary conditions for bothN
andh which is inspired by [28]. For j = 0, · · · , N − 1 we introduce

N̄ n
j+ 1

2

:= a−1

∫ xj+1

xj

N n
a,τn(x)dx (61)

and we abbreviate
M0(h) := M(max(0, h)). (62)

Then the scheme reads as follows. Given a functionH0 :=
∑N

j=1 H̄
0
j φj ,

find for n ∈ N iteratively vectorsH̄n ∈ RN which satisfy

H̄n+1
j = H̄n

j −
τn
a

(
N̄ n
j+ 1

2

Mn
j+ 1

2

− N̄ n
j− 1

2

Mn
j− 1

2

)
(63)

with

Mn
j+1/2 :=


√
M0(H̄n

j ) if N̄ n
j+ 1

2

≥ 0,√
M0(H̄n

j+1) if N̄ n
j+ 1

2

< 0.
(64)

Using the notation[
∂NEO

(√
M0(H̄n),N n

a,τn(·)
)]

j

= a−1
{
N̄ n
j+ 1

2

Mn
j+ 1

2

− N̄ n
j− 1

2

Mn
j− 1

2

}
, (65)

we may abbreviate

H̄n+1 = H̄n − τn ∂NEO
(√

M0(H̄n),N n
a,τn(·)

)
. (66)

The full time stepping scheme. Combining the scheme for the convec-
tive part (66) with the scheme for the fourth-order equation from Eq. (94),
we end up with the full time-stepping scheme for Eq. (19)

H̄n+1 +
τn
a
LMN (H̄n+1) ·

[
1
a
LN · H̄n+1 + Φ′+(H̄n+1) + Φ′−(H̄n)

]
= H̄n + τn ∂

N
EO

(√
M0(H̄n),N n

a,τn(·)
)
. (67)
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LMN is the mobility weighted stiffness matrix andΦ+ is the non-negative
and convex part of the effective interface potential whileΦ− is the concave
rest term, see App.B.

In the original equation Eq. (19), the function under the square root in
the prefactor of the noise term is the mobility. As shown in Sec.2.3 this is
necessary if one wants the stationary distribution to be given by the Boltz-
mann weight. The prefactor of the noise term in Eq. (67) is not the square
root of the discrete mobilityMσ defined in Eq. (92). This is due to the fact
that it is not clear whether an upwind scheme can be constructed using the
discretized mobility. Note however that the difference between the different
mobilities is small and of ordera.

3.2 Numerical results

In physical experiments on the dewetting of liquid films on planar surfaces,
usual three different time-scales can be observed. The first one is charac-
terized by the time which is needed to pass from an initially nearly flat film
to the first local rupture event. Much smaller is the time-scale of droplet
formation which covers the time interval from the first rupture instant to
the formation of a metastable collection of droplets connected by ultra-thin
films. The third time-scale is that one of coarsening – it is by far the largest
one (see e.g. [29] for further details). In this subsection, we give numeri-
cal evidence for our conjecture that thermal fluctuations may accelerate film
rupture, i.e. diminish the ratio

rupture time-scale
droplet-formation time-scale

.

To this scope, we perform a number of numerical experiments onΩ =
(0, L), L = 15 and we choose the effective interface potentialΦ(h) :=
1
30 · h

−3 − 1
2 · h

−2. Generically, our choice of correlation functionq (cf.
(20)) restricted to(−L/2, L/2) is

q(x, lc) :=

{
Z−1 · exp

(
−1

2 sin2(πxL )L
2

l2c

)
if lc > 0

δ(x) if lc = 0.

Here,Z is chosen such that
∫ L

0 q(x, lc) dx =
√

2T . Note thatlc denotes the
correlation length.We probe the influence of characteristic noise parameters
like intensityT and correlation length on the dewetting dynamics. As a first
step towards studying the properties of the scheme, we monitor the depen-
dence of the results on various discretization parameters, too. It turns out
that the effect of noise on thedroplet-formation time-scaleis negligible. In
that regime, the fourth-order operator governs the evolution. In contrast, the
rupture time-scaleis strongly affected by noise effects and becomes smaller
monotoneously with increasing noise intensity and decreasing correlation
length.
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Figure 2: Snapshots at timest = 10, 12, 13, 14, 15, 15.5, 15.75, 16 for the
deterministic thin-film equation. Discretisation parameters are the grid spacing
a = 2−9 L and time stepτ = a

5
2 .

Figure 3: Snapshots at timest = 0.025, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 4.0 for
the stochastic TFE with correlation lengthlc = 0 and noise strengthT = 0.00125.
The discretisation parameters, initial conditions and spatial domain size are the
same as in Figure2.

To provide a qualitative picture, figure2 and3 show snapshots of the
deterministic process and of a sample path of the stochastic process under
moderate noise intensity, respectively. Note that the time of first rupture
decreases from 15.5 (deterministic) to 2.98 (stochastic) whereas the time
span needed to form droplets after the first rupture event remains approxi-
mately the same. In fact, a closer look at the numerical results reveals that
the parabolic character of single droplet profiles is essentially not affected
by the noise. This is in contrast to the planar film for which the roughness
of the film surface reflects the correlation length of the noise (see Figure4
for snapshots of sample paths for processes corresponding to different cor-
relation lengths).

t = 0.025

t = 0.050

Figure 4: Film roughness in terms of correlation lengthlc: Local snapshots of the
film surface at timest = 0.025 and0.05 for noise strengthT = 4.05 · 10−3 and
lc = 0, 0.5, 1 (from left to right). Discretization witha = 2−9L, τ = a2. For the
three simulations the same sequence of random numbers have been used.
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Figure 5: Statistics of first-rupture time for white noise driven thin-film flow (lc =
0): Computation of20 sample paths forT = 5 · 10−5 (left, mean value and
standard deviation are(µ, σ) = (7.1, 0.4)) andT = 1.25 · 10−3 (right, (µ, σ) =
(3.6, 0.4)) respectively. Discretization witha = 2−8L, τ = a2.

T\lc 0 0.25 0.5 1

0 16.5 16.5 16.5 16.5
5.00 · 10−5 8.9 10.0 10.2 10.3
4.50 · 10−4 6.5 7.8 8.0 8.2
1.25 · 10−3 5.2 6.6 6.7 7.0
2.45 · 10−3 4.5 5.7 5.8 6.1
4.05 · 10−3 3.9 5.1 5.3 5.5

Table 1: First-rupture time in terms of noise intensity and correlation length. Av-
erage over two sample paths each. Discretizationa = 2−9L, τ = a2.

In general, this effect is the stronger, the stronger the noise intensity is.
Figure5 provides histograms of the time of first rupture events forK = 20
realizations of stochastic processes with intensity factorsT = 5 · 10−5 and
T = 1.25 · 10−3, respectively. Similarly, the noise induced acceleration is
enhanced for decreasing correlation length and for increasing noise intensity
as shown in Table1.

As both the practical and the analytical aspects of stochastic thin-film
numerics constitute a vast “terra incognita”, in a first step it seems necessary
to scrutinize whether our choice of discretization parameters with respect to
time or to space might affect the first rupture instant. For white noise, Ta-
ble 2 gives first indication of the effects the spatial discretization has on
rupture times. For a fixed time discretizationτ = a

5
2 and various noise in-

tensities there is no statistically significant effect of spatial discretization on
rupture times. In particular, this effect is negligible compared to the effects
noise intensities have on rupture. Similarly, for various noise intensities and
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T\g 7 8 9

0 13.5 15.7 15.5
5.00 · 10−5 7.3± 1.0 7.1± 0.9 6.0± 0.8
1.25 · 10−3 3.9± 1.0 3.1± 0.5 2.4± 0.6
4.05 · 10−3 2.5± 0.5 1.6± 0.4 1.4± 0.5

Table 2: Monitoring the scheme for white noise driven thin-film flow (lc = 0):
Mean rupture time and standard deviation (averaged over 6 sample paths each) in
terms of spatial discretization parametersa = 2−g and various noise intensities.
Time discretizationτ = a

5
2 . All runs were started with same initial data.
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Figure 6: Monitoring the scheme for white noise driven thin-film flow (lc = 0):
Mean rupture time (averaged over six sample paths each) as a function of vari-
ous noise intensities

√
2T for several time discretizations. Errorbars indicate the

standard deviation. Forτ = a2 andτ = a2.5 errorbars were shifted to the left and
right by 0.002, respectively, for better visibility. Spatial discretizationa = 2−9L.
All runs were started with same initial data.
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a fixed spatial grid parametera = 2−9L, Figure6 indicates that the partic-
ular choice of time-increments does not have significant impact on rupture
times. These findings are further supported by formal integral estimates
based on Ito’s formula which will enter future work [30] on the existence of
a.s. non-negative processes solving the stochastic thin-film equation.

3.3 Physical Relevance

In this subsection, we sketch a scaling argument which indicates that the
relative change of dewetting time-scales caused by thermal fluctuations has
the right order of magnitude to resolve the discrepancies between physical
experiment and deterministic simulation observed in [5]. Since presently we
do not have a numerical scheme at our disposal for the multi-dimensional
SPDE which would allow for a dimensionalized comparison with the phys-
ical experiment, we estimate noise amplitudes based on the data of [5] and
compare them with our results in Subsection3.2. So let us return to dimen-
sionalized quantities

η
∂h

∂t
= ∂x

{
h3

3
∂x
[
Φ′(h)− γ∇2

xh
]

+

√
h3

3
N

}
(68)

and
〈N (x, t)N (x′, t′)〉 = 2 kB T η δ(x− x′) δ(t− t′). (69)

Here, the unit of the noiseN is η U√
d

. For the sake of clarity, we use the tilde
again to distinguish between dimensionalized and non-dimensionialized quan-
tities here. In order to estimate the amplitudeT̃ = kB T d

η U λ3 of the noise, we
consider the system studied in [5], i.e., a polystyrene (PS) film of thickness
d ≈ 4 nm on silicon dioxide. In this case, the thin liquid film is linearly
unstable and the characteristic lateral length scale is given by the disper-

sive capillary lengthλ = 4
√

π3 γ d4

A , which is the most unstable mode in
a linear stability analysis of the deterministic part of Eq. (68). With the
Hamaker constantA ≈ 2 · 10−20 Nm and the surface tension coefficient
γ ≈ 3 · 10−2 N/m we haveλ ≈ 400 nm. The Hamaker constant determines
the disjoining pressureΠ(h) = − A

6π h3 if we neglect the short-ranged part
of the potential. The viscosity isη ≈ 1200 Ns/m2. In the deterministic part
of Eq. (68) there are two terms which can drive the flow, the disjoining pres-
sure and the surface tension. The flow associated with each part is of the
order ofdU and from this we derive two characteristic velocities, namely
UΠ = A

6π dλ η ≈ 0.6 nm/s andUγ = d3 γ
3λ3 η

≈ 8 · 10−3 nm/s, respectively.
We have to take the larger of the two velocities and thereforeU ≈ 0.6 nm/s.
According to Eq. (8) with this choice ofU the nondimensional disjoining
pressure has no free parameterΠ̃(h̃) = − 1

h̃3
and the noise amplitude is

given by T̃ = 3 kB T
8π2 d2 γ

, i.e., independent of the Hamaker constant and the
viscosity. This result is in fact independent of the form of the disjoining
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pressure and also holds if the short-ranged part is included. The experi-
ments were performed atT = 53◦C and we havekB T ≈ 4.5 · 10−21 Nm.
This leads toT̃ ≈ 4 · 10−4. The noise induced current is therefore about
two orders of magnitude smaller than the current induced by the disjoining
pressure. With the rescaling in Eq. (8) and the choice ofλ andU from above
the nondimensional surface tension coefficient isγ̃ = 3

8 . Now observe (cf.
Figures2, 3, and Table1) that noise intensities of order̃T ∼ 10−4 diminish
the ratio betweenrupture time-scaleanddroplet-formation time-scalein our
first numerical experiments by a factor5. Hence, our results would be of the
right order of magnitude to resolve the discrepancies with respect to time-
scales observed in Figure 1 of [5]. The first image shows the film just after
rupture while the last one gives a rough estimate for the droplet formation
time.

4 Conclusions

In this paper, we derived a stochastic version of the thin-film equation based
on the lubrication approximation for incompressible stochastic hydrody-
namic equations [7]. We demonstrated its thermodynamic consistency, in
particular with the equilibrium distribution of film thickness. The derivation
of the SPDE was presented in one space dimension, it can, however, be gen-
eralized to the higher dimensional setting in a straightforward way, and we
get

∂h

∂t
=∇ ·

{
h3

3
∇
[
Φ′(h)− γ∇2h

]
+

√
h3

3
N (t)

}
, (70)

with 〈N (r, t)〉 = 0 and〈Ni(r, t)Nj(r′, t′)〉 = 2T δij δ(r − r′) δ(t − t′).
This stochastic equation can be used to investigate the influence thermal
fluctuations have on (de)wetting dynamics of thin liquid films which has
been studied extensively in the last decades, but theoretically solely by de-
terministic dynamical equations. However, thermal noise gain a more and
more important role the smaller the system size becomes.

Recent studies of thin film evolution indicate that thermal noise influ-
ences characteristic time-scales of the dewetting process of linearly unstable
thin films [5]. For an experimental model system the measured film mor-
phology has been compared quantitatively to the numerical solution of the
deterministic thin film equation with measured microscopic system parame-
ters such as the substrate potentialΦ and the surface tensionγ. One observes
the same spatial patterns in the experiment as well as in the simulation but
the time scales do not match.

The numerical solutions presented here are based on a finite-volume
scheme for the discretization of the stochastic thin-film equation (70) in one
dimension. Our results cannot be compared to experiments directly but they
indicate that thermal noise accelerates the initial dewetting process of the
film rupture while leaving the time-scale of droplet formation unchanged.
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This might resolve the reported discrepancies between experiments and
deterministic simulations in [5]. In addition, the conserved noise term in
the stochastic thin film equation (70) changes the spectrum of fluctuations
as compared to the deterministic dynamics considerably. This prediction
seem to be confirmed in recent AFM measurements of the initial states of
dewetting of thin polymer films [31]. Thus, from a physical point of view,
it is desirable to develop higher-dimensional schemes for Eq. (70) and to
compare dimensionalized numerical simulations with physical experiments
of thin films.

As a consequence of the results presented here, also a number of inter-
esting mathematical questions arise. It remains to investigate existence (and
uniqueness) of a stochastic process solving (70), and it will be an issue not
only for physical reasons to prove non-negativity of the paths almost surely.
Related to this question is the problem of analyzing the scheme proposed in
Section3, the qualitative behaviour of solutions as well as their convergence
properties in the limit of vanishing discretization parameters. It might also
be inspiring to provide rigorous estimates for the acceleration effect thermal
fluctuations have on dewetting dynamics.

In the course of miniaturisation of electronic and microfluidic devices a
fully quantitative description of Newtonian liquids at surfaces are essential
and requires quantitative stochastic modelling of ultrathin film dynamics
as well as mathematically well-controlled numerical schemes as presented
here.
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A Many stochastic processes per degree of
freedom

The stochastic thin-film equation (32) differs from the stochastic differential
equations as discussed in [21, 20] in that there are more stochastic processes
S`i (t) than dependent variablehi(t). However, all theS`i (t) are Gaussian
random variables with zero mean and they areδ-correlated, see Eq. (30). In
this appendix we will calculate the Fokker-Planck equation corresponding
to such a stochastic differential equation.

With G`ij(h) = ∇sij q`(hj) we can write Eq. (32) in the form

dh
dt

= F(h) +
∞∑
`=0

G`(h) · S`(t), (71)
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with
〈S`(t)〉 = 0, 〈S`i (t)Smj (t)〉 = 2T δij δ`m δ(t− t′), (72)

andT = τ/a2. The following arguments do not depend on the explicit form
of F andG` and both can be generalized toF andG` which depend on time
explicitly. However, we require that both can be expanded in a Taylor series
around anyh. We are interested in the time evolution of the probability
W(h, t) to find theh at timet. This time evolution is in general given by
the Kramers-Moyal expansion [20, Eq. (4.86)]

∂W(h, t)
∂t

=
∞∑
n=1

∑
i1,··· ,in

(−1)n ∂n

∂hi1 · · · ∂hin
D

(n)
i1,··· ,in(h)W(h, t), (73)

with the Kramers-Moyal expansion coefficients

D
(n)
i1,··· ,in(h) =
1
n!

lim
∆t→0

1
∆t
〈[hi1(t+ ∆t)− hi1(t)] . . . [hin(t+ ∆t)− hin(t)]〉 . (74)

If the Kramers-Moyal expansion coefficients are zero forn > 2 one calls
the Kramers-Moyal expansion Eq. (73) Fokker-Planck equation. We will
see that this is indeed the case for Eq. (71) and we will calculate the first
and second expansion coefficient. For generalG`ij(h) the second coefficient
depends on the choice of stochastic calculus. In this appendix we use Ito
calculus but the following calculations can be generalized to Stratonovich
calculus easily.

In order to calculate the Kramers-Moyal coefficients we use the method
outlined in [20, Sec. 3.4] for the simpler case when there are not more noise
terms than dependent variables. First we write Eq. (71) in integral form

h(t+ ∆t)− h(t) =

t+∆t∫
t

[
F(h(t′)) +

∞∑
`=1

G`(h(t′)) · S`(t′)
]
dt′ (75)

and get the change ofh in a small but finite time interval needed to calcu-
late the expansion coefficients from Eq. (74). We expandF andG` in the
integrand aroundh(t), namely the value at the beginning of the integration
interval

F(h(t′)) = F(h(t)) +
∑
i

∂F(h(t))
∂hi

[
hi(t′)− hi(t)

]
+ . . . (76)

G`(h(t′)) = G`(h(t)) +
∑
i

∂G`(h(t))
∂hi

[
hi(t′)− hi(t)

]
+ . . . .(77)

The ellipses stand for terms of higher order inhi(t′)− hi(t). This we insert
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in the integral form Eq. (75) and get

h(t+ ∆t)− h(t) =

t+∆t∫
t

[
F(h(t)) +

∞∑
`=1

G`(h(t)) · S`(t′)
]
dt′

+

t+∆t∫
t

∑
i

[
∂F(h(t))
∂hi

+
∞∑
`=1

∂G`(h(t))
∂hi

· S`(t′)
]

×
[
hi(t′)− hi(t)

]
dt′ + . . . . (78)

We can expandhi(t′) − hi(t) in the second term using Eq. (78) again and
get

h(t+ ∆t)− h(t) ≈
t+∆t∫
t

[
F(h(t)) +

∞∑
`=1

G`(h(t)) · S`(t′)
]
dt′

+

t+∆t∫
t

∑
i

{[
∂F(h(t))
∂hi

+
∞∑
`=1

∂G`(h(t))
∂hi

· S`(t′)
]

×
t′∫
t

Fi(h(t)) +
∑
j

∞∑
m=1

Gmij (h(t))Smj (t′′)

 dt′′}dt′ + . . . . (79)

Iterating these substitutions finally yields an infinite sum of terms only de-
pending onh(t), i.e., only the value ofh at the beginning of the integration
interval. In order to calculate the first Kramers-Moyal expansion coefficient
we need to take the average of Eq. (79). Since〈S`(t)〉 = 0 we are left with

〈hi(t+ ∆t)− hi(t)〉 = Fi(h(t)) ∆t+
∑
j,k,k′

∞∑
`,m=1

∂G`ik′(h(t))
∂hk

×Gmkj(h(t))

〈 t+∆t∫
t

t′∫
t

S`k′(t′)Smj (t′′)dt′′dt′
〉

+ . . . . (80)

The remaining terms are higher order in∆t. Each term on the right-hand
side of Eq. (79) is under at least one integral. The order of terms without
noise is therefore given by the number of integrals. Terms containing an odd
number of noises are zero and terms containing an even number of noises,
sayp, have at leastp integrals. Each pair of noises gives a delta function
in time and therefore reduces the order of the term byp/2. We only need
terms up to linear order in∆t and therefore only terms containing at most
two integrals have to be considered. According to the rules of Ito calculus,
the average in the second term is zero and we get for the first Kramers-Moyal
expansion coefficient

D(1)(h(t)) = lim
∆t→0

〈h(t+ ∆t)− h(t)〉
∆t

= F(h(t)). (81)
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Next we calculate the second Kramers-Moyal coefficient. We use Eq. (79)
and〈S`(t)〉 = 0 in order to calculate the average in Eq. (74)

〈[hi(t+ ∆t)− hi(t)] [hj(t+ ∆t)− hj(t)]〉 =

∑
k,k′

∞∑
`,m=1

G`ik(h(t))Gmjk′(h(t))

〈 t+∆t∫
t

S`k(t′) dt′
t+∆t∫
t

Smk′ (t′′) dt′′
〉

+ . . . . (82)

All other terms are either zero or of higher than first order in∆t, see the
paragraph after Eq. (80). In the limit ∆t→ 0 we get with Eq. (72)

D
(2)
ij (h(t)) = lim

∆t→0

〈[hi(t+ ∆t)− hi(t)] [hj(t+ ∆t)− hj(t)]〉
2 ∆t

= T
∑
k

∞∑
`=1

G`ik(h(t))G`jk(h(t)). (83)

Using Eq. (79) in the definition for higher Kramers-Moyal coefficients,
namely Eq. (74) for n > 2, the only terms which are left after taking the
average are of order∆t2 or higher. Therefore all higher Kramers-Moyal
coefficients are zero, see also the corresponding argument for the Kramers-
Moyal coefficients for a Langevin equation with only one variable in [20,
Sec. 3.3.2]. The Kramers-Moyal expansion in Eq. (73) therefore collapses
to the Fokker-Planck equation

∂W(h, t)
∂t

=

−
∑
i

∂

∂hi

Fi(h)− T
∑
j,k

∂

∂hj

[ ∞∑
`=1

G`ik(h)G`jk(h)W(h, t)

] . (84)

Following the same calculations as presented above, we can immedi-
ately see that the Kramers-Moyal coefficients for the Langevin equation
with only one noise term per dependent variablehi

∂h
∂t

= F(h) + G(h) ·N (t), (85)

with
〈N (t)〉 = 0 and 〈Ni(t)Nj(t′)〉 = 2T δij δ(t− t′) (86)

are

D(1)(h(t)) = F(h(t)) and (87)

D
(2)
ij (h(t)) = T

∑
k

Gik(h(t))Gjk(h(t)). (88)
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The Fokker-Planck equation is therefore given by

∂W(h, t)
∂t

=

−
∑
i

∂

∂hi

Fi(h)− T
∑
j,k

∂

∂hj
[Gik(h)Gjk(h)W(h, t)]

 . (89)

The two Langevin equations (71) and (85) are equal if the probability
densitiesW(h, t) are equal at any time for equal initial conditions. This
means that the Fokker-Planck equations have to be equal. These are equal
if the Kramers-Moyal coefficients are equal. The first coefficients are equal
because the deterministic parts of Eqs. (71) and (85) are equal. Therefore
we get a condition onG`(h) andG(h) if we want equality of the second
coefficients in Eqs. (83) and (88), respectively.

B Discretization of the fourth-order differ-
ential operator

Let us briefly describe the discretisation of the deterministic thin-film equa-
tion (i.e., Eq. (19) for τ = 0)

∂h

∂t
= ∂x [M(h) ∂xp] (90a)

p = −∇2
xh+ Φ′(h). (90b)

Introducing for a small cut-off0 < σ � 1 the shifted mobility

mσ(h) :=

{
1
3 h

3 for h ≥ σ
1
3 σ

3 else,
(91)

we define the discrete mobilityMσ for the finite element approximation
H ∈ V N

per in the subintervalEi := (xi, xi+1), i = 0, · · · , N − 1. by the
formula

Mσ(H)|Ei :=

mσ(H̄i) if H̄i = H̄i+1

(H̄i+1 − H̄i)
(∫ H̄i+1

H̄i

1
mσ(s) ds

)−1
if H̄i 6= H̄i+1.

(92)
Observe that the degeneracy of the equation is mimicked by the fact that
Mσ(H)|Ei becomes small ifHi or Hi+1 tend to zero. Theσ-truncation in
Eq. (91) is used to guarantee wellposedness of Eq. (92). On the other hand,
the degeneracy of the equation is mimicked by the fact thatMσ(H)|Ei be-
comes small ifHi or Hi+1 tend to zero. In particular, the special choice
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of Mσ guarantees that all the integral estimates from the continuous set-
ting carry over to the discrete setting. Therefore, non-negativity of discrete
solutions can be proven in a natural way, see [2] for more details.

DecomposingΦ into a sumΦ = Φ+ + Φ− with Φ+ non-negative and
convex andΦ− concave, the following scheme was suggested in [32]. For
givenH0 ∈ V N

per andn ∈ N, find iteratively functionsHn+1 andPn+1 in
V N
per such that

(Hn+1 −Hn,Θ)N + τn(Mσ(Hn+1)∇Pn+1,∇Θ) = 0 (93a)

(∇Hn+1,∇Ψ) + (Φ′+(Hn+1),Ψ)N + (Φ′−(Hn),Ψ)N = (Pn+1,Ψ)N
(93b)

for all test functionsΘ,Ψ ∈ V N
per. Here, τn = tn+1 − tn is the time-

increment. Introducing the mobility weighted stiffness matrix(LMN (H̄))ij :=∫
IMσ(H̄)∇φi∇φj , the system (93) is written equivalently in matrix form

as follows. For givenH̄n ∈ RN , find H̄n+1 ∈ RN such that

H̄n+1 − H̄n + τnM
−1
N · L

M
N (H̄n+1) ·

[
M−1
N · LN · H̄

n+1

+ Φ′+(H̄n+1) + Φ′−(H̄n)
]

= 0. (94)

Note thatM−1
N LMN (H̄n+1)M−1

N LN is a sparse matrix since the lumped
masses matrixMN is diagonal. For the uniform discretization used here
the diagonal elements ofMN area and we can replaceM−1

N in Eq. (94) by
1
a . With Φ′±(H̄) we denote the component vector ofΦ′±(H).

C Ito vs. Stratonovich calculus

In App.A we calculate the Kramers-Moyal expansion coefficients in Ito cal-
culus. In this section we will show, that for the stochastic thin film equations
(17) and (19) Ito and Stratonivich calculus are equivalent by showing that
the spurious drift term in the first Kramers-Moyal expansion coefficients
vanishes.

The only point in App.A where the difference between Ito and Stratonovich
calculus becomes important is the evaluation of the stochastic integrals in
the second term on the right hand side of Eq. (80). The result for Stratonovich
calculus can be obtained by assuming that theδ-function in Eq. (72) is sym-
metric with respect to the argument and we get for the first Kramers-Moyal
expansion coefficient

D(1)(h(t)) = F(h(t)) + T
∑
k,k′

∞∑
`=1

∂G`ik′(h(t))
∂hk(t)

G`kk′(h(t)). (95)

The difference to the first Kramers-Moyal expansion coefficient in Ito cal-
culus in Eq. (81) is the second term on the right hand side, the so-called
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spurious drift term. We get withG`ij(h) = ∇sij q`(hj) for the spurious drift
term for Eq. (32)

T
∑
k,k′

∞∑
`=1

∇sik′
∂q`(hk′)
∂hk

∇skk′ q`(hk′) = 0. (96)

The reason is, that∂q
`(hk′ )
∂hk

= δkk′
∂q`(hk)
∂hk

is symmetric ink andk′, while
the symmetric finite difference operator∇skk′ is antisymmetric ink andk′.
With the same argument the spurious drift term for Eq. (33) vanishes.

Since the only difference between Ito and Stratonovich calculus is the
spurious drift term, the Fokker-Planck equation for Eqs. (32) and (33) are
equal and therefore independent of the calculus used.
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