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Summary. We investigate adaptive wavelet methods which are goal–oriented in
the sense that a functional of the solution of a linear elliptic PDE is computed
up to arbitrary accuracy at possibly low computational cost measured in terms of
degrees of freedom. In particular, we propose a scheme that can be shown to exhibit
convergence to the target value without insisting on energy norm convergence of
the primal solution. The theoretical findings are complemented by first numerical
experiments.

1 Introduction

The importance of adaptive solution concepts for large scale computational
tasks arising in Numerical Simulation based on PDEs or integral equations is
nowadays well accepted. The evidence provided by numerical experience is,
however, nor quite in par with the theoretical foundation of such schemes.
A thorough analytical understanding, in turn, has recently proven to lead to
new algorithmic paradigms in connection with wavelet based schemes. Rigor-
ous complexity and convergence estimates were obtained for adaptive wavelet
methods for a wide class of linear and nonlinear variational problems, see, e.g.,
[8, 9, 12, 14]. These estimates relate for the first time the computational work
and the adaptively generated number of degrees of freedom to the target accu-

racy of the approximate solution. This accuracy refers to the approximation
in some (energy) norm, i.e., the whole unknown solution is recovered. These
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developments have meanwhile spilled over to the Finite Element setting where
analogous results could be obtained for a much more restricted problem class,
though, see, e.g., [3, 24].

However, in many applications one is only interested in some functional

of the solution which, in particular, might be local such as point values or
integrals on some lower dimensional manifold. In such a case one might expect
to obtain the desired information at a much lower expense than computing the
whole solution. This is exactly the objective of goal-oriented error estimation
which gives rise to the so called dual weighted residual method (DWR), see,
e.g., [4] and the references cited therein.

Many striking examples indicate that one may indeed reach the goal with
the aid of this paradigm at the expense of much less computational work in
comparison with schemes driven by norm approximation. On the other hand,
a rigorous analysis of the DWR faces a number of severe obstructions related,
in particular, to the fact that the central error representation involves the
(unknown) solution to the dual problem. Thus, the dual solution has to be
estimated along the way. Although this problem arises, in principle, already
when dealing with linear problems, it becomes more delicate in the nonlinear
case since the dual solution depends then on the primal one. It is fair to say
that the mutual intertwinement of the accuracies of dual and primal solutions,
especially with regard to the spatial distribution of degrees of freedom, is far
from a rigorous understanding. It is not even clear in the linear case that
adaptive refinements based on the practiced versions of the DWR paradigm
actually converge in the sense that the searched value is actually approached
better and better by the computed one as the refinement goes on. It is this
issue that will be the primary concern of this paper.

To appreciate this issue, it is helpful to keep a few principal facts in mind.
Approximability of a function in some norm can always be understood in terms
of the regularity of that function (with respect to some nonclassical regularity
measure). In a typical application of the DWR, adaptivity is not driven by
the regularity of the searched for object, but primarily by the locality of the
targeted information, conveyed by the dual solution which is often termed
generalized Green’s function, see, e.g., [19]. This generalized Green’s function
indicates the influence of parts of the primal solution away from the spatial
location of the target functional. Thus, the experience gained with adaptive
wavelet schemes for energy norm approximation is not immediately seen to
be helpful in the context of the DWR.

Nevertheless, the primary goal of this paper is to contribute to the under-
standing of the DWR by looking at this paradigm from a wavelet point of view.
Here is a rough indication why this might indeed be a promising perspective:
The key to the above mentioned results from [8, 9] is to formulate an iteration
(e.g., a gradient or a Newton scheme) for the full infinite dimensional problem
formulated in wavelet coordinates. This idealized iteration is then mimicked
by the adaptive evaluation of the involved operators within any desired error
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tolerance. Staying in that sense controllably close to the infinite dimensional
problem may therefore be expected to help also in the context of the DWR.

In this note we wish to explore this aspect for an admittedly simple class of
model problems, namely, linear elliptic boundary value problems. Moreover,
we shall consider only linear evaluation functionals that belong to the dual of
the energy space. Further linearization and/or regularization can be, of course,
performed as explained in many foregoing investigations. The main point is to
identify the key mechanisms so as to draw also conclusions for more complex
problems.

We shall occasionally use the following convention for estimates containing
generic constants. The relation a ∼ b always stands for a <∼ b and a >∼ b,
i.e., a can be estimated from above and below by a constant multiple of b
independent of all parameters on which a or b may depend.

2 Goal–Oriented Error Estimation

2.1 Problem Formulation

Let V denote a Hilbert space living on some bounded Lipschitz domain Ω ⊂
R
d and let V ′ be its topological dual. Its associated dual form will be denoted

as 〈·, ·〉V×V ′ , or shortly as 〈·, ·〉.
Moreover, let a(·, ·) be a symmetric bilinear form which will here always

supposed to be continuous and elliptic on V , i.e., there exist constants cA, CA
such that √

cA‖v‖V ≤ a(v, v)1/2 ≤
√

CA‖v‖V , v ∈ V. (2.1)

In this case the variational problem: given any f ∈ V ′, find u ∈ V such that

a(v, u) = 〈v, f〉, v ∈ V, (2.2)

is well posed. It will be convenient to introduce the induced operator A : V →
V ′ given by 〈v,Aw〉 := a(v, w) for all v, w ∈ V .

Instead of approximating the whole solution u we are interested in evalu-
ating only a functional of the unknown solution. Specifically, we consider the
following problem: Given a fixed linear functional J ∈ V ′, compute

J(u) := 〈u, J〉, (2.3)

where u is the solution of (2.2). J(u) may be a very local quantity, such as the
point evaluation of u at some point x∗ ∈ Ω, if the Dirac functional is in V ′ (as
in the case of Plateau’s equation on an interval), or a local quantity like the
mean of u over some small domain Ωδ ⊂ Ω, i.e., J(u) = |Ωδ |−1

∫

Ωδ
u(x) dx, or

a weighted integral of u over some lower dimensional manifold in Ω. We shall
exclude first more general situations such as nonlinear functionals J which
would require an additional linearization process as shown in [4], as well as
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functionals that are not contained in V ′ but require additional regularity of
the solution.

Of course, one might approximate the quantity J(u) by determining first
some approximation uΛ to u sitting in some finite dimensional trial space
indicated by the subscript Λ, and take then J(uΛ) as an approximation to the
desired value J(u). Moreover, in the above framework it is natural to take uΛ
as a Galerkin solution with respect to some subspace VΛ ⊂ V , i.e.,

a(v, uΛ) = 〈v, f〉, v ∈ VΛ. (2.4)

Under the circumstances (2.1), (2.2), uΛ is uniquely determined for any VΛ ⊂
V . (For conceptual reasons that will become clear later, we deliberately do not
even insist at this point on VΛ being finite dimensional.) We shall frequently
use the shorthand notation

eΛ := u− uΛ.

Our goal now is to determine uΛ such that for a given target accuracy

ε > 0
|J(u) − J(uΛ)| = |J(u− uΛ)| = |J(eΛ)| ≤ ε, (2.5)

while the computational cost needed to determine uΛ is to be kept as low as
possible. Since, by assumption, J ∈ V ′, we have

|J(eΛ)| ≤ ‖J‖V→R ‖eΛ‖V , (2.6)

where, as usual, ‖J‖V→R := supv∈V,‖v‖V ≤1〈v, J〉.

Remark 1. When J 6∈ V ′ but J ∈ (V +)′ where V + ↪→ V and u, uΛ ∈ V +, we
obtain an analogous estimate of the form |J(eΛ)| ≤ ‖J‖V +→R ‖eΛ‖V + .

Staying with the simpler former situation, a principal gain is that the target
accuracy ε can be achieved by solving two problems, namely, the primal (2.2)
and the dual one (2.8) with accuracies of the order

√
ε. Thus, choosing some

subspace VΛ, based on some a-priori estimates, such that the Galerkin error
satisfies

‖u− uΛ‖V < ε/‖J‖V→R, (2.7)

this, together with (2.6), would yield (2.5). In general, such an a-priori choice
would require a too large VΛ. In any case, an adaptive choice of VΛ with
respect to the energy norm may lead to an overestimation since such a norm
approximation does not take the locality of J into account.

2.2 The Dual Weighted Residual Method: Error Representation

It is the very purpose of the dual weighted residual method (DWR) to take the
locality of J into account when refining a given discretization so as to improve
on the accuracy of the approximate value, possibly without approximating
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the whole solution everywhere in the domain with a comparable accuracy.
In order to motivate the subsequent development, we briefly review some
basic facts concerning this methodology from [4, 19]. The key is to obtain an
error representation comprised of local quantities that reflect residual terms
which can be evaluated. The derivation of such representations relies on duality

arguments to be explained next.
Let z ∈ V be the solution of the dual problem

a(z, w) = 〈w, J〉, w ∈ V, (2.8)

with J ∈ V ′ serving as right hand side. Inserting w = u− uΛ = eΛ yields the
error representation

J(eΛ) = 〈eΛ, J〉 = a(z, eΛ) = a(z − yΛ, eΛ), for any yΛ ∈ VΛ, (2.9)

where we have used Galerkin orthogonality in the last step. This suggests
several options for bounding these residuals. First, we obtain the estimate

|J(u− uΛ)| = |a(z − yΛ, u− uΛ)| <∼ ‖u− uΛ‖V inf
yΛ∈VΛ

‖z − yΛ‖V . (2.10)

Thus, if the computational work (measured in terms of problem size expressed
as the number of degrees of freedom N) needed to compute such approxima-
tions for the primal and dual solution with accuracy ε scales like N(ε) = ε−α

for some α > 0, the error in (2.10) can be bounded by ε2. So the computa-
tional work needed to determine the value J(u) within a tolerance ε scales like
2ε−α/2. This is asymptotically better than just computing the primal solution
with tolerance ε in the energy norm (2.7).

This still does not exploit the locality of the functional J of interest. In
the framework of Finite Element discretizations, one usually treats this latter
objective by bounding the error representation a(z − yΛ, u − uΛ) by a sum
of local computable quantities. To specify this, let Λ denote then a current
triangulation of the domain Ω. Such estimates have then the form

|a(z − yΛ, u− uΛ)| <∼
∑

T∈Λ

wT (yΛ) rT (uΛ), (2.11)

where the rT (uΛ) are local residuals of the approximate solution uΛ and the
wT (yΛ) are weights computed in terms of the dual solution. For the simple
case a(v, w) =

∫

Ω(∇y)T∇wdx, they look like

rT (uΛ) = ‖f +∆uΛ‖L2(T ) +
1

2
h
−1/2
T

∥

∥

∥

∥

[

∂uΛ
∂n

]
∥

∥

∥

∥

L2(∂T )

. (2.12)

The weights or stability factors are of the form

wT (yΛ) = ‖z − yΛ‖L2(T ) + h
1/2
T ‖z − yΛ‖L2(∂T ), (2.13)
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see, e.g., [4, 19].
Note that, while the rT (uΛ) are computable, the weights wT (yΛ) depend

on the unknown dual solution z. One can argue that, in practical applications
it suffices to know only the “trend” of these weights to see the influence of
the local residual rT (uΛ) and, consequently, of the local error caused by uΛ.
There are several ways of obtaining approximations to these weights:

(i) One can compute an approximate solution z̄ of z on some finer mesh than
the one used for the primal solution and substitute z̄ for z.

(ii) One can compute a higher order Galerkin approximation as a substitute
for z in (2.13).

(iii) Instead of computing the difference z− yΛ, one determines a higher order
Galerkin approximation z̄ to z, computes its second order derivatives and
replaces wT (yΛ) by some constant multiple of h2

T ‖z̄‖H2(T ).
(iv) A lower order Galerkin approximation is postprocessed to provide second

order approximations that can then be used as in (iii).

In simple cases, all these strategies are expected to work fine. Nevertheless,
even in the simple linear model case, none of them give rigorous bounds for
the actual error resulting from any refinement strategy and from correspond-
ing decisions on how accurately the dual solution needs to be approximated.
The amount of confidence one can put in either of them may vary consid-
erably: Neither is it clear that any fixed mesh refinement or a higher order
approximation is sufficiently closer to the true solution to provide a reliable
trend (in particular, near singularities), nor is it clear that the second order
derivatives behave as those of the true dual solution (again, especially, when
singularities interfere).

Thus, already at a rather basic level, one faces the essential question as
to how accurately should the dual solution be computed and how localized
the distribution of degrees of freedom can be chosen without loosing essential
information.

The subsequent discussion attempts to shed some further light on these
issues exploiting some concepts that have been developed in connection with
adaptive wavelet schemes, see, e.g., [7, 8, 9].

2.3 Wavelet Coordinates

Let Ψ := {ψλ : λ ∈ II} ⊂ V be a wavelet basis for V . By this we mean that
every v ∈ V has a unique expansion v =

∑

λ∈II vλψλ with coefficient array
v = (vλ)λ∈II such that for fixed constants cΨ , CΨ one has

cΨ‖v‖ ≤ ‖v‖V ≤ CΨ‖v‖, (2.14)

where ‖v‖2 :=
∑

λ∈II |vλ|2 = vTv denotes the `2-norm. Only when the `2-
norm with respect to a specific subset Λ ⊂ II is meant we write for clarity
‖v‖2

`2(Λ) :=
∑

λ∈Λ |vλ|2. Recall that, by a simple duality argument (see, e.g.,

[13]), one has
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C−1
Ψ ‖〈ψλ, w〉‖ ≤ ‖w‖V ′ ≤ c−1

Ψ ‖〈ψλ, w〉‖, w ∈ V ′. (2.15)

For typical constructions of wavelet bases that are suitable, e.g., for V =
H1

0 (Ω), we refer to [5, 6, 15, 16, 11, 17]. Here it suffices to add a few remarks
on the structure of the index set II . Each index λ comprises information on
the scale, denoted by |λ|, and on the spatial location of the associated basis
function k(λ). There is usually a finite number of “scaling function type”
basis functions on some coarsest level of resolution j0. This subset will be
denoted by IIφ. All remaining indices refer to “true” wavelets gathered in IIψ .
These wavelets are always of compact support whose diameter scale like 2−|λ|.
Moreover, these true wavelets have cancellation properties of some specified
order m̃ usually derived from a corresponding order of vanishing moments
〈ψλ, P 〉 = 0 for all λ ∈ IIψ and any polynomial P of total order at most m̃.
Furthermore, it follows from (2.14) that the wavelets are normalized such that
‖ψλ‖V ∼ 1.

Testing (2.2) by v = ψλ, λ ∈ II , we obtain an equivalent formulation in
wavelet coordinates

Au = f , (2.16)

where
A =

(

a(ψλ, ψν)
)

λ,ν∈II
(2.17)

is the wavelet representation of the operator A : V → V ′ induced by a(v, w) =
〈v,Aw〉 for all v, w ∈ V . Likewise the dual problem (2.8) is equivalent to

AT z = J, (2.18)

where J :=
(

〈ψλ, E〉
)

λ∈II
. Combining (2.14), (2.15) with (2.1) yields

c2ΨcA‖v‖ ≤ ‖Av‖ ≤ C2
ΨCA‖v‖, v ∈ `2, (2.19)

i.e., the wavelet representation is well conditioned in the Euclidean metric `2,
see e.g. [9].

For any subset Λ ⊂ II we let ΨΛ := {ψλ : λ ∈ II} ⊂ V be the corresponding
subset of wavelets and denote by VΛ the closure in V of the linear span of
ΨΛ. We continue denoting by uΛ the Galerkin solution, now with respect to
the subspace VΛ, and by uΛ the corresponding array of wavelet coefficients
supported in Λ.

Note that for any w =
∑

λ∈II wλψλ =: wTΨ

J(w) =
∑

λ∈II

wλJ(ψλ) = JTw. (2.20)

Thus, abbreviating eΛ := u−uΛ, eΛ := (u−uΛ)TΨ , the representation (2.9)
then takes on the form

J(u)−J(uΛ) = JTeΛ = (z−yΛ)T (f−AuΛ) = (AT (z−yΛ))T (u−uΛ), (2.21)
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where yΛ is any vector supported in Λ and the primal residual is given by

rΛ(u) := f −AuΛ = AeΛ. (2.22)

It is important to note here that (2.22) is the true residual for the infinite
dimensional operator A.

We shall frequently exploit that, by definition, one has

rΛ(u)|Λ = 0. (2.23)

Moreover, it immediately follows from (2.19) that

cAc
2
Ψ‖u− uΛ‖ ≤ ‖rΛ(u)‖ ≤ CAC

2
Ψ‖u− uΛ‖. (2.24)

Hence, approximations in V and V ′ on the function side reduce to approxi-
mation in `2 for the primal and dual wavelet coefficient arrays.

Of course, the problem that the representation (2.21) involves the un-
known dual solution remains the same as in conventional discretization set-
tings. However, while the terms in (2.11) reflect primarily spatial localization,
the summands in (2.21) convey spatial and frequency information in terms of
(dual) wavelet coefficients (of the residual) and of the error. We shall explore
next whether this can be exploited for a reliable error estimation.

3 Adaptive Error Estimation

Our objective is to develop a-posteriori refinement strategies that aim at com-
puting J(u) within some error tolerance at possibly low computational cost.
This amounts to a DWR method in wavelet coordinates. (2.20) suggests to
take (the computable quantity)

J(uΛ) = J(uΛ) =
∑

λ∈Λ

JTuΛ (3.25)

as an approximate value of the target functional, where Λ is a suitable finite
index set. Concerning the incurred error, since, by (2.23), one has rΛ(u)|Λ = 0,
we infer from (2.21)

JT eΛ =
∑

λ∈II\Λ

zλ(rΛ(u))λ. (3.26)

As a natural heuristics this suggests an analog to option (i) in the Finite
Element context, namely, to select some larger index set Λ̂ ⊃ Λ and replace z

in (3.26) by the Galerkin solution zΛ̂ in VΛ̂. But again the question remains,

how large has Λ̂ to be chosen in order to provide a reliable estimate. The
following simple observations suggest how to deal with this question. By (2.21)
we have
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|JT (u − uΛ)| ≤
∣

∣

∣

∑

λ∈Λδ\Λ

zΛ̂,λ rΛ,λ(u)
∣

∣

∣
+

∑

λ∈II\Λ

|(zλ − zΛ̂,λ) rΛ,λ(u)|. (3.27)

The first part is a finite sum that is computable through the primal residual
on a finite set and the computed zΛ̂. The second part can be estimated as
follows:

|JT (u − uΛ)| ≤
∣

∣

∣

∑

λ∈Λ̂\Λ

zΛ̂,λ rΛ,λ(u)
∣

∣

∣
+ inf

1≤p,p′≤∞ 1
p
+ 1

p′
=1

‖z− zΛ̂‖`p‖rΛ(u)‖`p′
.

(3.28)
Specifically, p = p′ = 1/2 yields

|JT (u − uΛ)| ≤
∣

∣

∣

∑

λ∈Λ̂\Λ

zΛ̂,λ rΛ,λ(u)
∣

∣

∣
+ ‖z− zΛ̂‖ ‖rΛ(u)‖. (3.29)

Thus, due to the norm equivalences (2.24), (2.15), (2.14) the second term on
the right hand side is the product of the primal and dual energy norm error.
Thus, whenever the dual solution is approximated in the energy norm and
the growth of Λ depends on the energy norm approximation of z the target
value is approximated with increasing accuracy even though the global primal
residual does not tend to zero at all in `2. It may tend to zero in some weaker
norm which, according to (3.28), could give a better estimate.

Led by the above considerations, we formulate now in precise terms an
algorithm which, for any given target accuracy ε, computes J(uΛ) = JT (uΛ)
such that |J(eΛ)| = |JT (eΛ)| ≤ ε. A central ingredient is the adaptive wavelet
scheme from [9] that will be formulated next. The resulting well-posedness in
`2 (2.19) allows one to contrive an (idealized) iteration

un+1 = un −B(Aun − f ), n = 0, 1, 2, . . . , (3.30)

where B is (a possibly stage dependent) preconditioner, such that for some
ρ < 1

‖u− un+1‖ ≤ ρ‖u− un‖, n ∈ N0, (3.31)

see [8, 9] for various examples covering also noncoercive problems.
The idea is now to mimic (3.30) numerically by evaluating the weighted

residual B(Aun−f) within a stage dependent dynamical accuracy tolerance.
This, in turn, hinges on the adaptive evaluation of the involved (at this stage
still infinite dimensional) operators when applied to a finitely supported array.
We refer to [9, 10, 2] for the precise description of such evaluation schemes for
a range of (linear and nonlinear) operators. Therefore we may assume at this
point to have a routine of the following form at hand:
Res[η,B,A,f ,v] → rη computes for any finitely supported input v

and any positive tolerance η an approximate finitely supported
residual rη such that

‖B(Av − f) − rη‖ ≤ η. (3.32)
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We further need the routine
Coarse[η,v] → wη determines for any finitely supported input v

an output wη with possibly small support such that still

‖v −wη‖ ≤ η. (3.33)

Following [9] the announced adaptive solution scheme can now be de-
scribed as follows.
Solve [ε,A,f ,u0] → (uε, Λε) computes for any given target accu-
racy ε > 0 and any initial guess u0, satisfying ‖u − u0‖ ≤ δ, an
approximation uε to (2.2), supported in some finite (tree like) in-
dex set Λε, such that

‖u− uε‖ ≤ ε, (3.34)

according to the following steps:

(i) Choose some C∗ > 1, ρ̄ ∈ (0, 1). Set ε0 := δ according to the
above initialization, and j = 0;

(ii) If εj ≤ ε stop and output uε := ūj; else set v0 := ūj and k = 0
(ii.1) Set ηk := ωkρ̄

kεj and compute

rk = RES [ηk,B,A,f ,v
k], vk+1 = vk − rk.

(ii.2) If
β
(

ηk + ‖rk‖
)

≤ εj/(2(1 + C∗)), (3.35)

set ṽ := vk and go to (iii). Else set k+1 → k and go to (ii.1).

(iii)Coarse[
C∗εj

2(1+C∗) , ṽ] → ūj+1, εj+1 = εj/2, j + 1 → j, go to (ii).

Step (ii) is a block of perturbed iterations of the form (3.30). As soon as
the approximate residual is small enough, the iteration is interrupted by a
coarsening step. The constant β in step (ii.2) depends on the constants in
(2.19). It can be shown that the number of perturbed iterations between two
coarsening steps remains uniformly bounded. Things are arranged such that
after an iteration block and a coarsening step the error in the energy norm is at
least halved. Thus, under the above conditions the scheme Solve terminates
always after finitely many steps. Moreover, its computational complexity is in
some sense asymptotically optimal in that the number of adaptively generated
degrees of freedom and the respective computational work grow at the rate
of the best N -term approximation, see [9]. For more general problem classes,
the coarsening step ensures optimal complexity rates. It has recently been
shown in [20], however, that coarsening can be avoided for the current class
of problems.

We shall use (variants of) this algorithm as ingredients in the present
weighted dual residual scheme. The routine Res is based on the following
ingredients. Suppose for simplicity that f is a finitely supported array, possibly
as a result of a preprocessing step. In addition, one needs an approximate
application of A:
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Apply[η,A,v] → w computes for any finitely supported input v

and any tolerance η > 0 a finitely supported output w such that

‖Av −w‖ ≤ η. (3.36)

Realizations of such a routine satisfying all requirements that render
Solve having optimal complexity can be found in [1]. For the current type of
elliptic problems we can, in principle, choose the preconditioner B = αI as a
stage independent damped identity which gives rise to a Richardson iteration.
In this case the residual approximation scheme takes the form

Res [η,A,f ,v] := α (Apply [η/2α,A,v] −Coarse [η/2α,f ]) . (3.37)

The quantitative performance of this choice is usually rather poor and we refer
to [18] for more efficient versions that are actually used in our experiments
here as well.

Since Solve produces energy norm approximants, a few preparatory com-
ments on its use in the present context are in order. Let again Λ ⊂ II be any
(possibly infinite) subset of II . For any two such subsets Λ,Λ′ let

AΛ,Λ′ :=
(

a(ψλ, ψν)
)

λ∈Λ,ν∈Λ′

be the section of A determined by Λ and Λ′. For simplicity we set AΛ := AΛ,Λ.
Clearly, (2.4) is then equivalent to

AΛuΛ = fΛ := f |Λ. (3.38)

Of course, (2.19) remains valid when replacing `2 by `2(Λ) and A by AΛ

uniformly in Λ. Solving the original problem in VΛ can therefore be done
by running the scheme Solve while restricting all arrays to Λ. An adaptive
application of the operator A in this constrained setting can be thought of
for the moment as employing the usual (unconstrained) scheme to the con-
strained input and cutting the result back to Λ. (There may be even better
ways taking the special circumstances into account but this satisfies all the
properties needed in [9] to establish corresponding error and complexity esti-
mates for the restricted case.) We identify this version of Solve by writing
SolveΛ[η,A,f ,u0] (and accordingly ResΛ[η,A,f ,v]). As before, the sub-
script Λ is omitted when Λ = II . All arrays generated by this scheme are then
by definition supported in Λ.

It will be important to distinguish between the residual α(AΛv − fΛ) in
`2(Λ) which is approximated by ResΛ[η,A,f ,v] and the full residual Av−f

which appears in (2.21). The latter one reflects the global deviation of v from
the exact solution u. In fact, for the exact solution uΛ of the restricted problem
(3.38) one has AuΛ = AII,ΛuΛ and therefore

rΛ(u) = AII,ΛuΛ − f =

(

AΛuΛ − fΛ
AII\Λ,ΛuΛ − f II\Λ

)

=

(

0

AII\Λ,ΛuΛ − f II\Λ

)

,

(3.39)
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reflecting the pollution caused by the restricted wavelet coordinate domain.
A more careful analysis of this aspect will be given in a forthcoming paper.
We have collected now the main ingredients for the following scheme:

Algorithm I[ε,A,J,f ] → J̄ computes for any target accuracy ε > 0
a value J̄ such that

|J̄ − J(u)| ≤ ε, (3.40)

where u is the solution to (2.2), as follows:

(i) Fix parameters cu, cz, cr ∈ (0, 1), m0 ≥ 2 and set j = 0, δu :=
c−1
A ‖f‖, δz := c−1

A ‖J‖ and choose ε0 := min {δu/2, δz/2}.
Apply Solve [ε0,A,f ,0] → (u0, Λ̂0);

Apply Solve [ε0,A
T ,J,0] → (z0, Υ̂0);

Set Λ0 := Λ̂0 ∪ Υ̂0.
(ii) Apply Solve[czεj ,A

T ,J, zj ] → (ẑj , Λ̂j);

Apply SolveΛj
[cuεj ,A,f ,u

j ] → uΛj
;

Apply Res[crεj ,A,f ,uΛj
]|II\Λj

→ r;

Set w̃ := ẑj |Λ̂j\Λj
and compute

ej :=
∣

∣

∣

∑

λ∈Λ̂j\Λj

w̃λrλ

∣

∣

∣
. (3.41)

If

ej + εj

{

(CAcu + cr)(‖w̃|Λ̂j\Λj
‖ + czεj) + cz‖r‖

}

≤ ε (3.42)

stop and accept

J̄ = JTuΛj
:=

∑

λ∈Λj

ūΛj ,λJλ (3.43)

as target value.
Otherwise

(iii) Set

ūj+1 := ūΛj
, z̄j+1 := ẑj , Λj+1 := Λj∪Λ̂j , εj+1 = εj/m0, j+1 → j,

(3.44)
and go to (ii).

A few comments on this scheme are in order. Step (i) should be viewed as
an initialization where ε0 is a crude initial tolerance whose square is typically
still larger than the target accuracy ε. The initial approximate solutions for
the primal and dual problem are energy norm approximations. Because of the
crude target accuracy, one expects that the degrees of freedom generated in
Λ0 are necessary anyway.
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Note that the approximations ūΛj
are then generated through the re-

stricted scheme SolveΛj
while the corresponding residual approximations are

unrestricted. Moreover, the application of Solve for the dual problem in step
(ii) is unconstrained. We have explained the rationale of this step above. It
essentially enforces the approximation of z in the norm but is expected to
draw in only the relevant degrees of freedom concentrated near the support
of J . It presumably requires only a few iterations with the initial guess zΛj

which already is a good norm approximation for a somewhat larger tolerance.
In summary, in the above version the primal problem is always solved in

a constrained subspace determined by the norm approximation of the dual
solution.

Theorem 1. For any target accuracy ε > 0 the above scheme terminates after

a finite number of steps and outputs a result J satisfying |J(u) − J | ≤ ε.

Proof: First note that at the jth stage we have, according to (3.26),

J(eΛj
) = zT rΛj

(u) =
∑

λ∈Λ̂j\Λj

w̃λrλ +
∑

λ∈Λ̂j\Λj

w̃λ(rΛj ,λ(u) − rλ)

+
∑

λ∈II\Λj

(zλ − w̃λ)rλ +
∑

λ∈II\Λj

(zλ − w̃λ)(rΛj ,λ(u) − rλ)

=
(

w̃|Λ̂j\Λj

)T

r +
(

w̃|Λ̂j\Λj

)T

(rΛj
(u) − r)

+
(

(z − w̃)|II\Λj

)T

r +
(

(z − w̃)|II\Λj

)T

(rΛj
(u) − r),

so that

|J(eΛj
)| ≤ ej + ‖w̃|Λ̂j\Λj

‖ ‖rΛj
(u) − r‖ + ‖

(

z − w̃
)

|II\Λj
‖ ‖r‖

+ ‖
(

z − w̃
)

|II\Λj
‖ ‖r− rΛj

(u)‖. (3.45)

We collect now several auxiliary estimates for the various terms in (3.45). By
definition of w̃ we have

‖
(

z − w̃
)

|II\Λj
‖ ≤ ‖z − w̃‖ ≤ czεj . (3.46)

As for the exact residual of the exact Galerkin solution uΛj
, we have, on

account of (3.38), the very rough estimate

‖rΛ(u)‖ ≤ ‖f‖ + ‖AuΛ‖ = ‖f‖ + ‖AA−1
Λ fΛ‖. (3.47)

Alternatively, because the exact Galerkin solution uΛ is a best approximation
to u from `2(Λ) in the norm ‖|v‖|2 := vTAv, one could argue that

‖rΛ(u)‖ ≤ C
1/2
A ‖A1/2(u − uΛ)‖ ≤ C

1/2
A ‖A1/2(u − ū0)‖ ≤ CAε0, (3.48)
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which would allow us to use the initial norm approximation to u in step (i)
of Algorithm I to influence the constant.

Moreover, the approximate residual r deviates from the exact one for the
exact Galerkin solution uΛj

by

‖rΛj
(u) − r‖ ≤ ‖A(uΛj

− uΛj
)‖ + ‖AuΛj

− f − r‖
≤ ‖A(uΛj

− uΛj
)‖ + crεj ≤ (CAcu + cr)εj . (3.49)

Inserting (3.46) and (3.49) into (3.45), yields

|J(eΛj
)| ≤ ej + ‖w̃|Λ̂j\Λj

‖(CAcu + cr)εj + czεj

(

‖r‖+(CAcu + cr)εj

)

, (3.50)

which is the computable error bound (3.42). Thus the termination criterion
ensures that the asserted target tolerance is met.

In order to prove convergence it remains to estimate the terms ‖w̃|Λ̂j\Λj
‖,

‖r‖ and ej . Clearly

‖w̃|Λ̂j\Λj
‖ ≤ ‖

(

z − w̃
)

|II\Λj
‖ + ‖z|Λ̂j\Λj

‖
≤ czεj + ‖z− ẑj−1‖ ≤ cz(εj + εj−1)

= cz(1 +m0)εj . (3.51)

Furthermore, by (3.47) and (3.49),

‖r‖ ≤ ‖r− rΛj
(u)‖ + ‖rΛj

(u)‖ ≤ (CAcu + cr)εj + CAε0. (3.52)

Finally, by (3.51) and (3.52), we obtain

ej ≤ ‖w̃|Λ̂j\Λj
‖ ‖r‖ ≤ cz(1 +m0)εj

(

(CAcu + cr)εj + CAε0
)

, (3.53)

which also tends to zero as j grows. This finishes the proof. �

To prepare for the numerical experiments in the subsequent section, we
address next several further issues concerning the scheme Algorithm I.

We have not specified yet the choice of the parameters cu, cz, cr. Of course,
the smaller these parameters are chosen, the more will the computed error
terms ej dominate the true error. It is also clear that one should take cz < cu.
The numerical experiments in the subsequent section will shed some more
light on the quantitative behavior of Algorithm I regarding this point.

Concerning the progressive improvement of accuracy, let

ēj(w̃, r) := ej + εj

{

(CAcu + cr)(‖w̃|Λ̂j\Λj
‖ + czεj) + cz‖r‖

}

, (3.54)

see step (ii) in Algorithm I. An alternative choice of the tolerances εj might
be

εj+1 :=
1

m0
min {εj , ēj(w̃, r)}, (3.55)
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in order to exploit the fact that the error decay is superlinear. In fact, in view
of (3.50) and (3.51), the estimate (3.42) says that

|J(eΛj
)| ≤ c εj(‖r‖ + εj).

Thus, up to the approximate residual ‖r‖, the error decay is quadratic in the
refinement tolerances εj . If instead of using the constraint scheme SolveΛj

for
the primal problem in step (ii) of Algorithm I, one applies the unconstraint
Solve also to the primal problem, the term ‖r‖ would decay like εj as well.
In this case, an overall quadratic error decay would result which is the point
of view taken in [22]. In fact, during the final stage of this work, we became
aware of recent results by M. S. Mommer and R. P. Stevenson [22] who derive
convergence rates for a goal oriented scheme in the Finite Element framework.
There, however, they combine adaptive energy norm approximations to the
primal and dual solution to arrive at concrete rates. Of course, this may
increase the number of degrees of freedom required for the primal solution
even in regions where they may only weakly contribute to the accuracy of
the target functional. We shall address this issue in the experiments in the
subsequent section.

Even though in the present scheme the primal problem is solved only in
a constrained way, one expects that the third term on the right hand side of
(3.45) is too crude an estimate. In fact, as shown in later experiments, ‖r‖
may not tend to zero at all but r may be “locally” small where z has its most
significant terms and large contributions may be damped by negligible com-
ponents of z. Therefore, the Cauchy Schwarz inequality produces a significant
overestimation. Better estimates would require some a-priori knowledge about
the decay of the coefficients in the dual solution z which will be discussed in
a forthcoming paper.

As another practical variant, one could tame the increase of degrees of
freedom by modifying step (ii) in Algorithm I as follows. When (3.42) is
not satisfied, for gλ := |w̃λrλ|, λ ∈ Λ̂j \Λj , let g := (gλ)λ∈Λ̂j\Λj

and determine

the smallest subset Γ ⊂ Λ̂j \ Λj such that

‖g|Γ ‖`1(Γ ) ≥
1

2
‖g‖`1(Λ̂j\Λj ). (3.56)

In the subsequent step (iii), one would then set

ūj+1 := ūΛj
, z̄j+1 := ẑj , Λj+1 := Λj ∪ Γ, εj+1 = εj/m0, j + 1 → j,

(3.57)
and go to (ii). This may be viewed as a coarsening based on the error rep-
resentation. To ensure convergence, one could add in (3.57), in addition, the
support of a norm approximation to z with respect to the coarser tolerance
c′zεj , c

′
z > cz. The reasoning remains then the same while the constants change

somewhat.
As for the computational complexity of any of these versions, most of the

applications of Solve are actually just tightenings of already good initial
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guesses where the current accuracy is improved only by a constant factor. So
the corresponding computational work remains, in principle, proportional to
the current number of degrees of freedom.

4 Numerical Experiments

We complement next the above findings by some first numerical experiments
that are to shed some light on the quantitative behavior of the various error
components.

Our test case is the Poisson equation on the L–shaped domain Ω =
(−1, 1)2\

(

(−1, 0]× [0, 1)
)

so that

a(u, v) =

∫

Ω

(∇u)T∇v dx (4.58)

and V = H1
0 (Ω) in (2.2). This problem is interesting since the solution may

exhibit a singularity caused by the shape of the domain even for smooth right
hand sides, see, e.g., [21]. Thus, we can monitor the quantitative influence of
such a singularity on the growth of the sets Λj . For the discretization, we use
a globally continuous and piecewise linear wavelet basis.

The linear functional in our experiments is given by

J(u) =
1

|Ωv,δ |

∫

Ωv,δ

u(x)dx (4.59)

with
Ωv,δ := {x ∈ R

2 : ‖v − x‖∞ ≤ δ} ⊂ Ω.

We choose v = (0.5, 0.5)T and δ = 0.1. The right hand side is scaled such
that J(u) ≈ 1. Hence J(eΛ) is close to the relative error |J(eΛ)|/|J(u)|. Using
approximations to u of very high accuracy, we use the resulting value of J for
the validation of the results.

In the experiments below, ej is defined as before by (3.41) while the second
summand on the right hand side of (3.42) is denoted by fj , so that ej + fj is
the computed error bound at the jth stage of Algorithm I.

4.1 Example 1: Smooth Right Hand Side

In the first example, we choose f := 10 so that the solution u of (2.2) exhibits
only a singularity at the reentrant corner.

Table 1 shows that the “true” error J(eΛ) decays at least as fast as the
parameter εj . The component ej is much smaller than the true error and the
computed error bound ej+fj exceeds the true error only by a factor around 2.
This is illustrated in Figure 3 which displays the computed dual error and the
computed primal residual. While the dual energy norm error is halved within
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j εj ej + fj ej fj J(eΛ)

1 2.07e+00 8.11e-01 3.10e-01 5.00e-01 1.02e+00
2 1.03e+00 8.91e-01 5.77e-01 3.14e-01 7.47e-01
3 5.17e-01 3.82e-01 2.20e-01 1.61e-01 2.55e-01
4 2.58e-01 1.21e-01 3.98e-02 8.08e-02 1.32e-01
5 1.29e-01 3.45e-02 3.72e-03 3.07e-02 4.21e-02
6 6.46e-02 2.03e-02 5.05e-03 1.53e-02 2.35e-02
7 3.23e-02 9.03e-03 1.70e-03 7.34e-03 7.30e-03
8 1.61e-02 4.24e-03 6.84e-04 3.56e-03 3.63e-03
9 8.07e-03 1.93e-03 2.24e-04 1.71e-03 8.77e-04

Table 1. Convergence history of Algorithm I in Example 1.

each iteration, the primal residual shows very poor convergence in accordance
with the spirit of the scheme. As mentioned earlier, the slight overestimation
is probably due to the crude estimate in the third term of the right hand side
of (3.45). This is substantiated by Figure 1 which depicts the computed primal
and dual solution uΛj

and zΛj
for j = 1, . . . , 5. The strong concentration of

the generalized Green’s function around the support of J indicates that the
primal residual, being large far away from the support of J , would hardly
influence accuracy.

Moreover, the actual behavior of the primal approximate solutions is il-
lustrated in Figures 2 and 4. With each wavelet ψλ, we associate a reference
point κλ ∈ R

2 which is located in the ‘center’ of its support. Locations where
wavelets on many scales overlap therefore appear darker. Therefore, plotting
the reference points (κλ)λ∈Λ gives an impression of the distribution of active
indices in u =

∑

λ∈Λ ūλ. Specifically, in Figure 2 the distribution of the el-
ements of Λ9 is displayed. As expected, most wavelets are located near the
support of J and near the reentrant corner.

To see where the largest coefficients of the primal residual r are located,
we plot the reference points of the largest (in modulus) 5% of the coefficients
rλ. The result is displayed in Figure 4. It can be seen that, near the support of
J , the residual is small, reflecting a ‘local’ (in the wavelet coordinate domain)
convergence behavior of ūΛj

.
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Fig. 1. Computed primal and dual solution in Example 1.
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Fig. 2. Set of active coefficients Λ9 used to evaluate J(uΛ) in Example 1.
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vector in Example 1.
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j εj ej + fj ej fj J(eΛ) #Λj

1 1.03e+00 1.31e+00 5.77e-01 7.33e-01 7.5092e-01 16
2 5.17e-01 5.85e-01 2.20e-01 3.65e-01 2.5913e-01 53
3 2.58e-01 2.27e-01 4.47e-02 1.82e-01 1.3628e-01 139
4 1.29e-01 9.21e-02 3.72e-03 8.84e-02 5.7297e-02 279
5 6.46e-02 4.90e-02 4.87e-03 4.41e-02 2.7194e-02 570
6 3.23e-02 2.37e-02 1.68e-03 2.20e-02 6.8861e-03 1752
7 1.61e-02 1.17e-02 6.95e-04 1.10e-02 2.7267e-03 5726

Table 2. Convergence history of Algorithm I in Example 2.

4.2 Example 2: Singular Right Hand Side

Next we wish to test the influence of a strong singularity of the primal solution
u located far away from the support of J . This is realized by constructing a
corresponding right hand side as follows. All (dual) wavelet coefficients of f are
set equal to zero except the ones that overlap a fixed given point in the domain.
These coefficients are chosen as 〈ψλ, f〉 := 1/(|λ| + 1). Since on each dyadic
level only a uniformly bounded finite number of indices contributes and since
the sequence (〈ψλ, f〉)λ∈II therefore belongs to `2, the resulting functional f
is not contained in L2(Ω), but certainly in H−1(Ω). We finally add to f the
constant function from Example 1. We expect that the singularity of the right
hand side causes a strong concentration of relevant coefficients in the solution
u that are spatially close to the singularity of f and comprise a wide range of
relevant scales.

As we see from Table 2, the overestimation of the true error is slightly
stronger than in Example 1. The reason is that, according to Figure 5, the
primal residual is in this case larger (away from the support of J) due to the
unresolved singularity caused by the right hand side f , so that the third term
on the right hand side of (3.45) is overly pessimistic.

Table 3 sheds some more light on the local behavior of the primal residual.
It shows that in the lower left patch where the singularity of f is located it
does not converge to zero at all which, however, does not appear to affect the
accuracy in a strong way.

The complexity of the scheme is indicated in Figure 6 which shows that
the true error actually decays like N−1, where N is the size of the index set
needed to compute the approximate target value. Note that the rate for the
energy norm error would be N−1/2 at best.
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j ‖w̃‖ ‖r‖ ‖r|P1‖ ‖r|P3‖

1 6.92e-01 5.35e+00 8.60e-01 5.23e+00
2 2.23e-01 5.37e+00 6.80e-01 5.23e+00
3 1.02e-01 5.40e+00 3.22e-01 5.29e+00
4 5.37e-02 5.20e+00 3.23e-01 5.19e+00
5 3.30e-02 5.20e+00 2.85e-01 5.18e+00
6 1.63e-02 5.19e+00 1.94e-01 5.18e+00
7 8.46e-03 5.19e+00 1.13e-01 5.18e+00
8 4.34e-03 5.18e+00 5.66e-02 5.17e+00

Table 3. Convergence of dual error, primal residual, primal residual restricted to
upper right patch P1 and lower left patch P3 in Example 2.
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Fig. 5. Largest (in modulus) 5% of coefficients appearing in the primal residual
vector and index set Λ10 generated in Example 2.
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