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Abstract

We consider the renormalized or Wick square of the free quantum
field, which is well-defined as a Hida distribution. It is known that
this is a random variable for space-time dimension d ≤ 3. In this
report, by considering the characteristic function, we show that this
Wick square is not a random variable in dimension d ≥ 4.
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1 Introduction

Let m0 > 0 be a fixed number and d ≥ 4. Let (φ, µ0) be Nelson’s Euclidean
free field on Rd of mass m0, i.e., µ0 is the centered Gaussian measure on
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S ′(Rd) with the covariance (−∆ + m2
0)
−1. Also, let f ∈ S(Rd), S(Rd) being

Schwartz’ function space of rapidly decreasing smooth test functions. Then
φ(f) ≡ ∫

Rd φxf(x)dx (in the distributional sense) is well-defined as a random
variable.

We also consider the quantity : φ2 : (f), which is well-defined as a Hida
distribution for all d (for this concept see, e.g., [12]). Here : · : stands for the
Wick power. In Section 2, by using analytic continuation of the relativistic
free field, we give the precise definition of : φ2 : (f). : φ2 : (f) is by definition
the Wick power of the Euclidean (quantum) free field (over the Euclidean
space-time Rd).

In Section 3, we recall the definition and the basic properties of Hida
distributions, and use them to confirm that : φ2 : (f) is a Hida distribution.

This Wick square field : φ2 : (f) has been studied in the d ≤ 3 dimensional
case, for example, in [1], [3], [10], [11], [14]. In these references, it is showed
in particular that : φ2 : (f) is a random variable for d ≤ 3. It is a natural
question to ask whether this quantity : φ2 : (f) is still a random variable for
d ≥ 4.

One can easily see that it can not be square integrable, moreover, in Sec-
tion 4, we shall see that the natural candidate for its characteristic function
turns out to be the function identically zero for d ≥ 4, which implies that
indeed : φ2 : (f) is not a random variable (see Proposition 4.1 and Theorem
4.2).

Remark 1 We want to emphasize that, for d ≤ 3, φ2 : (f) is a random

variable with a representation of the characteristic function (at 1
2
)) as e

1
2
M(f),

with M(f) expressed as in (4.3) (this has been discussed in [11]). (4.3)
can indeed be proven by a limit procedure, starting from a regularization of
: φ2 : (f)). From this, it follows that for d ≤ 3, : φ2 : (f) is an infinitely
divisible random variable, and in particular one can construct from it other
Euclidean fields of the form

∑N
i=1 : φ2

j : (f), with : φ2
j : (f) independent

fields distributed as : φ2 : (f), and N ∈ N; these in turn can be extended
to any N ∈ R. This motivated our study, in the hope of proving (4.3) also
for d ≥ 4 and thus obtaining a rich class of (infinitely divisible) Euclidean
random fields for d ≥ 4. However, our rigorous results leave little hope
for such a construction. We also want to remark that [3] showed that the
relativistic Wick square is not infinitely divisible (in a sense explained in [3])
in any space-time dimension.
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2 Definition of the relativistic resp. Euclidean

Wick square

In this section, we first recall the definition of the Wick square of the rela-
tivistic free field φR. We denote this Wick square by : φ2

R :. We then recall
the definition : φ2

E : of the corresponding Euclidean Wick square, by analytic
continuation of the relativistic free field (see also [2], [10], [12], [7], and the
references therein).

Let us first recall the relativistic free field. We consider the Fock space
F = ⊕∞n=0F

(n), where F (n) is the tensor product of n one particle spaces
F (n) = Sy[F1 ⊗ · · · ⊗ F (1)], F (0) ≡ C. Here ”Sy” stands for the symmetrizer.
F (1) is the space of complex valued functions on Rd square integrable with
respect to the measure dΩ+(p) = δ(p2 + m2

0)θ(p0)d
dp (mod the class of func-

tions of 0 norm with respect to this measure), where δ is the Delta-measure
at 0, p = (p0, p1, · · · , pd−1), p2 ≡ −p2

0 + (p2
1 + · · ·+ p2

d−1), and θ(p0) = 1{p0>0}.
The fields φR and : φ2

R : are defined according to the following: For any
n ∈ N, letM(n) be the set of all functions in F (n) such that |Φ(p1, · · · , pn)|(1+∑n

i=1 |p0
i |α) is bounded for p0 ≥ 0, for each α ∈ N. Let D be the linear span

of the sets M(n) (n ≥ 0). For any Φ ∈ D, the component of φR(f)Φ ≡∫
φR(x)f(x)dxΦ (the integral being in the distributional sense, i.e., φR is an

operator-valued distribution acting on the vector Φ) in F (n) is given by

(φR(f)Φ)n =
√

π
( 1√

n

n∑

k=1

f̃(−pk)Ψ(p1, · · · , p̂k, · · · , pn)

+
√

n + 1
∫

dΩ+(n)f̃(n)Ψ(n, p1, · · · , pn)
)
,

and the component of : φ2
R : (f)Φ in F (n) is given by

(: φ2
R : (f)Φ)(n) =

1

2

(
T(2,n,0)(f̃)Φ(n−2) + T(2,n,1)(f̃)Φ(n) + T(2,n,2)(f̃)Φ(n+2)

)
,

with f̃ being the Fourier transform of f (defined by f̃(p) =
∫

eixpf(x)dx,
f ∈ S(Rd)), and the operators T(2,n,j)(g) : M(n−2+2j) → M(n), j = 0, 1, 2,
given by

(T(2,n,0)(g)Ψ)(p1, · · · , pn) = (n(n− 1))−1/2
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×
n∑

k1 6=k2,k1,k2=1

g(−pk1 − pk2)Ψ(p1, · · · , p̂k1 , · · · , p̂k2 , · · · , pn), Ψ ∈M(n−2),

(T(2,n,1)(g)Ψ)(p1, · · · , pn) =
n∑

k1=1

∫
dΩ+(n1)g(n1 − pk1)Ψ(n1, p1, · · · , p̂k1 , · · · , pn), Ψ ∈M(n),

(T(2,n,2)(g)Ψ)(p1, · · · , pn) = ((n + 2)(n + 1))1/2

×
∫ ∫

dΩ+(n1)dΩ+(n2)g(n1 + n2)Ψ(n1, n2, p1, · · · , pn), Ψ ∈M(n),

where ·̂ means that the corresponding component is excluded. (See also [14]
and [20]).

Under the above definition, it is known that the corresponding Wightman
functions

Wn(f1, · · · , fn) = (Ω0, : φ2
R : (f1) · · · : φ2

R : (fn)Ω0),

with Ω0 ≡ (1, 0, · · · , 0, · · ·) ∈ F (0) the (relativistic) Fock vacuum and (·, ·)
the scalar product in F , satisfy the Wightman Axioms [21] (see also [19],
[13]). Therefore, the corresponding Schwinger functions (of the Euclidean
field) satisfy the Osterwalder-Schrader Axioms (see [16] and e.g., [18]). More
precisely, by axioms, there exist Wn(x1, · · · , xn) = (Ω0, : φ2

R : (x1) · · · : φ2
R :

(xn)Ω0) such that (in the distributional sensen)

Wn(f1, · · · , fn) =
∫

Rdn
f1(x1) · · · fn(xn)Wn(x1, · · · , xn)dx1 · · · dxn.

Let
Sn((x0

1, ~x1), · · · , (x0
n, ~xn)) ≡ Wn((ix0

1, ~x1), · · · , (ix0
n, ~xn)),

with (x0
j , ~xj) ∈ R ×Rd−1, j = 1, · · · , n, and define the Schwinger functions

corresponding to the Wightman functions by

Sn(f1, · · · , fn) ≡
∫

Rdn
f1(x1) · · · fn(xn)Sn(x1, · · · , xn)dx1 · · · dxn,

for any (f1, · · · , fn) ∈ S 6=(Rd) with S 6=(Rd) denoting the set of all functions
which vanish (together with their derivatives) on each hyperplane yi−yj = 0,
i, j = 1, · · · , n. Then Sn satisfies the Osterwalder-Schrader Axioms. There-
fore, there exists a Hilbert space HE, a (Euclidean) vacuum Ω0,E and a field
: φ2

E : (f) such that Sn(f1, · · · , fn) = (Ω0,E, : φ2
E : (f1) · · · : φ2

E : (fn)Ω0,E)HE
.

4



One can raise the question whether these Schwinger functions also satisfy
Nelson’s Axioms [15], [18] (in particular whether they satisfy Nelson’s pos-
itivity condition), so that the corresponding (Euclidean Wick square) field
(: φ2

E : (f), f ∈ S(Rd)) is not only an ”abstract operator field family”, but
also a family of random variables (defined on a common probability space).
We show however in Section 4 that this is not the case, since the only candi-
tate for the corresponding characteristic function is trivial (see Proposition
4.1 and Theorem 4.2).

3 Hida distributions

For some purposes like describing ”singular interactions”, the space L2(dµ0)
is too small, and we need to define a bigger space (this corresponds to extend-
ing L2(Rd) to S ′(Rd), the space of Schwartz tempered distributions, which
is given as the dual of the subspace S(Rd), the Schwartz space of rapidly
decreasing smooth test functions, in L2(Rd). The latter extension is needed
to describe ”singular functions”). We will use the Kondratiev triple

S ⊂ L2(dµ0) ⊂ S−1.

The definition is given below (see also, e.g., [4], [10], [12], and the references
therein).

For any p, q ∈ Z, we define the Hilbertian norm of a smooth Wick poly-
nomial ϕ(φ) =

∑N
n=1〈: φ⊗n :, ϕ(n)〉, φ ∈ S ′(Rd), by

‖ϕ‖2
p,q,1 ≡

∞∑

n=0

(n!)22nq|ϕ(n)|2p.

For any p, q,∈ N0, let (Hp)
1
q be the Hilbert space given by

(Hp)
1
q =

{
f ∈ L2(dµ0)

∣∣∣f(φ) =
∞∑

n=0

〈: φ⊗n :, f (n)〉, ‖ϕ‖p,q,1 < ∞
}
.

Finally, the space S of test functions is defined as

S = ∩p,q≥0(Hp)
1
q,

and S−1 is defined as the dual of S with respect to L2(dµ0). The elements in
S−1 are called Hida distributions. It is clear that S−1 = ∪p,q≥0(H−p)

−1
−q, where
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(H−p)
−1
−q denotes the dual of (Hp)

1
q with respect to L2(dµ0). The bilinear dual

pairing 〈〈·, ·〉〉 between S and S−1 is given by

〈〈f, ϕ〉〉 = (f, ϕ)L2(µ0), f ∈ L2(µ0), ϕ ∈ S.

The set S−1 can be characterizated by S transform (see, e.g., [12]). For
Φ ∈ S−1, the S transform of Φ is given by the following:

SΦ(g) ≡ 〈〈Φ, : exp(〈·, g〉) :〉〉, g ∈ U ⊂ S(Rd;C), (3.1)

where U is an open neighborhood of zero in S(Rd;C) depending on Φ ∈ S−1,
and : exp(〈·, g〉) : is given by

: exp(〈φ, g〉) :≡ exp(〈φ, g〉)
Eµ0 [exp(〈φ, g〉)] =

∞∑

n=1

1

n!
〈: φ⊗n :, g⊗n〉

for φ ∈ S ′(Rd), g ∈ S(Rd) (with Eµ0 the expectation with respect to µ0).
Let Hol0(S(Rd;C)) denote the space of germs of holomorphic functions.

Then we have the following (see, e.g., [10]).

THEOREM 3.1 1. If Φ ∈ S−1, then SΦ ∈ Hol0(S(Rd;C)),

2. For any F ∈ Hol0(S(Rd;C)), there exists a unique Φ ∈ S−1 such that
SΦ = F .

By using this result and the fact that Hol0(S(Rd;C)) is a algebra, for
any Φ, Ψ ∈ S−1, it is now possible to define the Wick product of them

Φ ¦Ψ ≡ S−1(SΦ · SΨ).

By induction, this defines the Wick power

Φ¦n = S−1((SΦ)n) ∈ S−1.

It is known that for a Gaussian process ϕ, the Wick product ϕ¦n defined
above coincides with the usual Wick product : ϕn :. Also, for any x ∈ Rd, it
is known that φx ∈ S−1, therefore, by the closedness property of S−1 under
Wick products, we get that : φ2

x :∈ S−1, too. Moreover, we have the following
(see, e.g., [10]):
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PROPOSITION 3.2 For every x ∈ Rd, there exists a Hida distribution
: φ2

x :∈ S−1 such that

〈〈1, : φ2
x1

: · · · : φ2
xn

:〉〉 = Sn(x1, · · · , xn), xi 6= xj(i 6= j).

Remark 2 One has to be careful about the notations. Actually, from the
fact that : φ2

x :∈ S−1, if one is not careful enough, one might think that, f
being smooth, it would follow that : φ2 : (f) ≡ ∫

: φ2
x : f(x)dx is well-defined

(in the sense of distribution over Rd) and takes a finite value. However, the
latter is NOT the case, since the fact : φ2

x :∈ S−1 only gives us that for any
fixed x ∈ Rd, 〈〈: φ2

x :, g〉〉 is finite for any g ∈ S.

We shall now see that : φ2 : (f) is a Hida distribution for any f ∈ S(Rd),
by using the definition (3.1) of S transform and Theorem 3.1. Actually, for
any g ∈ S(Rd;C) and λ ∈ R, we have by definition and a simple calculation
that

〈〈: φ2 : (f), : exp(〈φ, λg〉) :〉〉
=

∫
: φ2 : (f)

( ∞∑

n=1

1

n!
S′〈: φ⊗n :, (λg)⊗n〉S

)
µ0(dφ)

=
λ2

2

∫
: φ2 : (f) : φ(g)2 : µ0(dφ)

=
λ2

2

∫

Rd
f(x)dxEµ0 [: φ2

x :: φ(g)2 :]

=
λ2

2

∫

Rd
f(x)dxEµ0 [φxφ(g)]2

=
λ2

2

∫

Rd
f(x)dx(

∫

Rd
g(y)dyEµ0 [φxφy])

2

(where in the last but one equality we have used Eµ0 [: φ2
x :: φ(g)2 :] =

(Eµ0 [φxφ(g)])2, a simple consequence of the definition of : · : ).
Therefore, it is sufficient for the left hand side to be finite that∫

Rd f(x)dx(
∫
Rd g(y)dyEµ0 [φxφy])

2 < ∞. On the other hand, this is easily
seen from the well-known fact that Eµ0 [φxφy] ∼ 1

|x−y|d−2 as |x − y| → 0, the

fact that supx∈Rd

∫
|y−x|<1

1
|x−y|d−2 dy < ∞, and that f, g ∈ L1(Rd; dx). Hence

we have proven that : φ2 : (f) ≡ ∫
: φ2

x : f(x)dx is a Hida distribution.
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Remark 3 By a similar calculation, we have that : φn : (f) is a Hida dis-
tribution for any n ∈ N and any dimension d.

The following follows easily from Proposition 3.2.

PROPOSITION 3.3 〈〈1, : φ2 : (f1) · · · : φ2 : (fn)〉〉 = Sn(f1, · · · , fn).

As a immediate result of Proposition 3.3, we have the following

COROLLARY 3.4 We can identify : φ2 : (f) with : φ2
E : (f).

4 : φ2 : (f ) is not a random variable, for d ≥ 4

First, we make the observation that
∫
Rd : φ2

x : f(x)dx can not be in L2(µ0).
Heuristically in fact

E[
(∫

Rd
: φ2

x : f(x)dx
)2

]

=
∫

Rd
f(x)dx

∫

Rd
f(y)dyE[: φ2

x :: φ2
y]

=
∫

Rd
f(x)dx

∫

Rd
f(y)dyE[φxφy]

2

is infinite for d ≥ 4, since E[φxφy] ∼ 1
|x−y|d−2 for x, y ∈ Rd as |x − y| →

0. This heuristic argument can be made rigorous by replacing : φ2
x : by a

regularized version in x, repeating above computation, using Fubini theorem
and removing the regularization at the end.

We next discuss the non-existence of the characteristic function of : φn :
(f). Indeed, if : φ2 : (f) were a random variable, then we should be able to
consider its characteristic function E[eiα:φ2:(f)], α ∈ R.

As in [3] and [11], by the definition of Gaussian measure µ0, we first have
the following heuristic expression:

E[eiα:φ2:(f)] = exp(−1

2
Tr{ln[1− i2αf(−∆ + m2

0)
−1] + i2αf(−∆ + m2

0)
−1}).
(4.1)
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For the sake of simplicity, we take α = 1
2

from now on, and consider

L(f) ≡ E[e
i
2
:φ2:(f)]

= exp(−1

2
Tr{ln[1− if(−∆ + m2

0)
−1] + if(−∆ + m2

0)
−1})

= exp(−1

2
Tr{ln(−∆ + m2

0 − if)− ln(−∆ + m2
0) + if(−∆ + m2

0)
−1}).

As in [3], by using the expressions − ln z =
∫∞
0

ds
s
(e−sz − e−s) and z−1 =∫∞

0 dse−sz, we get

L(f) = exp(
1

2

∫ ∞

0

ds

s
Tr(e−s(−∆+m2

0)+isf − (1 + isf)e−s(−∆+m2
0))).

Let

M(f) ≡
∫ ∞

0

ds

s
Tr(e−s(−∆+m2

0)+isf − (1 + isf)e−s(−∆+m2
0)), (4.2)

and we will show that this is not well-defined for f ≡/ 0.
Before calculating it rigorously, let us first consider the order for s small

of the integrand heuristically. We re-write (4.2) as
∫ ∞

0

ds

s
Tr(e−s(−∆+m2

0)(eisf − 1− isf)).

For s small, we have that eisf − 1 − isf has order s2 for f ≡/ 0, and e−m2
0s

has order 1. We next discuss the order of Tr(es∆). It is well-known that
in dimension 1, ∆ has eigenvalues {−k2}k≥0 (with corresponding eigenfunc-
tions sin kx), so in dimension 1, Tr(es∆) =

∑∞
k=0 e−k2s, which has order 1√

s
.

Therefore, for genernal dimension d, we have that Tr(es∆) has order s−d/2

for s small. Put all of these together, and we get that the integrand of (4.2)
has order 1

s
s−d/2s2 near s = 0, which is not integrable if d ≥ 4.

Finally, as in [11], by using Feynman-Kac formula, we have that

M(f) =
∫ ∞

0

ds

s
e−m2

0s
∫

ddxdW(x,x)(x(·))
{

exp(i
∫ s

0
f(x(τ))dτ)−1−i

∫ s

0
f(x(τ))dτ

}
.

(4.3)
Here dW(x,x)(x(·)) means the Wiener measure over closed paths, which start
in x at τ = 0 and end at x at τ = s (”Brownian loop” measure).

This expression is well-defined for d = 2, 3 (see [11]). However, this is not
the case for d ≥ 4. In the following, we take the example d = 4 for simplicity
and show rigorously that the expression (4.3) is NOT well-defined.
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PROPOSITION 4.1 Let d = 4. Then for any f ∈ S(Rd) strictly positive,
we have that M(f) = −∞.

Proof. Without loss of generality, we may and do assume that there
exists a r > 0 such that f ≥ 1B(0,r), where B(0, r) stands for the ball in R4

with center 0 and radius r.
First, by using the same method as below, it is easy to see that the

integral of the third remainder of the Taylor expansion (of exp(i
∫ s
0 f(x(τ))dτ)

in power of
∫ s
0 f(x(τ))dτ) is finite. Therefore, we only need to show that the

quadratic term is infinite, i.e., to show that

∫ ∞

0

ds

s
e−m2

0s
∫

ddxdW(x,x)(x(·))
[ ∫ s

0
f(x(τ))dτ

]2
= ∞.

We shall now prove this.
Since the Wiener measure is translation invariant, for x(·) under W(x,x),

we can write x(t) = x+ω(t), where ω(·) is under W(0,0), i.e., the path pinned
up at 0. Also, we remark that there exists a constant Cr > 0 such that

∫

R4
d4x1B(0,r)(x + y1)1B(0,r)(x + y2) ≥ Cr1B(0,r/2)(y1)1B(0,r/2)(y2)

for any y1, y2 ∈ R4.
Therefore,

∫ ∞

0

ds

s
e−m2

0s
∫

ddxdW(x,x)(x(·))
[ ∫ s

0
f(x(τ))dτ

]2

=
∫ ∞

0

ds

s
e−m2

0s
∫

ddxdW(0,0)(ω(·))
[ ∫ s

0
f(x + ω(τ))dτ

]2

≥ 2
∫ ∞

0

ds

s
e−m2

0s
∫

ddxdW(0,0)(ω(·))
∫ s

0
dτ1

∫ s

0
dτ21B(0,r)(x + ω(τ1))1B(0,r)(x + ω(τ2))

= 2
∫ ∞

0

ds

s
e−m2

0s
∫ s

0
dτ1

∫ s

0
dτ2dW(0,0)(ω(·))

∫
ddx1B(0,r)(x + ω(τ1))1B(0,r)(x + ω(τ2))

= 2Cr

∫ ∞

0

ds

s
e−m2

0s
∫ s

0
dτ1

∫ s

0
dτ2dW(0,0)(ω(·))1B(0,r/2)(ω(τ1))1B(0,r/2)(ω(τ2)). (4.4)

For any s > 0 and any τ2, τ1 satisfying 0 < τ2 < τ1 < s, let

Aτ1,τ2 ≡
∫

dW(0,0)(ω(·))1B(0,r/2)(ω(τ1))1B(0,r/2)(ω(τ2)).
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Then by the definition of Wiener measure over closed paths,

Aτ1,τ2 =
∫ ∫

y1,y2∈B(0,r/2)
(

1√
2πτ2

)4e
− y2

1
2τ2

×(
1√

2π(τ1 − τ2)
)4e

− (y1−y2)2

2(τ1−τ2) (
1√

2π(s− τ1)
)4e

− y2
2

2(s−τ1) dy1dy2

=
∫

z1∈B(0, r
2
√

τ2
)
dz1

∫

z2∈B(0, r

2
√

s−τ1
)
dz2(

1√
2π

)4e−
z2
1
2 (

1√
2π

)4e−
z2
2
2

×(
1√

2π(τ1 − τ2)
)4e

− 1
2(τ1−τ2)

(
√

τ2z1−
√

s−τ1z2)2
.

Notice that if τ2 ∈ (0, s
4
) and τ1 ∈ (3

4
s, s), then τ1 − τ2 > s

2
, so we have

(
√

τ2z1 −
√

s− τ1z2)
2

τ1 − τ2

<
s
4
(|z1|+ |z2|)2

s
2

=
1

2
(|z1|+ |z2|)2

for any z1, z2 ∈ R4. Let C ≡ (
∫
|z|≤1(

1√
2π

)4e−
z2

2 dz)2e−1 · 1
π2 . Then as long as

r√
s
≥ 1, we have that

Aτ1,τ2 ≥
∫

|z1|≤1

∫

|z2|≤1
(

1√
2π

)4e−
z2
1
2 (

1√
2π

)4e−
z2
2
2 dz1dz2e

− 1
4
(1+1)2 · ( 1√

2π · s
2

)4

= C · 1

s2
, for any τ2 ∈ (0,

s

4
), τ1 ∈ (

3

4
s, s).

Substituting this into (4.4), since

∫
dW(0,0)(ω(·)) = (

1√
2πs

)4,

we get that

∫ ∞

0

ds

s
e−m2

0s
∫

ddxdW(x,x)(x(·))
[ ∫ s

0
f(x(τ))dτ

]2

≥ 2Cr

∫ r2

0

ds

s
e−m2

0s
∫ s

3
4
s
dτ1

∫ s
4

0
dτ2C · 1

s2

= C̃
∫ r2

0

ds

s
e−m2

0s,

11



which is infinity.
This completes the proof of our assertion.
Now, we are ready to proof our main result.

THEOREM 4.2 Let d = 4. Then for any f ∈ S(Rd) strictly positive, we
have that : φ2 : (f) is not a random variable.

Proof. For any N ∈ N, define φN(x) =
∫
|p|≤N eipxφ̃(p)dp, and let

: φ2
N : (f) =

∫
: φ2

N : (x)f(x)dx, where ·̃ denotes the Fourier transform.
Write the characteristic function of : φ2

N : (f) at 1
2

as

E[e
i
2
:φ2

N :(f)] = e
1
2
Mn(f)

(notice that this is rigorously the characteristic function at 1
2

of the random
variable : φ2

N : (f) for any N ∈ N). If : φ2 : (f) were a random variable,
then : φ2

N : (f) would converge weakly to : φ2 : (f), hence the correspond-
ing characteristic functions would also converge, therefore, we would have
Mn(f) → M(f), with e

1
2
M(f) the value of a characteristic function at 1

2
. This

contradicts Proposition 4.1. Therefore, : φ2 : (f) is not a random variable.

Remark 4 Following the ideas of the proof of Proposition 4.1 and Theorem
4.2, one can see that a corresponding result holds for all d ≥ 5.
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[8] J. Fröhlich, Schwinger functions and their generating functionals, I,
Helv. Phys. Acta 47, 265–306 (1974); Schwinger functions and their gen-
erating functionals, II. Markovian and generalized path space measures
on S1, Advances in Math. 23, no. 2, 119–180 (1977)

[9] V. Glaser, On the equivalence of the Euclidean and Wightman formula-
tion of field theory, Comm. Math. Phys. 37, 257–272 (1974)

[10] M. Grothaus, L. Streit, Construction of relativistic quantum fields in the
framework of white noise analysis, J. Math. Phys. 40 (1999), no. 11,
5387–5405

[11] Z. Haba, A scale limit of ϕ2 in ϕ4 Euclidean field theory. I. J. Math.
Phys. 20 (1979), no. 9, 1896–1904

[12] T. Hida, H. H. Kuo, J. Potthoff, L. Streit, White noise. An infinite-
dimensional calculu, Mathematics and its Applications, 253. Kluwer
Academic Publishers Group, Dordrecht (1993)

13



[13] R. Jost, The general theory of quantized fields, Am. Math. Soc. Publ.
(1965)

[14] J. Langerholc, B. Schroer, On the structure of the von Neumann algebras
generated by local functions of the free Bose field. Comm. Math. Phys.
1 1965 215–239

[15] E. Nelson, Construction of Quantum Fields from Markoff Fields, J.
Func. Anal. 12, 97–112 (1973)

[16] K. Osterwalder, R. Schrader, Axioms for Euclidean Green’s Functions,
Comm. Math. Phys. 31, 83–112 (1973); Axioms for Euclidean Green’s
functions. II. With an appendix by Stephen Summers, Comm. Math.
Phys. 42, 281–305 (1975)

[17] J. C. Baez, I. E. Segal, Z. F. Zhou, Introduction to algebraic and con-
structive quantum field theory, Princeton Series in Physics. Princeton
University Press, Princeton (1992)

[18] B. Simon, The P (φ)2 Euclidean (Quantum) Field Theory, Princeton
University Press, 1974.

[19] R. F. Streater, A. S. Wightman, Spin and statistics, and all that, Second
edition. Mathematical Physics Monograph Series. Benjamin/Cummings
Publishing Co., Inc.(1978)

[20] A. S. Wightman, Introduction to some aspects of the relativistic dynam-
ics of quantized fields, lectures at Cargèse Corsica (1964), M. Lévy,
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