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Abstract We consider the evolution of martensitic fine structures in shape memory alloys which undergo
an isothermal phase-transformation. This process is modelled on a microscopical, continuum-mechanical
level by partial differential equations. Here a homogeneous degree-1 dissipation potential is involved which
can reflect specific energies needed for rate-independent phase transformations. An interface energy is in-
corporated by a nonlocal term, and hard-device loading is considered. After setting up the model and spec-
ifying its energy balance properties, three-dimensional numerical experiments for the cubic-to-tetragonal
transformation in an InTl single crystal are presented which demonstrate geometrical/material interactions
under tensile and shear loading.
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1 Introduction

Martensitic transformation in alloys, observed first around 1890 by the German microscopist Adolf Martens,
has been intensively studied during the past decades. In physics and engineering there is increasing interest
because of the ever-growing amount of applications, and in mathematics there has been an intensive re-
search on this subject both theoretically and computationally. Several models of different kinds (single crys-
tals/polycrystals, phenomenological/rigorously-based, atomic/continuum, microscopical/mesoscopical/ma-
croscopical) have been proposed, analyzed and tested. Let us mention, without any ambitions for complete-
ness, the models of Falk [23], Frémond [25,26], Idesman, Levitas and Stein [41], James [42], Lexcellent
et al. [45,65], Mielke, Theil, and Levitas [50], Rajagopal and Srinivasa [64], or also [69]. Nevertheless,
it seems that none of these models is fully capable to simulate the results of laboratory experiments on
single-crystal specimens. Such experiments can be designed to observe the three-dimensional geometrical
interactions of the loading device with the multiwell structure of the specifically oriented single crystal and
can exhibit both quite homogeneous deformations and resulting microstructure.

The starting point for a rigorous single-crystal model is the specific stored energy density ϕ : R
n×n →

R. At any current location x we can write ϕ(∇u(x)), where u(x) = x + w(x) denotes the deformation
while w : Ω → R

n is the displacement considered on a reference body configuration Ω ⊂ R
n. Hence,

the deformation gradient is ∇u(x) = I + ∇w, where I ∈ R
n×n denotes the identity matrix. In the context
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of shape memory alloys (SMA), this issue was thoroughly investigated by crystallographers and later also
by mathematicians, in particular Ball and James [7,8], Bhattacharya, Firoozye, James, Kohn [9], Ericksen
[21,22], Müller [55] and others. Falk [23] proposed a non-isothermal model which is based on Landau’s
theory. It involves the specific free energy density φ = φ(F, θ), which depends on the temperature θ ∈ R

+.
A three-dimensional variant can be found in [24]. This model, augmented by capillarity- and viscosity-like
terms, has been further studied e.g. by Garcke [28], Niezgódka and Sprekels [56], Hoffmann and Zochowski
[38] and Pawłow [59], see also [12, Chap. 5] and the references therein.

In this paper, we confine ourselves to the isothermal situation θ = constant which would correspond to
a very slow experiment with a specimen kept on constant temperature by outer cooling. In this isothermal
case, the class of models which consider only the stored energy density ϕ(F ) = φ(F, θ) (up to a constant)
was investigated e.g. by Abeyaratne and Knowles [1], Andrews [5], Ball et al. [6], Dafermos [18], Friesecke
and Dolzmann [27], Pego [60], Rybka [70], Rybka and Hoffmann [71], Swart and Holmes [76] or Truski-
novsky [78]. However, it has been argued in [63] that such models cannot describe the rate-independent
character of the activated phase-transformation process observed in experiments, which dissipates mechan-
ical energy to some extent independently from the stored energy landscape ϕ. The complicated plastic-type
dissipation mechanism is presumably activated by dislocation movement, thermal fluctuations, an interfacial
energy at a “mesoscopic” phase-mixture level, by other phenomena or by their combination; cf. Miyazaki
[26] or Müller et al. [39,40,51–53]. Thus it seems inevitable that, at least on the level of continuum mechan-
ics, this dissipation mechanism ought to be handled phenomenologically. The probably simplest approach
to that relies on the prescription of the energy needed for the phase transformation. This is the approach
used in our paper.

We consider the system of n semilinear equations

%
∂2u

∂t2
− div

(

σplast + σ(∇u)
)

+ µ1A1
∂u

∂t
+ µ0A0u = f (1.1)

where % is a mass density, σ = ϕ′ is the elastic stress depending on the deformation gradient ∇u, µ1

is a viscosity-like coefficient, µ0 a capillarity-like coefficient, f is a body force, and σplast is a suitable
additional stress reflecting the plastic, rate-independent character of the activated phase-transformation pro-
cess. This σplast will be defined later in more detail, namely we will consider σplast =

∑

`∈L σ` with σ`

from (2.21b). The linear operators A1 and A0 reflect viscosity-like and capillarity-like behavior, respec-
tively, and must be given for concrete materials. They also serve as regularization terms to allow a rigorous
analysis of the problem, to guarantee the energy balance (2.28) to be satisfied, and possibly to stabilize
the calculations of the discrete scheme. Of course, the system (1.1) must be accompanied by suitable ini-
tial and boundary conditions. This model was basically proposed in [69, Formula (33)] and was further
developed in [62] and [63] for A1 = A0 = ∆2 and A1 = 0, A0 = ∆3 respectively. It augments the
conventional viscosity/capillarity-type models mentioned above which omit σplast and consider A1 = −∆
and A0 = ∆2. It also admits either A1 = 0 or A0 = 0.

In this paper we develop the above outlined model. Furthermore we present three-dimensional calcu-
lations with realistic data, which describe the martensitic transformation in an InTl shape memory alloy.
Here we consider complex geometrical/material interactions for various loading experiments such as stan-
dard tensile or shear loading. To this end, σplast in the model (1.1) is designed to handle more complex
dissipation mechanisms which describe transformations between many phases in one specimen. Moreover,
contrary to [62], loading is achieved by time-dependent Dirichlet boundary conditions, so-called hard device
loading, which are simpler to use in computational experiments and which are more realistic in connection
with laboratory experiments. However, they require some care when specifying the energy balance, see
(2.28) below. In contrast to (1.1), we neglect inertial forces, i.e. % = 0, which is mathematically justified
[62] and seems to be acceptable from the experimental point of view except for very fast loading regimes.
Let us remark that the probably first attempt for stationary three-dimensional simulations for SMAs was ac-
complished by Collins and Luskin [17]. Evolutionary three-dimensional simulations have been performed
by Klouček and Luskin [43,44]. They however used a conventional model which, as explained in [63],
cannot capture all desired phenomena.
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The remainder of this paper is organized as follows: In Section 2 we set up the model and derive its
energetics. Section 3 deals with the discretization and implementation of the model and discusses existence
and convergence. In Section 4 we describe our computational experiments, and in Section 5 we give some
concluding remarks.

2 The Model

We will use the notation Γ for the boundary of the undeformed reference configurationΩ ⊂ R
n and Γ0 and

Γ1 for the parts where Dirichlet and Neumann boundary conditions will be prescribed, respectively; Γ =
Γ0 ∪Γ1, Γ0 ∩ Γ1 = ∅. For a fixed, finite time horizon T > 0, we denoteQ = Ω × (0, T ), Σ = Γ × (0, T ),
Σi = Γi × (0, T ), i = 0, 1.

2.1 Stored energy: contribution from the deformation gradient

The stored energy densityϕmust be frame indifferent, i.e.ϕ(F ) = ϕ(RF ) for allR ∈ SO(n), where SO(n)
denotes the special orthogonal group of all orientation-preserving rotations. Besides, ϕ has a multi-well
structure where each well (i.e. each local minimum of ϕ) is an orbit of the form SO(n)Uα, α = 1, ..., N .
Here N denotes the number of phases. Thus, each well corresponds to one so-called phase (in accordance
with the convention in mathematical literature) or rather to a variant of a phase (as understood in physics).
For example, the cubic phase (called austenite) has only one well, namely SO(n). Tetragonal martensite has
three variants, i.e. three wells, c.f. Section 4.1 below, while orthorhombic or monoclinic martensites have 6
or 12 wells, respectively.

It is usually a difficult task to determine the stored energy in a particular case with reasonable degree
of reality. In general, it is difficult to describe the wells by means of atomic grid parameters, their energy
in comparison with the other wells, and (at least approximately) their elastic properties. The InTl alloy
modelled in Section 4.1 is an example where all these data are known.

2.2 Rate-independent dissipation

A crucial point is to adequately design the plastic-type dissipation mechanism. There exist a lot of phase
transformation processes where each dissipates a different energy or, in other words, where each is activated
by a different energy. To capture this in a general manner, we introduce indices ` ∈ L, where

L ⊂ {` ⊂ {1, 2, . . . , N} : ` 6= ∅, ` 6= {1, 2, . . . , N}}. (2.1)

Each ` ∈ L identifies a nontrivial splitting of {1, 2, . . . , N}. For the reason of symmetry we can assume
that for each ` ∈ L we have {1, 2, . . . , N} \ ` 6∈ L.

For each ` ∈ L we introduce a continuous bounded function

λ` : R
n×n → R (2.2)

which takes a constant value in a neighbourhood of the wells SO(n)Uα, α ∈ `, and another constant
value in a neighbourhood of the wells SO(n)Uα, α 6∈ `. Therefore we call λ` a phase-transformation
indicator. Since 1 ≤ |L| ≤ 2N−1 − 1, we might deal with up to three phase-transformation indicators for
the transformations between three tetragonal martensitic phases. Even seven indicators may be considered
for the transformations between one cubic austenite and three tetragonal martensite phases which occur at
higher temperatures.

The energy needed for the transformation between two particular phases, α and β, is therefore

Eαβ =
∑

`∈L

|λ`(Uα) − λ`(Uβ)|. (2.3)
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By choosing appropriate functions λ`, this construction allows us to set up Eαβ with great freedom.
The absolute value | · | as a convex, non-negative, positively homogeneous function used in the formula

(2.3) is known in plasticity-theory as a dissipation function. It determines the stress which activates the
particular plastic process. Its subdifferential, see (2.22) below, has the important property to be a maximal
responsive set-valued map (c.f. Eve, Reddy and Rockafellar [20] for details), which is intimately related to
the principle of maximum plastic work (2.25) of Hill [37] (see also [48] or [49,74]). The consequence of
(2.3) is symmetry: the transformation from phase α to phase β dissipates the same energy as the converse
transformation.

2.3 Viscous-like damping and higher-order contributions to the stored energy

There is a high freedom to set up the operators A1 and A0 in (1.1). For simplicity we will consider A1 =
A0 =: A. This reflects the observation that every real mechanism which leads to the stored energy cannot be
100% efficient and necessarily dissipates (here in a viscous-like manner through the coefficient µ1) a certain
part of the energy. Though this is not necessary for the mere existence of a weak solution, it guarantees
the energy balance (2.28). This would otherwise require a certain regularity of the solution which is not
obvious because the plastic dissipative mechanism in (2.21a,2.21b) involves a nonsmooth nonlinearity in a
high mixed derivative. Besides, A1 = A0 guarantees also the convergence of the numerical scheme. Let us
remark that this does not cover the viscosity-capillarity model (see [1,5,18,27,60,70,71,76]) which uses
A1 = −∆u different from A0 = ∆2u.

We derive the concrete form of A from a nonnegative quadratic functional

a : L2(Ω; Rn×n) → R ∪ {+∞} (2.4)

which is in general finite only on a linear subspace of L2(Ω; Rn×n). We denote

L2
a(Ω; Rn×n) :=

{

z∈L2(Ω; Rn×n) : a(z) < +∞
}

W 1,2
a (Ω; Rn) :=

{

u∈W 1,2(Ω; Rn) : a(∇u) < +∞
} (2.5)

and equip these linear spaces with the natural norms

||z||L2
a
(Ω;Rn×n) :=

(

||z||2L2(Ω;Rn×n) + a(z)
)1/2

,

||u||W 1,2
a (Ω;Rn) :=

(

||u||2W 1,2(Ω;Rn) + a(∇u)
)1/2

,

(2.6)

which makes them Hilbert spaces. A fundamental assumption on a is that it is coercive in such a compacti-
fying manner that the following embedding holds:

L2
a(Ω; Rn×n) ⊂ L2(Ω; Rn×n) compactly. (2.7)

Now we define
σa := a′ : L2

a(Ω; Rn×n) → L2
a(Ω; Rn×n)∗,

A := (a ◦ ∇)′ : W 1,2
a (Ω; Rn) → W 1,2

a (Ω; Rn)∗
(2.8)

to be the Gâteaux differentials of a and a ◦ ∇ respectively. We have

A = ∇∗ ◦ σa ◦ ∇, (2.9)

where ∇∗ denotes the adjoint operator of ∇. Obviously σa and A are linear operators. Furthermore we
always have

a(∇u) =
1

2
〈A(u), u〉 =

1

2
〈σa(∇u),∇u〉 (2.10)

where the first duality 〈·, ·〉 is between W 1,2
a (Ω; Rn)∗ and W 1,2

a (Ω; Rn), while the second one is between
L2

a(Ω; Rn×n)∗ and L2
a(Ω; Rn×n).
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EXAMPLE 1. One possibility for the operator A stems from the choice

a(z) :=
1

2

∫

Ω

|∇z|2 dx, (2.11)

so we have W 1,2
a (Ω; Rn) ∼= W 2,2(Ω; Rn). Because 〈σa(z), z̃〉 =

∫

Ω ∇ z · ∇ z̃ dx, we can symbolically
write σa(∇u) = −∆∇u and A = div div∇2u.

EXAMPLE 2. Another example deals with a nonlocal energy in the form

a(z) :=
1

4

∫

Ω

∫

Ω

K(x, ξ)‖z(x) − z(ξ)‖2
F dx dξ (2.12)

with a symmetric, non-negative kernelK : Ω×Ω → R. Here ‖z‖F =
(

∑

ij z
2
ij

)1/2

denotes the Frobenius
norm of a matrix. Models of this type have been proposed in the case n = 1 by Ren, Rogers, and Truski-
novsky [66,67] with either positive or also, for different purposes, non-positive kernels. The advantage of
(2.12) in comparison with (2.11) is the following: Depending on the choice ofK(x, ξ), (2.12) can still have
a compactifying effect on the deformation gradient, but it additionally might allow for sharp interfaces.
This is in good agreement with experiments, where interfaces observed in SMAs are often atomically sharp
[66]. Furthermore, this has also an advantage in the numerical treatment of the corresponding model: the
diffuse interfaces arising from (2.11) are no longer present and we therefore need not resolve them on an
unnecessarily fine grid.

Since we have

1

2

∫

Ω

∫

Ω

K(x, ξ)(z(x) − z(ξ)) : (z̃(x) − z̃(ξ)) dx dξ

=

∫

Ω

∫

Ω

K(x, ξ)(z(x) − z(ξ)) : z̃(x) dx dξ (2.13)

by symmetry of the kernel, the choice (2.12) results in the formula

[σa(z)](x) =

∫

Ω

K(x, ξ)(z(x) − z(ξ)) dξ (2.14)

for the stress σa, see also [66, Formula (3.2)]. In particular we have
∫

Ω

σa(z) : z dx =
1

2

∫

Ω

∫

Ω

K(x, ξ)‖z(x) − z(ξ)‖2
F dx dξ = 2a(z), (2.15)

compare (2.10).
An example for the kernel K is

K(x, ξ) =
1

|x− ξ|n+2γ
(2.16)

for a fixed parameter 0 < γ < 1. Then W 1,2
a (Ω; Rn) ∼= W 1+γ,2(Ω; Rn), which enables us to employ the

standard theory of Sobolev-Slobodeckiı̆ spaces W 1+γ,2(Ω). Later, we will use γ < 1/2 to allow for sharp
interfaces in the solution. Furthermore we will replace (2.16) by a wavelet-based kernel which leads to an
equivalent norm but allows an efficient local implementation.

We require that
a(v) = 0 and v|Γ0

= 0 implies v = 0. (2.17)
This is fulfilled in both examples (2.11) and (2.12) if the interior of the convex hull of Γ0 is nonempty, since
a(v) = 0 implies that v is affine and affine functions are completely determined on Γ0 with such shape. We
use this to derive the following Poincaré-like inequality.

Lemma 2.1 Let (2.7) and (2.17) hold. Then there is a constant C such that for all u ∈W 1,2
a (Ω; Rn):

‖u‖2
W 1,2

a (Ω;Rn)
≤ C(‖u‖2

L2(Γ0;Rn) + a(∇u)). (2.18)
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Proof Assume that for each k ∈ N there exists uk ∈W 1,2
a (Ω; Rn) such that

1 = ‖uk‖
2
W 1,2

a (Ω;Rn)
> k(‖uk‖

2
L2(Γ0;Rn) + a(∇uk)). (2.19)

Then {uk}k∈N is bounded inW 1,2
a (Ω; Rn). Since bounded subsets ofW 1,2

a (Ω; Rn) are weakly sequentially
compact, there exists a subsequence (also denoted by {uk}k∈N) which converges weakly to a function
ū ∈ W 1,2

a (Ω; Rn). The embedding W 1,2
a (Ω; Rn) ↪→ W 1,2(Ω; Rn) is compact, so the subsequence also

converges strongly to ū inW 1,2(Ω; Rn). Because a◦∇ is weakly lower semi-continuous and a(∇uk) → 0,
we have a(∇ū) = 0. Since uk|Γ0

→ ū|Γ0
strongly in L2(Γ0; R

n) and ‖uk‖2
L2(Γ0;Rn) → 0, we conclude

ū|Γ0
= 0. Because of (2.17) we have ū = 0. But

0 = ‖ū‖2
W 1,2(Ω;Rn) = lim

k→∞
‖uk‖

2
W 1,2(Ω;Rn) = 1 − lim

k→∞
a(∇uk) = 1 (2.20)

is a contradiction. ut

2.4 The governing equations and inclusions

We now set up the governing initial-boundary-value problem. Starting from (1.1), we neglect the inertial
term (i.e. % = 0) and take the desired plastic-type dissipated energy (2.3) and the regularizing contribution
from the quadratic form a as discussed in Section 2.3 into account. Then, provided all functions are smooth
enough and σa is pointwise defined, our problem reads in the classical formulation as follows:

− div

(

∑

`∈L

σ` + σ(∇u) + σa

(

µ1
∂∇u

∂t
+ µ0∇u

)

)

= f on Q, (2.21a)

σ` ∈ sign

(

∂

∂t
λ`(∇u)

)

λ′`(∇u), ` ∈ L on Q, (2.21b)

u = uD(x, t) on Σ0, (2.21c)
(

∑

`∈L

σ` + σ(∇u) + σa

(

µ1
∂∇u

∂t
+ µ0∇u

)

)

ν = g on Σ1, (2.21d)

natural boundary conditions arising from a, e.g. (2.21e)
{

(∇2u) · ν = 0 on Σ in case of (2.11)
none in case of (2.12),

u(·, 0) = u0 on Ω. (2.21f)

Here the set-valued mapping sign : R ⇒ [−1, 1] is defined as usual by

sign(ξ) :=











1 for ξ > 0,

[−1, 1] for ξ = 0,

−1 for ξ < 0.

(2.22)

and ν denotes the unit outward normal to Γ , uD denotes the prescribed displacement on the boundary Γ1,
u0 the initial displacement, and λ′` : R

n×n → R
n×n denotes the differential of λ`.

We now introduce new variables ω` ∈ sign( ∂
∂tλ`(∇u)) so that σ` = ω`λ

′
`(∇u). They correspond to

the direction of the transformation process which is associated with the index `. We multiply (2.21a) by
a smooth test function v, integrate over Q and use Green’s theorem. We then obtain the following weak
formulation of the initial-boundary-value problem (2.21):

∫ T

0

∫

Ω

(

∑

`∈L

ω`λ
′
`(∇u) + σ(∇u)

)

:∇v − f · v dx
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−

∫

Γ1

g · v dS +

〈

σa(µ1
∂

∂t
∇u+ µ0∇u),∇v(·, t)

〉

dt = 0 (2.23a)

∀v∈L2(0, T ;W 1,2
a (Ω; Rn)), v|Σ0

= 0,
∫

Q

(ω` − z)

(

λ′`(∇u) :
∂

∂t
∇u− v

)

dx dt ≥ 0 (2.23b)

∀` ∈ L, v ∈ L2(Q), z ∈ L∞(Q), z ∈ sign(v),

u|Σ0
= uD, (2.23c)

u(·, 0) = u0. (2.23d)

Here A : B =
∑n

i=1

∑m
j=1 AijBij and u · v =

∑m
j=1 ujvj , while 〈·, ·〉 in (2.23a) means the duality pairing

between W 1,2
a (Ω; Rn)∗ and W 1,2

a (Ω; Rn).
Consequently, we call a (1 + |L|)-touple (u, (ω`)`∈L) with u ∈ W 1,2(0, T ;W 1,2

a (Ω; Rn)) and ω ∈
L∞(Ω; RL) which fulfills (2.23) a weak solution of (2.21).

We ensure the integrability of all terms in (2.23) by the following data prerequisites:

ϕ ∈ C1(Rn×n), ϕ = ϕ1 + ϕ0 with ϕ1 ≥ 0 convex, (2.24a)
σ1 := ϕ′

1, |σ1(A)| ≤ C(1 + |A|), σ0 := ϕ′
0 bounded,

λ` ∈W 2,∞(Rn×n), ` ∈ L, (2.24b)
uD ∈W 1,2(0, T ;W 1,2

a (Ω; Rn)|Γ0
), (2.24c)

u0 ∈ W 1,2
a (Ω; Rn), u0|Γ0

= uD|t=0, (2.24d)
f ∈ L2(0, T ;L2(Ω; Rn)), g ∈ L2(0, T ;L2(Γ1; R

n)), (2.24e)
µ1 > 0, µ0 ≥ 0. (2.24f)

2.5 Energetics

From (2.23b) with v = 0 we obtain

dλ`(∇u)

dt
ω` = max

ξ∈sign(0)

dλ`(∇u)

dt
ξ a.e. on Q (2.25)

for all transformation processes, i.e. for all ` = 1, ..., L. This states that the dissipation of the `-th trans-
formation process is maximal provided that the rate d

dtλ`(∇u) is kept fixed while the direction ω` varies
freely for all admissible directions with sign(0) = [−1, 1]. This just resembles Hill’s maximum-dissipation
principle, see [37], [48], [49] or [74]. In plasticity theory, this principle can alternatively be expressed as
a normality in the sense that the rate of plastic deformation belongs to the cone of outward normals to the
elasticity domain. Here, this would result in the observation that the rate d

dtλ`(∇u) belongs to the normal
cone of the interval [−1, 1] at the point ω`, i.e. to N[−1,1](ω`) := ∂δ[−1,1](ω`). As usual, δ[−1,1] denotes the
indicator function of the interval [−1, 1] and ∂ stands for the subdifferential.

However, the main justification of the model (2.21) is the following energy balance. Let

σtot ≡ σtot(u, (ω`)`∈L) :=
∑

`∈L

σ` + σ(∇u) + σa

(

µ1
∂

∂t
∇u+ µ0∇u

)

(2.26)

denote the total stress, where σ` = ω`λ
′
`(∇u). Note that σ` ∈ L∞(Ω; Rn×n), σ(∇u) ∈ L2(Ω; Rn×n)

and σa(µ1
∂
∂t∇u + µ0∇u) ∈ L2

a(Ω)∗. Because L∞(Ω; Rn×n) ⊂ L2(Ω; Rn×n) ∼= L2(Ω; Rn×n)∗ ⊂
L2

a(Ω; Rn×n)∗ holds, we always have σtot ∈ L2
a(Ω; Rn×n)∗. Since in our general context σa may not be

pointwise defined, we cannot simply restrict it to the boundary to define the normal stress. Instead we define
σν ∈ (W 1,2

a (Ω; Rn)|Γ0
)∗ by means of

〈σν , v|Γ0
〉 = 〈σtot,∇v〉 −

∫

Ω

f · v dx−

∫

Γ1

g · v dS ∀v ∈W 1,2
a (Ω; Rn). (2.27)
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Let us remark that the definition of the normal stress holds only for a solution of (2.23) and not an arbitrary
function (u, (ω`)`∈L). Due to (2.23a) the normal stress is independent of the actual extension v of v|Γ0

and
is therefore well-defined.

Proposition 2.2 If (2.24) holds, then any weak solution (u, (ω`)`∈L) of (2.21) satisfies the following energy
balance:

Φ(u(·, T )) +

∫

Ω

∑

`∈L

Var
t∈[0,T ]

λ`(∇u(x, t)) dx + 2µ1

∫ T

0

a

(

∂∇u

∂t

)

dt

= Φ(u0) +

∫ T

0

(〈

σν ,
∂uD

∂t

〉

+

∫

Ω

f ·
∂u

∂t
dx+

∫

Γ1

g ·
∂u

∂t
dS

)

dt. (2.28)

Here Var denotes the total variation of a real-valued function over the indicated time interval and

Φ(u) =

∫

Ω

ϕ(∇u) dx + µ0a(∇u) (2.29)

gives the total stored energy. The particular terms in (2.28) denote successively:

– the total stored energy at time t = T ,
– the total energy dissipated due to the phase transformation,
– the energy dissipated by viscous-like damping,
– the total stored energy at time t = 0,
– the work due to the displacement uD over the time interval [0, T ],
– the work due to the body force f over the time interval [0, T ], and
– the work due to the surface force g over the time interval [0, T ].

Proof As ω` ∈ sign( ∂
∂tλ`(∇u)) a.e., we have the following identity for the dissipation rate related to all

phase transformations:

r(u) :=
∑

`∈L

σ` :
∂∇u

∂t
=
∑

`∈L

ω`λ
′
`(∇u) :

∂∇u

∂t
=
∑

`∈L

ω`
∂

∂t
λ`(∇u) =

∑

`∈L

∣

∣

∣

∣

∂

∂t
λ`(∇u)

∣

∣

∣

∣

. (2.30)

As u ∈ W 1,2(0, T ;W 1,2
a (Ω; Rn)), we can put v = ∂

∂t (u − ūD) ∈ L2(0, T ;W 1,2
a (Ω; Rn)) into (2.23a),

where we denote by ūD ∈ W 1,2(0, T ;W 1,2
a (Ω; Rn)) an extension of uD onto Q, i.e. ūD|Σ0

= uD. In
this way we ensure v|Σ0

= 0, hence v is indeed a legal test function for (2.23a). Then, using (2.27),
〈σa( ∂

∂t∇u),
∂
∂t∇u〉 = 2a( ∂

∂t∇u) (cf. (2.10)) and 〈σa(∇u), ∂
∂t∇u〉 = ∂

∂ta(∇u), we obtain

∫ T

0

(
∫

Ω

(r(u)+
∂

∂t
ϕ(∇u) − f ·

∂u

∂t

)

dx−

∫

Γ1

g ·
∂u

∂t
dS + 2µ1a(

∂∇u

∂t
) + µ0

∂

∂t
a(∇u)

)

dt

=

∫ T

0

(

∫

Ω

(

∑

`∈L

σ` + σ(∇u)

)

:
∂∇ūD

∂t
− f ·

∂ūD

∂t
dx

−

∫

Γ1

g ·
∂ūD

∂t
dS +

〈

σa(µ1
∂

∂t
∇u+ µ0∇u),

∂∇ūD

∂t

〉)

dt

=

∫ T

0

(〈

σtot,
∂∇ūD

∂t

〉

−

∫

Ω

f ·
∂ūD

∂t
dx−

∫

Γ1

g ·
∂ūD

∂t
dS

)

dt

=

∫ T

0

〈

σν ,
∂uD

∂t

〉

dt. (2.31)

This implies equality (2.28). ut
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3 The discretization and implementation of the model

In this section we describe the discretization of the model based on conformal finite-elements in space
and an implicit Euler formula in time. The convergence proof is outlined in Section 3.4. Furthermore we
discuss the recursive minimization problem created by the implicit time discretization. Finally, we present
an efficient treatment of energies with a nonlocal term like (2.16) in (2.12).

We emphasize that a numerical simulation based on the model from Section 2 is quite demanding
because of its complexity and nonlinearity. A successful treatment requires to handle the model with full
rigor not to destroy its energetics as given in Section 2.5. Note that due to possible shock waves, the energy
balance (2.28) may hold only as an inequality “<” if the quadratic form a does not have the compactifying
character of (2.7), c.f. [78].

3.1 The space and time discretization

For the space discretization we use finite elements. Then, a conformal discretization of the higher order term
a for the conventional capillarity (2.11) requires higher-order finite elements. This approach is followed in
[61] for d = 1 and partly in [44] for d = 3. In the latter article the authors use the Adini-Clough-Melosh
element. Note however that they cannot fully guarantee the embedding of the finite-element space into the
energy space W 1,2

a (Ω; Rn) = W 2,2(Ω; Rn). Also, rate-independent terms were not considered there.
The fourth order term (2.11) has the following disadvantage: It requires an extremely fine mesh to

resolve the diffuse interfaces. Otherwise the microstructure pattern would be smeared out completely. But
remember that it was merely introduced to regularize the model by its compactifying character. Therefore
we will use the term (2.12), i.e.

a(z) :=
1

4

∫

Ω

∫

Ω

K(x, ξ)‖z(x) − z(ξ)‖2
F dx dξ

in the following. With a kernel K of the type (2.16), we obtain the fractional order semi-norm a(∇u) =
|u|2W 1+γ,2(Ω,Rn), which is compactifying iff γ > 0. We will furthermore choose γ < 1/2. This allows us
to use piecewise linear and globally continuous finite elements, since they are then contained in the energy
space W 1,2

a (Ω; Rn) = W 1+γ,2(Ω; Rn).
The discretization is done separately in space and time. For the spatial discretization, let us assume that

Ω is polyhedral. For each mesh parameter h > 0, consider a finite decomposition Th of Ω into tetrahedra
whose diameters do not exceed h. Let

Vh = {vh ∈ W 1,∞
a (Ω; Rn) : vh|T affine ∀T ∈ Th} (3.1)

denote the finite-dimensional space of elementwise affine functions from W 1,2
a (Ω; Rn), and let

Lh = {ωh ∈ L∞(Ω; RL) : ωh|T constant ∀T ∈ Th} (3.2)

denote the finite-dimensional space of elementwise constant functions from L∞(Ω; RL). We assume that
⋃

h>0 Vh is dense in W 1,2
a (Ω; Rn) and that the meshes are nested, i.e. Vh1

⊂ Vh2
for h1 ≥ h2 > 0. We

also assume that all meshes are consistent with the splitting Γ = Γ0 ∪ Γ1.
By means of the time discretization, we want to obtain a time-recursive sequence of problems which

will later be solved by an implicit Euler method. To this end, let τ > 0 denote the discrete time step and
assume that T/τ is an integer. Now we consider the discrete solution at the time steps τ, 2τ, . . . , T . Thus
we deal with a finite sequence

((uk
hτ , ω

k
hτ ))

T/τ
k=1 with (uk

hτ , ω
k
hτ ) ∈ Vh × Lh. (3.3)

To satisfy the boundary conditions we additionally require

uk
hτ |Γ0

= uD(·, kτ) (3.4)
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to hold
For fixed h > 0 and τ > 0, this discretization of (2.23) leads straightforwardly to the recursive scheme:

For k = 0 set
u0

hτ = u0. (3.5)

For k = 1, 2, . . . , T/τ find (uk
hτ , ω

k
hτ ) such that

∫

Ω

(

∑

`∈L

ωk
hτ,`λ

′
`(∇u

k
hτ ) + σ(∇uk

hτ )

)

:∇vh − fk
τ · vh dx

−

∫

Γ1

gk
τ · vh dS +

〈

σa

(

µ1
∇uk

hτ −∇uk−1
hτ

τ
+ µ0∇u

k
hτ

)

,∇vh

〉

= 0 (3.6)

for all vh∈Vh with vh|Γ0
= 0 and
∫

Ω

(ωk
hτ,` − z)

(

λ`(∇uk
hτ ) − λ`(∇u

k−1
hτ )

τ
− v

)

dx ≥ 0 (3.7)

for all ` = 1, ..., L, v∈L2(Ω) and z∈L∞(Ω) with z∈sign(v).
Here we used the abbreviations

fk
τ :=

1

τ

∫ kτ

(k−1)τ

f(·, t) dt and gk
τ :=

1

τ

∫ kτ

(k−1)τ

g(·, t) dt. (3.8)

Later in the convergence proof (see Section 3.4) we will consider the piecewise affine interpolation of
u and the piecewise constant interpolation of ω in time. This gives us the imbedding into the space of the
continuous solutions.

3.2 Solution of the implicit scheme

Now, the recursive system of the nonlinear equation (3.6) coupled with the variational inequality (3.7) must
be solved numerically for k = 1, 2, . . . , T/τ . To this end we proceed as follows: Note that both σ and σa

have potentials. Therefore we can rewrite problem (3.6) as a nonconvex minimization problem at each time
level k:

Minimize Ek
hτ (u) =

∫

Ω

ϕ(∇u) + τ
∑

`∈L

∣

∣

∣

∣

∣

λ`(∇u) − λ`(∇u
k−1
hτ )

τ

∣

∣

∣

∣

∣

− fk
τ · u dx

+τµ1a

(

∇u−∇uk−1
hτ

τ

)

+ µ0a(∇u) −

∫

Γ1

gk
τ · u dS

subject to u ∈ Vh , u|Γ0
= uD(·, kτ).































(3.9)

We believe that this approach imitates the behaviour of nature where also minimization at least on a local
scale is relevant.

A compactness and coercivity argument shows that the discrete minimization problem (3.9) has at least
one solution. Without going further into technical details, let us mention that the functional Ek

hτ is locally
Lipschitz-continuous. Consequently, any local minimizer must satisfy the necessary first-order optimality
condition that Clarke’s generalized gradient contains an element perpendicular to {v ∈ Vh; v|Γ0

= 0},
see also [15]. The reader not familiar with the concept of generalized gradients can equally imagine the
following: Smooth the absolute value in (3.9), derive standard smooth optimality conditions, and then pass
to the nonsmooth limit case, cf. also [61]. In any case, this results precisely in (3.6) and (3.7).

The choice of a minimization algorithm to solve (3.9) is a delicate point because of non-convexity, non-
smoothness and high dimensionality. Here we tested two methods: the simple steepest descent approach
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(see e.g. [46]) and the conjugate gradient method by Fletcher/Reeves (see [29]). Both algorithms are imple-
mented in such a way that they choose one element from the generalized gradient and then act like in the
smooth case. It turned out that this strategy works reliably in all our numerical experiments.

The steepest descent method can briefly be described by

dj := [Ek
hτ ]′(uj)

uj+1 := uj − αjdj
(3.10)

for j = 0, 1, 2, ..., where [·]′ denotes one element of the generalized gradient. The Fletcher/Reeves variant
of the conjugate gradient algorithm is given by

dj := [Ek
hτ ]′(uj) +

‖[Ek
hτ ]′(uj)‖2

2

‖[Ek
hτ ]′(uj−1)‖2

2

dj−1

uj+1 := uj − αjdj

(3.11)

for j = 0, 1, 2, ... with the initial definition d−1 := 0. The step-size αj is determined in both cases similarly
to the Armijo method:

α−1 := 1

αj := αj−1 max{2i : i ∈ Z and ∀j ∈ [min(0, i), i] ∩ Z :

Ek
hτ (uj − 2jαj−1dj) ≤ Ek

hτ (uj) − β2jαj−1dj · [Ek
hτ ]′(uj)}.

(3.12)

For deriving the inequality in (3.12), we start with the first-order Taylor expansion of Ek
hτ (at least in the

smooth case):
Ek

hτ (uj − 2jαj−1dj) = Ek
hτ (uj) − 2jαj−1dj · [Ek

hτ ]′(uj) + h.o.t. (3.13)

Neglecting the higher order terms, we cannot expect that this equality holds for any step-size. But for
sufficiently small step-sizes and smooth Ek

hτ we always have

Ek
hτ (uj − 2jαj−1dj) ≤ Ek

hτ (uj) − β2jαj−1dj · [Ek
hτ ]′(uj) (3.14)

for any parameter β ∈ (0, 1). Therefore (3.12) means that the new step-size αj is determined from the
old step-size αj−1 by doubling it as long as the condition (3.14) holds or halving it until (3.14) holds. The
whole process is repeated until αj gets too small or j exceeds a predefined limit.

The steepest descent method turned out to perform much better than the conjugate gradient method.
This is in good agreement with the observations in [17] where basically our problem without viscosity and
capillarity was dealt with for the special smooth case λ` ≡ 0. This higher efficiency of the first, lower-
order method might be explained by the highly oscillating second (and even first) derivative of the energy
functional, which makes the orthogonalization of the search directions with respect to the second derivative
questionable.

3.3 Implementation of nonlocal terms

As mentioned above, we chose (2.12) with the kernel (2.16) for the operator A. After discretizing the
function space V to Vh as described in Section 3.1 and passing to the minimization problem as described
in Section 3.2 we end up with a double integral. Since the integral kernel is nonlocal, a straightforward
implementation would have a complexity of the orderO(h−6) for the three-dimensional case. This is com-
putationally too expensive, and we have to resort to a less expensive approach.

There are many different fields in which similar problems occur. One is the computation of long range
forces inN -body problems from astrophysics and molecular dynamics. Here the Barnes-Hut algorithm (see
[36]) or the fast multipole method by Greengard and Rokhlin (see [30–32]) reduce the O(N 2) complexity
of the naive direct computation substantially. Another way is to utilize the panel clustering technique of
Hackbusch and Novak (see [35,72]), which stems from the area of boundary element methods. It is closely
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related to the so-called H-matrices of Hackbusch, see [34]. Furthermore, the skeleton method of Tyrtysh-
nikov (see [79]) provides a way to deal with matrices which come from asymptotically smooth functions
like our kernel. Finally one might follow Brandt and split the kernel into a local and a smooth long range
part and then perform a multilevel summation, see [10,11]. All these approaches can be adapted to our
setting. They result in an algorithm with a complexity of the orderO(h−3(logh−1)α) on the expense of an
approximation to the exact result with prescribed error. Hereby α depends on the respective approach.

In the following we chose another way to reduce the complexity which utilizes wavelets (see [73]). In
principle it works as follows: Consider the wavelet representation of the function uh ∈ Vh. It is well known
that a weighted `2-norm of the wavelet coefficients is equivalent up to constants to the norm ‖uh‖W 1+γ,2 .
By means of a Poincaré-like inequality we obtain equivalency to a(∇uh). The idea is now to approximate
a(∇uh) by the weighted `2-norm of the associated wavelet coefficients. This is clearly not an equality,
but the qualitative behaviour of the a-term is retained, such as the compactifying character which it was
introduced for. The wavelet transformation can be performed with complexityO(h−3), so that this approach
finally leads to an O(h−3) algorithm.

Let us go into details. The multivariate wavelet transformation on a simplicial grid is possible but dif-
ficult, see [19]. Therefore we use a tensor product ansatz to further simplify things. First, consider the
univariate case n = 1. The wavelet representation of a function uh ∈ Vh(I) defined on an interval I is
given as

uh(x) =

L
∑

l=0

∑

k

ul,k
h ψl,k(x). (3.15)

Here ul,k
h ∈ R denote the wavelet coefficients, the subscript l indicates the dilatation and k the translation

of a mother wavelet ψ.1 The maximal level l is denoted by L and depends on h. We chose the following
mother wavelet which comes from the lifting scheme, cf. [77]:

ψ(x) =































− 1
8x− 3

8 if x ∈ [−3,−1]

x+ 3
4 if x ∈ [−1, 0]

−x+ 3
4 if x ∈ [0, 1]

1
8x− 3

8 if x ∈ [1, 3]

0 otherwise.

(3.16)
−1 1 2 3−2−3

−1/4

3/4

It is well known (see [58]) that the norm equivalence

‖uh‖
2
W 1,2(I) + a(∇uh) = ‖uh‖

2
W 1+γ,2(I)

∼=

L
∑

l=0

4(1+γ)l
∑

k

|ul,k
h |2‖ψl,k‖2

L2(I) (3.17)

holds within a certain range of γ, which depends on the special choice of the wavelets, here γ ∈ (−1.171, 0.5).
The involved constants are independent of h. Since we are interested in a(∇uh) and not in ‖uh‖2

W 1+γ,2(I),
we have to get rid of the term ‖uh‖2

W 1,2(I). A small modification of Lemma 2.1 shows that ‖ · ‖2
W 1+γ,2(I)

∼=

a◦∇ if we restrict us to a closed subspace ofW 1+γ,2(I) which does not contain the affine functions (except
the zero function of course). Hence we project out the affine functions and pass over to a ◦ ∇.

It turns out to be handy to use the L2-orthogonal projection P to remove the affine functions. The
wavelets we use have two vanishing moments. Thus all ψl,k with l ≥ 1 are L2-orthogonal to the affine
functions. The space of affine functions is exactly span{Ψ 0,k}. Consequently the wavelet representation of
Puh is the wavelet representation of uh with the coefficients u0,k

h set to zero, and we have

a(∇uh) = a(∇Puh) ∼=

L
∑

l=1

4(1+γ)l
∑

k

|ul,k
h |2‖ψl,k‖2

L2(I) (3.18)

1 Further modifications are necessary near the boundary, see [77].
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To extend this to the multivariate case, we make a tensor product ansatz:

W 1+γ,2(In) = W 1+γ,2(I) ⊗ L2(I) ⊗ L2(I) ⊗ . . .⊗ L2(I)

∩ L2(I) ⊗W 1+γ,2(I) ⊗ L2(I) ⊗ . . .⊗ L2(I)

∩ . . .

∩ L2(I) ⊗ . . .⊗ L2(I) ⊗W 1+γ,2(I)

(3.19)

with the corresponding norm equivalence

‖uh‖
2
W 1+γ,2(In)

∼=
∑

l∈{0,1,2,...,L}n

22(1+γ)|l|∞
∑

k

|ul,k
h |2‖ψj,k‖2

L2(In). (3.20)

We filter the affine functions and replace a(uh) by the resulting expression similar to the right hand side
of (3.18) for the numerical calculations.

Of course, the tensor product ansatz poses a restriction on the domain and on the grid. Since our simu-
lations are based on a cubic domain anyway, this causes no disadvantage.2 Furthermore the tensor product
leads to a new finite element space, namely piecewise multilinear functions on cubes instead of piecewise
linear functions on simplices. But note that the nodewise interpolation between theses FE spaces is a bijec-
tive mapping. Furthermore the resulting seminorms are equivalent with constants independent on h. Hence
our simple tensor product approach only introduces a further constant to our approximation like the one in
the first norm equivalence and is therefore acceptable.

Both the wavelet transformation and the inverse wavelet transformation (which is needed to compute
the gradient of the functional for the minimization routine) can be computed with O(h−3) operations. Thus
we finally get an algorithm with the overall complexity O(h−3) for the computation of an approximation
of the term a(∇u) and its derivative.

3.4 The convergence analysis

Now, after the discussion of the solution procedure and implementational details, we sketch the convergence
analysis of the recursive scheme. To this end, we assume that the extension ūD of uD (cf. the proof of
Proposition 2.2) is piecewise affine in time for all considered times steps τ > 0. Furthermore, ūD should
belong to C(0, T ;Vh), which is not a restrictive assumption from the viewpoint of Section 4.2.

It was already mentioned in section 3.2 that each arising discrete problem always possesses a solution.
Now we study the convergence of the solutions of the discrete problems. In particular we obtain the exis-
tence of a solution of the continuous problem. Recall that the solution of (3.6) and (3.7) (which may not
be unique) was denoted by {(uk

hτ , ω
k
hτ )}k=0...T/τ . By uhτ we denote its piecewise affine and by ūhτ its

piecewise constant interpolation in time, i.e. uk
hτ = uhτ (kτ) = ūhτ |((k−1)τ,kτ ]. The term ω̄hτ is defined

analogously.

Proposition 3.1 Let (2.7), (2.17) and (2.24) hold and let τ be small enough. Then there exists a constant
C which is independent of h and τ so that we have for all approximate solutions uhτ of (3.6) the a priori
estimate

‖uhτ‖W 1,2(0,T ;W 1,2
a (Ω;Rn)) ≤ C. (3.21)

Proof We test (3.6) with vh = uk
hτ − uk−1

hτ − τ ∂
∂t ūD. Using the convexity of ϕ1, the growth conditions

(2.24a) on σ0 and σ1 and Poincaré-like inequalities we obtain the estimate
∫

Ω

ϕ1(∇u
k
hτ ) − ϕ1(∇u

k−1
hτ ) dx+ 2τµ1a

(

∇uk
hτ −∇uk−1

hτ

τ

)

+ µ0a(∇u
k
hτ ) − µ0a(∇u

k−1
hτ )

2 Note that for the case of a more general shape of the domain we could follow [19].
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≤

∫

Ω

σ1(∇u
k
hτ ) : (∇uk

hτ −∇uk−1
hτ ) dx

+

〈

σa

(

µ1
∇uk

hτ −∇uk−1
hτ

τ
+ µ0∇u

k
hτ

)

,∇uk
hτ −∇uk−1

hτ

〉

≤τ

∫

Ω

σ1(∇u
k
hτ )) :

∂

∂t
∇ūD −

[

σ0(∇u
k
hτ ) +

∑

`∈L

ωk
hτ`λ

′
`(∇u

k
hτ )

]

:

[∇uk
hτ −∇uk−1

hτ − τ
∂

∂t
∇ūD] + fk

hτ · [uk
hτ − uk−1

hτ − τūD] dx

+

∫

Γ1

gk
hτ · [uk

hτ − uk−1
hτ − τūD] dS +

〈

σa

(

µ1
∇uk

hτ −∇uk−1
hτ

τ
+ µ0∇u

k
hτ

)

, τ
∂

∂t
∇ūD

〉

≤Cτ

(

1 +
1

δ

)

+ τ2δ

k
∑

i=1

a

(

∇ui
hτ −∇ui−1

hτ

τ

)

+ τCδa

(

∇uk
hτ −∇uk−1

hτ

τ

)

+ τµ0a(∇u
k
hτ ), (3.22)

where C denotes a generic constant which only depends on the problem data, but not on h and τ . We sum
this inequality over k = 1 . . .N for each N ≤ T/τ and choose δ > 0 so small that the second and the third
term from the last line cancel with terms from the first line. Thus we get

∫

Ω

ϕ1(u
N
hτ ) + τµ1

N
∑

k=1

a

(

∇uk
hτ −∇uk−1

hτ

τ

)

+ µ0a(∇u
N
hτ ) ≤ C + τµ0

N
∑

k=1

a(∇uk
hτ ). (3.23)

For sufficiently small τ the discrete Gronwall inequality shows that
∑N

k=1 a(∇u
k
hτ ) ≤ C. So by (3.23) with

N = T/τ we have
∫

Q

a

(

∂

∂t
∇uhτ

)

dx dt ≤ C, (3.24)

and a Poincaré-like inequality gives the desired a priori estimate. ut

Proposition 3.2 Each sequence {(uhn,τn
, ωhn,τn

)}n∈N with hn → 0 and τn → 0 has a weakly × weakly∗
convergent subsequence in W 1,2(0, T ;W 1,2

a (Ω; Rn)) × L∞(Q; RL). The limit of each such subsequence
is a weak solution of (2.21). In particular (2.21) has a weak solution.

Proof We closely follow the proof of [62, Lemma 2], which is inspired by ideas from [16]. By Proposi-
tion 3.1 the sequence {(uhn,τn

, ωhn,τn
)}n∈N is bounded inW 1,2(0, T ;W 1,2

a (Ω; Rn))×L∞(Q; RL). From
Banach’s theorem we know that bounded sets in Banach spaces with separable predual are relatively se-
quentially weakly∗ compact, which implies the existence of the subsequence.

In passing to the subsequence, we assume from now on that the sequence converges to a pair (u, ω) ∈
W 1,2(0, T ;W 1,2

a (Ω; Rn)) × L∞(Q; RL). Because the imbedding W 1,2(0, T ;W 1,2
a (Ω; Rn)) ↪→ L2(0, T ;

W 1,2(Ω; Rn)) is compact, uhn,τn
converges strongly to u in L2(0, T ;W 1,2(Ω; Rn)). Since ‖∇ūhnτn

−
∇uhnτn

‖L2(Q;Rn×n) = O(τ) due to the a priori estimate (3.21) we also have ūhn,τn
→ u strongly in

L2(0, T ;W 1,2(Ω; Rn)). From (3.6) we infer that the discrete solution satisfies

∫ T

0

∫

Ω

(

∑

`∈L

ω̄hnτn,`λ
′
`(∇ūhnτn

) + σ(∇ūhnτn
)
)

:∇vhn
− f̄hnτn

· vhn
dx

−

∫

Γ1

ḡhnτn
· vhn

dS +

〈

σa(µ1
∂

∂t
∇uhnτn

+ µ0∇ūhnτn
),∇vhn

〉

dt = 0 (3.25)

for all vhn
∈ Vhn

. We have weak convergence for the linear terms and strong convergence for the nonlinear
terms and thus we directly obtain (2.23a) for all v ∈

⋃

n Vhn
and therefore for all v ∈ V by density.
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From (3.7) it follows that
∫ T

0

∫

Ω

(ω̄hnτn,` − zhn
)

(

∂

∂t
[λ`(∇uhnτn

)]τ − vhn

)

≥ 0 (3.26)

for all vhn
∈ Vhn

and all zhn
∈ Lhn

with zhn
∈ sign vhn

. Here, for a piecewise constant function v̄, the
term [v̄]τ denotes the piecewise affine interpolation such that [v̄]τ (kτ) = v̄|((k−1)τ,kτ). We use (3.25) and
(2.23a) to circumvent the limit process of the product of two weakly or weakly∗, respectively, convergent
functions:

lim sup
n→∞

∫

Q

∑

`∈L

ω̄hnτn,`
∂

∂t
[λ`(∇uhnτn

)]τ

≤ lim sup
n→∞

∫

Q

∑

`∈L

ω̄hnτn,`λ
′
`(∇ūhnτn

) :
∂

∂t
∇uhnτn

+ Cτn

= lim sup
n→∞

∫

Q

−σ(∇ūhnτn
) :

∂

∂t
∇uhnτn

+

∫

Q

f̄τn
·
∂

∂t
uhnτn

+

∫

Γ1

ḡτn
·
∂

∂t
uhnτn

−

∫ T

0

〈

σa

(

µ1
∂

∂t
∇uhnτn

+ µ0∇ūhnτn

)〉

≤ lim sup
n→∞

∫

Q

−σ(∇ūhnτn
) :

∂

∂t
∇uhnτn

+

∫

Q

f̄τn
·
∂

∂t
uhnτn

+

∫

Γ1

ḡτn
·
∂

∂t
uhnτn

− 2µ1

∫ T

0

a

(

∂

∂t
∇uhnτn

)

dt− µ0a(∇uhnτn
(·, T )) + µ0a(∇u0)

≤

∫

Q

−σ(∇u) :
∂

∂t
∇u+

∫

Q

f ·
∂

∂t
u+

∫

Γ1

g ·
∂

∂t
u

− 2µ1

∫ T

0

a

(

∂

∂t
∇u

)

dt− µ0a(∇u(·, T )) + µ0a(∇u0)

=

∫

Q

∑

`∈L

ω`λ
′
`(∇u) :

∂

∂t
∇u. (3.27)

Here we used the weak upper semicontinuity of the quadratic form −a. By an appropriate choice of the test
functions we pass from the sum over all ` to the single inequalities for each ` and finally obtain (2.23b). ut

4 Computational experiments

In the following we apply our model to the cubic to tetragonal transformation in an Indium-Thallium alloy
and present computational experiments for various loading regimes. In Sections 4.1 and 4.2 we give the
material data and the geometric description of the considered problems. Then, in Section 4.3 we discuss the
results of our numerical experiments.

4.1 Material data

The material properties of shape memory alloys are described by the associated stored energy density
ϕ : R

3×3 → R. However, even though up to now already a lot of different materials have been examined
both theoretically and experimentally, the detailed form of the associated ϕ can in general not be found in
the literature. A certain exception is the cubic to tetragonal transformation of In-20.7 at% Tl alloy. Here,
Ericksen and James [21,22] (see also [17,44,47]) used the potential ϕ (dependent on temperature θ) in the
form

ϕθ(F ) =
a(θ)

6

[

(

3C11

trC
− 1

)2

+

(

3C22

trC
− 1

)2

+

(

3C33

trC
− 1

)2
]
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+
b

2

(

3C11

trC
− 1

)(

3C22

trC
− 1

)(

3C33

trC
− 1

)

+
c

36

[

(

3C11

trC
− 1

)2

+

(

3C22

trC
− 1

)2

+

(

3C33

trC
− 1

)2
]2

+
d

2

(

C2
12 + C2

13 + C2
23 + C2

21 + C2
31 + C2

32

)

+ e(trC − 3)2 (4.1)

with C = FTF and trC = C11 +C22 +C33. The material constants are a(θ) = 0.38+(1.22×10−3)(θ−
θT ), b = −29.23, c = 562.13, d = 3.26, e = 5.25, (all in GPa) and θT = 70◦C. This potential is obviously
frame indifferent in the sense that ϕθ(RF ) = ϕθ(F ) holds for all R ∈ SO(3).

Its growth as polynomial of degree four does not fit our data qualification (2.24a), but we rely on the
assumption that the gradient of the solution is always bounded. Thenϕθ can be modified outside the domain
such that ϕθ(F ) grows quadratically for |F | → +∞. Hence (2.24a) is fulfilled.

The local minima of ϕθ are attained at four wells SO(3)Uα:

U1 = diag(η2, η1, η1), (martensite - tetragonal, variant 1)

U2 = diag(η1, η2, η1), (martensite - tetragonal, variant 2)

U3 = diag(η1, η1, η2), (martensite - tetragonal, variant 3)

U4 = I = diag(1, 1, 1) (austenite - cubic)

(4.2)

where η1 < 1 and η2 > 1. Both parameters depend on the temperature. They are given in [21] as

η1(θ) =
√

1 − ε(θ), η2(θ) =
√

1 + 2ε(θ), ε(θ) =
−3b+

√

9b2 − 32a(θ)c

8c
. (4.3)

The energies of the wells are mutually equal at the temperature θ = 108.92◦C, i.e. austenite is in equilibrium
with martensite. If θ < 108.92◦C, martensite dominates, i.e. it has a lower energy than austenite, and vice
versa for θ > 108.92◦C. In the following experiments we fix the temperature to θ = 20◦C. Consequently
the martensite phase is dominant and ε(θ)=̇0.0293.

Next, we design the plastic dissipative mechanism in accordance with Section 2. To match the simulation
results to the results of real experiments it would be necessary to identify the transformation energies Eαβ

for each pair (α, β). Unfortunately we do not have them at our disposal, so we assume that they are all
equal. For this it suffices to consider L = {{1}, {2}, {3}, {4}} only. Each λ` is zero in a neighbourhood of
the well Uα with ` = {α} and takes the value Λ ≥ 0 in a neighbourhood of the other wells. The decisive

criterion for the distance is the Frobenius norm ‖C‖F =
(

∑

i,j c
2
ij

)1/2

of the Cauchy-Green strain tensor
C = FTF . Away from the wells we interpolate with a polynomial to achieve a smooth function. Altogether
we use

λ`(F ) = Λ ·



















0 if d`(F
TF ) ≤ −ε`,

1 if d`(F
TF ) ≥ ε`,

1

2
+

3

4

d`(F
TF )

ε`
−

1

4

(

d`(F
TF )

ε`

)3

otherwise
(4.4)

with
d`(C) = ||C − UT

` U`||
2
F − min

α6=`
||C − UT

αUα||
2
F. (4.5)

Here, the parameter

ε` =
1

2
min
α6=`

||UT
` U` − UT

αUα||
2
F (4.6)
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describes a suitable tolerance.3 The decision function d`(C) is negative if and only if the Cauchy-Green
strain C is closer to the well ` than to any other well. In view of (2.3), the mechanism (4.4)–(4.5) for α 6= β
results in

Eαβ =

4
∑

`=1

|λ`(Uα) − λ`(Uβ)| = Λ+ Λ+ 0 + 0 = 2Λ, (4.7)

independent of α and β. Values of Λ of about 1 MJm−3 turned out to be reasonable.
The coefficient µ0 reflects the interfacial stored energy. It is indeed observed that finely twinned marten-

sites have higher energies than single-phase regions. In such a manner, µ0 could be fitted to the result of an
experiment if available. Here, however, we use µ0 = 0.

For the definition of γ and µ1 we do not have any hint from experiments. We choose γ = 0.25 and
µ1 = 10 GPa m2γs for the tensile experiment and µ1 = 100 GPa m2γs for the shear experiment. By this
choice the influence of the viscous term under the given loading regimes does not destroy the stored energy
and the rate-independent dissipation mechanisms which are essential for the hysteretic response we want
to simulate. On the other hand, µ1 is large enough that the regularizing effect of the viscous term appears.
In comparison to the case µ1 = 0 (for which the theoretical justification of the calulations is unclear), we
observed a smaller error in the a posteriori energy balance.

4.2 Geometric data and loading regimes

Let us first remark that the capillarity and viscosity terms determine the length scale of the occuring mi-
crostructure but, beyond that, the length scale of the specimen is not determined by the model. Therefore it
makes no sense to describe the dimensions of the specimen in our numerical experiments in concrete physi-
cal units. Instead we work with dimensionless numbers for the lengths. In the following, let the domainΩ be
the unit cube (− 1

2 ,
1
2 )3. In consistence with common laboratory experiments, we neglect the body forces and

the surface pressure, i.e. f = 0 and g = 0. The hard-device loading is achieved by controlling the displace-
ment uD on two opposite faces of the cube Ω, namely Γ0 = {(− 1

2 , x2, x3) ∈ ∂Ω} ∪ {( 1
2 , x2, x3) ∈ ∂Ω}.

This corresponds to a (1, 0, 0)-orientation of the crystal. Two different regimes were tested: tensile and
shear loading, cf. Figure 4.1.

Fig. 4.1 Schematic illustration of hard-device loading conditions uD: tensile and shear loading.

To be more specific, we use

uD(t,−
1

2
, x2, x3) =

(

−
1

2
+ s(t), x2, x3

)

, uD(t,
1

2
, x2, x3) =

(

1

2
− s(t), x2, x3

)

(4.8)

for the tensile loading experiments and

uD(t,−
1

2
, x2, x3) =

(

−
1

2
, x2 + s(t), x3

)

, uD(t,
1

2
, x2, x3) =

(

1

2
, x2 − s(t), x3

)

(4.9)

3 The non-differentiable function “min” may be smoothed by replacing it with minε(a1, a2, a3) = εln(e−a1/ε +
e−a2/ε + e−a3/ε), where ε > 0. Nevertheless this turned out to be unnecessary for our numerical experiments.
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for the shear loading experiments. The periodic cycling was implemented by a function s(t) with sawtooth
form and amplitude A as shown in Figure 4.2. Note that this load uD satisfies the smoothness condition
(2.24c).

t

0.25 0.5 0.75 1 1.25 1.5 1.75 2
−A

A
s(t)

Fig. 4.2 The periodically cycling s = s(t).

In all experiments the crystal lattice is oriented parallel to the coordinate axes. The starting value u0 is
the randomly disturbed identity mapping.

4.3 Responses on various loading regimes

The results of our computational experiments are, like the results from laboratory experiments, quite com-
plex and it is not easy to select and display the most representative features. In the following we display
averaged stress/deformation diagrams for different values of Λ, the time evolution of volume fractions of
certain phases, the relative error in the energy balance and some snapshots of the InTl specimen under load-
ing. For all experiments we fix the mesh size h in the space discretization to h = 1/16 and the time step
size to τ = 1/800, i.e. 800 steps per loading cycle.

TENSILE LOADING EXPERIMENT: First, we present the results for the tensile loading case. The ex-
perimentally most wanted output are the stress/deformation diagrams. To demonstrate the influence of the
parameter Λ (see (4.5)–(4.7)) we consider two values Λ = 3 MJm−3 and Λ = 1 MJm−3. For comparison
we performed the calculations also for Λ = 0 MJm−3, i.e. without plastic-like dissipation. There are nine
possible diagrams, each displays one component of the 3 × 3–tensorΣ :=

∫

Ω σ(∇u) dx. In Figure 4.3 we
present the x1-component of the stress in x1-direction for different values of Λ. We see that the size of Λ
clearly influences the hysteresis behaviour of the process. While for Λ = 0 there is naturally no hysteresis
effect to be expected, we clearly obtain for Λ = 1 MJm−3 a hysteresis loop. For unphysically large val-
ues of Λ such as Λ = 3 MJm−3 the hysteresis loop of course increases, but shows unnatural effects. The
Σ22-component is also displayed. The results for the Σ33-component were analogous to that for the Σ22-
component. The remaining six stress components are nearly zero. Note that the area of the hysteresis loop
in the Σ11 diagram corresponds to the amount of the dissipated energy spent for all phase transformations
and for viscous damping, see the energy balance (2.28).
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Fig. 4.3 Stress/deformation diagram for the tensile loading experiment. Σ in GPa, Λ in MJm−3, µ1 in GPa m2γs



Modelling and numerical simulation of martensitic transformation in shape memory alloys 19

To get an impression of the evolution in time, we present the deformed specimen at four different time
steps. The austenite phase is indicated in white, the martensite phases are indicated in different gray shades.

Fig. 4.4 Deformed specimen for tensile loading experiment at times t = 0, t = 0.0375, t = 0.25 and t = 0.75 for
Λ = 0
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Fig. 4.5 Phase fractions for tensile loading experiment for Λ = 3 MJm−3, µ0 = 0 GPa m2γ , µ1 = 10 GPa m2γ s

An interesting information, usually not available in laboratory experiments, is the time evolution of the
volume fractions of the particular phases. We present it in Figure 4.5 for Λ = 1 MJm−3. The phase fraction
diagrams give a good hint about qualitative properties of the specimen. For the tensile loading experiment,
we see from Figure 4.5 that the austenite phase is dominant around t = 1, 2, 3, . . . (not t = 0 because
of the random starting value), compare with the first cube in Figure 4.4. Then around t = 0.1 . . . 0.4,
t = 1.1 . . .1.4, . . . the phase fraction diagram indicates mainly an approximately equal mixture of two
martensite phases, which appears in form of different microstructures, compare the second and third cube.
Finally around t = 0.6 . . .0.9, t = 1.6 . . . 1.9, . . . the phase fractions indicate a mostly pure third austenite
phase, see the fourth cube. We can illustrate this by the diagram

A ↗

↖

M2+M3

M1

↘

↙
A. (4.10)

A direct martensite–martensite transformation almost never occurs, instead we observe martensite–austenite
transformations only.
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Note that in the numerical simulation the energy balance (2.28) only needs to be satisfied approximately.
To check it we relate its numerical error to the total amount of energy exchanged in the system. This gives
an interesting a posteriori information about the discretization error and the quality of the minimization
procedure solving (3.9). To be precise, the relative error at time k is defined by

Ek
rel =

∣

∣

∣

∣

Ek −E0 +Dk + V k −W k

Ek −E0 +Dk + V k +W k
abs

∣

∣

∣

∣

(4.11)

with

Ek =

∫

Ω

φ(∇uk
hτ ) dx+ µ0a(∇u

k
hτ ), (stored energy)

Dk =

k
∑

t=1

∑

`∈L

∫

Ω

|λ`(∇u
t
hτ ) − λ`(∇u

t−1
hτ )| dx (dissipation)

V k =2µ1

k
∑

t=1

a
(∇ut

hτ −∇ut−1
hτ

τ

)

(viscosity) (4.12)

W k =

k
∑

t=1

〈

σν(∇uk
hτ ), ut

hτ − ut−1
hτ

〉

(external work)

W k
abs =

k
∑

t=1

∣

∣

〈

σν(∇uk
hτ ), ut

hτ − ut−1
hτ

〉
∣

∣ (absolute external work)

The relative error in the energy balance is displayed in Figure 4.6. As expected, a higher contribution of the
dissipative mechanism introduces an additional error in the balance. Nevertheless, even for Λ = 3 MJm−3

the relative error is only about 1% which is quite acceptable.
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Fig. 4.6 Relative error in the energy balance for the tensile loading experiment with µ0 = 0 GPa m2γ s, µ1 =
10 GPa m2γ s, Λ = 3 MJm−3 (bold line) and Λ = 0 MJm−3 (dashed line).

SHEAR LOADING EXPERIMENT: We now briefly present the results for the shear loading case. In Figure
4.7 (left) we give the stress/deformation diagram of Σ12 for Λ = 3 MJm−3. Again we observe a substantial
hysteresis effect. The corresponding relative error in the energy balance is given in Figure 4.7 (right). It
stays well below 0.4%.

The phase fraction diagram for this experiment with Λ = 1 MJm−3 is shown in Figure 4.8. Note that
the cycles of phases are not aligned with these of the boundary values, but are a little bit delayed. This effect
is introduced by the dissipative mechanism, which remembers to some extent the previous configuration.
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Fig. 4.7 Stress/deformation diagram for Σ12, energy balance for shear experiment, Λ = 1 MJm−3, µ0 = 0 GPa m2γ ,
µ1 = 100 GPa m2γs.

The phase fraction diagram reveals that the martensitic phases M2 and M3 are mostly not present. The
corresponding transformation process can be described by the diagram

A ↗

↖

M1

M1

↘

↙
A. (4.13)
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Fig. 4.8 Phase fractions for shear experiment, Λ = 1 MJm−3, µ0 = 0 GPa m2γ , µ1 = 100 GPa m2γ s.

Note that we again observe only martensite–austenite transformations and no direct martensite–marten-
site transformations.

5 Concluding remarks

Based on [62,63,69], we developed a continuum-mechanical model for isothermal laboratory experiments
of single-crystal shape-memory alloys. Beside capillarity- and viscosity-like terms it involves a phenomeno-
logical rate-independent dissipation mechanism which incorporates the energy dissipation of phase trans-
formations. We discretized the model with finite elements and applied wavelet techniques for the higher
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order terms. Supported by a convergence analysis, we performed three-dimensional numerical experiments
for an InTl single-crystal under hard-device loading.

The numerical experiments indicate that the model is capable to simulate the behaviour of martensitic
transformations in shape-memory alloys. This sort of calculations can complement laboratory experiments
by data which is otherwise hardly or not at all accessible, like for example the volume fractions or stresses
inside the specimen. To some extent, it seems possible to run simulations for experiments which can not be
performed in real laboratories and to predict the behaviour of new materials.
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