Some Properties of Dirichlet L-Functions Associated with their Nontrivial Zeros II

Sergio Albeverio, Lev D. Pustylnikov

no. 257

Diese Arbeit ist mit Unterstützung des von der Deutschen Forschungsgemeinschaft getragenen Sonderforschungsbereiches 611 an der Universität Bonn entstanden und als Manuskript vervielfältigt worden.

Bonn, Januar 2006
SOME PROPERTIES OF DIRICHLET L-FUNCTIONS ASSOCIATED WITH THEIR NONTRIVIAL ZEROS II

S. ALBEVERIO AND L. D. PUSTYL’NIKOV

ABSTRACT. An asymptotic formula is derived for the even derivatives of the function
\[\xi(s, \chi) = \left(\frac{\pi}{k} \right)^{-\frac{s+\delta}{2}} L(s, \chi) \]
at the point \(s = \frac{1}{2} \), where \(\Gamma(s) \) is the gamma function, \(\chi(n) \) is a real primitive character modulo \(k \), \(\delta = \begin{cases} 0, & \text{if } \chi(-1) = 1 \\ 1, & \text{if } \chi(-1) = -1 \end{cases} \). \(L(s, \chi) \) is the Dirichlet function corresponding to \(\chi \). On the basis of this formula a sufficient condition for refutation of the Extended Riemann Hypothesis for \(L(s, \chi) \) is given.

Contents

1. Introduction 2

2. An asymptotic formula for derivatives of the function \(\xi(s, \chi) \) with even character \(\chi \) 3

2.1. Formulation of Theorem 1 3

2.2. Proof of Theorem 1 3

3. An asymptotic formula for the derivatives of the function \(\xi(s, \chi) \) with an odd character \(\chi \) 11

3.1. Formulation of Theorem 2 11

3.2. Proof of Theorem 2 12

4. Sufficient condition for refutation of Extended Riemann Hypothesis 13

Acknowledgements 14

References 14
1. Introduction

The present work is the second part and the continuation of the article [1], devoted to the new properties of Dirichlet L-functions associated with their nontrivial zeros. We derive an asymptotic formula for the even derivatives of the function

$$
\xi(s, \chi) = \left(\frac{\pi}{k} \right)^{\frac{s+\delta}{2}} \Gamma \left(s + \frac{\delta}{2} \right) L(s, \chi)
$$

at the point $s = \frac{1}{2}$ as the order of the derivatives tends to infinity. $\Gamma(s)$ is the gamma function, $\chi = \chi(n)$ is a real primitive character modulo k, $\delta = \begin{cases}
0, & \text{if } \chi(-1) = 1 \\
1, & \text{if } \chi(-1) = -1
\end{cases}$, $L(s, \chi)$ — a Dirichlet L-function. We assume, that the inequality

(1.1)

$$L\left(\frac{1}{2}, \chi\right) \neq 0$$

holds. It is satisfied, e.g., when $\chi(n)$ is the Legendre symbol $\left(\frac{a}{p} \right)$ modulo prime number $p < 500000$. By virtue of [1] (Theorem 4, section 3) it follows from (1.1) that for all s the equality $\xi(s, \chi) = \xi(1 - s, \chi)$ holds, and hence, all odd derivatives of the function $\xi(s, \chi)$ at the point $s = \frac{1}{2}$ are equal to zero. Finding an explicit asymptotic expression for the even derivatives $\frac{d^m}{ds^m} \xi\left(\frac{1}{2}, \chi\right)$ of $\xi(s, \chi)$ (m is even) as $m \to \infty$ is of interest both in itself and in relation to the Extended Riemann Hypothesis [1] (Theorem 4, section 3). The proof is an analogue of that given for Riemann zeta function in [2].

In subsections 2.1 and 2.2 of section 2 we formulate and prove the main result for an even character, and in section 3 we make the same for an odd character. In section 4, on the basis of these results, a sufficient condition for refutation of the Extended Riemann Hypothesis is given.
2. AN ASYMPTOTIC FORMULA FOR DERIVATIVES OF THE FUNCTION $\xi(s, \chi)$ WITH EVEN CHARACTER χ

2.1. Formulation of Theorem 1.

Theorem 1. Assume that $\chi(n)$ is an even real primitive character modulo $k \geq 2$ (that is $\chi(-1) = 1$), and m is an even natural number. Then we have the following asymptotic expression as $m \to \infty$:

$$
\frac{d^m \xi}{ds^m}(\frac{1}{2}, \chi) \sim \left(\frac{1}{2}\right)^{m-1} \left(\ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi} + \beta\right)^m \exp \left(-\frac{mk}{\ln \frac{mk}{\pi}} e^\beta\right)
$$

$$
\times \left(\frac{mk}{\pi \ln \frac{mk}{\pi}}\right)^{\frac{1}{4}} \frac{\sqrt{\pi}}{\sqrt{m \left(\frac{1}{2(\ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi})^2} + \frac{1}{2(\ln \frac{mk}{\pi})}\right)}}
$$

where the function $\beta = \beta(m)$ satisfies the condition $\lim_{m \to \infty} \beta(m) = 0$, and we use the notation $a_m \sim b_m$ for $\lim_{n \to \infty} \frac{a_m}{b_m} = 1$.

Corollary 1. Under the assumption of Theorem 1 there exists $m_0 = m_0(k)$ depending on k such that if $m \geq m_0$ then the inequality

$$
\frac{d^m \xi}{ds^m}(\frac{1}{2}, \chi) > 0
$$

holds.

2.2. Proof of Theorem 1.

The proof of the Theorem 1 is carried out in the five subsections below.

1. It follows from the formulas (4.5),(4.3) of [1] (section 4) that the equality

$$
\frac{d^m \xi}{ds^m}(\frac{1}{2}, \chi) = \left(\frac{1}{2}\right)^m \int_1^{\infty} (\ln^m x) x^{-\frac{3}{2}} \theta(x, \chi) dx
$$

holds, where

$$
\theta(x, \chi) = 2e^{-\frac{\pi x}{2}} + 2 \sum_{n=2}^{\infty} \chi(n)e^{-\frac{n^2 x}{4}}.
$$
Let \(x^* = \frac{k}{15} \) and consider the integral

\[
I'_m = \int_{x^*}^\infty (\ln^m x)x^{-\frac{3}{4}}\theta(x, \chi)dx .
\]

Because of Lemma 4 from [1] (section 4) the inequality \(\theta(x, \chi) > 0 \) holds. Then introducing the variable \(u = \ln x \) and using (2.2) we transform \(I'_m \) as follows:

\[
I'_m = \int_{u^*}^\infty u^m e^{\frac{\pi}{k}u}e\theta(e^u, \chi)du = \int_{u^*}^\infty e^{F(u)}du ,
\]

where \(u^* = \ln x^* \),

\[
F(u) = m\ln u + \frac{u}{4} + (\ln 2 - \frac{\pi}{k}e^u) + \ln(1 + \Psi(e^u)) ,
\]

\[
\Psi(e^u) = \sum_{n=2}^\infty \chi(n)e^{-\frac{\pi}{k}u(n^2-1)} .
\]

Differentiation of (2.5) yields the relations

\[
\frac{dF}{du}(u) = \frac{m}{u} + \frac{1}{4} - \frac{\pi}{k}e^u + \frac{d\ln(1 + \Psi(e^u))}{du} ,
\]

\[
\frac{d^2F}{du^2}(u) = -\frac{m}{u^2} - \frac{\pi}{k}e^u + \frac{d^2\ln(1 + \Psi(e^u))}{du^2} .
\]

We consider the equation

\[
\frac{dF}{du}(u) = 0
\]

in the domain \(u \geq u^* \).

Since \(x \geq 1 \), by (2.6)-(2.8), there exists \(m^* = m^*(k) \geq 2 \) such that, if \(m \geq m^* \) then

\[
\frac{d^2F}{du^2}(u) < 0
\]

for \(u \geq u^* \). Hence, if a solution of the equation (2.9) exists in the domain \(u \geq u^* \), then it is unique. We consider the approximate equation

\[
\frac{m}{u} - \frac{\pi}{k}e^u = 0 .
\]

By Lemma 1.2 in [2](§1) its solution \(u = \hat{u} \) has the form

\[
\hat{u} = \ln \frac{mk}{\pi} - \ln\ln \frac{mk}{\pi} + c_1 ,
\]
where the function \(c_1 = c_1(m) \) satisfies the condition \(\lim_{m \to \infty} c_1(m) = 0 \). Therefore, by (2.7), (2.9) and (2.12), the solution \(u = \tilde{u} \) of equation (2.9) can be written as

\[
\tilde{u} = \ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi} + c_2,
\]

where the function \(c_2 = c_2(m) \) satisfies the same condition as \(c_1 = c_1(m) \), that is,

\[
\lim_{m \to \infty} c_2(m) = 0.
\]

Therefore, \(\lim_{m \to \infty} \tilde{u}(m) = \infty \). We take a sufficiently large number \(m^* \) such that the inequality \(\tilde{u}(m) > u^* = \ln \frac{k}{15} \) holds for \(m \geq m^* \). Let \(\varepsilon_m \) be a constant such that

\[
0 < \varepsilon_m < \tilde{u} - u^* = \tilde{u} - \ln \frac{k}{15}.
\]

Substitution of (2.13) in (2.5) gives

\[
e^{F(\tilde{u})} = 2 \left(\ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi} + c_2 \right)^m \exp \left(-\frac{mk}{\ln \frac{mk}{\pi}} c_2 \right) \]

\[
\times \left(\frac{mk}{\pi \ln \frac{mk}{\pi} c_2} \right)^{\frac{1}{4}} \left(1 + \Psi \left(\frac{mk}{\pi \ln \frac{mk}{\pi} c_2} \right) \right).
\]

Next, by (2.6) and (2.14), the asymptotic relations

\[
\left(\frac{mk}{\pi \ln \frac{mk}{\pi} c_2} \right)^{\frac{1}{4}} \sim \left(\frac{mk}{\pi \ln \frac{mk}{\pi}} \right)^{\frac{1}{4}},
\]

\[
\ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi} + c_2 \sim \ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi},
\]

and the equality \(\lim_{m \to \infty} \Psi \left(\frac{mk}{\pi \ln \frac{mk}{\pi} c_2} \right) = 0 \) hold as \(m \to \infty \). Therefore, by (2.16), we obtain that the asymptotic formula

\[
e^{F(\tilde{u})} = 2 \left(\ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi} + c_2 \right)^m \exp \left(-\frac{mk}{\ln \frac{mk}{\pi}} c_2 \right) \left(\frac{mk}{\pi \ln \frac{mk}{\pi}} \right)^{\frac{1}{4}}
\]

holds as \(m \to \infty \). Substitution of (2.13) in (2.8) yields

\[
\frac{d^2}{du^2} F(\tilde{u}) = -\frac{m}{(\ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi} + c_2)^2} - \frac{\pi}{k} \exp \left(\ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi} + c_2 \right)
\]

\[
+ \frac{d^2 \ln (1 + \Psi(1 + \exp(\ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi} + c_2)))}{du^2}
\]

\[
= -\frac{m}{(\ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi} + c_2)^2} - \frac{m}{\ln \frac{mk}{\pi}} + o(m)
\]

\[
< -c_3 \frac{m}{\ln \frac{mk}{\pi}},
\]
where $c_3 > 0$ does not depend on m and $\lim_{m \to \infty} \frac{\sigma(m)}{m} = 0$. Let us estimate $\left| \frac{d^3 F(u)}{du^3} \right|$ for $\check{u} - \varepsilon_m \leq u \leq \check{u} + \varepsilon_m$, where ε_m is a constant satisfying (2.15). Differentiating (2.8), we obtain

$$\frac{d^3}{du^3} F(u) = \frac{2m}{u^3} - \frac{\pi}{k} e^u + \frac{d^3 \ln(1 + \Psi(e^u))}{du^3}.$$

Therefore, by (2.13),

$$\sup_{\check{u} - \varepsilon_m \leq u \leq \check{u} + \varepsilon_m} \left| \frac{d^3 F(u)}{du^3} \right| < c_4 \left(\frac{m}{(\ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi} + c_2 - \varepsilon_m)^3} + \frac{mke^{\varepsilon_m}}{\ln \frac{mk}{\pi}} \right),$$

where $c_4 > 0$ is a constant not depending on m. For $\check{u} - \varepsilon_m \leq u \leq \check{u} + \varepsilon_m$, the equality

$$(2.20) \quad F(u) = \tilde{F}(u) + \check{F}(u)$$

holds, where

$$(2.21) \quad \tilde{F}(u) = F(\check{u}) + \frac{1}{2} \frac{d^2 F(\check{u})}{du^2} (u - \check{u})^2, \quad \check{F}(u) = \frac{1}{6} \frac{d^3 F(\theta)}{du^3} (u - \check{u})^3,$$

and $\check{u} - \varepsilon_m \leq u \leq \check{u} + \varepsilon_m$. Applying Lemma 2.1 in [2](§2) and formula (2.18), we obtain

$$\int_{\check{u} - \varepsilon_m}^{\check{u} + \varepsilon_m} \exp \left(\frac{1}{2} \frac{d^2 F(\check{u})}{du^2} (u - \check{u})^2 \right) du = \frac{\sqrt{\pi}}{\sqrt{\left| \frac{1}{2} \frac{d^2 F(\check{u})}{du^2} \right|}} (1 + R_{\varepsilon_m}),$$

where

$$|R_{\varepsilon_m}| < \frac{\exp(\frac{1}{2} \frac{d^2 F(\check{u})}{du^2} \varepsilon_m^2)}{1 + \sqrt{1 - \exp(\frac{1}{2} \frac{d^2 F(\check{u})}{du^2} \varepsilon_m^2)}}.$$

Therefore, by (2.18)

$$\int_{\check{u} - \varepsilon_m}^{\check{u} + \varepsilon_m} \exp \left(\frac{1}{2} \frac{d^2 F(\check{u})}{du^2} (u - \check{u})^2 \right) du = \frac{\sqrt{\pi}}{\sqrt{m \left(\frac{1}{2(\ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi} + c_2)}^2 + \varepsilon_m^2 + o(m) \right)}} (1 + R_{\varepsilon_m}),$$

where

$$|R_{\varepsilon_m}| < \frac{\exp \left(- \frac{me^{2\varepsilon_m}}{2(\ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi} + c_2)^2} - \frac{me^{2\varepsilon_m}}{2\ln \frac{mk}{\pi} + \varepsilon_m^2} + o(m) \right)}{1 + \sqrt{1 - \exp \left(- \frac{me^{2\varepsilon_m}}{2(\ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi} + c_2)^2} - \frac{me^{2\varepsilon_m}}{2\ln \frac{mk}{\pi} + \varepsilon_m^2} + o(m) \right)}}.$$

By (2.20), we have
\[e^{F(u)} = e^{\tilde{F}(u)} + e^{\hat{F}(u)} \left(e^{\hat{F}(u)} - 1 \right). \]

Consequently,
\[\int_{\tilde{u} - \varepsilon_m}^{\tilde{u} + \varepsilon_m} e^{F(u)} \, du = \int_{\tilde{u} - \varepsilon_m}^{\tilde{u} + \varepsilon_m} e^{\tilde{F}(u)} \, du + R'_{\varepsilon_m}, \]
where, according to (2.21)
\[|R'_{\varepsilon_m}| < e^{F(\tilde{u})} \sup_{\tilde{u} - \varepsilon_m \leq u \leq \tilde{u} + \varepsilon_m} |e^{\hat{F}(u)} - 1| \int_{\tilde{u} - \varepsilon_m}^{\tilde{u} + \varepsilon_m} \exp \left(\frac{1}{2} \frac{d^2 F(\tilde{u})}{du^2} (u - \tilde{u})^2 \right) \, du. \]

Applying the relation for \(\hat{F}(u) \) in (2.21) and inequality (2.19), and assuming that \(\varepsilon_m^3 \) does not exceed a constant not depending on \(m \), we derive the inequality
\[\sup_{\tilde{u} - \varepsilon_m \leq u \leq \tilde{u} + \varepsilon_m} |e^{\hat{F}(u)} - 1| < c_5 \varepsilon_m^3 \frac{mk}{\ln \frac{mk}{\pi}}, \]
where \(c_5 \) is a constant not depending on \(m \). But if the relation
\[\lim_{m \to \infty} \varepsilon_m^3 m = 0 \]
holds, then the previous inequality and (2.25) imply that
\[|R'_{\varepsilon_m}| = e^{F(\tilde{u})} \int_{\tilde{u} - \varepsilon_m}^{\tilde{u} + \varepsilon_m} \exp \left(\frac{1}{2} \frac{d^2 F(\tilde{u})}{du^2} (u - \tilde{u})^2 \right) \, du \cdot o'(m) \]
where \(\lim_{m \to \infty} o'(m) = 0 \). Therefore by (2.24) the asymptotic relation
\[\int_{\tilde{u} - \varepsilon_m}^{\tilde{u} + \varepsilon_m} e^{F(u)} \, du \sim e^{\tilde{F}(\tilde{u})} \int_{\tilde{u} - \varepsilon_m}^{\tilde{u} + \varepsilon_m} \exp \left(\frac{1}{2} \frac{d^2 F(\tilde{u})}{du^2} (u - \tilde{u})^2 \right) \, du \]
holds as \(m \to \infty \). Now we apply (2.17), (2.22), (2.23) and (2.27) and, assuming (2.26) and the relation
\[\lim_{m \to \infty} \varepsilon_m^2 m = \infty, \]
obtain the asymptotic expression
\[\int_{\tilde{u} - \varepsilon_m}^{\tilde{u} + \varepsilon_m} e^{F(u)} \, du \sim 2(\ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi} + c_2)^m \exp \left(-\frac{mk}{\ln \frac{mk}{\pi}} e^{c_2} \right) \]
\[\times \left(\frac{mk}{\pi \ln \frac{mk}{\pi}} \right)^4 \sqrt{\frac{\pi}{m \left(2(\ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi})^2 + \frac{1}{2} \ln \frac{mk}{\pi} \right)}}, \]
as \(m \to \infty \), where the function \(c_2 = c_2(m) \) satisfies inequality (2.14).

2. We write \(u_+ = \tilde{u} + \varepsilon_m \), \(u_- = \tilde{u} - \varepsilon_m \). Since \(u = \tilde{u} \) is a solution of equation (2.9), we have

\[
F(u_+) = F(\tilde{u}) + \frac{\varepsilon_m^2}{2} \frac{d^2 F(\zeta_+)}{du^2}, \quad F(u_-) = F(\tilde{u}) + \frac{\varepsilon_m^2}{2} \frac{d^2 F(\zeta_-)}{du^2},
\]

where the numbers \(\zeta_+ \) and \(\zeta_- \) satisfy the inequalities

\[
\tilde{u} \leq \zeta_+ \leq \tilde{u} + \varepsilon_m, \quad \tilde{u} - \varepsilon_m \leq \zeta_- \leq \tilde{u}.
\]

The application of (2.8), (2.13) and (2.31) results in

\[
\max \left(\frac{d^2 F(\zeta_-)}{du^2}, \frac{d^2 F(\zeta_+)}{du^2} \right) < -\frac{m}{(\ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi} + c_2 + \varepsilon_m)^2} - \frac{mke^{c_2-\varepsilon_m}}{\ln \frac{mk}{\pi}} + c_6,
\]

where \(c_6 \) is a constant not depending on \(m \). Now let

\[
\varepsilon_m = m^{-\left(\frac{1}{2} - \delta\right)}, \quad 0 < \delta < \frac{1}{6}.
\]

Then (2.26) and (2.28) hold and, by (2.30) and (2.32), we have the inequalities

\[
\begin{cases}
F(\tilde{u}) - F(u_+) > c_7 m^\delta, & F(\tilde{u}) - F(u_-) > c_7 m^\delta, \\
e^{F(u_+)} = e^{F(\tilde{u}) - (F(\tilde{u}) - F(u_+))} < \frac{e^{F(\tilde{u})}}{e^{c_7 m^\delta}}, \\
e^{F(u_-)} = e^{F(\tilde{u}) - (F(\tilde{u}) - F(u_-))} < \frac{e^{F(\tilde{u})}}{e^{c_7 m^\delta}},
\end{cases}
\]

where \(c_7 > 0 \) is a constant not depending on \(m \). By (2.8), the inequality \(\frac{d^2 F(u)}{du^2} < 0 \) holds for large \(m \) and \(u^* \leq u \leq \tilde{u} \), and since \(\frac{dF(\tilde{u})}{du} = 0 \) then \(F(u) \) is a monotone increasing function as \(u \) grows for \(u^* \leq u \leq \tilde{u} \). Therefore formulae (2.13) and (2.34) imply the inequality

\[
\int_{u^*}^{\tilde{u} - \varepsilon_m} e^{F(u)} du < \tilde{u} e^{F(u_-)} < \frac{(\ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi} + c_2)e^{F(\tilde{u})}}{e^{c_7 m^\delta}}.
\]
By the equality \(x^* = \frac{k}{15} \) and (2.2) we have
\[
\left| \int_1^{x^*} \left(\ln^{m} x \right) x^{-\frac{4}{3}} \theta(x, \chi) dx \right| < c_8 k \ln^{m} \frac{k}{15},
\]
where \(c_8 \) is a constant not depending on \(m \). The two last inequalities give the following:
\[
(2.35) \left| \int_1^{x^-} \left(\ln^{m} x \right) x^{-\frac{4}{3}} \theta(x, \chi) dx \right| < c_8 \left(\frac{\ln \left(m k \pi \right) - \ln \ln \left(m k \pi \right) + c_2 e^{F(\tilde{u})}}{e^{c \pi^2 m^2}} + k \ln^{m} \frac{k}{15} \right),
\]
where
\[
(2.36) \quad x^- = e^{u^-} = e^{\tilde{u} - \varepsilon m}.
\]

3. Suppose that a positive number \(\tilde{x}_m \) satisfies the equation
\[
(2.37) \ln^{m k} \tilde{x}_m = e^{\pi \delta \tilde{x}_m},
\]
where \(\delta \) is the parameter introduced in (2.33). Then the relations
\[
(2.38) \quad \frac{mk}{\pi \delta} = \frac{\tilde{x}_m}{\ln \ln \tilde{x}_m},
\]
\[
\mu \overset{\text{def}}{=} \ln \frac{mk}{\pi \delta} = \ln \tilde{x}_m - \ln \ln \tilde{x}_m = \tilde{y}_m - \ln \ln \tilde{y}_m \overset{\text{def}}{=} f(\tilde{y}_m)
\]
hold, where \(\tilde{y}_m \) is defined by
\[
(2.39) \quad \tilde{y}_m = \ln \tilde{x}_m.
\]
Let \(\hat{y}_m \) satisfy the equation
\[
(2.40) \quad \mu = \hat{y}_m - \ln \hat{y}_m.
\]
By (2.38) and (2.40), we have
\[
f(\hat{y}_m) > \mu, \quad f(\mu) < \mu,
\]
and, since \(f(y) \) is a monotone increasing function as \(y \) grows, relation (2.38) implies that \(\tilde{y}_m \) satisfies the inequality
\[
(2.41) \quad \mu < \tilde{y}_m < \hat{y}_m.
\]
According to (2.38) and Lemma 1.1 in [2] (§1), the solution \hat{y}_m of the equation (2.40) has the form

$$\hat{y}_m = \ln \frac{mk}{\pi \delta} + \ln \ln \frac{mk}{\pi \delta} + c_9,$$

and the function $c_9 = c_9(m)$ satisfies the condition

$$\lim_{m \to \infty} c_9(m) = 0.$$

Consequently, by (2.39) and (2.41), we have

$$\ln \frac{mk}{\pi \delta} < \ln \tilde{x}_m < \ln \frac{mk}{\pi \delta} + \ln \ln \frac{mk}{\pi \delta} + c_9.$$

Using (2.34), (2.42) and (2.43) for large m we obtain

$$\left| \int_{u_+}^{\ln \tilde{x}_m} e^{F(u)} du \right| < e^{F(u_+)} \left| \ln \tilde{x}_m - u_+ \right|$$

$$< \frac{e^{F(\delta)}}{e^{c_7 m^2}} \left(\ln \frac{mk}{\pi \delta} + \ln \ln \frac{mk}{\pi \delta} + c_9 - u_+ \right).$$

4. We estimate the integral

$$\tilde{I}_m \overset{\text{def}}{=} \int_{\tilde{x}_m}^{\infty} (\ln^m x)x^{-\frac{3}{4}} \theta(x, \chi) dx,$$

where \tilde{x}_m is defined by (2.37). According to (2.37), (2.42), (2.43) and (2.2), we have

$$\left| \tilde{I}_m \right| < 2 \int_{\tilde{x}_m}^{\infty} x^{-\frac{3}{4}} \sum_{n=1}^{\infty} e^{-\frac{mk}{\pi \delta} (n^2-\delta)} dx$$

$$< 2 \int_{\frac{mk}{\pi \delta}}^{\infty} x^{-\frac{3}{4}} \sum_{n=1}^{\infty} e^{-\frac{mk}{\pi \delta} (n^2-\delta)} dx.$$

5. Let

$$I_m = \int_{1}^{\infty} (\ln^m x)x^{-\frac{3}{4}} \theta(x, \chi) dx.$$

We have

$$I_m = \int_{1}^{x} (\ln^m x)x^{-\frac{3}{4}} \theta(x, \chi) dx + \int_{u_+}^{x} e^{F(u)} du$$

$$+ \int_{u_+}^{\ln \tilde{x}_m} e^{F(u)} du + \int_{\frac{mk}{\pi \delta}}^{\infty} (\ln^m x)x^{-\frac{3}{4}} \theta(x, \chi) dx.$$
where \(u_+ = \hat{u} - \varepsilon_m, \ u_- = \hat{u} + \varepsilon_m, \ x_+ = e^{u_+} \) (see (2.36)) and \(\tilde{x}_m \) is the solution of equation (2.37). Assuming that (2.33) holds, we obtain, by (2.35),(2.44) and (2.45), the inequality

\[
\left| \int_0^{x_-} (\ln^m x) x^{-\frac{3}{4}} \theta(x, \chi) dx + \int_{x_+}^{\infty} e^{F(u)} du + \int_{\tilde{x}_m}^{x_-} (\ln^m x) x^{-\frac{3}{4}} \theta(x, \chi) dx \right|
\leq c_{10} \left(\frac{\ln mk}{\pi \delta} + \ln \ln \frac{mk}{\pi \delta} + c_9 \right) + 2 \int_{\tilde{x}_m}^{\infty} \sum_{n=1}^{\infty} e^{-\frac{\pi}{n} (n^2 - \delta)} dx,
\]

where \(c_{10} \) is a constant not depending on \(m \). By (2.22),(2.23) and (2.27), the first and second terms on the right-hand side of (2.48) are \(o(\int_{\hat{u}-\varepsilon_m}^{\hat{u}+\varepsilon_m} e^{F(u)} du) \) as \(m \to \infty \).

Therefore, by (2.47) and (2.48), the asymptotic relation \(I_m \sim \int_{\hat{u}-\varepsilon_m}^{\hat{u}+\varepsilon_m} e^{F(u)} du \) holds as \(m \to \infty \) and, by (2.29), the asymptotic relation

\[
I_m \sim 2 \left(\ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi} + c_2 \right) m \exp \left(-\frac{mk}{\ln \frac{mk}{\pi} e^{c_2}} \right)
\times \left(\frac{mk}{\pi \ln \frac{mk}{\pi}} \right)^{\frac{1}{4}} \sqrt{\frac{\pi}{m}} \sqrt{m \left(\frac{1}{2(\ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi})^2} + \frac{1}{2 \ln \frac{mk}{\pi}} \right)}
\]

holds as \(m \to \infty \), where the function \(c_2 = c_2(m) \) satisfies (2.14). Since, by (2.1) and (2.46), we have \(\frac{d}{dm} \xi(\frac{1}{2}, \chi) = (\frac{1}{2})^m I_m \), then the relation (2.49) implies Theorem 1 for \(\beta(m) = c_2(m) \). Theorem 1 is proved.

3. An asymptotic formula for the derivatives of the function \(\xi(s, \chi) \) with an odd character \(\chi \)

3.1. Formulation of Theorem 2.

Theorem 2. Assume that \(\chi = \chi(n) \) is an odd real primitive character modulo \(k \geq 2 \) (that is \(\chi(-1) = -1 \)), the inequality (1.1) holds and \(m \) is an even natural number.
Then we have the following asymptotic expression as \(m \to \infty \)
\[
\frac{d^m \xi}{ds^m} \left(\frac{1}{2}, \chi \right) \sim \left(\frac{1}{2} \right)^{m-1} \left(\ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi} + \beta \right)^m
\]
\[
\times \exp \left(- \frac{mk}{\ln \frac{mk}{\pi}} \right) \left(\frac{mk}{\pi \ln \frac{mk}{\pi}} \right)^{\frac{3}{2}}
\]
\[
\times \sqrt{\frac{m \left(\frac{1}{2 \left(\ln \frac{mk}{\pi} - \ln \ln \frac{mk}{\pi} \right)^2} + \frac{1}{2 \ln \frac{mk}{\pi}} \right)}{\sqrt{\pi}}},
\]
where the function \(\beta = \beta(m) \) satisfies the condition \(\lim_{m \to \infty} \beta(m) = 0 \).

Remark. By [1] (Theorem 4, section 3) it follows from (1.1) that for all \(s \) the equality \(\xi(s, \chi) = \xi(1 - s, \chi) \) holds, and hence, all odd derivatives of the function \(\xi(s, \chi) \) at the point \(s = \frac{1}{2} \) are equal zero.

Corollary 2. Under the assumption of Theorem 2 there exists \(m_0 = m_0(k) \) depending on \(k \) such that if \(m \geq m_0 \) is even then the inequality
\[
(3.1) \quad \frac{d^m \xi}{ds^m} \left(\frac{1}{2}, \chi \right) > 0
\]
holds.

3.2. Proof of Theorem 2.

It follows from the formulas (4.9),(4.11) of the paper [1] (section 4) that the equality
\[
(3.2) \quad \frac{d^m \xi}{ds^m} \left(\frac{1}{2}, \chi \right) = \left(\frac{1}{2} \right)^m \int_1^\infty (\ln^m x) x^{-\frac{1}{4}} \theta_1(x, \chi) dx
\]
holds, where
\[
(3.3) \quad \theta_1(x, \chi) = 2e^{-\frac{\pi x}{k}} + 2 \sum_{n=2}^\infty n\chi(n)e^{-\frac{2\pi n x}{k}}.
\]
Let \(x^* = \frac{k}{l} \) and consider the integral
\[
(3.4) \quad I'_m = \int_{x^*}^\infty (\ln^m x) x^{-\frac{1}{4}} \theta_1(x, \chi) dx.
\]
Since according to Lemma 5 from [1] (section 4) the inequality \(\theta_1(x, \chi) > 0 \) holds, then introducing the variable \(u = \ln x \) and using (3.3) we transform \(I_m' \) as follows:

\[
I_m' = \int_{u_*}^{\infty} u^m e^{\frac{3u}{4}} \theta_1(e^u, \chi) du = \int_{u_*}^{\infty} e^{F(u)} du ,
\]

where \(u^* = \ln x^* = \ln \frac{k}{r} \),

\[
F(u) = m \ln u + \frac{3u}{4} + (\ln 2 - \frac{\pi}{k} e^u) + \ln(1 + \Psi(e^u)) \, ,
\]

\[
\Psi(e^u) = \sum_{n=2}^{\infty} n\chi(n)e^{-\frac{\pi u}{k}(n^2-1)} .
\]

Differentiation of (3.6) results in the relations

\[
\frac{d^2F}{du^2}(u) = -\frac{m}{u^2} - \frac{\pi}{k} e^u + \frac{d^2 \ln(1 + \Psi(e^u))}{du^2} .
\]

Now, using equalities (3.2)-(3.9) the proof of Theorem 2 runs in a completely analogue way as the proof of Theorem 1.

4. SUFFICIENT CONDITION FOR REFUTATION OF EXTENDED RIEMANN HYPOTHESIS

Theorem 3. Assume that \(\chi \) is a real primitive character such that \(L(\frac{1}{2}, \chi) < 0 \).

Then the Extended Riemann Hypothesis is false: in this case there exists a nontrivial zero of \(L(s, \chi) \) that does not lie on the line \(\text{Res} = \frac{1}{2} \).

Proof. Using the equality

\[
\xi(s, \chi) = \left(\frac{\pi}{k} \right)^{-\frac{s+\delta}{2}} \Gamma \left(\frac{s + \delta}{2} \right) L(s, \chi) ,
\]

where \(\begin{cases} 0, & \text{if } \chi(-1) = 1 \\ 1, & \text{if } \chi(-1) = -1 \end{cases} \), we obtain that if \(L(\frac{1}{2}, \chi) < 0 \), then the inequality

\[
\xi(\frac{1}{2}, \chi) < 0
\]
Some Properties of Dirichlet L-functions associated with their nontrivial zeros II

holds. Now, the statement of Theorem 3 follows from the assumption of theorem 3, from (4.1), and Corollaries 1 and 2, and from Theorem 4 as proved in [1](section 3). Theorem 3 is proved.

Acknowledgements

Financial support of the Bonn Graduate School Mathematics and Physics (BIGS) and of SFB611 is gratefully acknowledged.

References

Sergio Albeverio, Abt. Stochastik, Inst. Ang. Mathematik, Universität Bonn, Wegelerstr. 6, D-53115 Bonn; SFB 611 Bonn; IZKS, Bonn; BiBoS; Acc. Architettura, Mendrisio; CERFIM, Locarno
E-mail address: albeverio@uni-bonn.de

Lev D. Pustyl’ikov, Keldysh Institute of Applied Mathematics of RAS, Miusskaja sq. 4, 125047 Moscow, Russia; University of Bielefeld, BiBoS, Postfach 100131, 33501 Bielefeld, Germany
Verzeichnis der erschienenen Preprints ab No. 235

235. Grunewald, Natalie; Otto, Felix; Reznikoff, Maria G.; Villani, Cédric: A Two-Scale Proof of a Logarithmic Sobolev Inequality

236. Albeverio, Sergio; Hryniv, Rostyslav; Mykytyuk, Yaroslav: Inverse Spectral Problems for Coupled Oscillating Systems: Reconstruction by Three Spectra

237. Albeverio, Sergio; Cebulla, Christof: Müntz Formula and Zero Free Regions for the Riemann Zeta Function

239. Albeverio, Sergio; Lütkebohmert, Eva: The Price of a European Call Option in a Black-Scholes-Merton Model is given by an Explicit Summable Asymptotic Series

240. Albeverio, Sergio; Lütkebohmert, Eva: Asian Option Pricing in a Lévy Black-Scholes Setting

242. Albeverio, Sergio; Bernabei, M. Simonetta; Röckner, Michael; Yoshida, Minoru W.: Homogenization of Diffusions on the Lattice \mathbb{Z}^d with Periodic Drift Coefficients; Application to Logarithmic Sobolev Inequality

243. Albeverio, Sergio; Konstantinov, Alexei Yu.: On the Absolutely Continuous Spectrum of Block Operator Matrices

244. Albeverio, Sergio; Liang, Song: A Remark on the Nonequivalence of the Time-Zero ϕ^4-Measure with the Free Field Measure

245. Albeverio, Sergio; Liang, Song; Zegarlinski, Boguslav: A Remark on the Integration by Parts Formula for the ϕ^4-Quantum Field Model

246. Grün, Günther; Mecke, Klaus; Rauscher, Markus: Thin-Film Flow Influenced by Thermal Noise

247. Albeverio, Sergio; Liang, Song: A Note on the Renormalized Square of Free Quantum Fields in Space-Time Dimension $d \geq 4$

249. Albeverio, Sergio; Jushenko, Ekaterina; Proskurin, Daniil; Samoilenko, Yurii: ∗-Wildness of Some Classes of C*-Algebras

250. Albeverio, Sergio; Ostrovskyi, Vasyl; Samoilenko, Yurii: On ∗-Representations of a Certain Class of Algebras Related to Extended Dynkin Graphs

251. Albeverio, Sergio; Ostrovskyi, Vasyl; Samoilenko, Yurii: On Functions on Graphs and Representations of a Certain Class of ∗-Algebras

252. Holtz, Markus; Kunoth, Angela: B-Spline-Based Monotone Multigrid Methods

253. Albeverio, Sergio; Kuzhel, Sergej; Nizhnik, Leonid: Singularly Perturbed Self-Adjoint Operators in Scales of Hilbert Spaces

254. Albeverio, Sergio; Hryniv, Rostyslav; Mykytyuk, Yaroslav: On Spectra of Non-Self-Adjoint Sturm-Liouville Operators

255. Albeverio, Sergio; Nizhnik, Leonid: Schrödinger Operators with Nonlocal Point Interactions

256. Albeverio, Sergio; Alimov, Shavkat: On One Time-Optimal Control Problem Associated with the Heat Exchange Process; erscheint in: Applied Mathematics and Optimization

257. Albeverio, Sergio; Pustylnikov, Lev D.: Some Properties of Dirichlet L-Functions Associated with their Nontrivial Zeros II