Well-Posedness and Invariant Measures for HJM Models with Deterministic Volatility and Lévy Noise

Carlo Marinelli

no. 323

Diese Arbeit ist mit Unterstützung des von der Deutschen Forschungsgemeinschaft getragenen Sonderforschungsbereiches 611 an der Universität Bonn entstanden und als Manuskript vervielfältigt worden.

Bonn, März 2007
Well-posedness and invariant measures for HJM models with deterministic volatility and Lévy noise

Carlo Marinelli*

December 29, 2006

Abstract

We give sufficient conditions for existence, uniqueness and ergodicity of invariant measures for Musiela’s stochastic partial differential equation with deterministic volatility and a Hilbert space valued driving Lévy noise. Conditions for the absence of arbitrage and for the existence of mild solutions are also discussed.

Keywords: HJM models, Musiela’s stochastic PDE, invariant measures

JEL classification: E43

MSC (2000): 60G51, 60H15, 91B28

1 Introduction

The aim of this work is to study some asymptotic properties of a Heath-Jarrow-Morton model of the term structure of interest rates driven by an infinite dimensional Lévy noise. In particular, denoting by \(u(t, x) \), \(t, x \geq 0 \), the forward rate at time \(t \) with maturity \(t + x \), we shall be concerned with the following stochastic partial differential equation (SPDE):

\[
du(t, x) = [u_x(t, x) + f(t, x)] \, dt + \langle \sigma(t, x), dY_0(t) \rangle,
\]

where \(Y_0 \) is a Lévy process taking values in a Hilbert space with inner product \(\langle \cdot, \cdot \rangle \), \(\sigma \) is a deterministic volatility term, and \(f \) is such that discounted prices of zero-coupon bonds are local martingales. Precise assumptions will be stated below. Note that in the special case where \(Y_0 \) is a Wiener process, (1.1) can be written in the more familiar form

\[
du(t, x) = [u_x(t, x) + f(t, x)] \, dt + \sum_{k=1}^{\infty} \sigma^k(t, x) \, dw_k(t),
\]

where \(w_k \) are real independent Wiener processes and \(f \) satisfies the well-known HJM drift condition ([14], [10], [13])

\[
f(t, x) = \sum_{k=1}^{\infty} \sigma^k(t, x) \int_0^x \sigma^k(t, y) \, dy.
\]

*Institut für Angewandte Mathematik, Universität Bonn, Wegelerstr. 6, D-53115 Bonn, Germany, and Max-Planck-Institut für Mathematik, Leipzig, Germany. E-mail: marinelli@wiener.iam.uni-bonn.de
Invariant measures and the asymptotic behavior of (1.2), in the time-homogeneous case, have been studied by several authors (see e.g. [20], [23], [22]), allowing also the volatility coefficient to depend on the forward rate itself. Indeed it is widely accepted that mean reversion is a characteristic property of the dynamics of interest rates, and it is supported by empirical findings.

On the other hand, the literature on HJM models driven by Lévy processes has considerably grown in the last few years: let us just cite, among others, [1], [8], and of course the work from where it all started [2] (where general random measures are added to Brownian motion as driving noises). The asymptotic behavior of such models, however, does not seem to have been addressed. The present paper offers a first step in this direction, in a simple model with deterministic volatility. The setting is similar to that of [23] (where the case of HJM models driven by Wiener process was considered), but the choice of state space is different, and the well-posedness of the model is somewhat more complicated.

The paper is organized as follows: in section 2 we derive sufficient conditions on \(f \) ensuring that the bond market is arbitrage free and write the SPDE (1.1) as an abstract evolution equation in a suitable Hilbert space of forward curves, about which we discuss existence and uniqueness of mild and weak solutions. In section 3 we discuss existence and uniqueness of invariant measures, as well as the convergence in law of forward curves as time goes to infinity.

Let us conclude introducing some notation. Given two separable Hilbert spaces \(H, K \) we shall denote by \(\mathcal{L}(H,K), \mathcal{L}_1(H,K) \) and \(\mathcal{L}_2(H,K) \) the space of bounded linear, trace-class, and Hilbert-Schmidt operators, respectively, from \(H \) to \(K \). \(\mathcal{L}^+_1 \) stands for the subset of \(\mathcal{L}_1 \) of positive operators. We shall write \(\mathcal{L}_1(H) \) in place of \(\mathcal{L}_1(H,H) \), and similarly for the other spaces. Given a self-adjoint operator \(Q \in \mathcal{L}^+_1(H) \), we set \(|x|_Q^2 := \langle Qx,x \rangle, x \in H \). The Hilbert-Schmidt norm is denoted by \(|\cdot|_2 \). The characteristic function of a set \(A \) is denoted by \(\chi_A \), and \(\chi_r \) stands for the characteristic function of the set \(B_r := \{ x \in H : |x| \leq r \} \), where \(H \) is a Hilbert space. Given a continuously differentiable increasing function \(\alpha : \mathbb{R}_+ \to [1, \infty) \) such that \(\alpha^{-1/3} \in L_1(\mathbb{R}_+) \), we define \(L^2_{2,\alpha} := L^2_{2,\alpha}(\mathbb{R}_+) \) as the space of distributions \(\phi \) on \(\mathbb{R}_+ \) such that \(\int_0^\infty |\phi^{(n)}(x)|^2 \alpha(x) \, dx < \infty \).

2 Musiela’s SPDE with Lévy noise

Throughout the paper \(Y_0(t) \), \(t \geq 0 \), shall denote a Lévy process taking values in a (fixed) Hilbert space \(K \), with generating triplet \([b_0, R_0, m_0] \), i.e.

\[
\log \mathbb{E}e^{i(y,Y_0(1))} = i(b_0, y) - \frac{1}{2} \langle R_0 y, y \rangle + \int_K (e^{i(\xi, y)} - 1 - i(\xi, y) \chi_1(\xi)) \, m_0(d\xi),
\]

with \(b_0 \in K, R_0 \in \mathcal{L}^+_1(K) \), and \(m_0 \) a \(\sigma \)-finite measure on \(\mathcal{B}(K) \), the Borel \(\sigma \)-algebra of \(K \), satisfying

\[
m_0(\{0\}) = 0, \quad \int_K |\xi|^2 \, m_0(d\xi) < \infty
\]

(see e.g. [12] for details). This integrability assumption serves two purposes: it ensures that \(\mathbb{E}|Y_0(t)|^2 \) is finite for all \(t \geq 0 \), thus allowing to construct mild solutions of the SPDE (1.1) via an \(L_2 \) theory of stochastic integration, and it allows to use Fubini’s
theorem to establish no-arbitrage sufficient conditions. The assumption will turn out not to be a real restriction, as the no-arbitrage condition essentially requires existence of exponential moments of \(m_0 \) (see also \([1]\)).

2.1 Drift condition

Let us consider, in the spirit of the original paper \([14]\) (see also \([13]\)), the following integral equation

\[
\begin{align*}
u(t, x) &= u(0, x) + \int_0^t b(s, x) \, ds + \int_0^t \langle \sigma(s, x), dY_0(s) \rangle,
\end{align*}
\]

where \(b \) and \(\sigma \) are random vector fields predictable in \(s \) and Borel measurable in \(x \). In particular, they could depend on \(u \) itself.

We shall give conditions under which the dynamics (2.1) is compatible with a no-arbitrage hypothesis, namely that the corresponding discounted bond prices are local martingales. The arguments of the proof consist of the Lévy-Itô decomposition in Hilbert space (see e.g. \([7]\)) and the calculus for random measures, following \([2]\). We denote by \(\tilde{P}(t, \tau), 0 \leq t \leq \tau \), the discounted price of a zero-coupon bond expiring at time \(\tau \).

Theorem 1. Let \(\Sigma(t, x) = - \int_0^x \sigma(t, y) \, dy \) and \(E(t, x, \xi) = - \int_0^x \langle \sigma(t, y), \xi \rangle \, dy \) for all \(x \geq 0, \xi \in K \). Assume that for all \(t < \infty \)

\[
\begin{align*}
\int_0^t \int_0^x |b(s, x)| \, dx \, ds < \infty, & \quad \int_0^t \int_0^x |\sigma(s, x)|^2 \, dx \, ds < \infty.
\end{align*}
\]

Moreover, assume that for all \(x \geq 0 \) one has

\[
\begin{align*}
\int_0^x b(t, y) \, dy &= u(t, x) - u(t, 0) + \frac{1}{2} |\Sigma(t, x)|_R^2 \nonumber \\
&\quad + \int_H \left(e^{E(t, x, \xi)} - 1 - E(t, x, \xi) \chi_1(\xi) \right) m_0(d\xi)
\end{align*}
\]

d\(\mathbb{P} \times dt \)-a.e. Then the discounted bond price process \(t \mapsto \tilde{P}(t, \tau), \tau \geq t, \) is a local martingale for all \(\tau \geq t \).

Proof. The Lévy process \(Y_0 \) admits the decomposition

\[
Y_0(t) = b_0 t + W(t) + \int_0^t \int_{|\xi| < 1} \xi \tilde{N}(ds, d\xi) + \int_0^t \int_{|\xi| \geq 1} \xi N(ds, d\xi),
\]

where \(b_0 \in K, W \) is a \(K \)-valued Wiener process with covariance operator \(R_0 \), \(N \) is a Poisson measure on \(K \) with compensator \(m_0 \), and \(\tilde{N}(ds, d\xi) := N(ds, d\xi) - ds m_0(d\xi) \).

Using the decomposition (2.4), one can write

\[
u(t, x) = u(0, x) + \int_0^t b(s, x) \, ds + \int_0^t \langle \sigma(s, x), dW(s) \rangle
\]
\[
+ \int_0^t \langle \sigma(s, x), d\tilde{z}(s) \rangle + \int_0^t \langle \sigma(s, x), dz(s) \rangle,
\]
where

$$\tilde{z}(t) = \int_0^t \int_{|\xi|<1} \xi \tilde{N}(ds, d\xi), \quad z(t) = \int_0^t \int_{|\xi|\geq 1} \xi N(ds, d\xi).$$

However, let \((e_k)_{k \in \mathbb{N}}\) be a base of \(K\) and set \(x^k = \langle x, e_k \rangle, x \in K\). Then one has

$$\int_0^t \langle \sigma(s, x), d\tilde{z}(s) \rangle = \lim_{n \to \infty} \sum_{k=1}^n \int_0^t \sigma^k(s, x) d\tilde{z}^k(s)$$

$$= \lim_{n \to \infty} \sum_{k=1}^n \int_0^t \int_{|\xi|<1} \sigma^k(s, x) \xi^k \tilde{N}(ds, d\xi)$$

$$= \lim_{n \to \infty} \int_0^t \int_{|\xi|<1} \sum_{k=1}^n \sigma^k(s, x) \xi^k \tilde{N}(ds, d\xi), \quad (2.5)$$

where in the second line we have used the associativity of stochastic integrals (i.e., using the notation of the stochastic calculus of semimartingales and stochastic measures, \(H \cdot (K \ast \mu) = (HK) \ast \mu\) – see e.g. [15]). Since \(\sum_{k=1}^n \sigma^k(s, x) \xi^k\) converges (for any fixed \(x\)) to \(\langle \sigma(s, x), \xi \rangle\) in \(L_2(\Omega \times [0, t] \times H, \mathcal{P}, d\mathbb{P} \times ds \times dm_0)\) for all \(t \geq 0\), with \(\mathcal{P}\) the predictable \(\sigma\)-field, one finally obtains

$$\int_0^t \langle \sigma(s, x), d\tilde{z}(s) \rangle = \int_0^t \int_{|\xi|<1} \eta(s, x, \xi) \tilde{N}(ds, d\xi),$$

where \(\eta(s, x, \xi) = \langle \sigma(s, x), \xi \rangle\). Similar reasoning shows that the same type of identity holds for integrals with respect to \(N\).

For \(x \geq 0\), let us denote by \(p(t, x)\) the discounted prices at time \(t\) of a risk free zero-coupon bond expiring at time \(t + x\). By the definition of \(p(t, x)\) and the equation for \(u\) we obtain

$$\log p(t, x) = -\int_0^t u(s, 0) ds - \int_0^x u(t, y) dy$$

$$= -\int_0^t u(s, 0) ds - \int_0^x u(0, y) dy$$

$$- \int_0^x \int_0^t b(s, y) ds dy - \int_0^x \int_0^t \langle \sigma(s, y), dW(s) \rangle dy$$

$$- \int_0^x \int_{|\xi|<1} \eta(s, y, \xi) \tilde{N}(ds, d\xi) dy - \int_0^x \int_{|\xi|\geq 1} \eta(s, y, \xi) N(ds, d\xi) dy$$

$$= -\int_0^t u(s, 0) ds - \int_0^x u(0, y) dy + \int_0^t B(s, x) ds + \int_0^t \langle \Sigma(s, x), dW(s) \rangle$$

$$+ \int_0^t \int_{|\xi|<1} E(s, x, \xi) \tilde{N}(ds, d\xi) + \int_0^t \int_{|\xi|\geq 1} E(s, x, \xi) N(ds, d\xi),$$

where the third equality follows by Fubini’s theorem (see [5] and [16]) and the definitions of \(\Sigma\) and \(E\), together with \(B(t, x) := -\int_0^t b(t, y) dy\).
Applying Itô’s formula, setting \(\zeta(t, x) = \log p(t, x) \), one gets

\[
p(t, x) = e^{\zeta(t, x)} = e^{\zeta(0, x)} + \int_0^t e^{\zeta(s-, x)} \left(-u(s, 0) \, ds + B(s, x) \, ds + \langle \Sigma(s, x), dW(s) \rangle \right) + \frac{1}{2} \int_0^t e^{\zeta(s-, x)} \, d\langle \zeta, \zeta \rangle(s, x) + \int_0^t \int_{|\xi| < 1} (e^{\zeta(s-, x)} + E(s, x, \xi) - e^{\zeta(s-, x)}) \, \hat{N}(ds, d\xi) \]

or equivalently

\[
\frac{dp(t, x)}{p(t-, x)} = \left(-u(t, 0) + B(t, x) + \frac{1}{2} \langle \Sigma(t, x) \rangle_{\hat{R}_0} \right) dt + \langle \Sigma(t, x), dW(t) \rangle
\]

For \(\tau \geq t \), by \(\hat{P}(t, \tau) = p(t, \tau - t) \) it follows that \(d\hat{P}(t, \tau) = dp(t, \tau - t) - p_x(t, \tau - t) \), and \(p(t, \tau - t) = e^{-\int_0^t u(s, 0) \, ds} P(t, \tau - t) \) implies \(p_x(t, \tau - t) = e^{-\int_0^t u(s, 0) \, ds} P_x(t, \tau - t) \). Setting \(P(t, \tau) = e^{-\int_0^t u(s, y) \, dy} \), one has \(P_x(t, \tau - t) = -P(t, \tau - t) u(t, \tau - t) \) and \(p_x(t, \tau - t) = -u(t, \tau - t) p(t, \tau - t) \), and finally

\[
d\hat{P}(t, \tau) = dp(t, \tau - t) + u(t, \tau - t) \hat{P}(t, \tau) dt.
\]

Together with the equation for \(p(t, x) \), this implies

\[
\frac{d\hat{P}(t, \tau)}{P(t-, \tau)} = \left(-u(t, 0) + u(t, \tau - t) + B(t, \tau - t) + \frac{1}{2} \langle \Sigma(t, \tau - t) \rangle_{\hat{R}_0} \right) dt + \langle \Sigma(t, \tau - t), dW(t) \rangle
\]

\[
+ \int_{|\xi| < 1} (e^{E(t, \tau - t, \xi)} - 1) \, \hat{N}(dt, d\xi)
\]

\[
+ \int_{|\xi| \geq 1} (e^{E(t, \tau - t, \xi)} - 1) \, N(dt, d\xi)
\]

\[
+ \int_{|\xi| < 1} (e^{E(t, \tau - t, \xi)} - 1 - E(t, \tau - t, \xi)) \, m_0(d\xi) dt.
\]

Lightening notation a bit, one can write

\[
\int_{|\xi| \geq 1} (e^E - 1) \, dN = \int_{|\xi| \geq 1} (e^E - 1) \, d\hat{N} + \int_{|\xi| \geq 1} (e^E - 1) \, dm_0 dt,
\]
hence $\hat{P}(t, \tau)$ is a local martingale if

$$0 = -u(t, 0) + u(t, \tau - t) + B(t, \tau - t) + \frac{1}{2} |\Sigma(t, \tau - t)|^2_{R_0}$$
$$+ \int_{|\xi| \geq 1} (e^{E(t, \tau - t, \xi)} - 1) m_0(d\xi) + \int_{|\xi| < 1} (e^{E(t, \tau - t, \xi)} - 1 - E(t, \tau - t, \xi)) m_0(d\xi)$$
$$= -u(t, 0) + u(t, \tau - t) + B(t, \tau - t) + \frac{1}{2} |\Sigma(t, \tau - t)|^2_{R_0}$$
$$+ \int_K (e^{E(t, \tau - t, \xi)} - 1 - E(t, \tau - t, \xi)\chi_1(\xi)) m_0(d\xi),$$

and the theorem is proved. \hfill \Box

Remark 2. The above theorem implies a “drift condition” that generalizes the HJM condition (1.3). In particular, assume that $Y(1)$ admits exponential moments, or equivalently that $\int_H e^{(z, \xi)} m_0(d\xi) < \infty$ for all $z \in H$, and define the function $\psi(z) = \log E[e^{(z, Y(1))}]$. Then taking into account (1.1) and (2.1), (2.3) implies the following relation between the drift and the volatility functions:

$$\int_0^t f(t, y) dy = \psi\left(-\int_0^t \sigma(t, y) dy\right) \quad (2.6)$$

for all $t \in [0, T]$. Unfortunately this identity is “implicit”, and only under further assumptions can it be made more explicit (see below).

2.2 Abstract setting and well-posedness

We shall rewrite the SPDE (1.1) as an abstract stochastic differential equation in the space $H = L^1_{2, \alpha}$. The space H endowed with the inner product

$$\langle \phi, \psi \rangle = \int_{R_+} \phi'(x)\psi'(x)\alpha(x) dx + \lim_{x \to \infty} \phi(x)\psi(x)$$

is a separable Hilbert space. This choice of state space is standard and is apparently due to Filipović [10]. Nonetheless, other authors have studied related SPDEs in different function spaces, e.g. in weighted L^2 spaces, weighted Sobolev spaces, or fractional Sobolev spaces (see [13], [23], [9] respectively).

Let us define on H the operator $A : f \mapsto f'$, with domain $D(A) = L^1_{2, \alpha} \cap L^2_{2, \alpha}$, which generates the semigroup of right shifts $[e^{tA}\phi](x) := \phi(x + t)$, $t \geq 0$. Musiela’s SPDE (1.1) can be written in abstract form as

$$du(t) = (Au(t) + f(t)) dt + B(t) dY_0(t), \quad (2.7)$$

where $f(t) \equiv f(t, \cdot)$ and $B(t) \in \mathcal{L}(K, H)$ is defined by $[B(t)u](\cdot) = \langle \sigma(t, \cdot), u \rangle_K$, with suitable regularity assumptions on σ.

Several papers deal with the solution of this type of equations in the time-independent case with $f(t) \equiv 0$, $B(t) \equiv B$. Here we limit ourselves to mention [3], which is probably the first paper considering weak solutions (in the sense of PDEs), and [11], where an analytic approach is used to solve, even in the strong sense, equations of the type.
Adaptedness is immediate by definition. Using the Lévy-Itô decomposition in \(Y \) is enough to consider the case when \(\sigma \) is continuous instead of Sazonov continuous (see also \([17],[18],[21]\)).

Our goal in this subsection is less ambitious, namely we shall only prove that the formal solution of (2.7) given by the variation of constants formula

\[
u(t) = e^{tA}u_0 + \int_0^t e^{(t-s)A} \, f(s) \, ds + \int_0^t e^{(t-s)A} \, B(s) \, dY_0(s) \quad (2.8)
\]
is a well defined process and provides the unique weak solution to (2.7). In particular, this implies that the Lévy-based model \([1,1]\) for the evolution of forward curves is well posed under appropriate assumptions on \(\sigma \).

In analogy to \([4]\), we shall prove that (2.8) belongs to the space \(H_2(T) \) of mean square continuous process on \([0,T]\) [values in \(H \) adapted to the filtration generated by \(Y \). We endow \(H_2(T) \) with the norm defined by

\[
\|F\|_2^2 := \sup_{t \in [0,T]} \mathbb{E}[|F(t)|_H^2].
\]

Proposition 3. Assume that

\[
\int_0^T (|f(t)|_H + |B(t)|_2^2) \, dt < \infty.
\]

Then \(u \) defined as in (2.5) belongs to \(H_2(T) \).

Proof. Adaptedness is immediate by definition. Using the Lévy-Itô decomposition in the form

\[
Y_0(t) = at + W(t) + \int_0^t \int_K \tilde{N}(ds,d\xi),
\]

with \(a = b_0 + \int_{|\xi| \geq 1} \xi \, m_0(d\xi) \), and taking into account Propositions 2.2, 2.3 in \([4]\), it is enough to consider the case when \(Y_0(t) \) has no drift and no Brownian component. In particular one has

\[
\mathbb{E} \left| \int_0^t e^{(t-s)A} B(s) \int_K \xi \tilde{N}(ds,d\xi) \right|^2 \leq N^2 \int_0^T |B(t)|_2^2 \int_K |\xi|^2 m_0(d\xi) \, dt < \infty,
\]

with \(N = \sup_{t \in [0,T]} |e^{tA}| \). Moreover \(|\int_0^t e^{(t-s)A} \, f(s) \, ds| \leq N \int_0^T |f(s)| \, ds < \infty \), hence \(\|u\|_2 < \infty \). Let us now prove that \(t \mapsto \mathbb{E}[|u(t)|^2] \) is continuous. Setting \(Y_A(t) := \int_0^t e^{(t-s)A} B(r) \, dY_0(r) \), it is enough to prove that \(t \mapsto \mathbb{E}[|Y_A(t)|^2] \) is continuous. For \(0 \leq s \leq t \leq T \), write

\[
Y_A(t) - Y_A(s) = \int_s^t (e^{(t-r)A} - e^{(s-r)A}) B(r) \, dY_0(r) + \int_s^t e^{(t-r)A} B(r) \, dY_0(r),
\]

where the two terms on the right-hand side are uncorrelated. Since

\[
\mathbb{E} \left| \int_s^t (e^{(t-r)A} - e^{(s-r)A}) B(r) \, dY_0(r) \right|^2
\]

\[
\leq \int_s^t \left| e^{(t-r)A} - e^{(s-r)A} \right|^2 |B(r)|^2 \, dr \int_K |\xi|^2 m_0(d\xi) \to 0,
\]

\[
\mathbb{E} \left| \int_s^t e^{(t-r)A} B(r) \, dY_0(r) \right|^2 \leq \int_s^t \left| e^{(t-r)A} \right|^2 |B(r)|^2 \, dr \int_K |\xi|^2 m_0(d\xi) \to 0
\]
as \(s \to t \), the result follows. \(\square \)
The following proposition shows that existence in the mild sense for equation (2.7) implies existence and uniqueness in the weak sense. This fact was essentially proved by A. Chojnowska-Michalik in [3] in the time-independent case. Here we give a more direct proof that closely follows [5].

Proposition 4. Equation (2.7) has a unique weak solution given by (2.8).

Proof. Let us define the additive process

\[Y(t) = f(t) + \int_0^t B(s) \, dY_0(s) \]

and write (2.7) in the form

\[du(t) = Au(t) \, dt + dY(t), \quad u(0) = u_0. \]

It is enough to consider the case \(u_0 = 0 \), the extension to the general case being immediate. We need to prove that, for \(v \in D(A^*) \),

\[\langle \int_0^t e^{(t-s)A} \, dY(s), v \rangle = \int_0^t \langle \int_0^s e^{(s-r)A} \, dY(r), A^* v \rangle \, ds + \langle Y(t), v \rangle, \]

or equivalently

\[\langle \int_0^t (e^{(t-s)A} - I) \, dY(s), v \rangle = \int_0^t \langle \int_0^s e^{(s-r)A} \, dY(r), A^* v \rangle \, ds. \]

Applying Fubini’s theorem to the right-hand side of the previous expression and using the relation

\[\int_r^t e^{(s-r)A} x \, ds = (e^{(t-r)A} - I)A^{-1}x, \quad x \in H, \]

the conclusion follows. Uniqueness will follow if we prove that a weak solution is a mild solution. One immediately recognize that the proof of Lemma 5.5 in [5], repeated word by word, yields the identity

\[\langle w(t), \phi(t) \rangle = \int_0^t \langle w(s), \phi'(s) + A^* \phi(s) \rangle \, ds + \int_0^t \langle \phi(s), dY(s) \rangle, \quad t \in [0, T], \]

where \(w \) is a weak solution of (3.1) and \(\phi \in C^1([0, T], D(A^*)) \). Taking \(\phi(s) = e^{(t-s)A^*} \phi_0, \phi_0 \in D(A^*) \), implies

\[\langle w(t), \phi_0 \rangle = \langle \int_0^t e^{(t-s)A} \, dY(s), \phi_0 \rangle, \]

hence \(u(t) = w(t) \) because \(D(A^*) \subset H \) densely. \(\square \)

It is clear that in order to obtain results on the well-posedness of the Musiela’s SPDE (1.1) it is necessary to establish conditions on \(\sigma \) and \(Y_0 \) such that the hypotheses of Proposition 3 are satisfied. The following sufficient conditions are obviously the most general ones, but also the hardest to verify.

Proposition 5. Let \((e_k)_{k \in \mathbb{N}}\) be a basis of \(K \), and define \(\sigma^k(t, x) = \langle \sigma(t, x), e_k \rangle_K \). Assume that

\[\int_0^T \sum_{k=1}^\infty \int_0^\infty |\sigma^k_x(t, x)|^2 \alpha(x) \, dx \, dt < \infty \quad (2.9) \]

and that there exists \(f : [0, T] \to H \) satisfying (2.6) such that \(\int_0^T |f(t)| \, dt < \infty \). Then there exists the mild solution of (2.7).
Proof. One has \(|B(t)|^2 = \sum_{k=1}^{\infty} |B(t)e_k|^2 \), and \(B(t)e_k = \sigma^k(t, \cdot) \), hence

\[
|B(t)e_k|^2 = \int_0^\infty |\sigma^k_x(t,x)|^2 \alpha(x) \, dx.
\]

Therefore (2.10) implies \(\int_0^T |B(t)|^2 \, dt < \infty \), and the result follows by proposition 3. \(\square \)

Much simpler conditions can be stated if the driving noise \(Y_0 \) is finite dimensional.

Proposition 6. Assume that \(Y_0 \) is a \(\mathbb{R}^n \)-valued Lévy process such that \(\int_{\mathbb{R}^n} e^{\xi \cdot z} m_0(d\xi) < \infty \) for all \(z \in B_r \), for some \(r > 0 \). If \(\int_0^x \sigma(t,y) \, dy \in B_r \) for all \((t,x) \in [0,T] \times \mathbb{R}_+ \), and

\[
\int_0^T \left(\int_0^\infty |\sigma^k_x(t,x)|^2 \alpha(x) \, dx \right)^2 \, dt < \infty \tag{2.10}
\]

for all \(k = 1, \ldots, n \), then (2.6) reduces to

\[
f(t,x) = -\left\langle \sigma(t,x), D\psi \left(-\int_0^x \sigma(t,y) \, dy \right) \right\rangle, \quad (t,x) \in [0,T] \times \mathbb{R}_+, \tag{2.11}
\]

and (2.7) admits a mild solution.

Proof. It is enough to check that the hypotheses of proposition 3 are satisfied. In particular, similarly as before, one has, using Jensen’s inequality,

\[
\int_0^T |B(t)|^2 \, dt = \int_0^T \sum_{k=1}^n \int_0^\infty |\sigma^k_x(t,x)|^2 \alpha(x) \, dx \, dt
\]

\[
= \sum_{k=1}^n \int_0^T |\sigma^k(t,\cdot)|^2_H \, dt \leq \sum_{k=1}^n \left(T \int_0^T |\sigma^k(t,\cdot)|^4_H \, dt \right)^{1/2} < \infty
\]

where the last inequality is immediate by (2.10). Moreover, in (2.11) the quantity \(D\psi(x) \) is well defined for \(|x| \leq r \) because \(\psi \in C^\infty(B_r) \). This implies that there exists a positive constant \(N \) such that \(\psi_x(z) < N \), \(|\psi_{xx}(z)| < N \) for all \(z \in B_r \). We have

\[
f_{x}(t,x) = -\left\langle \sigma_x(t,x), D\psi \left(-\int_0^x \sigma(t,y) \, dy \right) \right\rangle + \left\langle D^2\psi \left(-\int_0^x \sigma(t,y) \, dy \right) \sigma(t,x), \sigma(t,x) \right\rangle,
\]

hence \(\int_0^T |f(t)|_H \, dt < \infty \) if \(\int_0^T \int_0^\infty [\sigma_i(t,x)\sigma_j(t,x)]^2 \alpha(x) \, dx \, dt < \infty \) for all \(i, j \leq n \). The condition \(\int_0^x \sigma(t,y) \, dy < r \) for all \(x \geq 0 \) implies that \(\lim_{y \to -\infty} |\sigma(t,y)| = 0 \) for all \(t \in [0,T] \), hence, using Cauchy-Schwarz’ inequality,

\[
\int_0^T \int_0^\infty |\sigma_i(t,x)\sigma_j(t,x)|^2 \alpha(x) \, dx \, dt
\]

\[
\leq \left(\int_0^T \int_0^\infty |\sigma_i(t,x)|^4 \alpha(x) \, dx \, dt \right)^{1/2} \left(\int_0^T \int_0^\infty |\sigma_j(t,x)|^4 \alpha(x) \, dx \, dt \right)^{1/2}
\]

\[
\leq N(\alpha) \left(\int_0^T |\sigma^i(t,\cdot)|^4_H \, dt \right)^{1/2} \left(\int_0^T |\sigma^j(t,\cdot)|^4_H \, dt \right)^{1/2}
\]

where the second inequality follows by (5.8) in [10]. \(\square \)
An analogous expression could be obtained for a general Hilbert space valued noise Y, if one can guarantee that ψ is Fréchet differentiable. In the next proposition we shall identify the Fréchet derivative $D\psi(x) \in \mathcal{L}(K, \mathbb{R})$ with its Riesz representative vector in K.

Proposition 7. Assume that $\int_K e^{(\xi,z)} m_0(d\xi) < \infty$ for all $z \in B_r$, $\psi \in C^2_0(B_r)$, for some $r > 0$, and

$$\int_0^T \left(\sum_{k=1}^\infty \int_0^\infty |\sigma^k_x(t,x)|^2 \alpha(x) \, dx \right)^2 \, dt < \infty$$

(2.12)

If $\int_0^T \sigma(t,y) \, dy \in B_r$ for all $(t,x) \in [0,T] \times \mathbb{R}_+$, then (2.6) reduces to (2.11), where $\langle \cdot, \cdot \rangle$ is the inner product of K, and equation (2.7) admits a mild solution.

Proof. As seen before, we have

$$|B(t)|^2 = \sum_{k=1}^\infty \int_0^\infty |\sigma^k_x(t,x)|^2 \alpha(x) \, dx,$$

hence, by (2.12), $\int_0^T |B(t)|^2 \, dt \leq (T \int_0^T |B(t)|^2 \, dt)^{1/2} < \infty$. Let us prove that $\int_0^T |f(t)| \, dt < \infty$. The same expression for $f_x(t,x)$ as in the proof of the previous proposition holds, mutatis mutandis. Therefore, in view of (2.12) and $\psi \in C^2_0(B_r)$, it is enough to show that $\int_0^T \int_0^\infty |\sigma(t,x)|^2 \alpha(x) \, dx \, dt < \infty$. Let (e_k) be a basis of K, and set $\sigma_n(t,x) = \sum_{k=1}^n \sigma^k_x(t,x)e_k$. Let $\phi_n(\varepsilon)$ a smooth approximation of $x \mapsto |x|$ in \mathbb{R}^n such that $|D\phi_n(\varepsilon)| \leq 1$, then we have as follows by (5.8) in [10]

$$\int_0^\infty \phi_n(\varepsilon) |\sigma_n(t,x)|^4 \alpha(x) \, dx \leq N \int_0^\infty |\phi_n(\varepsilon)| \left(|\sigma_n(t,x)|^4 \alpha(x) \right)_H$$

$$= N \left(\int_0^\infty |D_x \phi_n(\varepsilon) (\sigma_n(t,x))|^2 \alpha(x) \, dx \right)^2$$

$$\leq N \left(\int_0^\infty |D_x \sigma_n(t,x)|^2 \alpha(x) \, dx \right)^2$$

$$\leq N \left(\sum_{k=1}^\infty \int_0^\infty |\sigma^k_x(t,x)|^2 \alpha(x) \, dx \right)^2$$

with $N = N(\alpha)$, thus by (2.12)

$$\int_0^T \int_0^\infty \phi_n(\varepsilon) |\sigma_n(t,x)|^4 \alpha(x) \, dx \, dt \leq N \int_0^T \left(\sum_{k=1}^\infty \int_0^\infty |\sigma^k_x(t,x)|^2 \alpha(x) \, dx \right)^2 \, dt < \infty.$$ (2.13)

Since the bound in (2.13) does not depend on ε nor on n, passing to the limit as $\varepsilon \to 0$ we get $\int_0^T \int_0^\infty |\sigma_n(t,x)|^4 \alpha(x) \, dx < \infty$, and letting n tend to infinity we finally get $\int_0^T \int_0^\infty |\sigma(t,x)|^4 \alpha(x) \, dx < \infty$.

\[\square \]

3 Invariant measures and asymptotic behavior

In this section we assume $\sigma(t,\cdot) \equiv \sigma(\cdot)$, thus also $B(t) \equiv B$, $f(t) \equiv f$. In view of the no-arbitrage considerations in the previous section, we also assume that m_0 admits
exponential moments, and $B \in \mathcal{L}(K, H_0)$, where $H_0 := \{g \in H : g(\infty) = 0\}$, hence also $f \in H_0$. In order for the following results to hold, it is not necessary to assume that f is such that no-arbitrage is verified, even though this is of course the situation we are interested in.

Let us rewrite (2.7), for convenience of notation, in the more compact form

$$du(t) = Au(t)dt + dY(t),$$

where $Y(t) := ft + BY_0(t)$. Then one can easily prove that Y is a H-valued Lévy process with triplet $[b, R, m]$, where

$$b = f + Bb_0 + \int_K B\xi (\chi_1(B\xi) - \chi_1(\xi)) m_0(d\xi)$$
$$R = BR_0B^*$$
$$m(d\xi) = m_0(B^{-1}d\xi)$$

The following proposition gives a simple sufficient condition for the existence and uniqueness of an invariant measure for an HJM model with deterministic volatility and Hilbert space valued Lévy noise. The only real requirement is that the state space $L_{2,\alpha}^1$ is chosen with an exponentially growing weight α.

Proposition 8. Assume that $\alpha(x) = e^{\alpha x}$, $\alpha > 0$, and the forward curve at time zero is deterministic. Then there exists a unique invariant measure for (3.1) to which the law of $u(t)$ weakly converges as $t \to \infty$.

Proof. Writing equation (3.1) in mild form, recalling that the range of B is contained in H_0, one recognizes that $u(t, \infty) = u_0(\infty)$ for all $t \geq 0$ (“long rates never fall”). Considering the isomorphism $H = H_0 \oplus \mathbb{R}$, (3.1) is equivalent to the system

$$\begin{cases} d\bar{u}(t) = A\bar{u}(t)dt + dY(t) \\ u(t, \infty) = \ell, \end{cases}$$

where \bar{u} is the projection of u on H_0, A still denotes the restriction of A to H_0, and $\ell \in \mathbb{R}$. Let us show that e^{tA} is exponentially stable on H_0:

$$|e^{tA}\phi|_{H_0}^2 = \int_0^\infty \phi'(x + t^2\alpha(x)) dx \leq e^{-\alpha t} \int_0^\infty \phi'(x)^2 \alpha(x) dx = e^{-\alpha t}|\phi|_{H_0}^2,$$

i.e. $|e^{tA}| \leq e^{-t\alpha/2}$. The obvious inequality $x^2 \geq \log(1 + x)$, $x \geq 1$, and the assumption $\int_K |\xi|^2 m_0(d\xi) < \infty$ imply that

$$\int_{|\xi| \geq 1} \log(1 + |\xi|) m(d\xi) \leq \int_{|\xi| \geq 1} |\xi|^2 m_0(B^{-1}d\xi) \leq |B|^2 \int_K |\xi|^2 m_0(d\xi) < \infty.$$

Therefore theorem 6.7 of [3] yields the existence of an invariant measure $\bar{\mu}$ on H_0 for the first equation of (3.2), hence $\mu = \bar{\mu} \otimes \delta_\ell$ is an invariant measure for (3.1) on H. Since
\[|e^{tA}| \leq e^{-t \alpha/2} \to 0 \text{ as } t \to \infty \text{ (i.e. } e^{tA} \text{ is stable)}, \text{ proposition 6.1 of } [3] \text{ (or theorem 3.1 of } [11]) \text{ imply that } \bar{\mu} \text{ is infinitely divisible with triplet } [b_{\infty}, R_{\infty}, m_{\infty}], \]

\[b_{\infty} = \lim_{t \to \infty} \left[\int_0^t e^{sA} b ds + \int_0^t \int_{H_0} e^{sA} \xi (\chi_1(e^{sA} \xi) - \chi_1(\xi)) m(d\xi) ds \right] \quad (3.3) \]

\[R_{\infty} = \int_0^\infty e^{sA} Re^{sA^*} ds \quad (3.4) \]

\[m_{\infty}(d\xi) = \int_0^\infty m((e^{sA})^{-1}d\xi) ds, \quad m_{\infty}(\{0\}) = 0, \quad (3.5) \]

are all well defined thanks to the stability properties of \(e^{tA} \). In particular \(\bar{\mu} \) is unique.

Finally, by proposition 6.1 of [3] we have that \(\bar{\mu} \) coincides with the law of the random variable \(\int_0^\infty e^{sA} dY(s) \), and lemma 3.1 of [3] allows to conclude that the law of \(\bar{u}(t) \) weakly converges to \(\bar{\mu} \).

Remark 9. The decomposition \(H = H_0 \oplus \mathbb{R} \) was already used in [22], but essentially the same “trick” already appeared, perhaps less explicitly, in [23]. The fast growth at infinity of the weight \(\alpha \) was needed in [22] as well, where it is assumed that \(\alpha := \inf_{x \geq 0} \alpha'(x)/\alpha(x) > 0 \). In fact, Gronwall’s lemma immediately yields that this condition implies \(\alpha(x) \geq \alpha(0)e^{\alpha x} \).

The choice of the weight function \(\alpha \), as just seen, determines the stability properties of the semigroup \(e^{tA} \). For a generic choice of \(\alpha \) we cannot guarantee exponential stability of \(e^{tA} \) in \(H_0 \), but we still have stability, in the sense that \(|e^{tA}g|_{H_0} \to 0 \) as \(t \to \infty \) for any \(g \in H_0 \). However, in order to obtain existence of an invariant measure for (3.1), the conditions to verify become quite difficult, in general. In particular the following characterization holds, the proof of which follows [3] or [11].

Proposition 10. Assume that the forward curve at time zero is deterministic. The following conditions are sufficient and necessary for the existence of a (unique) invariant measure \(\mu \) for (3.1):

(i) \(\sup_{t \geq 0} \text{Tr} \int_0^t e^{sA} B R_0 B^* e^{sA^*} ds \);

(ii) \(\int_0^\infty \int_{H_0} (|e^{tA}x|^2 \wedge 1) m(dx) dt < \infty \);

(iii) the limit in (3.3) exists.

Moreover, \(\mu = \bar{\mu} \otimes \delta_0 \), where \(\bar{\mu} \) is infinitely divisible with triplet \([b_{\infty}, R_{\infty}, m_{\infty}]\) given by (3.3)-(3.5). Finally, the law of \(u(t) \) weakly converges to \(\bar{\mu} \) at \(t \to \infty \).

Proof. The semigroup \(e^{tA} \) is stable on \(H_0 \) because

\[|e^{tA}g|^2_{H_0} = \int_0^\infty g'(x)^2 \alpha(x - t) dx \leq \int_0^\infty g'(x)^2 \alpha(x) dx \left. \frac{t^{-\infty}}{t} \right. = 0, \quad (3.6) \]

where the inequality follows by monotonicity of \(\alpha \) and the limit is zero because the integrand is in \(L_1(\mathbb{R}_+) \). Therefore theorem 6.4 of [3] (or theorem 3.1 of [11]) implies that the infinitely divisible measure \(\bar{\mu} \) on \(H_0 \) with triplet \([b_{\infty}, R_{\infty}, m_{\infty}]\) is invariant for the first equation of (3.2). The proof is then completed exactly as in the previous proposition. \(\square \)
Corollary 11. Assume that the forward curve at time zero is deterministic and that there exists a function $\phi \in L_1(\mathbb{R}_+) \cap L_2(\mathbb{R}_+)$ such that $|e^{tA}x|_{H_0} \leq \phi(t)|x|_{H_0}$. Then μ as defined in the previous proposition is the unique invariant measure of (3.1) and it is ergodic.

Proof. Since e^{tA} is a stable semigroup on H_0, it is enough to verify hypotheses (i)–(iii) of the last proposition. We have

$$
\int_0^\infty \int_{H_0} (|e^{tA}x|^2 \wedge 1) \, m(dx) \, dt \leq \int_0^\infty \int_{H_0} \phi(t)^2 |x|^2 \, m(dx) \, dt \leq \int_0^\infty \phi(t)^2 \, dt \int_K |x|^2 \, m_0(dx) < \infty,
$$

because $\int_K |x|^2 \, m_0(dx) < \infty$. Since m_0 admits exponential moments, then $\int_K |x| \, m_0(dx) < \infty$, and

$$
\int_0^\infty \int_{H_0} |e^{tA}x(x_1(e^{tA}x) - x_1(x))| \, m(dx) \, dt \leq 2 \int_0^\infty \phi(t) \, dt \int_K |x| \, m_0(dx) < \infty.
$$

Let us now prove that $\lim_{t \to \infty} \int_0^t e^{sA}b \, ds$ exists in H_0: we have

$$
\bar{b}(x) := \lim_{t \to \infty} \left(\int_0^t e^{sA}b \, ds \right)(x) = \int_x^\infty b(s) \, ds, \quad x \geq 0,
$$

thus $\bar{b}'(x) = -b(x)$ and

$$
\int_0^\infty |e^{sA}b| \, ds \leq |b|_{H_0} \int_0^\infty \phi(s) \, ds < \infty,
$$

i.e. $b_\infty \in H_0$. Similarly we have

$$
\text{Tr } R_\infty = \sup_{t \geq 0} \int_0^t e^{sA}B R_0 B^* e^{sA^*} \, ds \leq |B|^2 \text{Tr } R_0 \int_0^\infty \phi(s)^2 \, ds < \infty,
$$

i.e. R_∞ is well defined. \hfill \Box

Remark 12. The semigroup e^{sA} is a contraction semigroup for any choice of α, e.g. by (3.6), hence if ϕ as in the previous corollary exists, then one can always choose $|\phi(t)| \leq 1$, thus $\phi \in L_1(\mathbb{R}_+)$ also implies $\phi \in L_2(\mathbb{R}_+)$. A possible choice of ϕ (although very rough) could be

$$
\phi(t) = \sup_{x \geq 0} \left(\frac{\alpha(x)}{\alpha(x + t)} \right)^{1/2},
$$

provided that $\int_0^\infty \sup_{x \geq 0} \left(\frac{\alpha(x)}{\alpha(x + t)} \right)^{1/2} \, dt < \infty$.

We have seen in the previous proposition that one of the necessary and sufficient conditions for the existence of an invariant measure is that b_∞ exists. In particular, if m_0 is symmetric, the problem reduces to proving that $\bar{b} := \int_0^\infty e^{sA}b \, ds$ is a well-defined element of H_0. In fact, if m_0 is symmetric then m is symmetric as well, and the second summand on the right hand side of (3.3) is zero for all $t \geq 0$. It is thus natural to look for conditions on α such that the norm of \bar{b} can be bounded in terms of the norm of b. This is indeed possible, and one can give a sharp condition, namely (3.7) below is necessary and sufficient for $|\bar{b}| \leq N|b|$ to hold.
Proposition 13. Assume that
\[
\sup_{x \geq 0} \int_0^x \alpha(y) \, dy \int_x^\infty \frac{1}{\alpha(y)} \, dy < \infty.
\] (3.7)
Then \(\int_0^\infty e^{sA} b \, ds \) exists in \(H_0 \).

Proof. As in the proof of corollary 11, we only need to prove that \(b^2 \alpha \in L_1(\mathbb{R}^+) \). Let \(\nu \) be a nonnegative Borel measure on \(\mathbb{R}^+ \). By a result of Muckenhoupt [19], we have that the following weighted Hardy inequality holds for all measurable functions \(f \)
\[
\int_0^\infty \left(\int_0^x |f(y)|^2 \, dy \right)^{1/2} \nu(dx) \leq N \int_0^\infty f(x)^2 \nu(dx),
\]
where \(N \) is a positive constant that depends only on \(\alpha \), if and only if
\[
\sup_{r \geq 0} [\nu([r, +\infty))]^{1/2} \left[\int_0^r \left(\frac{d\nu}{dx} \right)^{-1} \, dx \right]^{1/2} < \infty.
\]
By the change of variable \(x \mapsto x^{-1} \), choosing \(\nu(dx) = \alpha(x) \, dx \), we obtain that (3.7) is necessary and sufficient for
\[
\int_0^\infty \left(\int_x^\infty |b'(y)|^2 \alpha(y) \, dy \right)^{1/2} \alpha(x) \, dx \leq N \int_0^\infty b'(x)^2 \alpha(x) \, dx.
\]
Since \(b \in H_0 \), we have that \(|\int_x^\infty b'(y) \, dy| = |b(x)| \) and that the right-hand side of the previous inequality is finite. \(\square \)

4 Conclusions
We have considered an equation of HJM type driven by a Lévy process taking values in a Hilbert space, obtaining sufficient conditions for the absence of arbitrage. Assuming that the volatility operator is deterministic, and using Musiela’s parametrization, one obtains a stochastic evolution equation of Ornstein-Uhlenbeck type. We have discussed existence of mild solutions and existence, uniqueness, and ergodicity of invariant measures, generalizing previous work of Vargiolu [23], who considered the situation of a driving Brownian motion and used a different state space. The choice of the state space \(L_{2,\alpha}^1 \) seems to be the standard by now, since its elements enjoy most desirable features for a forward curve. If the weight function \(\alpha \) grows exponentially at infinity, the HJM dynamics admits a unique invariant measure. A similar conclusion was obtained by Tehranchi in [22], where a Musiela equation with state-dependent volatility and Brownian noise was considered, and the results of [6] could be applied. It would be natural to consider also in the setting of Lévy noise a state-dependent volatility operator, but unfortunately there are comparatively very few results on evolution equations with jump noise, which need to be established first.

Acknowledgments
The financial support of SFB 611 (Bonn) is gratefully acknowledged. Preliminary results contained in this paper were presented at the Workshop on Potential Theory and Stochastic Analysis, Bielefeld, August 2004, and at the Joint Meeting of the Bernoulli Society and the Institute of Mathematical Statistics, Barcelona, July 2004.
References

Verzeichnis der erschienenen Preprints ab No. 310

310. Eberle, Andreas; Marinelli, Carlo: Stability of Sequential Markov Chain Monte Carlo Methods

311. Eberle, Andreas; Marinelli, Carlo: Convergence of Sequential Markov Chain Monte Carlo Methods: I. Nonlinear Flow of Probability Measures

312. Albeverio, Sergio; Hryniv, Rostyslav; Mykytyuk, Yaroslav: Reconstruction of Radial Dirac and Schrödinger Operators from Two Spectra

313. Eppler, Karsten; Harbrecht, Helmut: Tracking Neumann Data for Stationary Free Boundary Problems

314. Albeverio, Sergio; Mandrekar, Vidyadhar; Rüdiger, Barbara: Existence of Mild Solutions for Stochastic Differential Equations and Semilinear Equations with Non-Gaussian Lévy Noise

315. Albeverio, Sergio; Baranovskyi, Oleksandr; Pratsiovytyi, Mykola; Torbin, Grygoriy: The Set of Incomplete Sums of the First Ostrogradsky Series and Anomalously Fractal Probability Distributions on it

316. Gottschalk, Hanno; Smii, Boubaker: How to Determine the Law of the Noise Driving a SPDE

317. Gottschalk, Hanno; Thaler, Horst: AdS/CFT Correspondence in the Euclidean Context

318. Gottschalk, Hanno; Hack, Thomas: On a Third S-Matrix in the Theory of Quantized Fields on Curved Spacetimes

319. Müller, Werner; Salomonsen, Gorm: Scattering Theory for the Laplacian on Manifolds with Bounded Curvature

320. Ignat, Radu; Otto, Felix: 2-d Compactness of the Néel Wall

322. Albeverio, Sergio; Mitoma, Itaru: Asymptotic Expansion of Perturbative Chern-Simons Theory via Wiener Space

323. Marinelli, Carlo: Well-Posedness and Invariant Measures for HJM Models with Deterministic Volatility and Lévy Noise