On a Class of Unitary Representations of the Braid Groups B_3 and B_4

Sergio Albeverio, Slavik Rabanovich

no. 327
On a class of unitary representations of the braid groups B_3 and B_4

Sergio Albeverio

Institut für Angewandte Mathematik, Universität Bonn, Wegelerstr. 6, D-53115 Bonn, Germany; SFB 611, IZKS, Bonn, BiBoS, Bielefeld–Bonn, Germany; CERFIM, Locarno; Accademia di Architettura, USI, Mendrisio, Switzerland
E-mail: albeverio@uni.bonn.de

Slavik Rabanovich

Institute of Mathematics, Ukrainian National Academy of Sciences, 3 Tereshchenkivs’ka, Kyiv, 01601, Ukraine,

Abstract

We describe a class of irreducible unitary representations of the braid group B_3 in every dimension. Moreover using Burau unitarisable representation, we present a class of nontrivial unitary representations also for the braid group B_4 in the case where the dimension of the space is a multiple of 3.

Key words: Braid group, unitary representation, tensor product, conjugate class
1991 MSC: 20F36, (20C08,57M25)

1 Introduction

In this paper we shall work with Artin’s braid groups B_k, $k \in \mathbb{N}$. It has a standard presentation in generators and relations which first appeared in [2]:

$$B_k = \langle \sigma_1, \ldots, \sigma_{k-1} \mid \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, i = 1, \ldots, k-2, \sigma_i \sigma_j = \sigma_j \sigma_i, |i-j| > 1 \rangle$$

There are various representations of B_k (see, for example, [4]). The description of finite dimensional unitary representations connects with constrains on the spectra of unitary matrices. Among the results let us mention the finding
all such representations for B_3 in small dimensions [13], and the study of representations with a small number of points in the spectrum of the matrix corresponding to σ_1 (see, for example, [7] and [10]). Also let us mention several interesting connections have been found between the representations of the braid groups and representations of other objects such as quantum groups and Kac-Moody algebras as well as with R-matrices and solutions of quantum Yang-Baxter equations, see e.g., [3].

The braid group B_3 can be generated by two elements S and J and the relation $S^2 = J^3$ (see Preliminaries for precise formulas). For an irreducible unitary representation π of B_3, this means that $\pi(S)$ can be defined by one of its eigenvalues and the corresponding eigenspace projection and $\pi(J)$ can be defined by two of its eigenvalues and the two corresponding eigenspaces projections. So the unitary representations of B_3 are directly connected with \ast-representations of the algebra generated by the three projections q_1, q_2 and q_3 and the relation $q_2q_3 = q_3q_2 = 0$. It was shown in [9] that such an algebra has as many \ast-representations as some matrix algebra over the free group with two generators. Therefore the classification of all unitary representations of B_3 up to unitary equivalence seems to be a problem which is too complicated to solve by the pure means (see also [8]). Nevertheless in view of certain applications it is interesting to find various classes of non equivalent irreducible representations of B_3. Recently it has been found a class of representations of B_3 in every dimension n depending on n parameters [1]. The authors use a deformation of Pascal’s triangle connected with q-shifted factorials to obtain the representations, and thus generalize the results from [14] and some results from [6].

In section 3 we present a class of unitary irreducible representations of B_3 by $n \times n$ matrices for every $n \geq 3$. Also, using a tensor product of the reduced Burau representation [7] and the unitary representations of B_3, we find a class of nontrivial irreducible unitary representations for B_4, see the section 4. In the last section we describe a procedure for obtaining polynomials in $2n$ variables, each of them being an invariant of a class of conjugate elements of B_3 or B_4.

2 Preliminaries

Consider the product of generators of B_n:

$$J = \sigma_1\sigma_2\ldots\sigma_{k-1}.$$

It was proved in [2] that J^k lies in the center $Z(B_k)$ of B_k. It is generated by the only one generator J^k. Using the diagrams for braid groups, it is easy to
show that

\[\sigma_i = J\sigma_{i-1}J^{-1} = J^{i-1}\sigma_{i-1}J^{1-i}, \ i < k. \]

(1)

Moreover, following [2], if \(S := \sigma_1 J \), then

\[S^{k-1} = J^k. \]

(2)

Thus \(S^{k-1} \) is also a generator of \(Z(B_k) \). Note that the group \(B_k \) can be generated by \(\sigma_1 \) and \(J \) as well as by \(J \) and \(S \). It follows from the braid relation that

\[\sigma_1 J\sigma_1 J^{-1} \sigma_1 = J\sigma_1 J^{-1}\sigma_1 J^{1-1} \]

or, in \(S \) and \(J \) terms, after multiplying both sides of the above equation by \(J \):

\[S^2 J^{-2} S = JSJ^{-2} S^2 J^{-2}. \]

(3)

Now let \(k = 3 \). Then \(S^2 = J^3 \) commutes with every element of \(B_k \) and the equation (3) turns into an identity. This means that \(B_3 \) is generated by two elements \(J \) and \(S \) and only one relation \(S^2 = J^3 \). (If \(k > 3 \), then beside the equation 3 there exist also relations deriving from the commutation relation between the generators of \(B_k \)).

3 Irreducible representations of \(B_3 \)

In this section we shall use the notations \(I_n \) and \(0_n \) for the \(n \times n \) identity and zero matrices and the notation \(E_{i,j} \) for the matrix unit with 1 in the \((i,j)\) position and 0 in the other positions. A diagonal matrix with entries \(a_1, a_2, \ldots, a_m \) will be denoted by \(\text{diag} (a_1, a_2, \ldots, a_m) \).

Suppose we have an irreducible unitary representation \(\pi \) of \(B_k \) by \(n \times n \) matrices. Then the image of \(Z(B_k) \) is the set of all scalar unitary matrices. So

\[\pi(S^2) = \pi(J^3) = uI, \ \ u\bar{u} = 1 \text{ with } u \in \mathbb{C}, \ \bar{u} \text{ the conjugator of } u. \]

To describe the representation it suffices to consider the case \(u = 1 \). Note that every such representation will be a unitary representation of the unimodular group \(PSL_2(\mathbb{Z}) \) (see [12]).
Let \(U \) and \(V \) be \(2n + m \times 2n + m \) block matrices of the form.

\[
U = 2 \begin{pmatrix}
A - I_n & B & C \\
B^* & B^*A^{-1}B & B^*A^{-1}C \\
C^* & C^*A^{-1}B & C^*A^{-1}C - I_m
\end{pmatrix},
\]

\[
V = \text{diag}(I_n, \beta I_n, \beta^2 I_m),
\]

where \(\beta = \sqrt[3]{1} \) is a primitive root, \(1 \leq m \leq n \), \(A \) and \(B \) are \(n \times n \) matrices and \(C \) is an \(n \times m \) matrix.

Theorem 1 For appropriate \(A, B \) and \(C \) the representation \(\pi, \pi(S) = U, \pi(J) = V \)

defines an irreducible unitary representation of \(B_3 \).

Proof. We have \(V^3 = I_{2n+m} \). At the same time, if \(A^* = A \) and \(BB^* + CC^* = A - A^2 \), then \(U^* = U \) and \(U^2 = I_{2n+m} \). So \(\pi \) is a unitary representation of \(B_3 \). If in addition \(A, B \) are invertible, rank \(C = m, B^*B \) is a diagonal matrix with simple spectrum and every entry \(a_{i,i+1} \) of \(A \) is nonzero for \(i = 1, \ldots, n \), then \(\pi \) will be irreducible. We shall show this using the irreducibility of the corresponding \(\star \)-representation \(\tilde{\pi} \) of the group algebra \(\mathbb{C} \langle B_3 \rangle \) defined on the generators \(S \) and \(J \) by the formulas \(\tilde{\pi}(S) = U, \tilde{\pi}(J) = V \). Let us denote by \(\mathcal{A} \) the algebra \(\tilde{\pi}(\mathbb{C} \langle B_3 \rangle) \). Our goal is to show that \(E_{i,j} \in \mathcal{A} \) for every \(i, j \). Since \(V \) is a block diagonal matrix with different scalar matrices in the blocks, there exists a polynomial \(P_{11} \) such that

\[
E_{11}(I_n) = \text{diag}(I_n, 0_n, 0_n) = P_{11}(V)
\]

which yields that \(E_{11}(I_n) \) belongs to \(\mathcal{A} \). Similarly we see that \(E_{22}(I_n) \in \mathcal{A} \) and \(E_{33}(I_m) \in \mathcal{A} \). The matrix \(BB^* \) is diagonal with simple spectrum, so similar arguments for the diagonal matrix \(E_{11}(I_n)UE_{22}(I_n)UE_{11}(I_n) \) lead to \(E_{i,i} \in \mathcal{A} \) for \(i = 1, \ldots, n \). On the other hand, \(a_{i,i+1} \neq 0 \). So \(E_{i,i}UE_{i+1,i+1} \in \mathcal{A} \) and \(E_{i+1,i+1} \in \mathcal{A} \). Recalling that \(\tilde{\pi} \) is a star representation, we have \(E_{i,i+1}^* \in \mathcal{A} \). It is now easy to show that \(\text{diag}(W_1, 0_n, 0_n) \in \mathcal{A} \) for every \(n \times n \) matrix \(W_1 \). Putting \(\tilde{B} = \text{diag}(B^{-1}, 0_n, 0_n) \), we obtain

\[
E_{12}(I_n) = \begin{pmatrix}
0_n & I_n & 0_{nm} \\
0_n & 0_n & 0_{nm} \\
0_{mm} & 0_{mn} & 0_m
\end{pmatrix} = \tilde{B}UE_{2,2}(I_n) \in \mathcal{A}, \text{ hence } E_{21}(I_n) \in \mathcal{A},
\]
where 0_{nm} is an $n \times m$ zero matrix. So

$$\text{diag} \left(W_2, 0_m \right) \in A$$

for every $2n \times 2n$ matrix W_2. At the same time, the matrix C has rank m. Therefore there exists an $n \times n$ matrix \hat{C} such that we have for the transposed matrix

$$D^T = \begin{pmatrix} 1 & 0 & 0 & \ldots & 0 & 0 & \ldots & 0 \\ 0 & 2 & 0 & \ldots & 0 & 0 & \ldots & 0 \\ 0 & 0 & 3 & \ldots & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & m & 0 & \ldots & 0 \end{pmatrix} = (\hat{C}C)^T.$$}

This leads to the inclusion

$$\tilde{D} = \begin{pmatrix} 0_n & 0_n & D \\ 0_n & 0_n & 0_{nm} \\ 0_{mn} & 0_{mn} & 0_m \end{pmatrix} = \begin{pmatrix} \hat{C} & 0_n & 0_{nm} \\ 0_n & 0_n & 0_{nm} \\ 0_{mn} & 0_{mn} & 0_m \end{pmatrix} U E_{33}(I_m) \in A.$$}

Using once again the fact that A is a $*$-algebra, we obtain that

$$\tilde{D}^* \tilde{D} = \text{diag} \left(0_n, 0_n, 1, 4, \ldots, m^2 \right) \in A, \text{ hence } E_{ii} \in A$$

for $2n < i \leq 2n + m$. Thus every $E_{ii} \in A$, $1 \leq i \leq 2n + m$. Beside this, we have

$$\begin{pmatrix} 1 & 1/2 & \ldots & 1/m & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 & 0 & \ldots & 0 \end{pmatrix} \tilde{D} = \begin{pmatrix} 0 & 0 & \ldots & 0 & 1 & \ldots & 1 \\ 0 & 0 & \ldots & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 & 0 & \ldots & 0 \end{pmatrix}.$$
Now (4) yields

\[
T = \begin{pmatrix}
1 & \ldots & 1 \\
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{pmatrix} \in \mathcal{A}
\]

and we achieve our goal to show \(E_{i,j} \in \mathcal{A} \) from the equalities \(E_{i,i} = TE_{i,i} \) and \(E_{i,j} = T^*E_{1,i}E_{1,j} \). Therefore \(\mathcal{A} \) contains every \(E_{i,j} \), \(i, j = 1, 2, \ldots, 3n \), and as a result \(\mathcal{A} \) is the matrix algebra of all \(2n + m \times 2n + m \) complex matrices. This proves the irreducibility of the representation \(\tilde{\pi} \). Since a reducible representation of a group leads to a reducible representation of the corresponding group algebra, we conclude that \(\pi \) is an irreducible unitary representation of \(B_3 \). \(\square \)

Corollary 2 If one consider two unitary irreducible representations \(\pi_1 \) and \(\pi_2 \) from Theorem 1 with matrices \(A_1, B_1 \) and \(C_1 \) and \(A_2, B_2 \) and \(C_2 \) respectively, then if \(A_1 \) is not similar to \(A_2 \) or \(B_1B_i^* \) is not similar to \(B_2B_i^* \), then the representations \(\pi_1 \) and \(\pi_2 \) are not equivalent.

PROOF. It follows from the proof of the Theorem that there exist polynomials \(P_{11} \) and \(P_{22} \) such that \(P_{ii}(\tilde{\pi}_1(J)) = P_{ii}(\tilde{\pi}_2(J)) = E_{ii}(I_n) \). Also direct calculations show that

\[
E_{11}(I_n)\tilde{\pi}_1(S)E_{11}(I_n) = \begin{pmatrix}
A_i & 0_n & 0_{nm} \\
0_n & 0_n & 0_{nm} \\
0_{mn} & 0_{mn} & 0_m
\end{pmatrix}
\]

and

\[
E_{11}(I_n)\tilde{\pi}_1(S)E_{22}(I_n)\tilde{\pi}_1(S)E_{11}(I_n) = \begin{pmatrix}
B_iB_i^* & 0_n & 0_{nm} \\
0_n & 0_n & 0_{nm} \\
0_{mn} & 0_{mn} & 0_m
\end{pmatrix}, \quad i = 1, 2
\]

So, defining equivalence of representations by \(\sim \) and similarity of matrices by \(\approx \), if \(\pi_1 \sim \pi_2 \), then both \(A_1 \approx A_2 \) and \(B_1B_i^* \approx B_2B_i^* \). \(\square \).

Remark 3 At the begin of the proof of Theorem 1, instead of the set \(\Omega = \{(i, i + 1) \mid i = 1, \ldots, n\} \) for which \(a_{i,j} \neq 0 \), \((i, j) \in \Omega \), one can choose
any set of indices $\tilde{\Omega}$ having the property that the set of the matrix units $E_{i,1}, \ldots, E_{n,n}, E_{i,j}, E_{j,i}, (i, j) \in \tilde{\Omega}$ generates the algebra of all $n \times n$ complex matrices.

4 Irreducible representations of B_4

To construct nontrivial irreducible representations of B_4 we use the notion of tensor products of matrices. Let D and G be $d \times d$ and $l \times l$ matrices respectively. Then the $ld \times ld$ matrix

$$\text{diag}(D, D, \ldots, D) = \begin{pmatrix}
g_{11}I_d & \cdots & g_{1l}I_d \\
\vdots & \ddots & \vdots \\
g_{l1}I_d & \cdots & g_{ll}I_d
\end{pmatrix}$$

will be the tensor product $D \otimes G$ of D and G.

Suppose we have two irreducible unitary representations π_1 and π_2 of B_4. Then $\pi_1 \otimes \pi_2$ is a unitary representation of B_4 too. Now putting $\pi_1(\sigma_1) = \pi_1(\sigma_3) = \pi(\sigma_1)$ and $\pi_1(\sigma_2) = \pi(\sigma_2)$ for the representation π from the previous section, we obtain trivially a representation of B_4. For the representation π_2 we use reduced Burau representation (see [7]) written in the base where every matrix $\pi_2(\sigma_i)$ is unitary:

$$\pi_2(\sigma_1) = \text{diag}(u, 1, 1), \quad \pi_2(\sigma_2) = \begin{pmatrix}
(u-1)\alpha_1 + 1 & (u-1)\sqrt{\alpha_1 - \alpha_1^2} & 0 \\
(u-1)\sqrt{\alpha_1 - \alpha_2^2} & (1-u)\alpha_1 + u & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\pi_2(\sigma_3) = \begin{pmatrix}
1 & 0 & 0 \\
0 & (u-1)\alpha_2 + 1 & (u-1)\sqrt{\alpha_2 - \alpha_2^2} \\
0 & (u-1)\sqrt{\alpha_2 - \alpha_2^2} & (1-u)\alpha_2 + u
\end{pmatrix},$$

where $u\bar{u} = 1, \alpha_1 = -u/(u-1)^2, \alpha_2 = \alpha_1/(1-\alpha_1)$. We remark that since both numbers α_1 and α_2 have to be positive and less than 1, we have to assume that the real part of u is less than 0.

Theorem 4 The representation $\pi_1 \otimes \pi_2$ is an irreducible unitary representation of B_4 by $3n \times 3n$ matrices and the natural restriction of it to a representation of B_3 is reducible.
PROOF. To minimize the number of additional symbols we shall use the same notation π_i for the $*$-representation of the group algebra $\mathbb{C}\langle B_4 \rangle$. Let $\mathcal{A} = \pi_1 \otimes \pi_2(\mathbb{C}\langle B_4 \rangle)$. As in the proof of Theorem 1 we shall show that $E_{m,k} \otimes E_{i,j} \in \mathcal{A}$. We remark that

$$[\pi_1(\sigma_1) \otimes \pi_2(\sigma_1) \cdot \pi_1(\sigma_2) \otimes \pi_2(\sigma_2)]^3 = I \otimes \begin{pmatrix} u^3 & 0 & 0 \\ 0 & u^3 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

This implies that

$$P = I \otimes \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in \mathcal{A}.$$

Consider the element

$$(\pi_1(\sigma_1) \otimes \pi_2(\sigma_1))^* = \pi_1(\sigma_1^{-1}) \otimes \begin{pmatrix} \bar{u} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

It lies in \mathcal{A} and we can multiply it with another element of \mathcal{A}, $\pi_1(\sigma_3) \otimes \pi_2(\sigma_3) = \pi_1(\sigma_1) \otimes \pi_2(\sigma_3)$ from the right. Using also the projection P constructed above, one has

$$P(\pi_1(\sigma_1) \otimes \pi_2(\sigma_1))^* \pi_1(\sigma_3) \otimes \pi_2(\sigma_3)P = I \otimes \begin{pmatrix} \bar{u} & 0 & 0 \\ 0 & (u-1)\alpha_2+1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in \mathcal{A}.$$

Since $\bar{u} \neq (u-1)\alpha_2+1$ by the definitions of u and α_2, we have $I \otimes E_{i,i} \in \mathcal{A}$. Note that by construction of π_2 every entry of $\pi_2(\sigma_2)$ and $\pi_2(\sigma_3)$ which depends on u, α_1 or α_2 is different from zero. Therefore, $I \otimes E_{1,2}$ is a scalar multiple of

$$I \otimes E_{1,1} \cdot \pi_1(\sigma_2^*) \otimes \pi_2(\sigma_2^*) \cdot I \otimes E_{1,1} \cdot \pi_1(\sigma_2) \otimes \pi_2(\sigma_2) \cdot I \otimes E_{2,2}$$

and $I \otimes E_{2,3}$ is a scalar multiple of

$$I \otimes E_{2,2} \cdot \pi_1(\sigma_3^*) \otimes \pi_2(\sigma_3^*) \cdot I \otimes E_{2,2} \cdot \pi_1(\sigma_3) \otimes \pi_2(\sigma_3) \cdot I \otimes E_{3,3}.$$
Thus since \mathcal{A} is a $*$-algebra, $I \otimes E_{i,j} \in A$ for every i, j. This leads to $I \otimes \pi_2(\sigma^*_i) \in A$ and $I \otimes \pi_2(\sigma^*_i) \cdot \pi_1(\sigma_i) \otimes \pi_2(\sigma_i) = \pi_1(\sigma_i) \otimes I_3 \in A$ for every i. Using the irreducibility of π_1, we conclude that $E_{m,k} \otimes I_3 \in A$ and, hence $E_{m,k} \otimes E_{i,j} \in A$.

Remark 5 One can consider any irreducible unitary representation $\hat{\pi}$ of B_4 instead of π_1 in the Theorem with the restriction of $\hat{\pi}$ to B_3 generated by σ_1 and σ_2 being irreducible. The proof is similar if one defines an orthogonal projection P as in the proof of the Theorem 4 and uses the inclusion

$$(P\pi_1(\sigma_3) \otimes \pi_2(\sigma_3)P)^* \pi_1(\sigma_3) \otimes \pi_2(\sigma_3)P \in A$$

to show that $I \otimes E_{i,i} \in A$.

Remark 6 Although every Burau representation is unitary with respect to some Hermitian form[11] it is a curious fact that there are some restrictions on the spectra of unitary dilations to be the images of the standard generators of B_n for an irreducible unitary representation of B_n. More discussions on this theme can be found in [15].

5 Invariant polynomials of conjugacy classes in B_3 and B_4

The results obtained in the previous sections provide many representations of B_3 and B_4. For example, for $m = n$, one can find no less than $n(n-1)/8 - 1$ real parameters $c_i, c_i \in [a_i, b_i], a_i \neq b_i \in \mathbb{R}$ yielding non equivalent representations of B_3 by $3n \times 3n$ matrices. For the purpose of applications, it is convenient to suggest that some parameters are simply fixed real numbers. Let us consider one such construction. Let $t_0, t_1, \ldots, t_n, t \in \mathbb{R}, 0 = t_0 < t_1 < \ldots < t_n < t < 1/4$. Suppose x_i is a variable taking values in (t_{i-1}, t_i). The matrices B and C are defined by the following formulas

$$B = \text{diag} \left(x_1, \ldots, x_n \right), \quad C = \text{diag} \left(\sqrt{t - x_1^2}, \ldots, \sqrt{t - x_n^2} \right).$$

Note that

$$BB^* + CC^* = \text{diag} \left(t, \ldots, t \right).$$
Let \(\alpha \) and \(\beta \) be the roots of the equation \(x - x^2 - t = 0 \) and consider the idempotent \(n \times n \) matrix

\[
Q = \frac{1}{n} \begin{pmatrix}
1 & \ldots & 1 \\
& \ddots & \vdots \\
& & 1 & \ldots & 1
\end{pmatrix},
\]

We then define

\[
A = \alpha Q + \beta I_n.
\]

This leads to the simple form for \(A^{-1} \):

\[
A^{-1} = ((\alpha + \beta)^{-1} - \beta^{-1})Q + \beta^{-1}I_n.
\]

Thus by Theorem 1, we have a simple construction of representations \(\pi = \pi(x_1, \ldots, x_n) \) of the group \(B_3 \) which are continuous in \(x_1, \ldots, x_n \).

Let \(a \in B_3 \). Set \(P(x_1, \ldots, x_n) = \text{tr} \pi(x_1, \ldots, x_n)(a) \). This is a polynomial in the variables \(x_i \) and \(\sqrt{t - x_i^2} \). Since similar matrices have the same trace, we obtain the following proposition.

Proposition 7 If the elements \(a \) and \(b \) are conjugate in \(B_3 \), then

\[
P(x_1, \ldots, x_n)(a) = P(x_1, \ldots, x_n)(b).
\]

Remark 8 In the above construction one can replace the numerical matrix \(Q \) with any orthogonal projection depending on some variables \(c_i \). But not every such representation will be irreducible.

Remark 9 Polynomials similar to the ones in Proposition 7 can be constructed for elements of \(B_4 \) using the representation described in section 4.

We hope that the obtained representations will help in the solutions of the word and conjugacy problems in \(B_k \) [5] and in discussing knot theoretical problems [7].

Acknowledgements. The second author would like to thank the Institute of Applied Mathematics, University of Bonn for the hospitality. The partial financial support by the DFG project 436 UKR 113/87 is gratefully acknowledged.
References

Verzeichnis der erschienenen Preprints ab No. 310

310. Eberle, Andreas; Marinelli, Carlo: Stability of Sequential Markov Chain Monte Carlo Methods

311. Eberle, Andreas; Marinelli, Carlo: Convergence of Sequential Markov Chain Monte Carlo Methods: I. Nonlinear Flow of Probability Measures

312. Albeverio, Sergio; Hryniv, Rostyslav; Mykytyuk, Yaroslav: Reconstruction of Radial Dirac and Schrödinger Operators from Two Spectra

313. Eppler, Karsten; Harbrecht, Helmut: Tracking Neumann Data for Stationary Free Boundary Problems

314. Albeverio, Sergio; Mandrekar, Vidyadhar; Rüdiger, Barbara: Existence of Mild Solutions for Stochastic Differential Equations and Semilinear Equations with Non-Gaussian Lévy Noise

315. Albeverio, Sergio; Baranovskyi, Oleksandr; Pratsiovytyi, Mykola; Torbin, Grygoriy: The Set of Incomplete Sums of the First Ostrogradsky Series and Anomalously Fractal Probability Distributions on it

316. Gottschalk, Hanno; Smii, Boubaker: How to Determine the Law of the Noise Driving a SPDE

317. Gottschalk, Hanno; Thaler, Horst: AdS/CFT Correspondence in the Euclidean Context

318. Gottschalk, Hanno; Hack, Thomas: On a Third S-Matrix in the Theory of Quantized Fields on Curved Spacetimes

319. Müller, Werner; Salomonsen, Gorm: Scattering Theory for the Laplacian on Manifolds with Bounded Curvature

320. Ignat, Radu; Otto, Felix: 2-d Compactness of the Néel Wall

322. Albeverio, Sergio; Mitoma, Itaru: Asymptotic Expansion of Perturbative Chern-Simons Theory via Wiener Space

323. Marinelli, Carlo: Well-Posedness and Invariant Measures for HJM Models with Deterministic Volatility and Lévy Noise
324. Albeverio, Sergio; Ayupov, Sh. A.; Kudaybergenov, K. K.: Derivations on the Algebra of \(\tau \)-Compact Operators Affiliated with a Type I von Neumann Algebra

326. Albeverio, Sergio; Ayupov, Sh. A.; Omirov, B. A.; Khudoyberdiyev, A. Kh: n-Dimensional Filiform Leibniz Algebras of Length \((n-1)\) and Their Derivations

327. Albeverio, Sergio; Rabanovich, Slavik: On a Class of Unitary Representations of the Braid Groups \(B_3\) and \(B_4\)