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Abstract. Nowadays image acquisition in materials science allows the
resolution of grains at atomic scale. Grains are material regions with dif-
ferent lattice orientation which are typically not in equilibrium. At the
same time, new microscopic simulation tools allow to study the dynamics
of such grain structures. Single atoms are resolved in the experimental
and in the simulation results. A qualitative study of experimental images
and simulation results and the comparison of simulation and experiment
requires the robust and reliable extraction of mesoscopic properties from
these microscopic data sets. Based on a Mumford–Shah type functional,
grain boundaries are described as free discontinuity sets at which the
orientation parameter for the lattice jumps. The lattice structure itself
is encoded in a suitable integrand depending on the local lattice ori-
entation. In addition the approach incorporates solid–liquid interfaces.
The resulting Mumford–Shah functional is approximated with a level set
active contour model following the approach by Chan and Vese. The im-
plementation is based on a finite element discretization in space and a
step size controlled gradient descent algorithm.

AMS Subject Classifications (2000): 65M60, 68U10, 74E15

1 Introduction

The goal of this paper is to present a method for joint segmentation and orien-
tation classification in materials science. For many problems in materials science
on an atomic microscale, it is essential to link the underlying atomic structure to
the material properties (electrical, optical, mechanical, etc.). The actual material
properties are usually determined on a mesoscopic length scale on which non–
equilibrium structures exist, which form and evolve during material processing.
For example, the yield strength of a polycrystal varies with the inverse square
of the average grain size. Grains are material regions with different lattice orien-
tation which are typically not in equilibrium. Experimental tools such as TEM
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(transmission electron microscopy) [12] today allow measurements down to an
atomic resolution (cf. Fig.1). A reliable extraction of grains and grain boundaries

Fig. 1. On a TEM image (left), light dots render atoms from a single atom layer of
aluminum, in particular this image shows a Σ11(113)/[1̄00] grain boundary [12] (cour-
tesy of Geoffrey H. Campbell, Lawrence Livermore National Laboratory). Nowadays,
there are physical models like the phase field crystal model which enable the numer-
ical simulations of grains. Indeed, a time step from a numerical simulation (right) on
the microscale shows an similar atomic layer. In both images, grain boundaries are
characterized by jumps in the lattice orientation.

from these TEM-images is essential for an efficient material characterization.
On the other hand, recent numerical simulation tools have been developed for
physical models of grain formation and grain dynamics on the atomistic scale.
Concerning such simulations, we refer to numerical results obtained from a phase
field crystal (PFC) model [10] derived from the density function theory (DFT)
of freezing [23]. Its methodology describes the evolution of the atomic density of
a system according to dissipative dynamics driven by free energy minimization.
The resulting highly nonlinear partial differential equation of sixth order is solved
applying a finite element discretization [20]. These simulations in particular will
allow a validation of the physical models based on the comparison of mesoscopic
properties such as the propagation speed of grain boundaries. The formation of
grains from an undercooled melt happens on a much faster time scale than their
subsequent growing and coalescence. The evolution of grain boundaries at later
stages of the process is of particular interest. Fig. 1 and 2 show a comparison of
experimental (TEM) and numerically simulated (PFC) single grain boundaries
on the atomic scale and the nucleation of grains, respectively. In this paper, we
aim at a reliable extraction of grain boundaries and in addition of interfaces
between the liquid and the solid phase. Thus, we apply a variational approach
based on the description of the interfaces by level sets. Our focus is on the post
processing of phase field simulation results, but we will as well demonstrate the
applicability of our approach to experimental images.

Image classification has extensively been studied in the last decades. It con-
sists of assigning a label to each point in the image domain and is one of the
basic problems in image processing. Classification can be based on geometric
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Fig. 2. Nucleation of grains in a phase field crystal simulation.

and on texture information. Many models have been developed either based on
region growing [24, 19, 6], on statistical approaches [4, 5, 14, 15], and in particular
recently on variational approaches [3, 1, 8, 16, 26].

The boundaries of the classified regions can be considered as free discon-
tinuity sets of classification parameters, which connects the problem with the
Mumford–Shah approach [17] to image segmentation and denoising. A robust
and efficient approximation of the Mumford–Shah functional has been presented
by Chan and Vese [7] for piecewise constant image segmentation and extended
to multiple objects segmentation based on a multiphase approach [25]. Thereby,
the decomposition of the image domain is implicitly described by a single or
multiple level set functions (for a review on level sets we refer to [18, 22]). In
[21], their approach has been further generalized for the texture segmentation
using a directional sensitive frequency analysis based on Gabor filtering. Texture
classification based on the energy represented by selected wavelet coefficients is
investigated in [2]. Inspired by the work of Meyer [16] on cartoon and texture de-
composition, the classification of geometrical and texture information has been
investigated further in [3]. There a logic classification framework from [21] has
been considered to combine texture classification and geometry segmentation. A
combination of level set segmentation and filter response statistics has been con-
sidered for texture segmentation in [11]. For a variational texture segmentation
approach in image sequences based on level sets we refer to [9].

Our method to be presented here differs to the best of our knowledge sig-
nificantly from other variational approaches in the literature. Our focus is not
on a general purpose texture classification and segmentation tool but on the
specific application in materials science. Texture segmentation can be regarded
as a two–scale problem, where the microscale is represented by the structure of
the texture and the macroscale by the geometric structure of interfaces between
differently textured regions. In this sense, we have strong a priori knowledge on
the geometric structure of the texture on the microscale and incorporate this
directly into the variational approach on the macroscale. Thus, the scale separa-
tion is more direct than in other approaches based on a local, direction sensitive
frequency analysis.
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2 A Mumford–Shah model for the lattice orientation

We consider a single atom layer resolved on the microscale. In the phase field
simulation results as well as in the experimental images, single atoms are rep-
resented by blurry, dot-like structures. These dots are either described via the
image intensity of the TEM image or the phase field function from the simula-
tion. Let us denote this intensity or phase field by a function u : Ω ⊂ R2 → R,
where Ω is the image domain or the computational domain, respectively. Fur-
thermore, we introduce the lattice orientation as a function α : Ω ⊂ R2 → R. In
addition we consider the decomposition of the domain Ω into a solid phase ΩS

and a liquid phase ΩL. The solid domain ΩS is further partitioned into grains,
each of them characterized by a constant lattice orientation α. The grain bound-
aries form the jump set of the orientation function α. In the following section, we
will first introduce a Mumford–Shah type model for the segmentation of grains
and then expand this model to incorporate as well liquid–solid interfaces.

2.1 Segmenting grain boundaries

As already discussed in the introduction, grains are characterized by a homoge-
neous lattice orientation. At first, let us suppose that there is no liquid phase.
Thus, the whole domain Ω is partitioned into grain subdomains. The lattice is
uniquely identified by a description of the local neighborhood of a single atom
in the lattice. In a reference frame with an atom at the origin, the neighboring
atoms are supposed to be placed at positions qi for i = 1, · · · ,m, where m is the
number of direct neighbors in the lattice. In case of a hexagonal packing each
atom has six direct neighbors at equal distances and we obtain

qi := d
(
cos

(
i
π

3

)
, sin

(
i
π

3

))
i = 1, · · · , 6 .

Here d > 0 denotes the distance between two atoms. If the lattice from the
reference configuration is now rotated by an angle α and translated to a position
x, the neighboring atoms are located at the positions x + M(α)qi where M(α)
is the matrix representation of a rotation by α, i.e.

M(α) :=
(

cos α − sin α
sinα cos α

)
.

Let us suppose that θ is a suitable threshold for the identification of the atom
dots described via the function u and define the indicator function

χ[u>θ](x):=
{

1; u(x) > θ
0; else .

Then, for a given lattice orientation α and a point x with χ[u>θ](x) = 1, we
expect χ[u>θ](x + M(α)qi) = 1 as well for i = 1, · · · ,m. Let us suppose that
the average radius of a single atom dot is given by r and define the maximal
lattice spacing d:=maxi=1 ··· ,m |qi| . Next, we consider an indicator function f :
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Ω×R→ R depending on the position x and on a lattice orientation α and given
by

f(x, α) =
d2

r2
χ[u>θ](x)Λ

((
χ[u>θ](x + M(α)qi)

)
i=1,··· ,m

)
. (1)

Here, (χi)i=1,··· ,m with χi:=χ[u>θ](x+M(α)qi) is the vector of translated and
rotated characteristic functions and Λ : {0, 1}m → R a function attaining its
global minimum at (1, · · · , 1) and Λ(1, · · · , 1) = 0. The scaling d2

r2 ensures a
uniform upper bound of order 1 (in particular independent of d and r) for the
integral of f over Ω. One easily verifies that f(x, α) = 0 if x is inside a grain
with orientation α and its distance to the grain boundary is at least d. Possible
choices for Λ are for instance

Λ(χ1, · · · ,χm) :=
1
m

∑

i=1,··· ,m
(1−χi) , or (2)

Λ(χ1, · · · ,χm) := 1−
∏

i=1,··· ,m
χi . (3)

In the numerical experiments we found (3) to be the most suitable choice.
For a fixed number of n grains Ωj with lattice orientation αj for j = 1, · · · , n,

we consider a piecewise constant function

α =
∑

j=1,··· ,m
αjχΩj

reflecting the orientation within the grains. Here, the grain domains Ωj and the
grain orientations αj form the set of unknowns. Now, we define a functional
Egrain acting on the set of lattice orientations αj and open grain domains Ωj in
the spirit of the Mumford–Shah functional:

Egrain[(αj , Ωj)j=1,··· ,m]:=
∑

j=1,··· ,m

(∫

Ωj

f(x, αj) dx + ηPer(Ωj)

)
,

where {Ωj}j is a partition of the domain Ω, i.e. Ωj ∩ Ωi 6= ∅ and
⋃

j Ω̄j = Ω.
Per(Σ) denotes the perimeter of a set Σ, i.e. the length of the boundary of
the set. A minimizer of this energy is considered as a reliable identification of
lattice orientations and corresponding grains. In case of only two different lattice
orientations α1 and α2 and corresponding (possibly not connected) domains Ω1

and Ω2, we can formulate the variational problem as a problem on the binary
function α and the interface ΓG between the two sets Ω1 and Ω2 and obtain (up
to the constant term Per(Ω)) the energy

EG[α1, α2, ΓG] :=
∫

Ω1

f(x, α1) dx +
∫

Ω2

f(x, α2) dx + 2ηH1(ΓG)

where H1(·) denotes the one-dimensional Hausdorff measure.
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2.2 Simultaneously detecting a liquid–solid interface

Let us now incorporate the distinction between solid and liquid phase into our
variational model. In particular in the simulation results, the solid state is char-
acterized by prominent atom dots with large values of u. Indeed, taking into
account threshold values θ1 and θ2, we suppose that u(x) > θ2 indicates an
atom dot at position x and vice versa inter–atom regions are characterized by
low values of u, i.e. u(x) < θ1. In the liquid regime there are neither very high
nor low values of u, i.e. u(x) ∈ [θ1, θ2]. Unfortunately, the converse is not true.
In transition regions between atom and hole in a solid region u will attain values
between θ1 and θ2. But in these transition regions, the gradient of u exceeds
a certain threshold ε > 0. Thus, we assume x to be in the liquid phase ΩL if
u ∈ [θ1, θ2] and |∇u| ≤ ε. A variational description of the domain splitting into
a liquid phase ΩL and a solid phase is encoded in the energy

Ephase[ΩL] =
∫

ΩL

q(x) dx +
∫

Ω\ΩL

1− q(x) dx + νPer(ΩL),

based on the indicator function

q(x) : = 1−χ[u>θ1]
(x)χ[u<θ2]

(x)χ[|∇u|<ε](x)

=

{
0 ; for u ∈ [θ1, θ2] ∧ |∇u| < ε

1 ; else .

Since q = 1 in the solid region the first term favors to remove solid phase points
from ΩL. On the other hand q = 0, in the liquid region. Hence, it is preferable
to remove liquid parts from Ω \ ΩL. In the usual spirit of the Mumford–Shah
approach, the third term regularizes the boundary of ΩL.

Now, we merge the two approaches above and simultaneously want to detect
the liquid phase ΩL and the solid phase Ω \ΩL which itself is decomposed into
grains Ωj , such that

⋃
j Ωj = Ω \ΩL. We end up with the following energy

E[ΩL, (αj , Ωj)j=1,··· ,m]:=µ

∫

ΩL

q(x) dx + µ

∫

Ω\ΩL

(1− q(x)) dx + νPer(ΩL)

+
∑

j=1,··· ,m

(∫

Ωj

f(x, αj) dx + ηPer(Ωj)

)
. (4)

The primal decomposition is the one into a liquid and a solid domain. To reflect
this in the variational formulation above we consider a relatively large constant
µ. Indeed, we choose µ = 10 and ν = η = 0.05. Furthermore, in the application
considered here we take into account the following values for the other constants
involved: θ = 0.5, θ1 = 0.3, θ2 = 0.5, ε = 1 (artificial test data) or ε = 20 (PFC
simulation data).
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In case of only two grain orientations α1 and α2 we can rewrite the energy
and obtain

E[ΓLS , α1, α2, ΓG]:=µ

∫

ΩL

q(x) dx + µ

∫

Ω\ΩL

1− q(x) dx (5)

+ 2νH1(ΓLS) + 2ηH1(ΓG)

+
∫

Ω1

f(x, α1) dx +
∫

Ω2

f(x, α2) dx , (6)

which now depends on a single grain interface ΓG and the liquid–solid interface
ΓLS .

3 Chan–Vese type level set approach

To solve the above free discontinuity problems, we consider a Chan–Vese type
approach and rewrite the variational formulation based on an implicit description
of the domains via level set functions. We focus here on two different unknown
grain orientations α1 and α2 and consider two level set functions φ and ψ. Here,
φ is supposed to define the decomposition into a liquid and a solid domain, i. e.
ΩL = [φ ≥ 0] and ΩS = [φ < 0]. Furthermore, to simplify the algorithm, we
suppose the second level set function ψ to be defined on the whole domain Ω
even though the grains described by this function are given as subsets of the
solid domain. Indeed, we assume

Ω1 = [φ < 0] ∩ [ψ < 0] , Ω2 = [φ < 0] ∩ [ψ > 0] .

Then, we end up with the following Chan–Vese type energy

ECV[φ, α1, α2, ψ] :=
∫

Ω

µ(H(φ) q(x) + (1−H(φ)) (1− q(x))) + 2ν|∇H(φ)|
+(1−H(φ)) (1−H(ψ)) f(x, α1)
+(1−H(φ))H(ψ) f(x, α2)
+2η(1− βH(φ))|∇H(ψ)| dx , (7)

depending on the two level set functions φ, ψ and the two grain orientations α1

and α2. Here H(·) denotes the Heavyside function with H(s) = 1 for s > 0 and
H(s) = 0 else. In case β = 1, the interface [ψ = 0]∩[φ ≥ 0] is not at all controlled
by the energy. For 0 ≤ β < 1 we observe a difference between the original energy
and the new level set formulation in terms of the length of the extension of the
grain interface [ψ = 0] in the liquid domain ΩL, i.e. up to the constant length
of the domain boundary ∂Ω, ECV − E = 2ηβ‖H(φ)∇H(ψ)‖var = 2ηβH1([ψ =
0]∩[φ ≥ 0]). Thus, the method will extend physical meaningful grain interfaces by
shortest paths from the triple point on the liquid–solid interface to the boundary
on the domain Ω. In the applications considered, we observed no artifacts from
this algorithmic simplification.
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The variational modeling of more than two grain orientations can be based on
the multiple domain segmentation method by Chan and Vese [25] in a straight-
forward way. In our current implementation, we confine to the case of only two
orientations. The generalization is under development. As of now, we also only
use β = 0.

4 Regularization and numerical minimization

Since H is not continuous we replace it by a smeared out Heavyside function.
Here we again follow [7] and consider Hδ(x) := 1

2 + 1
π arctan

(
x
δ

)
where δ > 0.

Let us emphasize that a desired guidance of the initial zero contours to the actual
interfaces to be detected requires a non-local support of the regularized Heavy-
side function. To numerically solve the problem, we apply a gradient descent in
the two level set functions φ and ψ and the two orientation values α1 and α2.
Different from the grey value segmentation via the original approach by Chan
and Vese, the energy is not quadratic in these two unknowns and thus minimiza-
tion over these two angles is already a non-linear problem. Hence, we have to
compute the variation of the energy with respect to the level set functions φ, ψ
and the orientations α1 and α2. For the variation of the energy with respect to
the level set function φ we obtain

〈δφECV, θ〉 =µ

∫

Ω

H ′
δ(φ)(2q(x)− 1)θ dx− 2ν

∫

Ω

H ′
δ(φ)θ ∇ ·

( ∇φ

|∇φ|
)

dx

−
∫

Ω

H ′
δ(φ)

(
(1−Hδ(ψ))f(x, α1) + Hδ(ψ)f(x, α2)

)
θ dx

− 2ηβ

∫

Ω

H ′
δ(φ) |∇H(ψ)| θ dx

which reflects the sensitivity with respect to modifications of the implicit descrip-
tion of the liquid–solid interface. Grain boundary sensitivity is encoded implicitly
in the variation with respect to the level set function ψ and we achieve

〈δψECV, ζ〉 =
∫

Ω

(1−Hδ(φ))H ′
δ(ψ)(f(x, α2)− f(x, α1))ζ dx

− 2η

∫

Ω

H ′
δ(ψ)(1− βH(φ))ζ ∇ ·

( ∇ψ

|∇ψ|
)

dx .

Finally, a variation of the energy with respect to one of the grain orientations –
we exemplarily consider here α1 – leads to

∂α1ECV =
∫

Ω

(1−Hδ(φ))(1−Hδ(ψ))∂αf(x, α1) dx .

Armijo’s rule [13] is considered as a step size control in the descent algorithm.
We consider bilinear finite elements on the regular grid for the spatial discretiza-
tion of the two level set functions φ and ψ. Each pixel of an experimental image
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or each node of the regular simulation grid corresponds to a node of the finite
element mesh.

The initialization of φ and ψ has a significant impact on the results of the
numerical descent method. If initialized improperly, the minimization might get
stuck in local minima far away from a desired global minimum. In particular, if
ψ is initially set in such a way that the grain boundary interface is contained
completely in the liquid phase, one frequently observes that ψ does not move in
the gradient descent at all.

5 Numerical results

At first, we tested the algorithm on artificial test data, generated from homo-
geneous dots on a lattice with precisely the same lattice spacing as encoded
in our algorithm. A simple blending between two such lattices with different
orientation or with a constant grey image is used to artificially generate grain
boundary type or liquid–solid type interfaces. Fig. 3 shows the identification of
grain boundaries of different amplitude, whereas Fig. 4 demonstrates the extrac-
tion of a liquid–solid interface. Furthermore, in Fig. 4 a liquid–solid interface and
a grain boundary have simultaneously been identified. Furthermore, we applied

Fig. 3. Grain boundary detection on artificial test data: input images u (first and
third picture) with initial zero level set of ψ and computed grain boundaries (second
and fourth picture). Interfaces with different amplitude are considered in the first and
second image pair.

our method to transmission electron microscopy images. These results, shown in
Fig. 5, in particular demonstrate the robustness of the approach with respect to
noise in the experimental data and natural fluctuations in the shape of the atom
dots and the lattice spacing. In particular, let us emphasize that the variational
method is capable to detect effects on an intermediate scale like the oscillating
pattern of the interface in the second picture pair. Finally, we considered the
identification of grain boundaries and liquid–solid interfaces in simulation data
from a phase field crystal model. Fig. 6 shows the extraction of a grain boundary
and the computation of both types of interfaces.
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Fig. 4. Liquid–solid interface detection on artificial test data: input image u (first
picture) with initial zero level set of φ and computed interface (second picture). Com-
bined grain boundary and liquid–solid interface detection on artificial test data: input
image u (third picture) with the initial grain boundary in red and the initial liquid–
solid interface in blue, final grain boundary and liquid–solid interface location (fourth
picture).

Fig. 5. Two results of grain boundary detection on TEM-images: input images u (first
and third picture) with initial position of the zero level set of ψ, finally detected grain
boundaries (second and fourth picture). The TEM-image in the first picture pair is
courtesy of Geoffrey H. Campbell, Lawrence Livermore National Laboratory (compare
Fig. 1), the image used in the second picture pair is courtesy of David M. Tricker
(Department of Materials Science and Metallurgy, University of Cambridge) showing
a grain boundary in GaN.

Fig. 6. Grain boundary detection on PFC simulation data: crystal phase field function
u (first picture) with the initial zero level set of ψ, finally computed grain boundary
(second picture). Combined grain boundary and liquid–solid interface detection on
PFC simulation data: crystal phase field function u (third picture) with the initial grain
boundary in red and the initial liquid–solid interface in blue, final grain boundary and
liquid–solid interface location (fourth picture).
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6 Conclusion

We have presented a robust method for the reliable segmentation of grain bound-
aries in materials science on the atomic scale. The method is based on an ex-
plicit encoding of the lattice structure and its orientation in a Mumford-Shah
type variational formulation. The numerical implementation is inspired by the
segmentation approach by Chan and Vese. The algorithm works equally well on
phase field crystal (PFC) simulations and on experimental transmission electron
microscopy (TEM) images. The method has been extended to detect also liquid–
solid interfaces. At first, we confine here to two different grain orientations. The
straightforward extension to 2n orientations is currently still work in progress.
On still images, the demarcation of such interfaces might be done by hand as
well. But for the validation of physical models with experimental data, it is the
evolution of the grain boundaries which actually matters. Here, an accurate and
robust extraction of interface velocities requires a reliable automatic tool. Thus,
an extension of our model to temporal data is envisaged. So far, the lattice ori-
entation is considered as the only local degree of freedom. The type of crystal
structure and the atom spacing are preset. In a future generalization one might
incorporate further lattice parameters in the variational approach or combine
the lattice type classification directly with the variational parameter estimation.
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