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Abstract

We compare in a backtesting study the performance of univariate models for
Value-at-Risk (VaR) and expected shortfall based on stable laws and on extreme
value theory (EVT). Analyzing these different approaches, we test whether the
sum–stability assumption or the max–stability assumption, that respectively imply
α–stable laws and Generalized Extreme Value (GEV) distributions, is more suitable
for risk management based on VaR and expected shortfall. Our numerical results
indicate that α–stable models tend to outperform pure EVT-based methods (es-
pecially those obtained by the so-called block maxima method) in the estimation
of Value-at-Risk, while a peaks-over-threshold method turns out to be preferable
for the estimation of expected shortfall. We also find empirical evidence that some
simple semiparametric EVT-based methods perform well in the estimation of VaR.
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A comparison of some univariate models for

Value-at-Risk and expected shortfall
Abstract

We compare in a backtesting study the performance of univariate models for
Value-at-Risk (VaR) and expected shortfall based on stable laws and on extreme
value theory (EVT). Analyzing these different approaches, we test whether the
sum–stability assumption or the max–stability assumption, that respectively imply
α–stable laws and Generalized Extreme Value (GEV) distributions, is more suitable
for risk management based on VaR and expected shortfall. Our numerical results
indicate that α–stable models tend to outperform pure EVT-based methods (es-
pecially those obtained by the so-called block maxima method) in the estimation
of Value-at-Risk, while a peaks-over-threshold method turns out to be preferable
for the estimation of expected shortfall. We also find empirical evidence that some
simple semiparametric EVT-based methods perform well in the estimation of VaR.

1 Introduction

This work focuses on the investigation of the predictive power of Value-at-Risk and
expected shortfall based on the assumption of Paretian stable returns, comparing their
performances with corresponding measures based on the assumption of Gaussian returns
as well as on the Extreme Value Theory (EVT). In particular we study the empirical per-
formances of two fully parametric approaches, assuming that returns follow a Gaussian
law or an α-stable law, and of several approaches based on limit theorems for maxima of
sequences of independent random variables. We also consider, mainly as a benchmark
case, a fully non-parametric approach based on empirical processes, which corresponds
to the so called historical simulation method.

In the literature Value-at-Risk (VaR) is commonly accepted as the standard measure
of market risk and indicates the maximum probable loss on a given portfolio, referring
to a specific confidence level and time horizon. Historically the literature on VaR has
evolved following both the parametric and the non-parametric approach (see e.g. [9],
[22] for a complete historical account and list of references). While in the latter case
the probability distribution of future returns is “simulated from the past” in order to
estimate the relevant quantile (i.e. the VaR), the parametric approach is based on fitting
a certain family of probability laws to observed historical returns.

In the parametric approach the most widely adopted hypothesis is the conditional or
unconditional normality of returns (see e.g. [9] for a comprehensive overview). This as-
sumption is motivated by the conception that returns are the outcome of a large number
of “microscopic” effects. Hence, the central limit theorem (CLT) provides a theoreti-
cally sound argument in favor of Gaussian distribution. The normality assumption,
along with the hypothesis of linearity of portfolio returns with respect to the considered
risk factors, implies a normal distribution for portfolio returns. Consequently, it is pos-
sible to describe the returns’ distribution simply with the first two moments, hence VaR
can be calculated using the corresponding quantile of a standard Gaussian law.

Even if the normality of returns is intuitively very appealing, its drawbacks are
extensively documented in literature. In fact, several empirical studies have shown that
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financial returns exhibit features like high kurtosis and skewness that are incompatible
with the normality assumption (see [14], [13] and [2] among others).

A natural approach to overcome these inconsistencies is to assume that returns follow
a stable law, thus saving the CLT argument and explaining heavy tails and asymmetries
(a complete account of stable distributions in finance is given in [32]). In particular,
stable laws arise as the only possible weak limits of properly normalized sums of i.i.d.
random variables, they are heavy tailed (except in the Gaussian subcase), and can
exhibit skewness (see e.g. [33]). Moreover, models based on stable laws have the poten-
tial to provide more realistic estimates of the frequency of large price movements, and
therefore they seem preferable to classical models based on the assumption of normally
distributed returns (for related discussions see e.g. [19], [16] and [23]).

In the last 10 years there has been intense activity in the application of ideas of
extreme value theory to risk management. Roughly speaking, this method is an ap-
plication of another stability scheme: as α-stable laws are the only laws appearing as
(weak) limits of sum of i.i.d. random variables and are stable (better said, closed) with
respect to summation, GEV laws are the only weak limits with respect to the opera-
tion of pairwise maximum, and they are closed with respect to this operation. In other
words, denoting by ◦ a binary operation, and writing

aX1 ◦ bX2
d
= cX + d, (1)

where X1, X2 are i.i.d. copies of X, a, b, c ∈ R+, d ∈ R, then (1) defines, respectively,
α stable laws when ◦ = +, and max-stable laws (or equivalently GEV laws) when
x ◦ y = max(x, y). One could say that EVT-based methods are robust with respect to
the distribution F of returns, as only very mild assumptions are required, in particular
no specific parametric assumption on F is necessary – see e.g. [12]. They still need,
however, fitting procedures for quantities such as block maxima or exceedances over a
threshold.

Our contribution is a rather extensive comparison in terms of a backtesting procedure
of the two alternative stability scheme described above. Our work is closely related to
[26] and [17], where EVT-based estimates for VaR and expected shortfall are proposed
and tested. However, both papers focus on EVT methods only, and the latter does
not provide any information about the out-of-sample (backtesting) performance of the
analyzed model.

We also contribute some results about the estimators of VaR and expected shortfall
in the stable and EVT framework. In particular, we provide analytic expressions for
asymptotic confidence intervals for estimates of VaR and expected shortfall for a set of
models widely used in the industry. These expressions are based on the delta method,
and are rather straightforward to implement once the parameters of the corresponding
distributions are estimated, together with their confidence intervals. Approximate con-
fidence intervals for VaR and expected shortfall are obtained in [17], mainly using profile
likelihood and bootstrap techniques, but only for EVT-based methods. Confidence in-
tervals in the stable case seem to be new, or at least we have not been able to find them
in the literature.

Let us introduce some notation and conventions used throughout the paper: vectors
will always be column vectors, and v∗ denotes the transpose of the vector or matrix v. We
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shall write X ∼ η to mean that the law of the random variable X is the (probability)
measure η, and Xn ⇒ X to mean that the sequence of random variables (Xn)n∈N

converges weakly to X. N(µ, σ2) denotes the law of a Gaussian random variable with
mean µ and variance σ2. The law of a χ2 random variable with n degrees of freedom
will be denoted by χ2

n. For r ∈ [0, 1] we denote by zr and νn,r the r-quantiles of the
laws N(0, 1) and χ2

n, respectively. We shall always denote by X the random variable of
negative returns of a financial position and by F its distribution. Then Value-at-Risk at
confidence level p for our financial position is defined as the p quantile of the distribution
F , i.e.

VaRp(X) = inf{x ∈ R : F (x) ≥ p}. (2)

Typical choices of p are p ∈ {0.9, 0.95, 0.99}. We shall also assume throughout that the
observed (negative) returns Xi, i = 1, . . . , n form an i.i.d. sample from the distribution
F .

The remainder of the paper is organized as follows: section 2 recalls how to compute
VaR in a standard univariate Gaussian setting and using only past observation (historical
simulation). Asymptotic confidence intervals are obtained in both cases. Sections 3 and
4 derive stable and EVT VaR measures, respectively, together with their asymptotic
confidence intervals. Section 5 is devoted to the study of expected shortfall, a risk
measure that enjoys better properties than VaR (in particular it is subadditive). All
models are empirically tested in section 6. Section 7 concludes.

Some results contained in a preliminary version of the present paper were announced
in [20] and published in incomplete form in [21]. This paper significantly improves on [21]
in several respects: we compute for most estimators (asymptotic) confidence intervals,
while [21] only gives point estimates. In the stable case, while [21] uses plain Monte
Carlo methods to estimate VaR and expected shortfall, we use analytic formulas and
precise numerical integration, achieving a much higher level of accuracy (especially for
the estimation of tail integrals, i.e. expected shortfall, plain Monte Carlo methods are
highly inaccurate and converge very slowly). Moreover, while [21] considers only a
peaks-over-threshold method in the class of EVT-based methods, we study the block
maxima method as well as two semiparametric methods based on estimates of the tail
index and on order statistics. Finally, we include in our empirical tests some of the time
series used by [21] comparing the corresponding results.

All numerical routines used to produce our empirical results were written in Octave
(freely downloadable at www.octave.org) and are available from the authors.

2 Benchmark VaR

In this section we find point estimates and confidence intervals (some of them asymptotic,
i.e. for n large) for VaRp(X) that will be used as benchmark measures for the estimators
introduced in the following sections. In particular, we study estimators of VaR based
on the Gaussian assumptions and on empirical quantiles.
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2.1 Normal VaR

If X ∼ N(0, σ2) (we assume, as is commonly done for purposes of VaR estimation,
µ = 0), then one has

VaRp(X) = σzp,

as it immediately follows by well known scaling properties of Gaussian measures. The
problem is thus reduced to estimating σ, which can be done as

σ̂2
n =

1

n− 1

n∑

i=1

X2
i ,

where, as usual, Xi, i = 1, . . . , n are i.i.d. random variables with law F = N(0, σ2). It
is well known that

V := (n− 1)
σ̂2

n

σ2
∼ χ2

n−1,

hence the 1 − r confidence interval for σ2 is given by

[
(n− 1)σ̂2

n

νn−1,1−r/2
,
(n− 1)σ̂2

n

νn−1,r/2

]
. (3)

Consequently, it is straightforward to obtain confidence intervals for σ, and hence for
VaR. However, it is well known that confidence intervals obtained through χ2 distri-
butions are very sensitive with respect to the normality assumption. A more robust
alternative is given by the asymptotic confidence interval that can be obtained by the
limiting relation √

n(S2
n − σ2) ⇒ N(0, µ4 − σ4), (4)

where S2
n := n−1

∑n
i=1X

2
i is the sample variance and µk := EXk. In order to apply (4),

which can be easily proved by a direct calculation based on the central limit theorem,
one needs to assume EX4

i < ∞. An asymptotic confidence interval for σ2 can now be
obtained from (4) as

σ2 ∈
[
S2

n −
√
µ4 − σ4

n
zr/2, S

2
n +

√
µ4 − σ4

n
zr/2

]
. (5)

In order to make this confidence interval operational, we need to replace in (5) σ4 and
µ4 with consistent estimators. Then, in view of Slutsky’s theorem, (5) will still yield
asymptotic confidence intervals at level 1 − r. Assuming EX4 < ∞, µ4 and σ4 are
consistently estimated by n−1

∑n
i=1X

4
i and (S2

n)2, respectively.
We shall use confidence intervals for Gaussian VaR derived from both (3) and (5).

2.2 VaR and empirical processes

Let Fn denote the empirical process of the observed negative returns X1, . . . ,Xn, that
is

Fn(t) =
1

n

n∑

i=1

I(Xi ≤ t),
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where the Xi are i.i.d. with (unknown) distribution F , and I(A) stands for the indicator
function of the event A. The Glivenko-Cantelli theorem ensures that

lim
n→∞

sup
x∈R

|Fn(x) − F (x)| = 0 a.s.

This suggests that the p quantile F−1(p) can be estimated by

F
−1
n (p) = Xn(i), p ∈

( i− 1

n
,
i

n

]
,

where Xn(1) ≤ Xn(2) ≤ . . . ≤ Xn(n) are the order statistics.
The asymptotic properties of this estimator are collected in the following proposition,

whose proof can be found, e.g., in [37]. The derivative of F , whenever it exists, will be
denoted by f .

Proposition 1 Let p ∈]0, 1[, and assume that F is continuously differentiable at F−1(p),
with f(F−1(p)) > 0. Then

√
n
(

F
−1
n (p) − F−1(p)

)
= − 1√

n

n∑

i=1

I(Xi ≤ F−1(p)) − p

f(F−1(p))
+ oP (1),

and √
n
(

F
−1
n (p) − F−1(p)

)
⇒ N

(
0,

p(1 − p)

f2(F−1(p))

)
. (6)

Moreover, if F ∈ C1([a, b]), with a := F−1(p1) − ε, b := F−1(p2) + ε for some ε > 0,
and F ′(x) > 0 for all x ∈ [a, b], then

√
n
(
F
−1
n − F−1

)
⇒ B0

f(F−1(p))

in ℓ∞([a, b]), where B0 is a standard Brownian bridge.

If f2(F−1(p)) is known explicitly, or at least can be approximated with a good level of
accuracy, then one can obtain confidence intervals from (6). If that is not possible, then
the following alternative procedure can be used: let X1, . . . ,Xn be a random sample
from F , and define Ui = F (Xi), so that Ui are independent uniform random variables.
Then one has

P

(
Xn(k) < F−1(p) ≤ Xn(ℓ)

)
= P

(
Un(k) < p ≤ Un(ℓ)

)
.

Choosing k and ℓ so that

k

n
= p− zr/2

√
p(1 − p)

n
and

ℓ

n
= p+ zr/2

√
p(1 − p)

n
,

since the events {Un(k) < p ≤ Un(ℓ)} and {√n |G−1
n (p)−p| ≤ zr/2

√
p(1 − p)} are asymp-

totically equivalent, then

lim
n→∞

P

(
Un(k) < p ≤ Un(ℓ)

)
= lim

n→∞
P

(√
n |G−1

n (p) − p| ≤ zr/2

√
p(1 − p)

)
= 1 − r,

where G−1
n is the quantile process of the uniform distribution.
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3 Stable modeling of VaR

Let us recall that the law of a one-dimensional stable random variable X is explicitly
characterized through its characteristic function ψ(t) = EeitX , which can be written as

logψ(t) =





−σα|t|α
(
1 − iβ sgn(t) tan πα

2

)
+ iµt if α 6= 1

−σ|t|
(
1 + iβ 2

π sgn(t) log |t|
)

+ iµt if α = 1.

The parameter α ∈]0, 2] is an index of tail thickness, β ∈ [−1, 1] measures skewness,
σ > 0 and µ ∈ R are scale and location parameters, respectively. The law of a stable
random variable will be denoted by Sα(σ, β, µ), with obvious meaning of the notation.
Note that the characteristic function of a centered (i.e. with µ = 0) symmetric stable
law takes the particularly simple form e−σα|t|α . Moreover, the following scaling and shift
property holds: (X−µ)/σ ∼ Sα(1, β, 0). Although not known in closed form for general
parameters, stable laws admit C∞ density functions (see [33]), which we shall denote by
p(·;α, β, σ, µ). From a computational point of view, they can be efficiently approximated
by numerically inverting the characteristic function, e.g. by numerical integration or by
Fast Fourier Transform (see e.g. [29], [27]).

The parameters of a stable law can be fitted to data by maximum likelihood. In
particular, setting θ = (α, β, σ, µ), and

θ̂n = arg max
θ∈Θ

n∏

k=1

p(xk;α, β, σ, µ),

one has that θ̂n is a consistent and asymptotically normal estimator of θ, with

√
n(θ̂n − θ) ⇒ N(0, J−1

θ ), (7)

where Θ =]1, 2] × [−1,−1] × R+ × R and Jθ is the Fisher information matrix, i.e.

Jθ = E [∇θℓ(X; θ)(∇θℓ(X; θ))∗] ,

where ℓ(x; θ) = log p(x; θ). For proofs of the above statements we refer to [10]. Compu-
tationally, one obtains an initial estimate of θ, using e.g. the quantile-based method of
[25], and uses it as starting point for a constrained numerical optimization of the (log)
likelihood function.

An interesting alternative is the characteristic function-based method used in [23],
where the fit in the tails is particularly emphasized with a very fine sampling of the
characteristic function in a neighborhood of the origin (for theoretical properties of this
class of estimators see also [31]).

In order to derive (asymptotic) confidence intervals for stable VaR, let us denote by
g the following function:

gp : int(Θ) → R

θ 7→ F−1(p; θ),
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where F stands for the distribution function of a Sα(σ, β, µ) random variable, θ =
(α, β, σ, µ), and p is the (fixed) quantile of interest, e.g. p = 0.95 or p = 0.99. Since√
n(θ̂n − θ) ⇒ N(0, J−1

θ ), an application of the delta method leads to

√
n(V̂aRn − VaR) ⇒ N(0, (∇gp(θ))

∗J−1
θ ∇gp(θ)),

where VaR := g(θ), and V̂aRn := gp(θ̂). Applying Slutsky’s lemma, one obtains the
following asymptotic confidence interval at level 1 − r:

VaR ∈
[
V̂aRn − ζzr/2, V̂aRn + ζzr/2

]
, (8)

where

ζ =

√
(∇gp(θ̂n))

∗
J−1

θ̂n
∇gp(θ̂n)

√
n

.

The argument leading to (8) is of course only formal, but it becomes rigorous if we can
prove that gp is differentiable at θ.

Proposition 2 Assume that θ0 = (α0, β0, σ0, µ0) is such that 1 < α0 < 2 and −1 <
β0 < 1. Then gp is continuously differentiable at θ0.

See appendix A for the proof.

4 VaR estimates based on Extreme Value Theory

The rationale behind the extreme value theory approach is essentially contained in two
theorems, due in their present form to Gnedenko [18] and to Balkema and de Haan
[1]. Here we recall only the statements of the two theorems, and we describe what
consequences are usually derived from them for the purposes of estimating VaR.

Theorem 3 (Gnedenko) Let X1, . . . ,Xn be i.i.d. random variables with distribution
function F . If there exist a positive sequence {an}n∈N and a real sequence {bn}n∈N such
that

max(X1, . . . ,Xn) − bn
an

⇒ Y (9)

as n→ ∞ and Y is nondegenerate, then the law of Y is of the generalized extreme value
(GEV) type, i.e. its distribution function H is given by

H(x) = exp

(
−
(
1 + ξ

x− µ

σ

)−1/ξ

+

)
. (10)

In (10) µ and σ are location and scale parameters, and ξ determines the shape of the
distribution: the GEV laws with ξ > 0 and ξ < 0 correspond to the Fréchet and Weibull
distributions respectively, while the case ξ = 0 has to be interpreted in the limit ξ → 0
and corresponds to the Gumbel law, i.e H(x) = exp ( − exp (x−µ

σ )+).
We say that a distribution F is in the max-domain of attraction a GEV law H (in

symbols, F ∈ Dm(H)) if it satisfies the hypotheses of theorem 3.
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Appealing to theorem 3, at least two ways have been proposed in the literature to
estimate high quantiles of probability distributions. In particular, one divides a sample
X1,X2, . . . in “blocks” of a given size, say m, and sets

Y1 = max(X1,X2, . . . ,Xm)

Y2 = max(Xm+1,Xm+2, . . . ,X2m)

...
...

Then, by assuming that the distribution of the block maxima (Yi) is approximately GEV,
one fits a law of the type (10) to the (Yi), and using simple properties of the distribution
function of the maximum of a finite family of i.i.d. random variables, obtains an estimate
of VaR. The procedure is described in detail in subsection 4.1.

Another procedure to estimate VaR is based on the following theorem, which char-
acterizes the limit distribution of excesses over a threshold of a sequence of i.i.d. random
variables.

Theorem 4 (Balkema and de Haan) Let X1, . . . ,Xn be i.i.d. random variables with
distribution function F . Assume that the support of F is R and that F ∈ Dm(H), with
H max-stable. Then there exists a function σ : R+ → R+ such that

lim
u↑∞

sup
0≤x≤∞

∣∣∣Fu(x) −Gξ,σ(u)(x)
∣∣∣ = 0,

where Fu(x) = P(X − u ≤ x|X > u) and Gξ,σ is the generalized Pareto distribution:

Gξ,σ(x) = 1 −
(
1 + ξ

x

σ

)−1/ξ

+
.

The method relying on this theorem, sometimes called Peaks over Thresholds (POT)
method, is described in subsection 4.2.

A natural term of comparison for these methods, which, roughly speaking, are based
on the assumptions that returns are in the domain of attraction of a max stable law,
will be the assumption of α-stable distributed (daily) returns, i.e. that returns are
sum-stable.

4.1 VaR with max-stable block maxima

Let us define block maxima as follows:

Yk = max(Xkm,Xkm+1, . . . ,Xk(m+1)−1),

where m is the block size (m could correspond, for instance, to the typical number
of trading days in a week, or two weeks, or a month). Assuming that the random
variables Yk are independent and (approximately) distributed like a GEV law with
distribution function H(x), we have P(X1 ≤ xp) = p if and only if P(Y1 ≤ xp) = pm,
hence xp = H−1(pm). This simple observation suggests the following procedure to
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estimate xp: let θ = (ξ, µ, σ) and h(·; θ) the density of H(·; θ). The maximum likelihood

estimate θ̂n based on the observations Y1, . . . , Yn is given by

θ̂n = arg max
θ∈Θ

L(θ),

where

L(θ) =

n∏

i=1

h(Yi; θ)I(1 + ξ(Yi − µ)/σ > 0),

h(x; θ) =
1

σ
H(x; θ)

(
1 + ξ

x− µ

σ

)−1− 1

ξ
,

and Θ = R × R × R+. There are no closed-form expressions for θ̂n, but the availability
of numerical optimization routines renders the task quite simple.
The following result guarantees that in most interesting cases this estimator has good
properties (for the proof see [34]).

Proposition 5 If ξ > −1/2 then θ̂n is a consistent, asymptotically normal and efficient
estimator of θ.

As it follows from (10), VaR at p level can be estimated as

V̂aRn = gp(θ̂n) := µ̂− σ̂

ξ̂

(
1 − (− log pm)−ξ̂

)
.

In order to obtain confidence intervals for VaR we apply again the delta method, in
complete similarity to section 3. In particular one has

VaR ∈
[
V̂aRn − ζzr/2, V̂aRn + ζzr/2

]
, (11)

with

ζ =

√
(∇g(θ̂n))

∗
J−1

θ̂n
∇g(θ̂n)

√
n

,

where Jθ̂n
is the empirical Fisher information matrix relative to the maximum likelihood

estimate θ̂n. Note that in this case we have an explicit expression for gp, hence the
situation is simpler than in the stable case. The limiting case ξ = 0, as observed before,
has to be treated separately. It is important to remark that in the above expressions n
is not the total number of observed returns, but only the total number of block maxima.

4.2 Exceedances over a threshold

Let u be a fixed threshold and define the conditional distribution of excesses

Fu(x) = P(X − u ≤ x|X > u).

Then one has

Fu(x) =
P({X ≤ u+ x} ∩ {X > u})

P(X > u)
,
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hence
F (x) = (1 − F (u))Fu(u+ x) + F (u).

Appealing to theorem 4, one approximates in the previous expression Fu(u + x) by a
generalized Pareto distribution G(x) and F (u) by the empirical distribution function
at u, i.e. by 1 − nu/n, where nu is the number of observation above the threshold u,
getting

F (x) ≈ 1 − nu

n

(
1 +

ξ

σ
(x− u)

)−1/ξ
,

from which VaR can be estimated as

V̂aRn = gp(θ̂n) := u+
σ̂n

ξ̂n

(
(n(1 − p)/nu)−ξ̂n − 1

)
.

The estimates θ̂n = (ξ̂n, σ̂n) of the parameter vector appearing in the previous formula
can be obtained by fitting a generalized Pareto distribution (GPD) to the portion of
the data that exceeds the threshold u. Once u has been chosen, then we use maximum
likelihood estimation, which is straightforward as the density of GPD is known in closed
form.

Let us briefly remark that there is no general rule to optimally select the threshold
u. This choice is nonetheless very important, as for u too high the estimator has high
variance, and for u too small the estimator becomes biased. In our empirical tests we
follow [26] in choosing a random threshold that selects the top 10% of the observed
negative returns.

Asymptotic approximate confidence intervals for VaR can again be obtained by an
argument based on the delta method. In fact, assuming that all negative returns over
the threshold u are drawn from a generalized Pareto law, we have (see [35])

√
nu(θ̂nu − θ) ⇒ N(0, J−1

θ ), (12)

provided ξ > −1/2, with

J−1
θ =

[
2σ2(1 + ξ) σ(1 + ξ)
σ(1 + ξ) 1 + ξ

]
.

We can now write
VaR ∈

[
V̂aRn − ζzr/2, V̂aRn + ζzr/2

]
, (13)

where

ζ =

√
(∇gp(θ̂nu))

∗
J−1

θ̂nu

∇gp(θ̂nu)
√
nu

.

In the above expression we compute ∇gp by considering u a constant, even though in
practice this is not true. In this sense the confidence intervals obtained in this way are
only approximate. Let us mention, however, that there are more refined asymptotic
normality results similar to (12) when u is a random threshold – see e.g. [8] and [7].
The asymptotic covariance matrices obtained by these authors seem unfortunately quite
difficult to implement in terms of computational complexity.
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4.3 Two semiparametric approaches

We shall describe two “semiparametric” approaches that assume only that the distribu-
tion of losses is in the domain of attraction of a max-stable law. Both methods need an
estimate ξ̂ of the tail index and use, apart of ξ̂, only the order statistics of the sample.
Common to both methods is also the choice of a threshold parameter, in analogy to the
POT method described above.

The first method (see e.g. [12]) assumes that the tail of F can be sufficiently well
approximated by a Pareto tail, i.e. that F (x) = 1 − x−1/ξ, for x large enough. In
particular one proceeds in two steps:

a) Estimate the tail parameter ξ through the Hill estimator

ξ̂ =
1

k

k∑

j=1

logXj,n − logXk,n,

where k is a number to be chosen, and X1,n ≥ X2,n ≥ · · · ≥ Xn,n stands for the
order statistics in descending order.

b) Estimate the tail of the distribution by

P(X ≤ x) = 1 − k

n

( x

Xk+1,n

)−1/ξ̂
,

and the quantile xp by

x̂p =
(n
k

(1 − p)
)−ξ̂

Xk+1,n. (14)

The choice of k in the above estimator is a very delicate issue, and there is an extensive
literature on the subject (see [12] and references therein). Usually k is chosen by visual
inspection of a Hill plot, and as such is not amenable to an automated computer imple-
mentation. On the other hand, a two stage bootstrap method has been proposed in [4]
to find a k that minimizes the asymptotic mean square error. Unfortunately this result
provides little guidance in the finite sample case (see also [3] for a related discussion).

Let us also mention that (approximate) asymptotic confidence intervals for xp can
be constructed assuming n/k and Xk+1,n constants in (14), and using the correspond-
ing asymptotic confidence interval for the Hill estimator of ξ (which is asymptotically
normal, see [12]). This method unfortunately suffers of many drawbacks, mainly due to
the problem mentioned in the above paragraph. Therefore we shall limit ourselves to
compute confidence intervals for the next method we are going to present, which instead
behaves well in numerical experiments.

An alternative estimator for xp, that again assume only that F is in the domain of
attraction of a max-stable law, but uses more observations of the available sample, has
been introduced in [5]. In particular, let us set

x̂p = Xk,n + (Xk,n −X2k,n)

(
k

n(1−p)

)ξ̂
− 1

1 − 2−ξ̂
,

12



where

ξ̂ =
1

log 2
log

Xk,n −X2k,n

X2k,n −X4k,n

is the Pickand’s estimator and k is a “threshold” to be chosen appropriately.
The following theorem on asymptotic normality of the estimator (see [5]) allows one to
construct asymptotic confidence intervals for VaR.

Theorem 6 Let X1, . . . ,Xn be i.i.d. with distribution function F ∈ Dm(Hξ). Assume
moreover that F has a positive density f of regular variation of order −1− 1/ξ and that
n(1 − pn) → c, c > 0 fixed. Then for every fixed k > c one has

x̂pn − xpn

Xk,n −X2k,n
⇒ η,

where

η =
(k/c)ξ − 2−ξ

1 − 2−ξ
+

1 − (Qk/c)
ξ

eξHk − 1
,

and the random variables Hk, Qk are independent, Qk is standard gamma distributed
with parameter 2k+1, and Hk =

∑2k
j=k+1 j

−1Ej in distribution, with Ei, i = k+1, . . . , 2k
i.i.d. standard exponentials.

In practice pn is fixed and the theorem is used assuming pn = p and ξ = ξn (see [5]).

In the empirical section we shall see that these two simple estimators of extreme
quantiles perform quite well, even without fine-tuning the choice of the threshold k.
This observation is important because, while the classical method of visual inspection
is simply infeasible in a back-testing study with over 1000 samples, an “automated”
procedure such as the two-stage bootstrap method mentioned above would be compu-
tationally very expensive, and in general far from optimal in the finite sample case.

5 Expected shortfall

Denoting by X the negative return of our financial position, we define as expected
shortfall at level p the quantity

ESp = E[X|X > VaRp(X)].

We shall use the shorthand notation yp := ESp(X). Recall that expected shortfall is,
under very mild assumptions, the smallest convex measure of risk that dominates Value-
at-Risk (see e.g. [15]). Although it is well known that VaR is not a coherent measure
of risk, it is subadditive when restricted to elliptic distributions (among which Gaussian
and stable laws).

5.1 Empirical shortfall

The following approximation is straightforward:

ŷp =
1

|I|
∑

i∈I

Xi,

where I is the set of i such that Xi > V̂aRp(X), and |I| its cardinality. Consistency of
this estimator is guaranteed by the law of large numbers.
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5.2 Gaussian shortfall

When X is a Gaussian random variable, a simple closed form expression has been
obtained in [36]. In particular, if X ∼ N(0, 2), the expected shortfall at level p is given
by

ESp(X) =
1

(1 − p)
√
π

exp
(−(VaRp(X))2

4

)
.

In the general case X ′ ∼ N(µ, σ2) one has

ESp(X
′) =

σ√
2

ESp(X) + µ,

as follows from well known scaling properties of Gaussian laws.
Assuming µ = 0, recalling that VaRp(X) =

√
2zp for X ∼ N(0, 2), the confidence

interval for ESp(X) for general X ∼ N(0, σ2) is given by
[

e−z2
p/2

(1 − p)
√

2π
σ−,

e−z2
p/2

(1 − p)
√

2π
σ+

]
,

where [σ−, σ+] is the confidence interval for σ (see section 2).

5.3 Stable expected shortfall

For X is α-stable there exists an integral representation of expected shortfall obtained
in [36]. In particular, if X ∼ Sα(1, β, 0), one has

ESp(X) =
α

1 − α

|VaRp(X)|
pπ

∫ π/2

−c
φ(x) exp(−|VaRp(X)|

α
α−1 v(x)) dx,

where

φ(x) =
sin(α(c + x) − 2x)

sin(α(c + x))
− α cos2 x

sin2(α(c + x))
,

v(x) = cos
1

α−1 (αc)
( cos x

sin(α(c + x))

) α
α−1 cos(αc+ (α− 1)x)

cos x
,

c =
1

α
arctan

(
− sgn(VaRp(X))β tan

πα

2

)
.

For general X ′ ∼ Sα(σ, β, µ), recall that σX + µ ∼ X ′, hence

ESp(X
′) = σESp(X) + µ.

Asymptotic confidence intervals can be obtained again using the delta method. In par-
ticular, proposition 2 combined with some other tedious verifications show that the map
g0
p :]1, 2[×] − 1, 1[→ R, g0

p(α, β) := ESp(X), X ∼ Sα(1, β, 0) is continuously differen-
tiable. Therefore the map gp : intΘ → R, gp(α, β, σ, µ) := σg0

p(α, β) + µ = ESp(X),
X ∼ Sα(σ, β, µ), is also continuously differentiable. Finally, the delta method yields

√
n(ÊSn − ES) ⇒ N(0, (∇gp(θ))

∗J−1
θ ∇gp(θ)),
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hence
ES ∈

[
ÊSn − ζzr/2, ÊSn − ζzr/2

]
,

where

ζ =

√
(∇gp(θ̂n))

∗
J−1

θ̂n
∇gp(θ̂n)

√
n

and Jθ is the Fisher information matrix of (7).

5.4 EVT-based expected shortfall

Using the POT method one can easily derive a close form expression for the expected
shortfall. In fact, if Y ∼ Gξ,σ, then one can verify that, for ξ < 1, σ + ξx > 0,

E[Y |Y > x] =
x+ σ

1 − ξ
. (15)

Assuming that the distribution of X−u, conditional on X > u, is GPD, we obtain that
the distribution of X − xp, for xp > u, conditional on X > xp, is GPD with parameters
ξ and σ + ξ(xp − u). Hence, using (15), one has

ESp(X) = E[X|X > VaRp(X)] =
VaRp(X)

1 − ξ
+
σ − ξu

1 − ξ
.

An estimator for ESp(X) is therefore obtained by replacing in the previous expressions
VaRp(X), ξ, and σ with their respective estimators, which were all derived in subsection
4.2.

Asymptotic approximate confidence intervals for expected shortfall can again be
obtained by the delta method. Details are omitted, as the relevant issues have already
been discussed in previous sections. In particular, the main approximation is to consider
the threshold u constant, while in practice it is random.

The first semiparametric method presented in subsection 4.3 also implies an es-

timator for expected shortfall. In particular, let F̂ (x) = 1 − (n/k)X
1/ξ
k+1,nx

−1/ξ the
approximation to the tail of F , then we have

ÊSp =

∫ ∞

x̂p

xf̂(x) dx,

where f̂(x) = F̂ ′(x). A direct calculation shows that

ÊSp =
k

n(1 − p)

1

1 − ξ̂
X

1/ξ̂
k+1,nx̂

1−1/ξ̂
p .

On the other hand, the second method of subsection 4.3 does not yield an estimate
of expected shortfall, or at least we have not been able to derive one.
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6 Empirical tests

In this section we present and describe the main empirical results obtained by testing
the models introduced in the previous sections. For the empirical test we chose two stock
indices, SP500 and NASDAQ, two stocks, Amazon and Microsoft and two exchange rates
(USD/GPB and USD/YEN). The exchange rates series are chosen so that we perfectly
overlap two series used in [21]. This allows us to give a direct comparison with their
results. All the raw prices are freely available on the web, and the returns are calculated
as log-differences on daily data series1. The sample periods span from 2-Jan-1990 to
31-Dec-2004 for the SP500 and the exchange rates, from 2-Jan-1998 to 31-Dec-2004 for
the other series.

In order to better understand the empirical exercise, it is worth looking briefly at
the basic characteristics of the analyzed financial series. Table 1 presents, for each of
the analyzed series, the first four moments of their distributions. From a preliminary
analysis the leptokurtic nature of the returns’ series is clearly revealed. In particular
the SP500 index, with a kurtosis of 6.67 and a skewness of −0.105, strongly differs
from a normal distribution especially in the thickness of the tails. In the same fashion,
NASDAQ, Microsoft Amazon and the exchange rates all display clear evidence of fat
tails in their distributions.

[Table 1 about here.]

This claim is confirmed by a more detailed analysis: in figure 1 we plot the third and
the fourth moment, calculated on a rolling window of 250 data points. It is clear how
the behavior of the kurtosis of all the series is far from the one expected for a Gaussian
distribution (plotted as a straight line in the graph). In particular both Microsoft and
Amazon display a long time span where the kurtosis is well above 6, with peaks of
values above 8 for the first one. The same behavior is shown by the SP500, with a
kurtosis well above 3 during the period 1990-1997, and peaks of values above 8 during
the period 1997-1999. Interestingly enough the deviations from the normality by the
kurtosis correspond to a comparable deviation by the skewness parameter (cf. Panel C-
D of figure 1). Same figures can be observed for both the exchange rates. In particular,
the USD/GBP exchange rate displays the highest peak in the kurtosis around 1997,
even if the series seems to have a stable kurtosis around 4.

[Figure 1 about here.]

The presence of tails heavier than Gaussian is also confirmed by analyzing figure 2,
where QQ plots of all the series versus a normal distribution are shown: the sample
quantiles in the tails strongly deviate from the corresponding normal quantiles.

[Figure 2 about here.]

1We restrict ourselves to consider daily data for two reasons: the first and most important is that
the industry and regulatory standard is to compute VaR and related risk measures on a daily basis. On
the other hand, studying lower frequencies (such as weekly or monthly) would considerably decrease the
size of our samples, possibly invalidating the asymptotic properties of many, if not all, of the estimators
proposed.
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Extending this analysis to other distributions, in figure 3 we collect QQ plots of the
series with the highest sample kurtosis for each category (indices, stocks and FX rates)
against the exponential distribution (as suggested in [12]) and the stable distribution.
While the QQ plots versus the exponential distribution (left hand side panels) clearly
indicate “heavy tails” in the series, the plots versus the stable distribution show a good
fit in the center of the distribution, and tails “lighter” than stable far out in the tail.
One should bear in mind, however, that such QQ plots are typical of stable laws (see
e.g. [30]), and are essentially due to small sample size, and should not be considered as
evidence against the stable hypothesis.

[Figure 3 about here.]

Finally, again using the series with the highest sample kurtosis in each category
(indices, stocks and exchange rates), we compare their empirical density both with a
stable and a Gaussian density. These plots, shown in figure 4, clearly indicate the good
fit of stable laws also in the center of the density.

[Figure 4 about here.]

Having investigated the characteristics of the financial series, we can now turn to
a comparative analysis of the VaR models proposed in the previous sections. In par-
ticular, we are interested in out-of-sample performances of the different VaR measures
proposed. In order to assess them, we calculate for each specification two series of
VaRs, at confidence 95% and 99% respectively. All the risk measures are computed on
a rolling window of 250 data points. Subsequently a simple out-of-sample comparison is
performed, comparing the VaR estimates versus the next day returns. Some preliminary
analysis on the estimations can be done by analyzing the time series behavior for the
three different VaR measures. Generally speaking the estimations are in line with the
empirical returns and present a remarkable level of accuracy in terms of their estimation
error. In order to make this analysis clearer we plot the last 12 months of estimations2,
along with the confidence intervals, for the Amazon time series, that has the higher his-
torical volatility coupled with a high kurtosis (cf. table 1). The graphs in figures 5 and
6 show estimations that are comparable in magnitude for the three specifications, both
at a 95% and 99% confidence level. Moreover, the VaRs based on the stable assumption
seems to have a greater accuracy, given the tightness of their confidence intervals. In
fact, while the estimation based on a semi-parametric approach (Pickand) displays a
confidence interval quite large in absolute values, both the Extreme Value estimation
based on the Peak over a Threshold approach (GPD), proposed in subsection 4.2, and
the Gauss specification, display a confidence interval of the order of 0.5%− 1.5% points
for the 95% VaR, and 1%−2% to peaks of 4% points for the 99% VaR. On the contrary,
the stable confidence intervals are below the 0.6% point in both cases. This phenomenon
is simply explained by the fact that the asymptotic confidence interval for stable VaR
is computed on the basis of all observations in the sample, while EVT-based confidence
intervals rely only on the observation exceeding a certain threshold.

2We choose to plot only the last year of data for a better readability of the graphs, after having
investigated that the analysis in the text can be applied to the whole sample period.
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[Figure 5 about here.]

[Figure 6 about here.]

To further assess the accuracy of the calculated VaR, we perform a simple Proportion
of Failure (POF) test, as e.g. in [24]. In particular we calculate:

LR = −2 log

(
px
0(1 − p0)

(n−x)

px(1 − p)(n−x)

)
, (16)

where p0 is the probability of an exception implied by the chosen confidence level, n is
the sample size, x is the actual number of exceptions and p is the maximum-likelihood
estimator x/n of p0. Basically (16) is the likelihood ratio statistics based on the number
of exceedances in any given sample, where the null hypothesis is that the estimated
value for the exceedances matches its exact value. Given its definition, the test is
asymptotically χ2 distributed with one degree of freedom; thus if the value of the test
statistic exceeds the critical value of 3.84, the VaR model can be considered as not
reliable with a 95% confidence level.

Table 2 reports the results on the VaR backtesting exercise. Overall, the performance
of the three models is good on all the analyzed series, nevertheless some differences can
be noted. First, the stable VaR is relatively more accurate than the VaRs based on the
Gauss and the GPD assumptions. In fact, while the former never present a LR statistics
that exceed the critical value, the Gauss–VaR and the GPD–VaR are rejected in five
and two out of twelve cases respectively. Second, the highest number of failures by GPD
and Gauss estimations occurs with the Microsoft and the USD/YEN data series. This
can be ascribed to the high kurtosis of the two series, which is probably better captured
by fitting a stable law. To further investigate this point, we plot in figure 7 the negative
returns of the Microsoft series along with the 95% lower bound for the three models. It
is clear that the worse performances of the Gauss and GPD estimations are due to a
more conservative VaR bound in both cases, clearly displayed in the 2000-2002 period
for the Gauss estimation and in the 1999-2000 and 2003-2004 periods for the GPD.

[Table 2 about here.]

[Table 3 about here.]

[Figure 7 about here.]

Given the large amount of test performed it is difficult, at a first glance, to draw
general conclusions on the performances of the different estimation methods. As a
partial solution, we consider the overall performance by a pooled analysis. In practice
we calculate the same statistics presented for the financial series by pooling together
the obtained violation for each method. Results, reported in Panel G of table 2, clearly
show a good performance of the stable hypothesis both at 95% and 99% confidence level.
While the same conclusion can be reached for the Hill estimator, the other methods are
performing poorly either at 95% confidence level (empirical, GPD and Pickand) or in
both cases, as in the Gaussian case.

18



In the same fashion as for the VaR backtesting procedure, we analyze the perfor-
mance of the estimators of Expected Shortfall (ES) proposed is section 5. We calculate
for each specification two series of ESs, at confidence level 95% and 99% respectively. All
the risk measures are computed on a rolling window of 250 data points. Subsequently a
simple comparison test is performed.

Not surprisingly, the preliminary analysis on the estimators and their confidence
intervals lead us to essentially the same conclusions as in the VaR case. Figures 8 and
9 show estimations that are comparable in magnitude for the three specifications, both
at 95% and 99% confidence level. Also, the ESs based on the stable assumption seem to
have a greater accuracy, given their confidence intervals’ tightness. Again the GPD and
the Gauss specifications display a confidence interval of the order of 1% − 3.5% points,
with a peak of 11% for the GPD. On the other hand, the stable confidence intervals are
below the 0.6% point in both cases, similarly as for the estimators of VaR.

[Figure 8 about here.]

[Figure 9 about here.]

To backtest the ES forecasts, we follow [11] in calculating a measure evaluating
the ES performance when returns are violating the corresponding VaR measure. In
particular, we calculate the average difference between the realized returns and the
forecasted ESs, conditional on having a (negative) return exceeding the corresponding
VaR estimate.3.

The test statistic is defined as follows:

V =

∣∣∣∣
∑n

k=1(Xk − (ESp,k))IXk>VaRp,k∑n
k=1 IXk>VaRp,k

∣∣∣∣ . (17)

Given its definition, the lower the value of the V in absolute term is, the better the ES
estimate is.

[Table 4 about here.]

Table 3 displays the result of the test statistic V . Clearly the Expected Shortfall
measures estimated on the stock indices perform equally well in all the specified models.
The main differences arise in the single stock evaluations; in particular the stable speci-
fications, both at 95% and 99% confidence level, seem to present less accuracy than the
other two specifications. This difference is clearer in the Amazon returns’ series, and
can be seen as a consequence of the “conservative” nature of the stable estimations (for
which the mean realized shortfall is less than the expected shortfall implies by the fitted
stable law).

3[11] also proposes a measure based on the evaluation of values below a threshold calculated on the
confidence interval. Given its intuitive definition, we prefer the measure presented in the text.
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6.1 Block maxima backtesting

Finally we also perform a test on a VaR calculated with the block maxima method
(BMM) introduced in subsection 4.1. In practice we calculate the VaR, based on the
BMM approach, at two different block sizes: 10, and 25. For each class of assets (indices,
stocks and exchange rates), we select the series with the highest estimated kurtosis on
its sample. As a aid for interpreting the results on BMM, we provide in figure 10 both
a record development plot and a block maxima plot for the three selected series, on a
block size of 25.

[Figure 10 about here.]

Results, reported in table 4, are quite striking: in all analyzed series the BMM
approach is largely “over-conservative”, producing VaR bounds that are difficult to
interpret4. This lead the log-likelihood ratio test introduced above to strongly reject the
model in all the data series and at all the confidence levels.

[Table 5 about here.]

7 Conclusions

We have compared the properties of some univariate models that are commonly used
for purposes of risk management, in particular of α–stable and EVT–based models. We
argue that comparing stable and EVT VaR corresponds to testing which one of two
stability assumptions performs better for VaR modeling: namely, we implicitly compare
sum–stability and max–stability. The two stability schemes give rise, respectively, to
α–stable laws and GEV distributions. Even though the EVT approach is quite appeal-
ing for its theoretical justification in terms of the theorems of Gnedenko and Balkema
and de Haan, and because it applies to a large class of returns distributions, it presents
some potentially difficult issues when applied in practice. For instance, using the POT
approach it is necessary to choose a specific threshold. As noted above, there is no
general rule to optimally select this threshold, but this choice is nonetheless very impor-
tant. In particular, if the chosen threshold is “too high” the estimator has high variance,
and if the chosen threshold is “too low” the estimator becomes biased. On the other
hand, it seems that the stable procedure requires much less external input (hence it is
significantly easier to implement in automated form). A second important issue is that
EVT-based methods discard a large amount of observed data, while stable-based ones
use all of the data points in the time series. In essence, one could say that good fit of
the law where there is more mass contributes to good fit in the tail, even though the
EVT approach requires less distributional assumptions.

Our empirical analysis does not uniquely identify the “best” approach. However,
it definitely provides evidence that α–stable laws outperform the so-called block max-
ima method for estimating VaR. Especially at 99% level the estimates becomes strongly
“over-conservative”, with peaks that are somehow difficult to interpret. On the other

4In particular, in all the performed estimations, there are several VaR points where the value reaches
150%, producing a bound that is not useful for an economic interpretation.
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hand, the POT method is significantly better than the block maxima method, yield-
ing good VaR approximations at 99% levels that are comparable to the α-stable-based
estimates. Two simple alternatives, again based on the theory of extreme value distri-
butions, have the advantages of being particularly simple to implement, and yield good
VaR estimates. However, they rely on tail estimators which may in general require a
large amount of observations to achieve good relative accuracy, and they need tuning as
the POT method.

It is worth noting that some of our empirical results seem to be in conflict with a
similar analysis presented in [21]. However, as explained above, our methods (especially
those involving stable laws) are definitely more precise, as we make extensive use of
analytic results without relying on crude Monte Carlo techniques. In [21] the authors
also fit to data symmetric stable laws, but unfortunately they do it in an incorrect way:
namely they simply fit a general (skewed) stable law, and set a posteriori β = 0. As
a consequence, their results on the corresponding estimates of risk measures are rather
fortuitous. While a correct procedure would just be to fit symmetric stable laws to
data, we chose not to consider this method as it is quite artificial, and it does not look
meaningful to fit a symmetric distribution to samples with pronounced skewness.

Let us finally remark that empirical tests at extreme quantiles (e.g. 99.5% or 99.9%)
could be performed in order to asses the models’ behavior “far out” in the tails of the
distribution. Then we would expect EVT models to have a better performance, at least
in the case of abundant data. However, we decided to focus on testing quantiles that
are commonly used in financial risk management, both to compare our results with the
existing literature and to assess the performance of models possibly used by practitioners.
Nevertheless, such an analysis may be an interesting topic for future research.
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IHÉS, Bures-sur-Yvette, through an IPDE fellowship. S. T. Rachev gratefully acknowl-
edges research support by grants from the Division of Mathematical, Life and Physi-
cal Sciences, College of Letters and Science, University of California, Santa Barbara,
the German Research Foundation (DFG) and the German Academic Exchange Service
(DAAD).

A Proofs

Proof of Proposition 2. Let us assume for now that σ = 1 and µ = 0, and let X ∼
Sα(1, β, 0). Then one has

ψ(t;α, β) = exp
(
− |t|α(1 − iβ(sgn t) tan

πα

2
)
)
, (18)

and

p(x;α, β) =
1

2π

∫

R

ψ(t;α, β)e−itx dt.
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Differentiating with respect to α and β, respectively, in the last expression, and inter-
changing the order of integration and differentiation, one has

∂αp(x;α, β) =
1

2π

∫

R

∂αψ(t;α, β)e−itx dt,

and similarly

∂βp(x;α, β) =
1

2π

∫

R

∂βψ(t;α, β)e−itx dt.

Using the explicit expression for the characteristic function (18), and recalling that
stable density functions are C∞ with respect to x, one has that p ∈ C1,1(R×G), where
G = (1, 2) × (−1, 1). This in turns implies that F ∈ C1,1(R × G), since F (x;α, β) =∫ x
−∞ p(y;α, β) dy. Recalling that one has, by well-known scaling properties of stable

laws,
F (x;α, β, σ, µ) = σF (x;α, β) + µ,

we also get F ∈ C1,1(R ×H), where H = (1, 2) × (−1, 1) × R+ × R.
Let us now define the function Φ : R × H → R

5, Φ : (x, θ) 7→ (F (x; θ), θ). It is
immediately seen that the Jacobian of Φ in a neighborhood U of (x, θ), with F (x; θ) = p,
for a given fixed p, is of the form

DΦ(x, θ) =




p(x, θ) 0 0 0 0

∗ 1
∗ 1
∗ 1
∗ 1



,

hence detDΦ(x, θ) 6= 0: in fact, density functions of stable laws are positive on the
whole real line whenever α > 1. Therefore Φ is a C1 diffeomorphism on U , in particular
θ 7→ F−1(p, θ) is of class C1 for any fixed finite p. This is equivalent to the claim that
gp is continuously differentiable at θ0. �
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Ann. of Math. (2), 44:423–453, 1943.

[19] D. W. Jansen and C. G. de Vries. On the Frequency of Large Stock Returns:
Putting Booms and Busts into Perspective. Review Econ. Stat., 73:18–24, 1991.

[20] F. C. Harmantzis, C. Marinelli, and S. T. Rachev. A Comparative Study of Some
Univariate Models for Value-at-Risk. INFORMS Applied Probability Conference,
Beijing, China, 2004.

[21] F. C. Harmantzis, L. Miao, and Y. Chien. Empirical study of value-at-risk and
expected shortfall model with heavy tails. J. of Risk Finance, 7:117-135, 2006.

[22] P. Jorion. Value at Risk: the New Benchmark for Controlling Market Risk. Irwin,
2000.

[23] I. Khindanova, S. T. Rachev, and E. Schwartz. Stable modeling of value at risk.
Math. Comput. Modelling, 34:1223–1259, 2001.

[24] P. H. Kupiec. Techniques for verifying the accuracy of risk management models. J.
Deriv., 3:73–84, 1995.

[25] J. H. McCulloch. Simple consistent estimators of stable distribution parameters.
Commun. Statist. – Simula., 15:1109–1136, 1986.

[26] A. J. McNeil and R. Frey. Estimation of tail-related risk measures for heteroscedas-
tic financial time series: an extreme value approach. J. Empirical Fin., 7:271–300,
2000.

23



[27] S. Mittnik, S. T. Rachev, T. Doganoglu, and D. Chenyao. Maximum likelihood
estimation of stable Paretian models. Math. Comput. Modelling, 29:275–293, 1999.

[28] S. Mittnik, and S. T. Rachev. Tail Estimation of the Stable Index α. Appl. Math.
Letters, 9:53–56, 1996.

[29] J. P. Nolan. Numerical calculation of stable densities and distribution functions.
Comm. Statist. Stochastic Models, 13:759–774, 1997. Heavy tails and highly volatile
phenomena.

[30] J. P. Nolan. User Manual for STABLE 4.0 – Mathematica Version. Robust Analysis,
Inc., 2005.

[31] B. L. S. Prakasa Rao. Asymptotic theory of statistical inference. John Wiley &
Sons Inc., New York, 1987.

[32] S. T. Rachev and S. Mittnik. Stable Paretian Models in Finance. John Wiley and
Sons, NY, 2000.

[33] G. Samorodnitsky and M. S. Taqqu. Stable non-Gaussian Random Processes:
Stochastic Models with Infinite Variance. Chapman and Hall, New York, 1994.

[34] R. L. Smith. Maximum likelihood estimation in a class of nonregular cases.
Biometrika, 72:67–90, 1985.

[35] R. L. Smith. Estimating tails of probability distributions. Ann. Statist., 15:1174–
1207, 1987.

[36] S. Stoyanov, G. Samorodnitsky, S. T. Rachev, and S. Ortobelli. Computing the
portfolio Conditional Value-at-Risk in the α-stable case. Probab. Math. Statist., to
appear.

[37] A. W. van der Vaart. Asymptotic statistics. Cambridge UP, Cambridge, 1998.

24



Figure 1: Time series of the kurtosis

This figure plots the skewness and the kurtosis of the analyzed series The moments of NASDAQ, Mi-
crosoft and Amazon are shown in Panels A and B respectively, the ones of SP500 in Panels C and D,
while the ones on the exchange rates are displayed in Panels E and F. The moments are calculated on
a rolling window of 250 daily data points. For the sake of comparison straight lines corresponding with
a kurtosis of 3 and a skewness of 0 (i.e. for a normal distribution) are provided.
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Figure 2: QQ Plots versus the Normal distribution

This figure shows the QQ Plots against the Normal distribution of the analyzed series Indices are shown
in Panel A and B, stocks in Panel C and Panel D, and exchange rates are displayed in Paned E and
Panel F.
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Figure 3: QQ Plots versus “fat tails” distributions

This figure shows the QQ Plots against the standard Stable distribution and and the Exponential
distribution. For each of the analyzed categories (indices, stocks and exchange rates) the series with the
highest kurtosis is plotted. Left hand side panels display the QQ Plots for the Stable distribution, right
hand side panels display QQ Plots for the Exponential distribution.
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Figure 4: Distributions’ Comparison

This figure compares the empirical distributions with the Standard Stable distribution and the Standard
Normal distribution. For each of the analyzed categories (indices, stocks and exchange rates) the series
with the highest kurtosis is plotted.
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Figure 5: VaR 95% with confidence intervals

This figure plots the 95% VaR estimation for the Stable, Gauss, GPD, and Pickand estimator
respectively. The chosen data series is Amazon and it spans from December 2003 to December 2004.
The risk measures are calculated on a rolling window of 250 daily data points.
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Figure 6: VaR 99% with confidence intervals

This figure plots the 99% VaR estimation for the Stable, Gauss, GPD and Pickand estimator respectively.
The chosen data series is Amazon and it spans from December 2003 to December 2004. The risk measures
are calculated on a rolling window of 250 daily data points.
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Figure 7: VaR95% Lower Bounds for Microsoft

This figure plots the negative returns of the Microsoft series, along with the 95% VaR lower bounds for
Stable, Gauss and GPD model respectively. The risk measures are calculated on a rolling window of
250 daily log returns.
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Figure 8: Expected Shortfall 95% with confidence intervals

This figure plots the 95% ES estimation for the Stable, Gauss and GPD assumption respectively. The
chosen data series is Amazon and it spans from December 2003 to December 2004. The risk measures
are calculated on a rolling window of 250 daily data points.
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Figure 9: Expected Shortfall 99% with confidence intervals

This figure plots the 99% ES estimation for the Stable, Gauss and GPD assumption respectively. The
chosen data series is Amazon and it spans from December 2003 to December 2004. The risk measures
are calculated on a rolling window of 250 daily data points.
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Figure 10: Block maxima plots

This figure shows both the record development plots (left hand side figures) and the block maxima plots
(right hans side figures). For each of the analyzed categories (indices, stocks and exchange rates) the
series with the highest kurtosis is plotted. The size of the blocks is 25 and the last 500 data points of
the series re considered, corresponding to roughly 2 years of data.
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Table 1: Descriptive Statistics of Financial Series

This table reports the first four moments of the analyzed time series. All returns are calculated as log-differences

on daily data series. The sample periods span from 2-Jan-1990 to 31-Dec-2004 for the SP500 and from 2-Jan-1998

to 31-Dec-2004 for the other series.

Descriptive Statistics
Mean Standard deviation Skewness Kurtosis

SP500 0.000 0.010 -0.105 6.666
NASDAQ 0.000 0.021 0.071 5.571
MICROSOFT 0.000 0.025 -0.145 7.882
AMAZON 0.001 0.053 0.318 6.498
USD/GBP 0.000 0.006 -0.257 5.348
USD/YEN 0.000 0.007 -0.506 7.036
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Table 2: Value at Risk Backtesting

This table reports the results of a Value at Risk backtesting on the proposed models. All returns are

calculated as log-differences on daily data series. Panels A, E and F are based on a sample period

from 2-Jan-1990 to 31-Dec-2004, while Panel B to D are based on 2-Jan-1998 to 31-Dec-2004. Last

panel displays a pool analysis on the joint performance of the series. The first two columns display

the empirical violations and their percentages of the returns with respect to the VaRp bound. The

last column shows the result of the POF test, where ∗ indicates a 95% rejection of the VAR model.

Panel A: SP500

Violations Percentage LR
Empirical95% 171 4.8% 0.186
Empirical99% 38 1.1% 0.202
Stable95% 190 5.4% 1.071
Stable99% 36 1.0% 0.014
Gaussian95% 156 4.4% 2.616
Gaussian99% 48 1.4% 4.14∗

GPD95% 163 4.6% 1.122
GPD99% 39 1.1% 0.377
Pickand95% 175 5.0% 0.014
Pickand99% 31 0.9% 0.554
Hill95% 191 5.4% 1.214
Hill99% 38 1.1% 0.202

Panel B: NASDAQ

Violations Percentage LR
Empirical95% 66 4.4% 1.162
Empirical99% 12 0.8% 0.687
Stable95% 69 4.6% 0.597
Stable99% 14 0.9% 0.081
Gaussian95% 61 4.0% 3.108
Gaussian99% 18 1.2% 0.534
GPD95% 64 4.2% 1.924
GPD99% 14 0.9% 0.081
Pickand95% 64 4.2% 1.924
Pickand99% 9 0.6% 2.902
Hill95% 72 4.8% 0.168
Hill99% 14 0.9% 0.081

Panel C: MICROSOFT

Violations Percentage LR
Empirical95% 58 3.8% 4.600∗

Empirical99% 10 0.7% 1.578
Stable95% 64 4.2% 1.924
Stable99% 9 0.6% 2.902
Gaussian95% 55 3.6% 6.415∗

Gaussian99% 13 0.9% 0.307
GPD95% 56 3.7% 5.773∗

GPD99% 10 0.7% 1.968
Pickand95% 58 3.8% 4.600∗

Pickand99% 10 0.7% 1.968
Hill95% 61 4.0% 3.108
Hill99% 11 0.7% 1.236
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Table 2: Value at Risk Backtesting continued

Panel D: AMAZON

Violations Percentage LR
Empirical95% 55 3.6% 6.415 ∗

Empirical99% 13 0.9% 0.307
Stable95% 67 4.4% 1.034
Stable99% 13 0.9% 0.307
Gaussian95% 62 4.1% 2.680
Gaussian99% 22 1.5% 2.800
GPD95% 55 3.6% 6.415∗

GPD99% 14 0.9% 0.081
Pickand95% 54 3.6% 7.095∗

Pickand99% 13 0.9% 0.307
Hill95% 60 4.0% 3.571
Hill99% 12 0.8% 0.687

Panel E: USD/YEN

Violations Percentage LR
Empirical95% 176 5.0% 0.001
Empirical99% 37 1.1% 0.089
Stable95% 192 5.5% 1.470
Stable99% 42 1.2% 1.242
Gaussian95% 145 4.1% 6.136 ∗

Gaussian99% 48 1.4% 4.207 ∗

GPD95% 162 4.6% 1.220
GPD99% 45 1.3% 2.522
Pickand95% 169 4.8% 0.305
Pickand99% 32 0.9% 0.307
Hill95% 191 5.4% 1.293
Hill99% 42 1.2% 1.242

Panel F: USD/GBP

Violations Percentage LR
Empirical95% 176 5.0% 0.001
Empirical99% 33 1.0% 0.086
Stable95% 193 5.5% 1.658
Stable99% 25 0.7% 3.333
Gaussian95% 172 4.9% 0.101
Gaussian99% 54 1.5% 8.697 ∗

GPD95% 172 4.9% 0.101
GPD99% 38 1.1% 0.216
Pickand95% 170 4.8% 0.225
Pickand99% 23 0.7% 4.881∗

Hill95% 185 5.3% 0.466
Hill99% 33 0.9% 0.144

Panel G: Pool analysis

Violations Percentage LR
Empirical95% 702 4.6% 4.021∗

Empirical99% 143 0.9% 0.438
Stable95% 775 5.1% 0.548
Stable99% 139 0.9% 0.993
Gaussian95% 651 4.3% 15.814∗

Gaussian99% 203 1.3% 16.313 ∗

GPD95% 672 4.4% 9.981∗

GPD99% 160 1.1% 0.530
Pickand95% 690 4.6% 6.760∗

Pickand99% 118 0.8% 2.263
Hill95% 760 5.0% 0.033
Hill99% 150 1.0% 0.007
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Table 3: Expected Shortfall Backtesting

This table reports results of the backtesting procedure on the expected shortfall measures. All returns are

calculated as log-differences on daily data series. The sample periods span from 2-Jan-1990 to 31-Dec-2004 for

the SP500 and from 2-Jan-1998 to 31-Dec-2004 for the other series.

Stable 95% Stable 99% Gauss 95% Gauss 99% GPD 95% GPD 99%
SP500 0.002 0.006 0.002 0.004 0.001 0.004
NASDAQ 0.004 0.005 0.001 0.007 0.000 0.012
MICROSOFT 0.006 0.019 0.008 0.015 0.004 0.015
AMAZON 0.032 0.060 0.011 0.021 0.001 0.004
USD/GBP 0.002 0.010 0.001 0.001 0.001 0.000
USD/YEN 0.001 0.004 0.003 0.003 0.002 0.003
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Table 4: Block Maxima VaR Backtesting

This table reports the results of a Value-at-Risk backtesting on the Block Maxima approach for SP500, Microsoft
and USD/YEN series (2-Jan-1990 to 31-Dec-2004). Returns are calculated as log-differences on daily data series.
Panel A results are from a block of 10, while Panel B results are from 25 days. The first two columns display
the empirical violations and their percentages of the returns with respect to the VaRp bound. The last column
shows the result of the POF test, where ∗ and ∗∗ indicates a 95% and 99.9% rejection of the VAR model.

SP 500
Panel A: 10 days block

Violations Percentage LR
BMM95% 11 0.3% 277.977∗∗
BMM99% 3 0.1% 50.106∗∗

Panel B: 25 days block
Violations Percentage LR

BMM95% 123 3.5% 19.009∗∗
BMM99% 6 0.2% 37.579∗∗

MICROSOFT
Panel A: 10 days block

Violations Percentage LR
BMM95% 58 3.8% 4.576∗
BMM99% 7 0.5% 5.459∗

Panel B: 25 days block
Violations Percentage LR

BMM95% 237 15.7% 238.606∗∗
BMM99% 24 1.6% 4.518∗

USD/YEN
Panel A: 10 days block

Violations Percentage LR
BMM95% 3 0.1% 330.469∗∗
BMM99% 1 0.0% 61.632∗∗

Panel B: 25 days block
Violations Percentage LR

BMM95% 71 2.0% 84.417∗∗
BMM99% 2 0.1% 55.263∗∗
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