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Abstract

In this paper, we prove that no curvature-dimension bound CD(K, N)
holds in any Heisenberg group Hn. On the contrary the measure contrac-
tion property MCP (0, 2n + 3) holds and is optimal for the dimension
2n + 3. For the non-existence of a curvature-dimension bound, we prove
that the generalized “geodesic” Brunn-Minkowski inequality is false in
Hn. We also show in a new and direct way, (and for all n ∈ N\{0}) that
the general “multiplicative” Brunn-Minkowski inequality with dimension
N > 2n + 1 is false.

Introduction

The geometric curvature-dimension bound CD(K, N) is a property of some
metric measure spaces (X, d, µ) that extends the property for a Riemannian
manifold of having a Ricci curvature bound from below. This theory has been
recently developed by Sturm (see [St1], [St2]) and independently in a close
way by Lott and Villani (see [LV1], [LV2]). Take care of the fact that this
concept is different from the curvature-dimension condition by Bakry and Émery
(see [BE]). As a basic principle, Lott, Sturm and Villani observed that the
optimal mass transportation takes place in a particular way in the Riemannian
manifold with a Ricci curvature bound below. Namely the relative entropy of the
measure being transported has different levels of convexity that are connected
with the curvature bound. Optimal mass transportation in metric measure
spaces is a theory about the problem of transporting a probability measure
into a second one by minimizing a quadratic transport cost (it is the Monge-
Kantorovich problem). Two very good books on this topic are those of Villani
(see [Vi1],[Vi2]).

The measure contraction property MCP (K, N) is another geometrical prop-
erty that also involves curves in the space of measures of a given metric measure
space. For the MCP one of the measure at the end is a Dirac mass. The other
measure is contracted on it and this contraction reveals some geometrical aspects
of the space. The measure contraction property is also seen as a generalization
of the Ricci lower bound of a Riemannian manifold. Sturm proved in [St2] (see
also [LV2]) that the measure contraction property is a consequence of a geomet-
ric curvature-dimension bound CD in the case when there is almost surely a
unique geodesic between two points of X.
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A weaker and little older setting is given by a local Poincaré inequality and
a doubling measure property. It has proved to be very efficient as a minimal
framework permitting the use of a lot of analysis tools. This framework has been
introduced with the idea to extend the successful concept of analysis on Carnot
groups (the Heisenberg group Hn is the simplest representant of this class of
metric measure spaces) to a more general class of metric measure spaces ; see the
book by Heinonen [He] and the references therein. The setting permits to extend
many concepts of classical analysis that concern first derivatives but does not
allow to deal with notions concerning derivatives of higher orders (what CD and
MCP in some sense do). If we assume the same as in the last paragraph (almost
surely a unique geodesic between two points), the local Poincaré inequality and
the doubling measure property follow from an MCP relation (see [vR],[LV2])
and consequently of a curvature-dimension bound CD.

The inequality that we will now present has a longer history because it
has been initiated by Brunn in 1887. The Brunn-Minkowski inequality in RN

estimates the measure of the sum of two sets with the measures of these sets. In
our general setting of metric measure spaces, it is interpreted as an estimate of
the t-intermediate set built with the point standing at a t ∈ [0, 1] time position
on some geodesic from one of the two sets to the other. The property that we
denote by BM(K, N) is a consequence of CD(K, N) but not a priori of any
measure contraction property.

For a Riemannian manifold of dimension N and with Riemannian metric
g, the terminology is coherent because it is equivalent to satisfy the curvature-
dimension CD(K, N), to have a measure contraction property MCP (K, N) or
to have a Ricci curvature greater than Kg. Another very satisfying point of the
theory of Lott-Sturm-Villani is the stability of the curvature-dimension bounds
under Gromov-Hausdorff like convergence. The Heisenberg group is a metric
measure space that can be obtained as the limit of manifolds. Unfortunately it
does not mean that it has a curvature-dimension bound. Namely the conver-
gence theorem is given for bounded spaces (not like Hn) and more essentially
the Ricci curvature of the approximating sequence is going to −∞ which elimi-
nates the hope to obtain a curvature-dimension condition in this way. However
the Heisenberg group Hn is a very good candidate in a theory that is missing
examples: as we already said, it has been known for a long time that this space
verifies a local Poincaré inequality and a doubling measure property (see [Va]).

In this paper we prove the following theorem:

Theorem 0.1. Let n be a non negative integer. We consider (Hn, dCC ,L2n+1),
the n-th Heisenberg group with its Carnot-Carathéodory distance and the Lebesgue
measure of R2n+1. We have:

• For every N ∈ [1,+∞[ and every K ∈ R, the geometric curvature-
dimension bound CD(K, N) does not hold in (Hn, dCC ,L2n+1).

• For (N,K) ∈ [1,+∞[×R, the measure contraction property MCP (K, N)
holds in (Hn, dCC ,L2n+1) if and only if N ≥ 2n + 3 and K ≤ 0.

We prove the first point in Theorem 3.3 (with Remark 3.4) by showing
that there is no Brunn-Minkowski inequality BM(0, N) in Hn. The positive
result on the measure contraction property is proved in Theorem 2.3 (also with
Remark 3.4).
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In the first part of this paper, we give a short presentation of the Heisen-
berg group Hn (n ∈ N\{0}) and of its geodesics. We also introduce two maps
that will be helpful in the next sections: the time-inversion map I and the
intermediate-points map M. At the begin of the second part we give the defi-
nition of CD(K, N) and MCP (K, N) for the case of interest K = 0. Then we
prove that MCP (0, 2n + 3) holds. The last part is devoted to the proof of the
fact that there is no Brunn-Minkowski inequality in the Heisenberg group (and
consequently no curvature-dimension bound). In this section we also treat of
MCP and CD in the case of non-zero curvature parameter. Additionally we
mention the multiplicative Brunn-Minkowski inequality and sketch the fact that
this inequality does not hold for a dimension strictly greater than the topological
dimension (i.e. 2n + 1).

I wish to thank my advisers Hervé Pajot and Karl-Theodor Sturm for intro-
ducing me in the study of the curvature-dimension condition on the Heisenberg
group. I thank Shin-Ichi Ohta for helpful discussions. I wish also to thank my
colleagues and friends Anca Bonciocat, Josh Hendricks, Robert Philipowski and
Hendrik Weber for reading the paper and giving me lexical advices.

1 The Heisenberg group and its geodesics

1.1 The Heisenberg group

Let n be a non-negative integer. In this section we give a short presentation of
the Heisenberg group Hn as a metric measure space equipped with the Lebesgue
measure L2n+1 and the Carnot-Carathéodory metric dCC . As a set Hn can be
defined as R2n+1 ' Cn × R and an element of H1 can also be written (z, α) =
(z1, · · · , zn, α) where zk := xk + iyk ∈ Cn for 1 ≤ k ≤ n and α ∈ R. The group
law of Hn is given by:

(z1, · · · , zn, α)·(z′1, · · · , z′n, α′) =

(
z1 + z′1, · · · , zn + z′n, α + α′ + 2

n∑
k=1

=(zkz′k)

)
where = denotes the imaginary part of a complex number. Endowed with this
law, Hn is a Lie group with neutral element 0Hn := (0, 0). The inverse element
of (z, α) is (−z,−α). The set L = {(z, α) ∈ Hn | z = 0} is the center of the
group and will play an important role. Throughout this paper, τA : Hn → Hn

will be the left translation
τA(B) = A ·B.

It is affine and the vectorial part of this map has the determinant equal to 1.
Hence the Haar measure of Hn is the Lebesgue measure L2n+1 of R2n+1 which is
left (and actually also right) invariant. For λ > 0, we denote by δλ the dilatation

δλ(z, α) = (λz, λ2α)

where A,B ∈ Hn and λ ≥ 0. The dilatation has also a good behavior with the
measure because

L2n+1(δλ(E)) = λ2n+2L2n+1(E)

if λ ≥ 0 and E is a measurable set. The exponent 2n + 2 is actually the
Hausdorff dimension of Hn for its subriemannian structure given by the Carnot-
Carathéodory metric. It is not equal to the topological dimension 2n+1, which
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is a basic difference from the Riemannian geometry where both dimensions are
the same.

In order to define the Carnot-Carathéodory metric, we consider the Lie Al-
gebra associated to Hn. This is the vector space of left-invariant vector fields.
A basis for this vector space is given by

(−→
X 1, · · · ,

−→
Xn,

−→
Y 1, · · · ,

−→
Y n,

−→
T
)

where

−→
Xk = ∂xk

+ 2yk∂t

−→
Y k = ∂yk

− 2xk∂t

−→
T = ∂t.

Roughly speaking, the Carnot-Carathéodory distance between two points A and
B is the infimum of the lengths of the horizontal curves connecting A and B.
We call horizontal curve an absolutely continuous curve γ : [0, r] → Hn whose
derivative γ′ is spanned by (

−→
X 1, · · · ,

−→
Xn,

−→
Y 1, · · · ,

−→
Y n) in each point γ(t). The

length of this curve is then

length(γ) =
∫ r

0

‖γ′(t)‖ dt

where ‖
∑n

k=1(ak
−→
Xk + bk

−→
Y k)‖2 =

∑n
k=1(a

2
k + b2

k). The value of the Carnot-
Carathéodory distance between A and B is then

dCC(A,B) := inf
∫ r

0

‖γ′(t)‖ dt (1)

where the infimum is taken upon all horizontal curve connecting A and B. The
fact that this set is not empty is ensured by the Chow Theorem (see for example
[Mt]). The Carnot-Carathéodory metric has (like the Lebegue measure) a good
behavior with the translation τA and the dilatation δλ. It is left-invariant:

dCC(τAB, τAC) = dCC(B,C)

and we also have
dCC(δλ(B), δλ(C)) = λdCC(B,C)

for λ > 0.
The metric space (Hn, dCC) is complete and separable. An other essential

fact is that the topology given by dCC is the usual topology of R2n+1.

1.2 A geodesic space

Let us first give the terminology that we will use in this paper.

Definition 1.1. Let (X, d) be a metric space. Let M0 and M1 be two points
of this set. We call t-intermediate point from M0 to M1 a point Mt such that

d(M0,Mt) = td(M0,M1) and
d(Mt,M1) = (1− t)d(M0,M1).

We call geodesic from M0 to M1 a curve γ defined on a segment [a, b] (with
a < b) such that for every c ∈ [a, b], the pointγ(c) is a c−a

b−a -intermediate point
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from M0 to M1. We call normal geodesic a geodesic defined on [0, 1] (here t = c).
We call local geodesic a curve γ defined on a non-trivial interval I, such that
for any point t in the interior of I there is an ε > 0 with [t − ε, t + ε] ⊂ I and
γ |[t−ε,t+ε] is a geodesic. The metric space (X, d) is said to be a geodesic space
if there is a geodesic between each two points of X.

We now come to the geodesics of Hn. A first fact is that the infimum in (1)
is actually a minimum. We have the following proposition which is for example
explained in [AR]:

Proposition 1.2. The metric space (Hn, dCC) is a geodesic space. Moreover
every geodesic between two points A and B of Hn is horizontal and has length
dCC(A,B).

The equations of the local geodesics of Hn have been known since the paper
of Gaveau (see [Ga]). In [Mo1] for example, there is an explicit computation
of these equations. Ambrosio and Rigot gave in [AR] the cut locus of the local
geodesic going through 0H. In this paper, we will investigate how the mea-
sure is transported along the geodesics: that requires to know their equations.
Because the Carnot-Carathéodory distance and consequently the geodesics are
left-invariant, it is sufficient to know the equation of the geodesics going through
0H. Let (z, ϕ) be in Cn×R. We call curve with parameter (z, ϕ) the curve γz,ϕ

defined on R by

γz,ϕ(t) =

{(
i e−iϕt−1

ϕ z, 2|z|2 ϕt−sin(ϕt)
ϕ2

)
∈ Cn × R if ϕ 6= 0

(tz, 0) if ϕ = 0.
(2)

Here |z| is
√
|z1|2 + · · ·+ |zn|2. Obviously, the map (z, ϕ, t) → γz,ϕ(t)) is real

analytic on Cn × R × R so that all its partial derivatives are well defined and
continuous. The curve γz,ϕ is horizontal and has the length between a and b is
equal to |z|(b− a). In this paper, we call Γt the map

Γt(z, ϕ) := γz,ϕ(t)

and we will particulary use it for t = 1. Let us notice that Γt(z, ϕ) is Γ1(tz, tϕ).
The next proposition is proved in the paper by Ambrosio and Rigot, (see [AR])
and stated in almost the same formulation. We just adapted it to our notations.
Let us recall that L is the set {(z, t) ∈ Hn | z 6= 0}.

Proposition 1.3 (Parametrization of normal geodesics). The normal geodesic
starting from 0H are the restrictions to [0, 1] of curves with parameter (z, ϕ) for
(z, ϕ) ∈ Cn× [−2π, 2π]. In particular restrictions on [0, 1] of curves with param-
eter (z, ϕ) with |ϕ| > 2π are not normal geodesics. Conversely any restriction
on [0, 1] of a curve with parameter (z, ϕ) ∈ Cn × [−2π, 2π] is a normal geodesic
starting from 0H. Moreover we have the following more precise description:

• For any A = (0, α) ∈ L∗, normal geodesics from 0H to A are exactly
the restrictions to [0, 1] of the curves with parameter (z, α

|α|2π) where z is

varying on the sphere of the vectors with norm
√

π|α|.

• For any A ∈ Hn\L there exists a unique normal geodesic connecting 0H
and A. This is the restriction to [0, 1] of a curve of parameter (z, ϕ) where
|ϕ| < 2π.
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Remark 1.4. The curves with parameter (a + ib, v, r) from [AR] (with |a|2 +
|b|2 = 1) have constant speed equal to one and are in fact the curves with
parameter (a + ib, v) restricted on [0, r]. The restrictions to [0, 1] of the curves
with parameter (z, ϕ) have length |z| and are in fact the curves t ∈ [0, 1] →
expH(tz, tϕ/4) where expH is the Heisenberg-exponential map from the end of
[AR].

Remark 1.5. The map t → δt(A) is not a geodesic.

We give a corollary of Proposition 1.3 for the local geodesics.

Corollary 1.6. The curve with parameter (z, ϕ) is a local geodesic. More pre-
cisely the restriction of γz,ϕ to [a, b] is a geodesic if and only if (b− a)|ϕ| ≤ 2π.
Moreover this is the unique geodesic defined on [a, b] if and only if (b−a)|ϕ| < 2π.

Proof. The case a = 0 and γz,ϕ(a) = 0H is included in Proposition 1.3. To
complete the proof we compute the left translation of the curve mapping γ,ϕ(a)
on 0H and obtain

γz,ϕ(a)−1 · γz,ϕ(a + t) = γz′,ϕ(t)

with z′ = e−iϕaz. The proposition is a direct consequence of this equation and
of the fact that dCC is left-invariant.

We denote D1 := (Cn\0)×]−2π, 2π[ and similarly Dt := (Cn\0)×]−2tπ, 2tπ[
for t ∈ [0, 1]. A second and important corollary of Proposition 1.3 is the following
proposition:

Proposition 1.7. The map Γ1 is a C∞-diffeomorphism from D1 to Hn\L.
Similarly for t ∈ [−1, 0[∪]0, 1[, the map Γt is a C∞-diffeomorphism from D1 to
Γ1(D|t|).

Proof. For a general t the assertion is a direct consequence of the case t = 1 and
of the relation Γt(z, ϕ) = Γ1(tz, tϕ). With Proposition 1.3, it is clear that Γ1

is one-to-one on D1 and it is C∞-differentiable because it is real analytic. We
postpone the proof that its Jacobian determinant does not vanish to Proposi-
tion 1.12 at the end of this section.

We now introduce two helpful maps: the intermediate-points map M and
inversion-time map I. The left-invariance of the Carnot-Carathéodory metric
tells us whether there is a unique or several normal geodesics between two given
points. If A = (z, α) and B = (z′, α′), the isometry τA−1 maps A to 0H and B
to A−1 ·B = (z− z′, α′′) for some α′′ in R. It follows from Proposition 1.3 that
there is a unique normal geodesic from A to B if and only if z 6= z′ or A = B.
We will denote the open set {(A,B) ∈ (Hn)2 | zA 6= zB} = {(A,B) ∈ (Hn)2 |
A−1 ·B /∈ L} by U . With this set we define our first map.

Definition 1.8. We define the intermediate-points mapM from the set U×[0, 1]
to Hn by

M(A,B, t) = τA ◦ Γt ◦ Γ−1
1 ◦ τA−1(B).

The point M(A,B, t) is actually the unique t-intermediate point between A
and B. It is really a t-intermediate point when A = 0H because Γt◦Γ−1

1 (γz,ϕ(1))
equals γz,ϕ(t) for (z, ϕ) ∈ D1. The general case follows from the left-invariance
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of the Carnot-Carathéodory metric. Moreover M(A,B, t) is the unique t-
intermediate point between A and B because there is a unique normal geodesic
from A to B (the couple (A,B) is in U) and because the t-intermediate points
in a geodesic space are on the geodesics connecting two points.

In the next sections, we will extend M in (two) different manners to (Hn)2×
[0, 1]. Using the proposition 1.7 and recalling that τA is affine, we have this
regularity lemma:

Lemma 1.9. The map M is measurable, it is continuous and C∞ on U×]0, 1[.
The curve t ∈ [0, 1] →M(A,B, t) is the unique normal geodesic from A to B.

Let us now introduce the inversion-time map I.

Definition 1.10. We define the inversion-time map I on Hn\L by I(A) =
Γ−1 ◦ Γ−1

1 (A).

The name comes from the fact that for (z, ϕ) ∈ D1 and t ∈ [−1, 1] we have
with Proposition 1.7:

I(γz,ϕ(t)) = I(γtz,tϕ(1))

= Γ−1 ◦ Γ−1
1 (Γ1(tz, tϕ))

= Γ−1(tz, tϕ)
= γz,ϕ(−t).

A consequence is that I ◦ I is the identity on Hn\L. That is why for A ∈ Hn

we will call (A, I(A)) a couple of time-conjugate points. We now establish the
connection between M and I.

Lemma 1.11. Let A be in Hn\L. Then M(I(A), A, 1/2) is well defined and
equals 0H if and only if the ϕ-coordinate of Γ−1

1 (A) verifies |ϕ| < π that is when
A ∈ Γ1(D1/2).

Proof. Proposition 1.3 tell us that A = Γ1(z, ϕ) for some |ϕ| < 2π. Additionally
the definition of I give us I(A) = Γ−1(z, ϕ). Therefore we have to say when
M(γz,ϕ(−1), γz,ϕ(1), 1/2) exists and if it is 0H.

A consequence of the equation (2) is that the z-coordinates of γz,ϕ(−1) and
γz,ϕ(1) are equal if and only if |ϕ| = π. Therefore (γz,ϕ(−1), γz,ϕ(1)) ∈ U if and
only if |ϕ| 6= π. In this case there is a unique geodesic δ on [−1, 1] between the
two points and we can define the midpoint

δ(0) = M(δ(−1), δ(1), 1/2) = M(γz,ϕ(−1), γz,ϕ(1), 1/2).

If |ϕ| < π we have also 2|ϕ| < 2π. In this case the curve δ is the restriction
of γz,ϕ to [−1, 1] because with Corollary 1.6, both map are the unique geodesic
defined on [−1, 1] that goes from I(A) to A. The midpoint is then δ(0) =
γz,ϕ(0) = 0H.

If π < |ϕ| < 2π, let us assume to the contrary that δ(0) = 0H. Then because
of Proposition 1.3, the curve δ |[0,1] is the unique normal geodesic from 0H to
A and t ∈ [0, 1] → δ(−t) is the unique normal geodesic between 0H and I(A).
It follows that δ equals γz,ϕ on these two segments contradicting the fact that
|ϕ| > π. Namely for 2|ϕ| > 2π, Corollary 1.6 shows that the restriction on [−1, 1]
of γz,ϕ is not a geodesic and consequently can not be δ. Hence M(A, I(A), 1/2)
is not 0H.
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As announced before, we present the computation of the Jacobian deter-
minant. For the proof of the proposition 1.7, we just have to prove that the
Jacobian of Γ1 does not vanish. This fact is mentioned in [AR] where the authors
state that Γ1 is a diffeomorphism (in fact in this paper z is given by its polar
coordinates (|z|, z

|z| ). The result of the calculation is given for H1 in the paper
of Monti (see [Mo1]). We show the complete computation for every n ∈ N\{0}
because we do not only need the fact that the Jacobian determinant does not
vanish, but also the exact expression.

Proposition 1.12. The Jacobian determinant of Γ1 is

Jac(Γ1)(z, ϕ) =

22n+1|z|2
(

1−cos(ϕ)
ϕ2

)n−1
2(1−cos(ϕ))−ϕ sin(ϕ)

ϕ4 for ϕ 6= 0,

|z|2/3 else.

It does not vanish on D1.

Proof. Let us first write what is precisely Γ1:

Γ1(z, ϕ) =

{(
i e−iϕ−1

ϕ z1, · · · , i e−iϕ−1
ϕ zn, 2|z|2 ϕ−sin(ϕ)

ϕ2

)
if ϕ 6= 0,

(z, 0) else

where |z|2 = |z1|2 + · · ·+ |zn|2. We begin to make the calculation of Jac(Γ1) =
det(DΓ1) for ϕ 6= 0. The case ϕ = 0 is obtained as a limit.

We first have to compute the real derivative of Γ1, that is the derivative
of Γ1 as a map from R2n+1 to R2n+1. However we write DΓ1 as a matrix
( P C

R s ) where the block P is made of the 2n first rows and columns. If we
identify complex numbers with 2 × 2 matrices (a + ib is

(
a −b
b a

)
), we can write

P as the n × n complex matrix i e−iϕ−1
ϕ In where In is the identity matrix of

Mn(C). The column C is ( e−iϕ

ϕ − i e−iϕ−1
ϕ2 )z seen as a R2n vector, the row R is

(4x1
ϕ−sin(ϕ)

ϕ2 , 4y1
ϕ−sin(ϕ)

ϕ2 , · · · , 4xn
ϕ−sin(ϕ)

ϕ2 , 4yn
ϕ−sin(ϕ)

ϕ2 ), and the real number s

is 2|z|2
(

2sin(ϕ)
ϕ3 − 1+cos(ϕ)

ϕ2

)
.

It is difficult to compute directly the determinant of ( P C
R s ) in any point. Be-

cause of this we now prove that if |z| = |z′|, then Jac(Γ1)(z, ϕ) = Jac(Γ1)(z′, ϕ).
Let T be a unitary C-linear map so that T (z) = z′. Consider now T ′ defined by
T ′(z, ϕ) = (T (z), ϕ). Then it is not difficult to see that Γ1 ◦T ′ = T ′ ◦Γ1. It fol-
lows that (Jac(Γ1)◦T ) ·det<(T ′) = det<(T ′) ·Jac(Γ1) and consequently we have
Jac(Γ1)(z, ϕ) = Jac(Γ1)(z′, ϕ). We use this relation and simplify the computa-
tion and by choosing z′ = (0, · · · , 0, |z|). With this new vector z′, the matrixes
C and R have most of the entries equal to zero, which permit to make a block
calculation of the determinant of DΓ1 = ( P C

R s ). We obtain that Jac(Γ1)(z, ϕ)
is the product of ∣∣∣∣ sin(ϕ)/ϕ (1− cos(ϕ))/ϕ

(cos(ϕ)− 1)/ϕ sin(ϕ)/ϕ

∣∣∣∣n−1

with ∣∣∣∣∣∣∣∣
sin(ϕ)/ϕ (1− cos(ϕ))/ϕ |z|( cos(ϕ)

ϕ − sin(ϕ)
ϕ2 )

(cos(ϕ)− 1)/ϕ sin(ϕ)/ϕ |z|(− sin(ϕ)
ϕ − cos(ϕ)−1

ϕ2 )

4|z|ϕ−sin(ϕ)
ϕ2 0 2|z|2

(
2 sin(ϕ)

ϕ3 − 1+cos(ϕ)
ϕ2

)
∣∣∣∣∣∣∣∣ .
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It simply equals

2n|z|2
(

1− cos(ϕ)
ϕ2

)n−1

∣∣∣∣∣∣∣
sin(ϕ)/ϕ (1− cos(ϕ))/ϕ cos(ϕ)

ϕ

(cos(ϕ)− 1)/ϕ sin(ϕ)/ϕ − sin(ϕ)
ϕ

2ϕ−sin(ϕ)
ϕ2 0 1−cos(ϕ)

ϕ2

∣∣∣∣∣∣∣
and finally

2n+1|z|2
(

1− cos(ϕ)
ϕ2

)n−1 2(1− cos(ϕ))− ϕ sin(ϕ)
ϕ4

.

The continuously corresponding value for ϕ = 0 is |z|2/3.
It remains to show that Jac(Γ1) does not vanish on D1. It is clear for

ϕ = 0. In the other case it has to be shown that the even function f(u) :=
2(1 − cos(u)) − u sinu does not vanish for u ∈]0, 2π[. The values in 0 and 2π
are 0. The first derivative of f is the map f ′(u) = sinu − u cos u that also
vanishes in 0 and the second derivative is f ′′(u) = u sinu. The function f ′′ is
non-negative on ]0, π[ and non-positive on ]π, 2π[. Hence f is convex increasing
on [0, π], concave on [π, 2π] and ends with the value 0. It follows that f does
not vanish on ]0, 2π[.

We recall that for 0 < |t| ≤ 1 we have Γt(z, ϕ) = Γ1(tz, tϕ) and obtain the
following corollary.

Corollary 1.13. Let 0 < |t| ≤ 1. The Jacobian determinant of Γt on D1 is

Jac(Γt)(z, ϕ) =

2n+1t|z|2
(

1−cos(tϕ)
ϕ2

)n−1
2(1−cos(tϕ))−tϕ sin(tϕ)

ϕ4 for ϕ 6= 0,

t2n+3|z|2/3 else.

2 Validity of the measure contraction property
in the Heisenberg group

In general metric measure spaces, there are two conditions which are regarded
as replacements of Ricci curvature bounds of differential geometry: the geo-
metric curvature-dimension CD(K, N) and the measure contraction property
MCP (K, N). In our case where the geodesic between two points is almost
surely unique, the curvature-dimension CD(K, N) is more restrictive than the
measure contraction property MCP (K, N) although it was not clear for a long
time whether the two properties are equivalent. Moreover in the same frame-
work (almost surely a unique normal geodesic between two points), the measure
contraction property implies a local Poincaré inequality and the doubling prop-
erty for metric measure space. This is shown in [vR] and [LV2]. Metric measure
spaces verifying a local Poincaré inequality and the doubling property have
proved to be a very ideal setting for doing analysis. A good reference on this
new theory is the book by Heinonen (see [He]). It is possible to install a differ-
entiable structure on these space as it is proved in the paper by Cheeger (see
[Ch]) or to define Sobolev spaces with interesting properties (see [Ch],[HK] and
[Sh]). An other application domain of the local Poincaré inequality is conformal
geometry where it permits to analyze the quasi-conformal maps between metric
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spaces (see the survey [BP2]). Some of the more famous examples of doubling
metric measure spaces with a local Poincaré inequality are the boundary of hy-
perbolic buildings (see [BP1]), some Cantor-like set with worm-hole (see [La])
and the Heisenberg group (see [Va]).

We now give the definition of the curvature-dimension CD(0, N) and of the
measure contraction property MCP (0, N). Let us recall that our aim is to prove
that the first property does not hold for any N whereas the Heisenberg group
Hn verifies MCP (0, 2n + 3) with 2n + 3 as sharp dimension. The case where
K 6= 0 in not really interesting in the Heisenberg group. We will see why and
which properties hold in Remark 3.4.

Let (X, d, µ) be a metric measure space. We assume moreover that this
space is separable and complete (Polish space). The curvature-dimension con-
dition CD(K, N) is a geometric condition on the optimal transportation of mass
between any couple of absolutely continuous probability measures on (X, d, µ).
For N ≥ 1, the curvature-dimension condition CD(0, N) simply states that the
functional SN (· | µ) is convex on the L2-Wasserstein space P2. In the last sen-
tence SN (· | µ) is the relative Rényi entropy functional defined for a measure m
with density ρm ∈ L1(µ) by:

SN (m | µ) = −
∫

X

ρ1−1/N
m dµ.

The basic quantity for the optimal transportation theory is the so-called
L2-Wasserstein distance between two probability measures m0 and m1. It is
defined as

dW (m0,m1) = inf
q

(∫
X×X

d2(x, y)dq(x, y)
)

where the infimum is taken over all couplings q of m0 and m1. In a Polish space
like X, there is a coupling that attains the infimum. It is said to be an optimal
coupling. Let P2(X) be the space of probability measures m on X with second
moment (i.e.

∫
X

d(x0, x)2dm(x) < +∞ for an x0 ∈ X). With the distance
dW , the space P2(X) is also a complete and separable metric space. Thus it is
possible to speak about geodesics in (P2(X), dW ). For a detailed presentation,
and more about optimal transportation, refer to [Vi1] or [Vi2]. We now give the
definition of CD(0, N). It is a specific case of the curvature-dimension condition
introduced by Sturm in [St2].

Definition 2.1. Let N ≥ 1. We say that the curvature-dimension condition
CD(0, N) holds in (X, d, µ) if for each couple (m0,m1) of absolutely continu-
ous measure of P2(X), there is a geodesic (mt)t∈[0,1] connecting m0 and m1

and consisting of absolutely continuous measures mt that verifies the following
condition:

SN (mt | µ) ≤ (1− t)SN (m0 | µ) + tSN (m1 | µ). (3)

We will see in the next section (Theorem 3.3) that this property does not
hold in the Heisenberg group.

Remark 2.2. In the paper by Ambrosio and Rigot (see [AR]), the authors prove
that there is a unique normal geodesic between two measures of P2(Hn). But it
is still an open problem if the intermediate measures are absolutely continuous
(see [AR]).
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The measure contraction property MCP (0, N) (see [St2], [LV2], [Oh]) is a
condition on metric measure spaces (X, µ, d). Its formulation is much simpler
if there exists a measurable map

N : (x, y, t) ∈ X ×X × [0, 1] → X

such that for each x ∈ X and µ-a.e y ∈ X, the curve t ∈ [0, 1] → N (x, y, t)
is the unique normal geodesic from x to y. Then the space (X, d, µ) satisfies
MCP (0, N) if and only if for each x ∈ X and t ∈ [0, 1] and each µ-measurable
set E we have

tNµ(N−1
x,t (E)) ≤ µ(E) (4)

where Nx,t(y) := N (x, y, t).
In Definition 1.8, we defined the map M on U × [0, 1]. We now extend it to

(Hn)2 × [0, 1] by M(A,B, t) = A if (A,B) /∈ U (We will use another extension
in the next section). With Lemma 1.9, we see that M verifies the conditions
of N on measurability and almost surely uniqueness of a geodesic. We state in
the next theorem that the property (4) additionally holds for N = M.

Theorem 2.3. The measure contraction property MCP (0, N) holds in Hn if
and only if N ≥ 2n + 3.

Proof. We first prove that MCP (0, N) holds for N ≥ 2n+3 and will then show
that MCP (0, N) does not hold for N < 2n + 3.

Let then N be greater than 2n + 3. Because the Lebesgue measure, the
Carnot-Carathéodory distance and the geodesics are left-invariant, we obtain
also that M(τAB, τAC, t) = τA ◦M(B,C, t) for A, B and C in Hn. Because all
these objects are left-invariant, we can reduce the inequality (4) to be proved
in the case x = 0H. Let E be a µ-measurable set with non-zero measure and
t ∈]0, 1[. The map M0H,t := M(0H, ·, t) maps the line L on 0H (because of the
definition of our extension) but is one-to-one on Hn\L where it equals Γt ◦Γ−1

1 .
If we denote F := M−1

0H,t(E), as a result of Proposition 1.7 and because the
measure of L is 0, we have:

L2n+1(E) ≥
∫

F\L
Jac(M0H,t)(Q)dL2n+1(Q). (5)

With the expression of M0H,t on Hn\L we find Jac(M0H,t) = Jac(Γt)
Jac(Γ1)

◦Γ−1
1 . But

we know the expression of these Jacobian determinants from Proposition 1.12
and Corollary 1.13. Hence in order to state the relation (4) it suffices to establish
that

Jac(Γt)
Jac(Γ1)

(z, ϕ) = t

(
1− cos tϕ

1− cos ϕ

)n−1(2(1− cos(tϕ))− tϕ sin(tϕ)
2(1− cos(ϕ))− ϕ sin(ϕ)

)
≥ tN (6)

happens for (z, ϕ) ∈ D1 (in the case ϕ 6= 0). For ϕ = 0 this relation must be
changed into

Jac(Γt)
Jac(Γ1)

(z, 0) = t2n+3 ≥ tN (7)
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that is obviously true. Both members of inequality (6) have the value 0 in 0 and
1 in 1. It is the same if we raise these expressions to the power of 1/N . Hence, we

want to prove that t →
(

Jac(Γt)
Jac(Γ1)

)1/N

(z, ϕ) is above the cord between (0, 0) and
(1, 1). That is in particular true if this function is concave for each (z, ϕ) ∈ D1.
This is equivalent to the 1/N -concavity on ]0, 2π[ of the even function gn defined
by gn(u) = u[2(1− cos u)−u sinu](1− cos u)n−1 (that means gn is positive and
g
1/N
n is concave). For the limit case N = 2n + 3 we have the following lemma:

Lemma 2.4. The function gn is (2n + 3)−1-concave on [0, 2π].

Proof. We begin to prove that g1 is 1/5-concave. For simplicity we will denote
g = g1. This function is positive because it equals uf(u) where f appears in
the proof of Proposition 1.12. A classic study shows that it is increasing on
[0, β2] and decreasing on [β2, 2π], convex on [0, β1] and concave on [β1, 2π] with
π < β1 < 3.84 < 4 < β2 < 2π. The 1/5-concavity is equivalent to the negativity
of (g′′g − g′2) + 1

5g′2. A first step is to prove the weaker relation g′′g − g′2 ≤ 0
which is equivalent to the log-concavity (that means g is positive and log(g) is
concave). We write g(u) = [4u][sin(u/2)][sin(u/2)− (u/2) cos(u/2)] and call the
three factors respectively p(u), q(u) and r(u). Each one is log-concave because
p and q are concave and

r′′r − r′2 =
1
4

[
sin2 u

2
−
(u

2

)2
]
≤ 0.

It follows that g is log-concave. Alternatively we can write

g′′g − g′2 = (pq)2(r′′r − r′2) + (pr)2(q′′q − q′2) + (qr)2(p′′p− p′2)

where the three terms of the sum are non-positive. For the 1/5-concavity, the
task is then to prove the negativity of (g′′g − g′2) + 1

5g′2 that equals[
4u sin

u

2

]2 1
4

(
sin2 u

2
−
(u

2

)2
)

+
[
4u
(
sin

u

2
− u

2
cos

u

2

)]2
(−1

4
)

+
[
sin

u

2

(
sin

u

2
− u

2
cos

u

2

)]2
(−16) +

1
5
(
2−

(
2 + u2

)
cos u

)2
=

1
5
(
2−

(
2 + u2

)
cos u

)2 − (sin u

2
− u

2
cos

u

2

)2 (
4u2 + 16 sin2 u

2

)
− 4

[
u sin

u

2

]2((u

2

)2

− sin2 u

2

)
.

It is quite fastidious to prove that this long expression is negative. For this, we
replace cos and sin in each term by the beginning of their Taylor series. We
intend to replace the last expression by a pointwise greater polynomial. For
instance, we obtain

1
5
g′2(u) =

1
5
(
2−

(
2 + u2

)
cos u

)2 ≤ 1
5

(
2−

(
2 + u2

)(
1− u2

2
+

u4

24
− u6

720

))2

for u ≤ β2. With the same type of calculus we obtain that (g′′g − g′2) + 1/5g′2
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is smaller than

1
5

(
5u4

12
− 7u6

180
+

u8

720

)2

−
(

u3

24

)2(
1− u2

32

)(
8u2 − u4

3
+

u6

144

)
− 4

(
u

(
u

2
− u3

48

))2
((u

2

)2

−
(

u

2
− u3

48
+

u5

25 · 5!

)2
)

=u10

(
−1
384

+
30463u2

82944000
− 751u4

4147000
+

1237u6

3538944000
+

u8

8493465600

)
if u ≤ 4. But this polynomial is negative for u ≤ 3.84. For u ∈ [3.84, 2π], we are
on the segment [β1, 2π] where g is concave. It follows that (g′′g − g′2) + 1/5g′2

is negative on [0, 2π] and we have the 1/5-concavity of g.
Let us now prove recursively that gn+1 is 1/(2n + 5)-concave. For this let

us assume that gn is 1/(2n + 3)-concave and let h be defined on [0, 2π] by
h(u) = 1− cos u = 2 sin2(u/2). We have now to prove the negativity of(

(gnh)′′(gnh)− (gnh)′2
)

+
1

2n + 5
(gnh)′2

=(g′′ngn − g′2n )h2 + (h′′h− h′2)g2
n +

1
2n + 5

(gnh)′2

=(g′′ngn − g′2n )h2 + (−h)g2
n +

g′2n h2 + 2gng′nhh′ + g2
nh′2

2n + 5

=h2

(
(g′′ngn − g′2n ) +

g′2n
2n + 3

)
+ h2

(
g′2n

2n + 5
− g′2n

2n + 3

)
+ g2

n

(
h′2

2n + 5
− h

)
+

2gng′nhh′

2n + 5
.

The first term T1 in the last sum is negative because of the 1/(2n+3)-concavity
of gn. The second term T2 is clearly negative. The third term T3 is also negative
because C sin2(u/2)−sin2(u) is positive on [0, 2π] if and only if C ≥ 4. It remains
just to prove that |T4| ≤ |T2| + |T3| where T4 is the last term. We prove it by
comparing |T4|2 to (2

√
|T2||T3|)2 ≤ (|T2|+ |T3|)2:

(2n + 5)2
(
4|T2||T3| − T 2

4

)
=(2n + 5)2

(
4
[
g2

n

(
h− h′2

2n + 5

)][
h2

(
g′2n

2n + 3
− g′2n

2n + 5

)]
−
[
2gng′nhh′

2n + 5

]2)

=4g2
n

(
(2n + 5) h− h′2

) 2h2g′2n
2n + 3

− 4g2
ng′2n h2h′2

=4g2
ng′2n h2

[
2 (2n + 5) h

2n + 3
− (2n + 5) h′2

2n + 3

]
≥ 0

which ends the proof because 2h − h′2 = 4 sin2(u/2) − sin2(u) is positive on
[0, 2π].

For N ≥ 2n+3, the 1/N -concavity of gn is a consequence of the 1/(2n+3)-
concavity. It proves that MCP (0, N) holds in (Hn, dCC ,L2n+1).
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Let now N be strictly smaller than 2n+3, let P be the point ((1, 0, · · · , 0), 0) =
Γ1((1, 0, · · · , 0), 0) and Kr the (Euclidian) ball B(P, r) with center P and radius
r. For an r small enough, it is included in Hn\L. For a fixed t in ]0, 1[, we
define now the set Er by M0H,t(Kr). Then we have:

L2n+1(Er) =
∫

Kr

Jac (M0H,t(Q)) dL2n+1(Q).

But Jac(M0H,t)(P ) = t2n+3 < tN because Γ−1
1 (P ) has the ϕ-coordinate equal

to 0 (see equation (7)). By continuity, we can find a radius r > 0 such that
Jac(M0H,t)(Q) < tN holds for every Q ∈ Kr. For this choice, it follows that
L2n+1(Er) < tNL2n+1(Kr), which is contradicting MCP (0, N).

3 The Brunn-Minkowski inequalities in Hn

The classical Brunn-Minkowski inequality in R2n+1 (see for instance [Fe]) is a
very instructive geometric estimate of the Minkowski sum (the usual set sum
in R2n+1) of two compact sets in RN . An equivalent statement for K0 and K1

two compact set of RN and t ∈ [0, 1] is:

(LN )1/N (tK1 + (1− t)K0) ≥ t(LN )1/N (K1) + (1− t)(LN )1/N (K0)

with tK1 +(1− t)K0 = {tk1 +(1− t)k0 ∈ RN | k1 ∈ K1 k0 ∈ K0}. We want to
interpret what is tK1+(1−t)K0 in a geodesic metric space. For this we consider
the set of the t-intermediate points from a point k0 in K0 to a point k1 in K1.
We call this set the t-intermediate set and denote it by “tK1 + (1− t)K0”.

Let (X, d, µ) be a metric measure space and N be greater than 1. We say
that the geodesic Brunn-Minkowski inequality BM(0, N) holds in (X, d, µ) if
the inequation

µ1/N (“tK1 + (1− t)K0”) ≥ tµ1/N (K1) + (1− t)µ1/N (K0) (8)

is true for every couple (K0,K1) of compact sets (where µ(“tK1 + (1− t)K0”)
will denote the outer measure of “tK1 + (1 − t)K0” if the latter is not mea-
surable). There is also a “multiplicative” Brunn-Minkowski inequality that has
been introduced in the Heisenberg group by Monti in [Mo2] (see also [LM]). We
deal with this inequality in Remark 3.5.

Remark 3.1. Let K be a real number and N ≥ 1. The general definition of
CD(K, N) (see [St2]) involves a modification of the geometric inequality (3)
by factors depending roughly speaking on the Wasserstein distance between the
measures m0 and m1. These factors also appear for MCP (K, N) and CD(K, N)
in the generalization of the inequalities (4) and (8). For these three geometric
properties there is a common hierarchy when K and N vary: the property for
(K, N) implies the property for (K ′, N) where K ′ < K. Similarly for a fixed
curvature K, the property (K, N) implies the one for (K, N ′) where N ′ > N .
Nevertheless a priori there is no optimal couple (K, N) when the curvature and
the dimension both vary (see [Oh],[St2]).

It is proven in [St2] that the curvature-dimension property CD(0, N) implies
BM(0, N). In order to deny CD(0, N) in Hn, we will prove that no geodesic
Brunn-Minkowski inequality holds in this space.
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In Hn it will be useful to interpret the t-intermediate set with the intermediate-
points map. Thus we extend M in a different way from the last section.
Here M is no longer a map but a multi-valued map defined on (Hn)2×]0, 1[
by M(A,B, t) = {Mt ∈ Hn | dCC(A,Mt) = tdCC(A,B) and dCC(Mt, B) =
(1−t)dCC(A,B)}. If (A,B) is in U , we identify the single-valued set M(A,B, t)
with its unique element, which is coherent assignment with Definition 1.8. For
more precisions on the value taken by M on (Hn)2\U×]0, 1[, we just have to
consult Proposition 1.3 and use left translations. We will now prove the follow-
ing lemma:

Lemma 3.2. There are two compact sets K and K ′ such that

L2n+1(K) = L2n+1(K ′) > L2n+1(M1/2(K, K ′))

where M1/2(K, K ′) = {M(k, k′, 1/2) ∈ Hn | k ∈ K and k′ ∈ K ′}.

Let N be a dimension greater than 1. We can raise the inequality in
Lemma 3.2 to the power of 1/N and considering relation (8) we obtain as a
corollary the following theorem.

Theorem 3.3. The geodesic Brunn-Minkowski inequality BM(0, N) and the
geometric curvature-dimension CD(0, N) do not hold for any N .

We now give a proof of Lemma 3.2

Proof. Let us consider a simple geodesic: the curve of parameter ((1, · · · , 0), 0)
on the interval [−1, 1]. As 2 · 0 < 2π Corollary 1.6 tells us that it is the unique
geodesic defined on [−1, 1] from P ′ = (−1, 0, · · · , 0) to P = (1, 0, · · · , 0): the
points P and P ′ are time-conjugate and have midpoint 0H. Actually M1/2 :=
M(·, ·, 1/2) is the expression of the midpoint map. On U this map is univalued
and is defined by putting t = 1/2 in Definition 1.8:

M1/2(Q′, Q) = τQ′ ◦ Γ1/2 ◦ Γ−1
1 ◦ τQ′−1(Q). (9)

We will now use the time-inversion map introduced in the first section. We
recall that Lemma 1.11 exactly says when the midpoint of two time-conjugate
points in U is 0H. For P and P ′ it is true so that P and P ′ are in the open
set Γ1(D1/2). The counterexample that we want to build consists in taking a
small compact ball Kr := B(P, r) with center P and (Euclidian) radius r and
in considering the set of midpoints between Kr and K ′

r = I(Kr). By continuity
we can choose r small enough such that Kr ⊂ Γ1(D1/2) and Kr ×K ′

r ⊂ U .
We have to show that K ′

r has the same measure as Kr and that this measure
is greater than the measure of M1/2(Kr,K

′
r). The first fact is actually not

mysterious because of this: Γ1 and Γ−1 are diffeomorphisms between the same
sets (Proposition 1.7) and have the same Jacobian determinant up to the sign
(Corollary 1.13). Hence we have

L2n+1(K ′
r) = L2n+1(Γ−1(Γ−1

1 (Kr))) = L2n+1(Γ1(Γ−1
1 (Kr))) = L2n+1(Kr).

The key of the second statement is

M1/2(K ′
r,Kr) =

⋃
A,B∈Kr

M1/2(I(A), B) =
⋃

A,B∈Kr

M1/2(I(A), A + (B −A)).

(10)
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As Kr ⊂ Γ1(D1/2), Lemma 1.11 shows that if A ∈ Kr, then M1/2(I(A), A) =
0H. Therefore the mid-set M1/2(K ′

r,Kr) has a very small measure. We will use
differentiation tools in order to quantify this. As a consequence of Lemma 1.9,
M1/2 is C∞-differentiable on U . For any Q ∈ Hn\L let M1/2

Q be the map
M(Q, ·, 1/2). We can now write

M1/2(I(A), A + (B −A)) (11)

=0 + DM1/2
I(A)(A).(B −A)

+
[
M1/2 (I(A), A + (B −A))−DM1/2

I(A)(A).(B −A)
]

=DM1/2
P ′ (P ).(B −A) +

[(
DM1/2

I(A)(A)−DM1/2
P ′ (P )

)
.(B −A)

]
+
[
M1/2 (I(A), A + (B −A))−DM1/2

I(A)(A).(B −A)
]
.

For A and B close to P , the two last terms of the last sum are small and can
be estimated using usual definitions and propositions of differential calculus in
R2n+1: when r is going to zero, we have

sup
A,B∈Kr

∣∣∣(DM1/2
I(A)(A)−DM1/2

P ′ (P )
)

.(B −A)

+ M1/2(I(A), A + (B −A))−DM1/2
I(A)(A).(B −A)

∣∣∣ = o(r).

Therefore because Kr − Kr = {Q ∈ R2n+1 | Q = A − B A,B ∈ B(P, r)} =
B(0, 2r), the relations (10) and (11) give the following set inclusion

M1/2(K ′
r,Kr) ⊂ DM1/2

P ′ (P ).(B(0, 2r)) + B(0, ε(r)r) (12)

where ε(r) is a non-negative function going to zero when r goes to zero. In
the last relation, the measure of the containing set is equivalent to the one of
DM1/2

P ′ (P ).(B(0, 2r)). If we now consider relation (9) and recalling that the left-
invariant and affine maps τP ′ and τP ′−1 = τ−1

P ′ have the derivative equal to their
linear part, we obtain that Jac(M1/2

P ′ )(P ) has the same value like Jac(Γ1/2 ◦
Γ−1

1 ) taken in the point P ′−1 · P = ((2, 0, · · · , 0), 0) = Γ1((2, 0, · · · , 0), 0). This
Jacobian determinant has been computed in the second section (see equations
(6) and (7)). In our case as the ϕ-coordinate of Γ−1

1 (P ′−1 · P ) is 0, we have to
consider equation (7) for t = 1/2. Then the value of the Jacobian determinant
is 1

22n+3 . It follows that

L2n+1(DM1/2
P ′ (P ).(B(0, 2r))) =

22n+1

22n+3
L2n+1(B(P, r)) =

1
4
L2n+1(Kr).

Hence with relation (12) and the commentary that we made after it, we obtain

L2n+1(M1/2(K ′
r,Kr)) ≤

1
4
L2n+1(Kr)(1 + o(r))

when r goes to zero. We now select an r small enough and the lemma is
proved.

Remark 3.4. (i) The previous result does not only yields that CD(0, N) does
not hold. This also implies that CD(K, N) does not hold for any K > 0
because this condition is less demanding than CD(0, N). Alternatively,
spaces verifying CD(K, N) with K > 0 are bounded.
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(ii) Also for any K < 0, the curvature-dimension bound CD(K, N) does
not hold. Assume to the contrary that CD(K, N) holds in the space
(Hn, dCC ,L2n+1) for K < 0. Therefore the “scaled space” property from
[St2] tells us that (Hn, λ−1dCC , λ−(2n+2)L2n+1) verifies CD(λ2K, N)for
λ > 0. But with the dilatation δλ this last space is exactly isomor-
phic to our metric measure space. Hence CD(K ′, N) would hold in
(Hn, dCC ,L2n+1) for every non-positive K ′. It is proved in [AR] that
the optimal transportation between two measures is unique so that in-
equality (3) defining CD(0, N) is obtained as limit of the corresponding
inequalities for CD(K ′, N), which is contradicting Theorem 3.3. As a
consequence, CD(K, N) does not hold in Hn.

(iii) In the same way with the dilatations of Hn, we could have proved directly
that BM(K, N) is false for any K ∈ R. We recover that CD(K, N)
does not hold because this last condition implies the other for the same
curvature and dimension parameters.

(iv) For every N , the measure contraction property MCP (K, N) is false for
K > 0. Namely as for CD, spaces verifying such a condition are bounded
(see [St2]).

(v) The property MCP (K, N) does also not hold for N > 2n + 3 and K < 0
because this case is similar to (ii): using dilatations MCP (K, N) implies
that MCP (0, N) is true, which is contradicting Theorem 2.3.

Remark 3.5. In [Mo2], Monti compares for two compact sets F and F ′ their
measures to that of F · F ′ = {a · b ∈ Hn | a ∈ F b ∈ F ′}. He proves that

L3(F · F ′)1/4 ≥ L3(F )1/4 + L3(F ′)1/4

does not hold in H1 (4 is the Hausdorff dimension in H1) using an argument of
the non-optimality of the unit ball in the isoperimetric inequality of H1.

Another proof in Hn with the corresponding dimension 2n+2 is the following:
Take for F the same set Kr as before in this section and denote by F ′ the set
{b ∈ Hn | ∃c ∈ F, c · b = 0H} of the inverse elements (it is simply −F because
(z, α)−1 = (−z,−α)). Then using the same technic as in this section we find
that F · F ′ is very close to DτP ′(P ).(B(0, 2r)). The measure of this last set is
22n+1L(F ) because, as we said in the first section, Jac(τP ′) = 1 in every point.
As L2n+1(F ) = L2n+1(F ′) it follows that for r small enough

L2n+1(F · F ′)
1

2n+2 < L2n+1(F )
1

2n+2 + L2n+1(F ′)
1

2n+2 (13)

and the multiplicative Brunn-Minkowski inequality is false for the Hausdorff
dimension (i.e. 2n + 2). In the paper by Leonardi and Masnou (see [LM]), the
authors show that the multiplicative Brunn-Minkowski inequality is true with
topological dimension (i.e. 2n+1). They explain that there could be in principle
an N ∈]2n+1, 2n+2[ such that the multiplicative Brunn-Minkowski inequality
holds in Hn: in fact if the equality holds for N , then it holds for N ′ < N . As
said in Remark 3.4 and by contrast, BM(K, N ′) is a consequence of BM(K, N)
if N ′ > N .

We proved in relation (13) that the sets F and F ′ defined in this remark
are a counterexample to the multiplicative Brunn-Minkowski inequality with

17



dimension N = 2n + 2. They are actually also a counterexample for any N >
2n+1. It follows that 2n+1 is the greater dimension for which the multiplicative
Brunn-Minkowski inequality is true.
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[BE] D. Bakry ; M. Émery, Diffusions hypercontractives, Séminaire de prob-
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