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Abstract

New regulations and a stronger competition have increased the importance of stochastic
asset-liability management (ALM) models for insurance companies in recent years. In this
paper, we propose a discrete time ALM model for the simulation of simplified balance sheets
of life insurance products. The model incorporates the most important life insurance product
characteristics, the surrender of contracts, a reserve-dependent surplus declaration, a dynamic
asset allocation and a two-factor stochastic capital market. All terms arising in the model
can be calculated recursively which allows an easy implementation and efficient simulation.
Furthermore, the model is designed to have a modular organisation which permits straightfor-
ward modifications and extensions to handle specific requirements. In a sensitivity analysis for
sample portfolios and parameters, we investigate the impact of the most important product
and management parameters on the risk exposure of the insurance company and show that the
model captures the main behaviour patterns of the balance sheet development of life insurance
products.
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1 Introduction

The scope of asset-liability management (ALM) is the responsible administration of the assets and
liabilities of insurance contracts. Here, the insurance company has to attain two goals simultane-
ously. On the one hand, the available capital has to be invested profitably, usually in bonds but
also, up to a certain percentage, in stocks (asset management). On the other hand, the obligations
against policyholders, which depend on the specific insurance policies, have to be met (liability
management). In this paper, we focus on portfolios of participating (with-profit) policies which
make up a significant part of the life insurance market. The holder of such a policy gets a fixed
guaranteed interest and, in addition, a variable reversionary bonus which is annually added to
the policyholder’s account and allows the policyholder to participate in the investment returns
of the company. Thereby, the insurance company has to declare in each year which part of the
investment returns is given to the policyholders as reversionary bonus, which part is saved in a
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reserve account for future bonus payments and which part is kept by the shareholders of the com-
pany. These management decisions depend on the financial situation of the company as well as on
strategic considerations and legal requirements. A maximisation of the shareholders’ benefits has
to be balanced with a competitive bonus declaration for the policyholders. Moreover, the exposure
of the company to financial, mortality and surrender risks has to be taken into account. These
problems, which easily become quite complex due to the wide range of guarantees and option-like
features of insurance products and management rules, are investigated with the help of ALM anal-
yses. In this context, it is necessary to estimate the medium- and long-term development of all
assets and liabilities as well as the interactions between them and to determine their sensitivity
to the different types of risks. This can either be achieved by the computation of particular sce-
narios (stress tests) which are based on historical data, subjective expectations, and guidelines of
regulatory authorities or by a stochastic modelling and simulation of the market development, the
policyholder behaviour and all involved accounts.

In recent years, the latter approach has attracted more and more attention as it takes financial
uncertainties more realistically into account than an analysis of a small number of deterministically
given scenarios. Additional importance arises from the current need of insurance companies to move
from an accounting based on book values to a market-based, fair value accountancy standard as
required by Solvency II and the International Financial Reporting Standard (IFRS), see, e.g., [22].
This task can be achieved by performing stochastic simulations of ALM models in a risk-neutral
environment. Much effort has been spent on the development of such models in the last years,
see, e.g., [1, 2, 3, 8, 11, 15, 16, 17, 23, 25, 26, 29] and the references therein. Here, most authors
focus on the fair valuation and contract design of unit-linked and participating life insurance
policies. Exceptions are [15, 23] where the financial risks and returns of participating policies are
analysed under the real world probability measure. Most of the articles in the existing literature
(exceptions are [2, 3, 11, 26]) restrict themselves to single-premium contracts and neglect mortality
to simplify the presentation or to obtain analytical solutions. However, in the presence of surrender,
generalisations which include periodic premiums and mortality risk are not always straightforward,
see, e.g., [4].

In this paper, we develop a general model framework for the ALM of life insurance products.
The complexity of the model is chosen such that, on the one hand, most of the models previously
proposed in the literature and the most important features of life insurance product management
are included. As a consequence, closed-form solutions will only be available in special cases. On
the other hand, the model is supposed to remain transparent and modular, and it should be
possible to simulate the model efficiently. Therefore, we use a discrete time framework in which
all terms can be derived easily and can be computed recursively. We use a stochastic two-factor
model to simulate the behaviour of the capital markets, while the development of the biometric
parameters is assumed to be deterministic. The asset allocation is dynamic with the goal of keeping
a certain percentage of stocks. The bonus declaration mechanism is based on the reserve situation
of the company as proposed in [16]. Surrender is modelled and analysed using experience-based
surrender tables. Different life insurance product specifics are incorporated via premium, benefit
and surrender characteristics in a fairly general framework. In contrast to most of the existing
literature, where only the valuation or the development of a single policy is considered, we model
the development of a portfolio of policies using model points. Each model point corresponds to an
individual policyholder account or to a pool of similar policyholder accounts which can be used to
reduce the computational complexity, in particular in the case of very large insurance portfolios.
Thus we can also investigate effects which arise from the pooling of non-homogeneous contracts,
as in [18], where the pooling of two contracts is considered.

The outline of this paper is as follows. In Section 2, we start with the main layout of the
balance sheet. Then, in Section 3, the capital market model is described. In Section 4, management
rules regarding the capital allocation, the bonus declaration and the shareholder participation are
defined. The specification of the insurance products and the individual policyholder accounts is
subject of Section 5. In Section 6, the future development of the balance sheet items introduced in
Section 2 is derived. Numerical results for example portfolios and model parameters are shown in
Section 7. Here, we illustrate the influence and the interaction of the parameters of the model by
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sensitivity analyses and iso-default probability curves. We particularly investigate the impact of
mortality and surrender on the default probabilities of the insurance company. The paper closes
in Section 8 with concluding remarks.

2 Balance Sheet Model

The main focus of our model is to simulate the temporal development of the most important balance
sheet items for a portfolio of insurance policies. In this section, we indicate the overall structure of
the balance sheet. The determination of the single balance sheet items and the modelling of their
future development is the subject of the following sections.

We model all terms in discrete time. Here, we denote the start of the simulation by time t = 0
and the end of the simulation by t = T (in years). The interval [0, T ] is decomposed into K periods
[tk−1, tk], k = 1, . . . ,K with tk = k ∆. Throughout this paper, the period length ∆t = T/K is
equal to one month, which is in line with conventions for insurance contract sales.1 The balance
sheet items at time tk, k = 0, . . . ,K, used in our model are shown in Table 1.

assets liabilities
capital Ck actuarial reserve Dk

allocated bonus Bk

free reserve Fk

equity Qk

Table 1: Simplified balance sheet for a portfolio of life insurance policies.

The asset side consists of the market value Ck of the company’s assets at time tk. On the
liability side, the first item is the book value of the actuarial reserve Dk, i.e., the guaranteed
savings part of the policyholders after deduction of risk premiums and administrative costs. The
second item is the book value of the allocated bonuses Bk which constitute the part of the surpluses
that have been credited to the policyholders via the profit participation. The free reserve Fk is a
buffer account for future bonus payments. It consists of surpluses which have not yet been credited
to the individual policyholder accounts, and is used to smooth capital market oscillations and to
achieve a stable and low-volatile return participation of the policyholders. The last item, the equity
or company account Qk, consists of the part of the surpluses which is kept by the shareholders of
the company and is defined by

Qk = Ck −Dk −Bk − Fk,

so that the sum of the assets equals the sum of the liabilities. Similar to the bonus reserve in [16],
Qk is a hybrid determined as the difference between a market value Ck and the three book values
Dk, Bk and Fk. It may be interpreted as hidden reserve of the company as discussed in [23].

Similar balance sheets have already been considered in the literature. The sum Mk = Dk + Bk

corresponds to the policy reserve in [16], the policyholders’ account in [23] or to the customer
account in [25]. We prefer to separate the two accounts in order to thoroughly distinguish the
effects of the bonus distribution from the guaranteed benefits. The free reserve Fk and the company
account Qk in our model correspond to the bonus account (also termed undistributed reserve) and
to the insurer’s account in [10]. These two accounts are sometimes merged into one single account.
This, however, is only appropriate if the policyholders are also the owners of the company, see [16].

3 Asset Model

We assume that the insurance company invests its capital either in fixed interest assets, i.e., bonds,
or in a variable return asset, i.e., a stock or a basket of stocks. The future development of the
capital market is specified by a coupled system of two continuous stochastic differential equations,

1Shorter or longer period lengths can be realised in a straightforward way, though.
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one for the short interest rate and one for the stock price. This system is then discretized with
a period length of ∆t. The simulation of the model can either be performed under the objective
probability measure which is used for risk analyses, see, e.g., [15, 23], and which is the main focus of
this paper, or under the risk-neutral probability measure, which is appropriate for the fair valuation
of embedded options or the identification of fair contract designs, see, e.g., [2, 16, 17, 25].

3.1 Continuous stochastic capital market model

For the modelling of the interest rate environment we use the Cox-Ingersoll-Ross (CIR) model [9].
The CIR model is an one-factor mean-reversion model which specifies the dynamics of the short
interest rate r(t) at time t by the stochastic differential equation

dr(t) = κ(θ − r(t))dt +
√

r(t)σrdWr(t), (1)

where Wr(t) is a standard Brownian motion, θ > 0 denotes the mean reversion level, κ > 0 denotes
the reversion rate and σr ≥ 0 denotes the volatility of the short rate dynamic. The CIR model has
the following appealing properties: First, it produces short interest rates which are always positive
if the parameters fulfil the condition κθ > σ2

r/2. In addition, assuming the absence of arbitrage and
a market price λ(t, r) of interest rate risk of the special form λ(t, r) = λ0

√
r(t) with a parameter

λ0 ∈ R, the short interest rate under the risk-neutral measure follows the same square-root process
as in (1) but with the parameters κ̂ = κ + λ0σr and θ̂ = κθ/κ̂. Moreover, the price b(t, τ) at time
t of a zero coupon bond with a duration of τ periods and with maturity at time T = t + τ∆t can
be derived in closed form by

b(t, τ) = A(τ) e−B(τ) r(t) (2)

as an exponential affine function of the prevailing short interest rate r(t) with

A(τ) =
(

2he(κ̂+h)τ∆t/2

2h + (κ̂ + h)(ehτ∆t − 1)

)2κθ/σ2
r

, B(τ) =
2(ehτ∆t − 1)

2h + (κ̂ + h)(ehτ∆t − 1)
,

and h =
√

κ̂2 + 2σ2
r .

To model the stock price uncertainty, we assume that the stock price s(t) at time t evolve
according to a geometric Brownian motion

ds(t) = µs(t)dt + σss(t)dWs(t), (3)

where µ ∈ R denotes the drift rate and σs ≥ 0 denotes the volatility of the stock return.2 By Itô’s
lemma, the explicit solution of this stochastic differential equation is given by

s(t) = s(0) e(µ−σ2
s/2)t+σsWs(t). (4)

Usually, stock and bond returns are correlated. We thus assume that the two Brownian motions
satisfy dWs(t)dWr(t) = ρdt with a constant correlation coefficient ρ ∈ [−1, 1].

The same two-factor model is used in [11]. In [8, 21], the Vasicek model is employed instead of
the CIR model. In [23], stocks and bonds are modelled via a coupled system of two geometric Brow-
nian motions with different drift and volatility parameters. In [5, 28], more complex jump-diffusion
processes and Markov-modulated geometric Brownian motions are employed. The simulation of
the latter models is more involved, though.

The capital market parameters κ, θ, σr, µ, σs and ρ can be estimated on the basis of historical
data. This way, the objective dynamics of r(t) and s(t) are characterised. The market price of
risk parameter λ0 can then be identified by calibrating the theoretical bond prices (2) to observed
market prices, see, e.g., [12]. Alternatively, the parameters κ̂, θ̂, σr and σs, which identify the
risk neutral measure, can be obtained by calibrating the models (1) and (3) to observed market
prices, see, e.g., [7, 11]. To derive the remaining parameters, estimates of µ, θ and ρ are required.

2For a simulation under the risk-neutral measure Q, the drift µ is replaced by r(t).
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In a more complex model, the constant coefficients in (1) could be replaced by time-dependent
parameter functions. Then, the model can be fitted to the currently observed term structure of
interest rates. However, the bond prices b(t, τ) can not be derived analytically anymore, but have
to be computed by numerical integration, see [7].

3.2 Discrete stochastic capital market model

In the discrete time case, the short interest rate and the stock and bond prices are defined by
rk = r(tk), sk = s(tk) and bk(τ) = b(tk, τ). For the solution of equation (1), we use an Euler-
Maruyama discretization3 with step size ∆t, which yields

rk = rk−1 + κ(θ − rk−1)∆t + σr

√
|rk−1|

√
∆t ξr,k,

where ξr,k is a N(0, 1)-distributed random variable.4 For the stock prices one obtains

sk = sk−1e
(µ−σ2

s/2)∆t+σs

√
∆t(ρξr,k+

√
1−ρ2ξs,k), (5)

where ξs,k is a N(0, 1)-distributed random variable independent of ξr,k. Since

Cov(ρξr,k +
√

1− ρ2ξs,k, ξr,k) = ρ,

the correlation between the two Wiener processes Ws(t) and Wr(t) is respected. Further informa-
tion on diffusion processes in finance and their numerical treatment can be found, e.g., in [14, 24].

4 Management Model

In this section, we first discuss the allocation of the available capital between stocks and bonds,
which determines the portfolio return rate pk in each period k. Then, the bonus declaration
mechanism is illustrated, which defines the interest rate zk which is given to the policyholders.
Finally, the shareholder participation is discussed.

4.1 Capital allocation

We assume that the company rebalances its assets at the beginning of each period. Thereby, the
company aims to have a fixed portion β ∈ [0, 1] of its assets invested in stocks, while the remaining
capital is invested in zero coupon bonds with a fixed duration of τ periods.5 We assume that no
bonds are sold before their maturity.

Let Pk be the premium income at the beginning of period k and let Ck−1 be the total capital at
the end of the previous period. The part Nk of Ck−1 + Pk which is available for a new investment
at the beginning of period k is then given by

Nk = Ck−1 + Pk −
τ−1∑
i=1

nk−i bk−1(τ−i),

where nj denotes the number of zero coupon bonds which were bought at the beginning of period
j. The capital Ak which is invested in stocks at the beginning of period k is then determined by

Ak = max{min{Nk, β(Ck−1 + Pk)}, 0}

so that the side conditions 0 ≤ Ak ≤ β(Ck−1 + Pk) are satisfied.6 The remaining money Nk −Ak

is used to buy nk = (Nk − Ak)/bk−1(τ) zero coupon bonds with duration τ∆t. Note that due
3An alternative to the Euler-Maruyama scheme, which is more time consuming but avoids a discretization error,

is to sample from a noncentral chi-squared distribution, see [14].
4For the fast generation of normally distributed random variables, we use Moro’s method [27].
5A slightly more general trading strategy is discussed in [11].
6Alternatively, β(Ck−1 + Pk) can be replaced by β Fk−1 with β ∈ R+, so that the proportion of funds invested

in stocks is linked to the current amount of reserves. This implements a CPPI capital allocation strategy, see [26].

5



to long-term investments in bonds it may happen that Nk < 0. This case of insufficient liquidity
leads to nk < 0 and thus to a short selling of bonds.

The portfolio return rate pk in period k resulting from the above allocation procedure is then
determined by

pk =

(
∆Ak +

τ−1∑
i=0

nk−i ∆bk,i

)
/(Ck−1 + Pk), (6)

where ∆Ak = Ak(sk/sk−1−1) and ∆bk,i = b(tk, τ − i−1)−b(tk−1, τ − i) denote the changes of the
market values of the stock and of the bond investments from the beginning to the end of period
k, respectively.

4.2 Bonus declaration

Due to regulatory requirements, companies can only guarantee a relatively low interest rate to
their policyholders. As a compensation, policyholders are usually entitled to additional variable
bonus payments, which are periodically credited to the policyholders’ accounts and allow the
policyholders to participate in the investment returns of the company (contribution principle).
The exact specification of this reversionary bonus varies from one insurance product to another
and often depends on the financial situation of the company as well as on strategical considerations
and legal requirements. The bonus is declared annually by the company, with the goal to provide a
low-volatile, stable and competitive return participation (average interest principle). The company
builds up reserves in years of good returns, which are used to keep the bonus stable in years of low
returns. Thereby, a high and thus competitive declaration has to be balanced with a solid financial
strength of the company. Various mathematical models for the declaration mechanism are discussed
in the literature, see, e.g., [2, 6, 10, 15, 16, 23, 25]. In [15, 16, 23], the bonus interest rate for the
next year is already declared at the beginning of this year (principle of advance declaration) as it is
required in some countries, e.g., Germany, by regulation. The declaration is based on the current
reserve rate γk−1 of the company, which is defined in our framework by the ratio of the free reserve
to the allocated liabilities, i.e.,

γk−1 =
Fk−1

Dk−1 + Bk−1
.

In this paper, we follow the approach proposed in [16] where the annual interest rate is defined by

ẑk = max{ẑ, ω(γk−1 − γ)}.

Here, ẑ denotes the annual guaranteed interest rate, γ ≥ 0 the target reserve rate of the company
and ω ∈ [0, 1] the distribution ratio or participation coefficient which determines how fast excessive
reserves are reduced. Typical values are ω ∈ [0.2, 0.3] and γ ∈ [0.1, 0.4]. This way, a fixed fraction
of the excessive reserve is, in accordance with the average interest rate principle, distributed to the
policyholders in case of a satisfactorily large reserve. If the reserve rate γk−1 is below the target
reserve rate γ, only the guaranteed interest is paid, see [16] for details.

In our model, the bonus is declared annually, always at the beginning of the first period of each
year. In case of a monthly discretization, this bonus has to be converted into a monthly interest

zk =
{

(1 + ẑk)1/12 − 1 if k mod 12 = 1
zk−1 otherwise

which is given to the policyholders in each period k of this year.

4.3 Shareholder participation

Excess returns pk − zk, conservative biometry and cost assumptions as well as surrender fees lead
to a surplus Gk in each period k which has to be divided among the two accounts free reserve
Fk and equity Qk. In case of a positive surplus, we assume that a fixed percentage α ∈ [0, 1] is
saved in the free reserve while the remaining part is added to the equity account. Here, a typical
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assumption is a distribution according to the 90/10-rule which corresponds to the case α = 0.9.
If the surplus is negative, we assume that the required capital is taken from the free reserve. If
the free reserves do not suffice, the company account has to cover the remaining deficit. The free
reserve is then defined by

Fk = max{Fk−1 + min{Gk, α Gk}, 0}. (7)

The exact specification of the surplus Gk and the development of the equity Qk is derived in
Section 6.

5 Liability Model

In this section, we first discuss the modelling of the decrement of policies due to mortality and
surrender. Then, the fixed guaranteed part and the variable bonus part of the insurance policies
are specified. Finally, the development of the two policyholder accounts, the actuarial reserve for
the guaranteed part and the bonus account for the bonus part is derived.

5.1 Decrement model

For efficiency, the portfolio of all insurance contracts is often represented by a reduced number m
of model points. To this end, the individual policies are pooled into model points using criteria
like the entry and maturity time, the age and the gender of the policyholders. This is performed
in such a way that the cash flows and technical reserves of the representative and of the whole
portfolio differ only within tolerable margins, see, e.g., [20]. A model point then contains averaged
values for these criteria.

Let qi
k denote the probability that a policyholder of model point i dies in the k-th period. In the

following, we assume that this probability is given deterministically. This is motivated by the fact
that the systematic development of mortality can be predicted much more accurately than, e.g.,
the development of the capital markets. Moreover, unsystematic mortality risk can be controlled
by means of portfolio diversification. The probabilities qi

k typically depend on the age, the year
of birth and the gender of the policyholder. They are collected and regularly updated by the
insurance companies. In the following, we always assume that mortality occurs deterministically
in accordance with the actuarial assumptions.

Most insurance policies include surrender options for the policyholder. Usually, two different
approaches for the valuation of these rights are distinguished, see [4]. Either surrender is considered
as an exogenously determined event and modelled like death using experience-based decrement
tables, or it is assumed that surrender options are rationally exercised by policyholders. While
the second approach is extensively investigated in the literature, see, e.g., [1, 3, 16], only very
few publications (see [19] and the references therein) investigate the effects of exogenously given
surrender decisions. In this paper we assume that the probabilities ui

k that a policyholder of model
point i surrenders in the k-th period are exogenously given. This is the appropriate approach if
surrender decisions are mainly driven by the personal consumption plans of the policyholders, see,
e.g., [11]. Here, a typical assumption is that the probabilities ui

k only depend on the elapsed contract
time. As in [19], we assume that the time t until surrender follows an exponential distribution with
exponent λ = 0.03. The probabilities of surrender are then given by

ui
k = 1− e−λ∆t. (8)

Since the probabilities of surrender are, in contrast to the probabilities of death, not included
into the actuarial premium calculation, the effects of surrender on the success of the company
significantly differ from the effects due to mortality.

Let δi
k denote the expected number of contracts in model point i at the end of period k. This

number evolves over time according to

δi
k =

(
1− qi

k − ui
k

)
δi
k−1. (9)
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By pooling, all contracts of a model point expire at the same time. In the simulation the model
point is then simply dissolved. In this paper, we do not consider the evolution of new contracts
during the simulation.

5.2 Insurance products

In this section, the guaranteed part and the bonus part of the insurance products are specified.
We always assume that premiums are paid at the beginning of a period while benefits are paid at
the end of the period. Furthermore, we assume that all administrative costs are already included
in the premium.

For each model point i = 1, . . . ,m, the guaranteed part of the insurance product is defined by
the specification of the following four characteristics:

• premium characteristic: (P i
1, . . . , P

i
K) where P i

k denotes the premium of an insurance holder
in model point i at the beginning of period k if he is still alive at that time.

• survival benefit characteristic: (Ei,G
1 , . . . , Ei,G

K ) where Ei,G
k denotes the guaranteed payments

to an insurance holder in model point i at the end of period k if he survives period k.

• death benefit characteristic: (T i,G
1 , . . . , T i,G

K ) where T i,G
k denotes the guaranteed payment to

an insurance holder in model point i at the end of period k if he dies in period k.

• surrender characteristic: (Si,G
1 , . . . , Si,G

K ) where Si,G
k denotes the guaranteed payment to an

insurance holder in model point i at the end of period k if he surrenders in period k.

Here, K denotes the last period of the simulation. The characteristics, which can be different
for each model point, are usually derived from an insurance tariff which contains the functional
interrelations between premium, benefit, death and surrender characteristics. Given the benefit
characteristics of a product, the premiums are determined by the equivalence principle which
states that the present value of the death and survival benefits must equal the present value of
the premium at the start of the insurance, see, e.g., [2, 30]. Here, the present values are computed
according to a given technical interest rate z using the traditional actuarial approach. Typically,
z is fixed at the start of the contract and constitutes an interest rate guarantee. We assume here
that z is equal for all contracts.

The actuarial reserve Di
k of an insurance contract at each point in time is defined as the

difference of the present value of the expected future death and survival benefits and the present
value of the expected future premiums which are calculated according to the actuarial assumptions.
An efficient computation of the actuarial reserve Di

k of model point i at the end of period k is
possible by using the recursion

Di
k =

1 + z

1− qi
k

(Di
k−1 + P i

k)− Ei,G
k − qi

k

1− qi
k

T i,G
k . (10)

Multiplication by (1−qi
k) shows that this equation results from the fact that the expected actuarial

reserve (1−qi
k)Di

k at the end of period k is given by the sum of the actuarial reserve of the previous
period and the premium after guaranteed interest (1 + z)(Di

k−1 + P i
k) minus the expected survival

and death benefits (1− qi
k)Ei,G

k + qi
kT i,G

k , see, e.g., [2, 30].
In addition to the guaranteed benefits which depend on the technical interest rate z, policy-

holders are also entitled to a bonus interest zk − z defined in Section 4.2, which depends on the
development of the financial markets. Depending on the specific insurance product, the allocated
bonuses are distributed to each policyholder either at maturity of his contract or earlier in case of
death or surrender. Let Ei,B

k , T i,B
k and Si,B

k denote the bonus payments to an insurance holder
in model point i at the end of period k in case of survival, death and surrender, respectively. The
sum of all bonuses allocated to a policyholder of model point i at the end of period k is collected
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in an individual bonus account Bi
k. Its value is recursively defined by

Bi
k =

1 + zk

1− qi
k

Bi
k−1 +

zk − z

1− qi
k

(Di
k−1 + P i

k)− Ei,B
k − qi

k

1− qi
k

T i,B
k . (11)

Similar to above, this equation results from the fact that the expected value7 (1 − qi
k)Bi

k of the
bonus account at the end of period k is given by the sum of allocated bonuses in the past after
interest (1 + zk)Bi

k−1 and the bonus payment (zk − z)(Di
k−1 + P i

k) of period k minus the expected
bonus payments (1− qi

k)Ei,G
k + qi

kT i,G
k in case of survival and death, respectively.

The total payments Ei
k, T i

k and Si
k to a policyholder of model point i at the end of period k in

case of survival, death and surrender are then given by

Ei
k = Ei,G

k + Ei,B
k , T i

k = T i,G
k + T i,B

k and Si
k = Si,G

k + Si,B
k . (12)

By adding (10) and (11), we see that the sum M i
k = Di

k + Bi
k of the two policyholder accounts

satisfies

M i
k =

1 + zk

1− qi
k

(M i
k−1 + P i

k)− Ei
k −

qi
k

1− qi
k

T i
k (13)

which has a similar structure as the recursion for the actuarial reserve (10).

Example 5.1 For illustration, an endowment insurance with death benefit and constant premium
payments is considered. Let P i denote the constant premium which is paid by each of the policy-
holders in model point i in every period. If they are still alive, the policyholders receive at maturity
di a guaranteed benefit Ei,G and the value of the bonus account. In case of death prior to matu-
rity, the sum of all premium payments and the value of the bonus account is returned. In case of
surrender, the policyholder capital and the bonus is reduced by a surrender factor ϑ ∈ [0, 1]. The
guaranteed components of the four characteristics are then defined by

P i
k = P i, Ei,G

k = χk(di) Ei,G, T i,G
k = k P i and Si,G

k = ϑDi
k,

where χk(di) denotes the indicator function which is one if k = di and zero otherwise. The bonus
payments at the end of period k are given by

Ei,B
k = χk(di)Bi

k, T i,B
k = Bi

k and Si,B
k = ϑ Bi

k.

We will return to this example in Section 7.

6 Projection of the Balance Sheet

In this section, we derive the recursive development of all items in the simplified balance sheet
introduced in Section 2. We then discuss relations to other mathematical models previously pro-
posed in the literature and study various performance figures, which can be used to illustrate the
results of the balance sheet projection.

6.1 Projection of the assets

In order to define the capital Ck at the end of period k, we first determine the cash flows which
are occurring to and from the policyholders in our model framework. The premium Pk, which is
obtained by the company at the beginning of period k, and the survival payments Ek, the death
payments Tk, and the surrender payments Sk to policyholders, which take place at the end of
period k, are obtained by summation of the individual cash flows (12), i.e.,

Pk =
m∑

i=1

δi
k−1 P i

k, Ek =
m∑

i=1

δi
k Ei

k, Tk =
m∑

i=1

qi
kδi

k−1 T i
k and Sk =

m∑
i=1

ui
kδi

k−1 Si
k, (14)

7Note that Bi
k still depends on financial uncertainty. The expected value is only taken with respect to the death

probabilities.
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where the numbers δi
k are given by (9). Note that the cashflows are expected values with respect

to our deterministic mortality and surrender assumptions from Section 5.1. They are random
numbers with respect to our stochastic capital market model from Section 3.1. Taking into account
the portfolio return rate pk from Section 4.1, one obtains that the capital Ck is recursively given
by

Ck = (Ck−1 + Pk) (1 + pk)− Ek − Tk − Sk. (15)

6.2 Projection of the liabilities

The actuarial reserve Dk and the allocated bonus Bk are derived by summation of the individual
policyholder accounts (10) and (11), i.e.,

Dk =
m∑

i=1

δi
k Di

k and Bk =
m∑

i=1

δi
k Bi

k.

From the equations (9), (13) and (14), we derive that the sum Mk =
∑

i δi
k M i

k = Dk + Bk is
recursively given by

Mk = (1 + zk)(Mk−1 + Pk)− Ek − Tk − Sk/ϑ, (16)

where we assumed Si,G
k = ϑ Di

k as in Example 5.1 and ϑ > 0.
In order to define the free reserve Fk, we next determine the gross surplus Gk in period k.

By the so-called contribution formula, the surplus is usually divided into the components interest
surplus, risk surplus, cost surplus and surrender surplus. In our model only the interest surplus
and the surrender surplus show up. The interest surplus is given by the difference between the total
capital market return pk (Fk−1 + Mk−1 + Pk) on policyholder capital and the interest payments
zk (Mk−1 + Pk) to policyholders. The surrender surplus is given by the difference Sk/ϑ− Sk. The
gross surplus in period k is thus given by

Gk = pk Fk−1 + (pk − zk) (Mk−1 + Pk) + (1/ϑ− 1)Sk.

The development of the free reserve Fk is then derived using equation (7). Altogether, the company
account Qk is determined by

Qk = Ck −Mk − Fk.

For convenience, the complete model is summarised in Figure 1.

6.3 Relation to other mathematical models

Our model framework includes many of the models previously proposed in the literature as special
cases. If we consider only one policy with a single initial payment P i at time t = 0, a term of
K years, a yearly discretization and neglect mortality and surrender, then the non-zero entries in
the characteristics of this (pure savings) product are defined by P i

1 = P i and Ei,G
K = (1 + z)KP i.

Moreover, by (16) it holds that

M i
k = (1 + zk)M i

k−1, M i
0 = P i for k = 1, . . . ,K.

If we further replace (7) by Fk = Fk−1 + Gk, we exactly recover the model for European-type
participation contracts proposed in [16]. If we include mortality, define the guaranteed death
benefit by T i,G

k = (1+ z)kP i and declare the policyholder interest according to zk = max{ω pk, z},
we further recover the model for single premium contracts proposed in [2]. The definition P i

k = P i

for all k = 1, . . . ,K leads to the constant premium case in [3] but without the linear approximation
for the benefit adjustment.
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Data given at the start of the simulation:

Insurance portfolio Di
0, Bi

0, δi
0 for i = 1, . . . ,m

Product parameters z ∈ R+, ϑ ∈ [0, 1]; P i
k, Ei,G

k , T i,G
k , Si,G

k for all i, k

Biometric parameters qi
k, ui

k for i = 1, . . . ,m and k = 1, . . . ,K

Capital market parameters κ, θ, σr, r0, σs ∈ R+; µ, λ0 ∈ R; ρ ∈ [−1, 1]

Management parameters τ ∈ N; β, ω, γ, α ∈ [0, 1]

Initial values F0, Q0, n1−τ , . . . , n0 ∈ R

Asset model (see Section 3):

Short interest rates rk = rk−1 + κ(θ − rk−1)∆t + σr

√
|rk−1|

√
∆t ξr,k

Stock prices sk = sk−1 exp{(µ− σ2
s/2)∆t + σs

√
∆t(ρξr,k +

√
1− ρ2ξs,k)}

Bond prices bk(τ) = A(τ) exp{−B(τ) rk}

Management model (see Section 4):

New investment Nk = Ck−1 + Pk −
∑τ−1

i=1 nk−i bk−1(τ − i)

Investment in stocks Ak = max {min{Nk, β(Ck−1 + Pk)}, 0}

Number of new bonds nk = (Nk −Ak)/bk−1(τ)

Portfolio return rate pk = (∆Ak +
∑τ−1

i=0 nk−i ∆bk,i)/(Ck−1 + Pk)

Annual policyholder interest ẑk = max {ẑ, ω(Fk−1/Mk−1 − γ)}

Policyholder interest zk = (1 + ẑk)∆t − 1 if k mod (1/∆t) = 1, else zk−1

Liability model (see Section 5):

Number of contracts δi
k =

(
1− qi

k − ui
k

)
δi
k−1

Actuarial reserve Di
k = ((1 + z)(Di

k−1 + P i
k)− qi

kT i,G
k )/(1− qi

k)− Ei,G
k

Allocated bonus Bi
k = (1 + zk) Bi

k−1 + (zk − z) (Di
k−1 + P i

k)

Balance sheet projection (see Section 6):

Surplus Gk = pk Fk−1 + (pk − zk) (Mk−1 + Pk) + (1/ϑ− 1)Sk

Capital Ck = (1 + pk)(Ck−1 + Pk)− Ek − Tk − Sk

Policyholder accounts Mk = (1 + zk)(Mk−1 + Pk)− Ek − Tk − Sk/ϑ

Free reserve Fk = max{Fk−1 + min{Gk, α Gk}, 0}

Equity Qk = Ck −Mk − Fk

Figure 1: Summary of the input parameters and of the important model equations.
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6.4 Performance figures

A single simulation run can be analysed by looking at the balance sheet positions or at cross
sections of the portfolio at certain times. In a stochastic simulation, however, a large number of
scenarios is generated, such that an analysis of all individual scenarios is not possible anymore.
Instead, statistical measures are considered which result from an averaging over all scenarios. As
a risk measure we consider the path-dependent cumulative probability of default

PDk = P
(

min
j=1,...,k

Qj < 0
)

.

In the next section, we also take a look at the expected values of the balance sheet items E[Ck],
E[Bk], E[Fk] and E[Qk] for k = 1, . . . ,K. These profit and risk figures can easily be computed
during the simulation. Similarly, it is straightforward to include the computation of further per-
formance measures like the variance, the value-at-risk, the expected shortfall or the return on risk
capital.

To determine the sensitivity of a given performance figure f to one of the model parameters
v, we compute the partial derivative f ′(v) = ∂f(v)/∂v by a finite difference approximation. For a
better comparison, often also the relative change in f to a small change in v is considered, which
is given by f ′(v)/f(v). For v = r0, this measure of sensitivities is also called effective duration or
interest-rate elasticity. For a discussion and further collection of useful risk measures we refer to
[8, 11, 20].

7 Numerical Results

In this section, numerical results are presented for various sample products and model parameters.
Due to the complex path-dependence of the stochastic terms in our model, closed-form solutions are
only available in very special cases. The modular and recursive design of our model permits efficient
Monte Carlo simulations8 of all performance figures, however. The Monte Carlo samples x ∈
(0, 1)2K are transformed to N(0, 1)-distributed random variables ξr,1, . . . , ξr,K and ξs,1, . . . , ξs,K

by Moro’s method [27]. From these numbers, the development of all involved accounts can then
be derived by evaluating the model equations summarised in Figure 1. The number of operations
for the simulation of a single scenario is of order O(m · K). For a representative portfolio with
500 model points and a time horizon of K = 120 periods, the simulation of a single scenario takes
about 0.04 seconds on a dual Intel(R) Xeon(TM) CPU 3.06GH workstation.

We first describe the basic setting for our numerical experiments. Then, the expected devel-
opments of the balance sheet items and of the default probabilities are shown for four different
sample products in order to investigate the influence of mortality and surrender on the success of
the company. Next, we investigate the sensitivities of the performance figures from Section 6.4 to
the input parameters of the model. Finally, iso-default probability curves are discussed to illustrate
the effects which result from the management parameters. In particular, optimal bond durations
τ and stock ratios β are determined.

7.1 Setting

We consider a representative model portfolio with 50, 000 contracts in 500 equal-sized model points.
The data of each model point i is generated according to the following distribution assumptions:
entry age xi ∼ N(36, 10), exit age xi ∼ N(62, 4), current age xi

0 ∼ U(xi, xi) and monthly premium
P i ∼ U(50, 500) where N(µ, σ) denotes the normal distribution with mean µ and variance σ,
and U(a, b) denotes a uniform distribution in the interval [a, b]. In addition, the side conditions

8For more information on Monte Carlo methods and possible approaches, as variance reduction techniques and
quasi-Monte Carlo methods to reduce the number of required scenarios to obtain a prescribed accuracy, see, e.g., [14].
Also, sparse grid methods [13] can be used for the generation of the sample points x ∈ (0, 1)2K . The comparison of
the different numerical methods will be the focus of a future paper.
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15 ≤ xi ≤ 55 and 55 ≤ xi ≤ 70 are respected. The probability that the contracts of a model point
belong to female policyholders is assumed to be 55%. From the difference of exit age and current
age the maturity time di = xi − xi of the contracts is computed. For simplicity, we assume that
the policies have not received any bonus payments before the start of the simulation, i.e., Bi

0 = 0
for all i = 1, . . . ,m. We consider the following four sample products:

• p(1) : pure savings account (qi
k ≡ 0, ui

k ≡ 0),

• p(2) : endowment insurance with death benefit (ui
k ≡ 0),

• p(3) : endowment insurance with death benefit and surrender option (no surrender fee),

• p(4) : endowment insurance with death benefit and surrender option (10% surrender fee),

which are all equipped with the contract characteristics of Example 5.1 but differ in their depen-
dence on mortality and surrender. We take the probabilities qi

k of death from the DAV 2004R
mortality table and choose the probabilities ui

k of surrender as in (8) with λ = 0.03. In our nu-
merical tests we use the capital market, product and management parameters as displayed in the
second rows of Table 2 and 3 unless stated otherwise. The parameters for the short rate and the
stock prices are taken from [12] and [23], respectively, where they have been estimated based on
historical data for the German market. For simplicity, the values are rounded off to two decimal
places. The parameters for the bonus declaration correspond to the neutral scenario in [16]. At
time t0, we assume a uniform bond allocation, i.e., nj = (1−β)C0/

∑τ−1
i=0 b0(i) for j = 1− τ, . . . , 0.

We assume Q0 = 0 which means that the shareholders will not make additional payments to the
company to avoid a ruin. This way, E[Qk] serves as a direct measure for the investment returns
of the shareholders in the time interval [0, tk]. The total initial reserves of the company are then
given by F0 = γ0 D0.

We simulated n = 10, 000 Monte Carlo scenarios. For the set of parameters considered, this
number is sufficient to obtain approximations to all balance sheet items with relative standard errors
smaller than 10−4. In the following sensitivity analyses, the simulations for varying parameters
are based on the same sequence of normally distributed random numbers ξs,k and ξr,k in order to
allow for a direct comparison of the results.

7.2 Impact of mortality, surrender and surrender fees

For the setting described in Section 7.1, we now analyse the expected development of all balance
sheet items and of the default probability for the example products p(1), p(2), p(3) and p(4), respec-
tively. We choose a simulation horizon of T = 30 years and a period length of ∆t = 1/12 years,
i.e., K = 360. The time horizon is chosen exactly in a way such that all policies are expired at the
end of the simulation. The results are given in Figure 2 where the expected values are displayed
for each period k = 1, . . . , 360.

In Figure 2 (top left and top right), we see that the expected value E[Ck] of the capital and
the actuarial reserve9 Dk increases in the first two years due to the premium income and the
capital market returns. Then, the expected values of the accounts decrease with time due to the
decrement of policies. Here, the presence of surrender has a much higher impact than the presence
of mortality as can be seen from the comparison of the products p(1), p(2) and p(3). The expected
capital is higher in case p(4) compared to p(3) because of the additional surpluses generated by the
surrender fees.

In Figure 2 (middle left), one can see that the expected bonus account Bk does not start to
increase significantly until the fifth year of the simulation. This is explained by the choice of the
initial reserve rate γ0 = 10% which is below the target reserve rate γ = 15%. In the first years of
the simulation, the company is therefore only paying the guaranteed interest in order to build up
sufficient reserves.

9Note that the development of the actuarial reserve is, in contrary to all other balance sheet items, independent
of the development of the financial markets and not affected by the choice of the surrender fee.
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Figure 2: For each period k = 0, . . . , 360, the expected values E[Ck] (top left), E[Bk] (middle
left), E[Fk] (middle right), E[Qk] (bottom left) and the default probability PDk (bottom right)
are displayed for the portfolio, parameters and sample products from Section 7.1. The actuarial
reserve Dk is shown in the top right place. In contrast to the other balance sheet items, it is
independent of the random numbers ξs,k and ξr,k and equal for the products p(3) and p(4).
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In Figure 2 (middle right), the expected values E[Fk] of the free reserves are shown. They
increase in the first 10 years for the products p(3) and p(4) with surrender option and in the first
15 years for the products p(1) and p(2) without surrender option, and decrease afterwards. The
expected values of the reserve rates γk = Fk/(Dk+Bk) at k = 120 are given by 17.2%, 17.4%, 20.4%
and 22.4% for the products p(1), p(2), p(3) and p(4). The different values can be explained by
the fact that the decrement of contracts leads to a reduction of the actuarial reserve and of the
bonus accounts while it does not directly affect the free reserve. As a consequence, the expected
reserve rate increases with a higher decrement of contracts. In the case p(4), the company profits
additionally from the surrender fees. In all cases, γk tends to infinity in the last periods of the
simulation10 as the policyholder capital Dk + Bk converges to zero for k → K.

In Figure 2 (bottom left), we see that the expected value of the equity account Qk increases
almost linearly with time. Depending on the product, smaller values are attained in the order
p(1), p(2), p(4) and p(3), which is explained by the differences of the expected asset bases E[Ck] as
these lead to differently large expected surpluses.

Of particular interest is the development of the default probabilities PDk (Figure 2, bottom
right). We observe that the default risk of the company is almost zero in the first years of the
simulation which is due to the 10% initial buffer in the free reserve. Then, the default probabilities
start to increase significantly with time up to a certain limit which is reached after 15 years in case
of a surrender option and which is reached after 20 years in the other case. At these points in time
a major part of the insurance portfolio is expired or has surrendered, so that the company faces
almost no default risk anymore. The default risk significantly depends on the insurance product
under consideration: If we compare p(1) and p(2), we can see that the presence of mortality reduces
the default risk slightly from 5.2% to 5.0% for a 10 year time horizon and from 8.9% to 8.5% for
a 30 year time horizon. A significant reduction results from the surrender option. In the case of
product p(3), one obtains PD120 = 3.3% and PD360 = 5.1%, and in case of product p(4) the default
probabilities are PD120 = 1.6% and PD360 = 2.5%.

7.3 Sensitivities

For the product p(4), we next investigate the sensitivity of the model to the various input parameters
to show that the model captures the most important behaviour patterns of the balance sheet
development of life insurance products. Note that all of the following results are only true for
the chosen set of parameters and can change if one or more of the parameters are varied. In the
following, we choose a simulation horizon of T = 10 years and a period length of ∆t = 1/12 years,
i.e., K = 120. The sensitivities are described by the partial derivatives f ′(v)/f(v), see Section
6.4, which are displayed in Table 2 and 3. Here, each row corresponds to a different function f(v)
and each column to a different model input parameter v, e.g., ∂PDK/(∂µ PDK) = −0.431. For
the chosen set of parameters, we observe that the default probability decreases in µ, κ, θ, r0, τ, γ0

and increases in σs, σr, λ0, ρ, β, ϑ, z as expected. The highest sensitivity arises with respect to the
guaranteed interest z and the stock ratio β. Moreover, the parameters r0, θ and σr of the interest
rate model are of high importance, which indicates that these parameters should be estimated
by the insurance company with particular care. The parameters λ0 and ρ are only of moderate
importance. For our setting, the default probability is almost insensitive to ω, γ and α. This,
however, is no longer true if other parameters, like the initial solvency rate, are changed as shown
in Section 7.4 where the interaction of several parameters is investigated.

The expected values of the equity account and of the free reserves decrease in σr, ρ, λ0, ω, ϑ and
increase in the remaining parameters. The most important input parameter is the initial interest
rate r0 due to its relevance in the specification of the surplus in the first years of the simulation.
For longer time horizons the importance of θ increases. While E[FK ] is also rather sensitive to
z and not much affected by small changes of α, the equity account is more affected by changes
in α than by changes in z. It is striking that E[QK ] profits significantly from higher values of β
and higher values of σs, while E[FK ] increases only slightly in case of higher values of β and even

10To avoid unrealistic high interest rates zk in these periods, we capped the bonus declaration at 10%.
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stock price model interest rate model correlation
µ = 8% σs = 20% κ = 0.1 θ = 4% σr = 5% r0 = 3% λ0 = −5% ρ = −0.1

E[QK ] 0.028 0.035 0.007 0.085 -0.001 0.156 -0.001 -0.0008
E[FK ] 0.039 -0.008 0.009 0.136 -0.0014 0.212 -0.0014 -0.0002
PDK -0.431 0.219 -0.172 -0.884 0.729 -2.122 0.005 0.04

Table 2: Capital market parameters p used in the simulation and their partial derivatives f ′(p)/f(p)
for f ∈ {PDK , E[QK ], E[FK ]}.

asset allocation bonus declaration shareholder product parameters solv. rate
β = 10% τ = 3 ω = 25% γ = 15% α = 90% ϑ = 90% z = 3% γ0 = 10%

E[QK ] 0.083 0.004 -0.002 0.009 -0.101 -0.006 -0.086 0.011
E[FK ] 0.002 0.002 -0.009 0.03 0.013 -0.01 -0.22 0.034
PDK 0.265 -0.054 0 -0.002 0.001 0.08 2.706 -0.504

Table 3: Solvency rate and management and product parameters p used in the simulation and
their partial derivatives f ′(p)/f(p) for f ∈ {PDK , E[QK ], E[FK ]}.

decreases slightly for higher values of σs. These effects are a consequence of equation (7) which
states that the shareholder account usually does not suffer under negative surpluses while the free
reserve is affected by negative as well as by positive surpluses.

7.4 Impact of the management parameters

Now, we investigate the interaction of the management parameters β, τ, ω, γ and the initial solvency
rate γ0. Similar to [16, 23] we illustrate the results by iso-default probability curves, i.e., by
providing pairs of parameters which result in the same default probability PDK .

We first consider the parameter β which determines the target stock ratio of the asset allocation,
see Section 4.1. In Figure 3 (left) the combinations of (β, γ0) which give PD120 = 5% are shown
for each product. Note that higher values of β result in higher but more volatile expected capital
market returns. We see that the slightly negative correlation ρ = −0.1 results in a diversification
effect such that the lowest default risk is not attained at β = 0 but at about β = 5%. As expected,
companies with higher initial reserves can afford to have higher stock ratios. In the case of product
p(1), the value of β which maximises the capital market returns under the condition PDK ≤ 5%
is given by 11% for a company with γ0 = 10% and by 21% for a company with γ0 = 20%. In the
case of product p(4), these optimal values shift to 16% and 25%, respectively.

Next, we consider the parameter τ which defines the duration of the bond investments, see
Section 4.1. Higher values of τ result in higher bond yields, since we assumed a negative market
price of risk parameter λ0. We thus also expect a reduction of the default risk for higher values of
τ . On the other hand, longer bond durations increase the probability that the company runs into
growing liquidity problems during the simulation, which in turn increases PDK . The interaction
of these two effects are illustrated in Figure 3 (right) where the default probabilities are displayed
as a function of τ for different solvency rates γ0. For τ varying from one month to eight years,
PD120 varies between 2− 4% for a company with γ0 = 10%. The bond duration which minimizes
the default risk is given by τmin = 4 years. Interestingly, it depends on the solvency rate of the
company. For the case γ0 = 13%, we obtain τmin = 5 years. The optimal bond duration increases
for companies with larger reserves.11

11As an interesting extension one could try to further optimise the risk-return profile of the company by using
a more complex capital allocation model which dynamically matches the bond duration with the duration of the
liabilities.
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Figure 3: Left: Parameter pairs (β, γ0) for the example products p(1)−p(4) which lead to a default
probability of 5%. Right: Default probability PD120 in the case p(1) in dependence of the bond
duration τ for different initial solvency rates γ0.

Finally, we consider the parameters ω and γ which specify the bonus declaration mechanism,
see Section 4.2. In Figure 4, pairs of (ω, γ) are shown which lead to PD120 = 5% for different
solvency situations (left figure) and for different products (right figure). We see that higher values
of the participation coefficient ω, which increases PDk, have to be balanced with smaller values
for the target reserve rate γ, which decreases PDk. For the set of parameters considered, only
very aggressive bonus declarations result in default probabilities larger than 5%. Furthermore, it
is interesting that not only the solvency situation but also the product features have a significant
influence on the iso-default probability curves. For participating insurance policies in a geomet-
ric Brownian motion framework, a similar investigation of the bonus declaration mechanism and
additional details can be found in [16].

8 Concluding Remarks

In this paper, we proposed a discrete time model framework for the asset-liability management of
life insurance products. The model incorporates fairly general product characteristics, a surren-
der option, a reserve-dependent bonus declaration, a dynamic capital allocation and a two-factor
stochastic capital market model. The recursive formulation of the model allows for an efficient
simulation. Furthermore, the model structure is modular and allows to be extended easily. In a
series of examples, we showed that the model captures the most important behaviour patterns of
the balance sheet development of life insurance products. In particular, we analysed the impact of
mortality and surrender and the influence of the most important product, management and capital
market parameters on the risk exposure of the insurance company and showed that different prod-
uct features may have a significant impact on the default risk. Compared to the results presented
in [16, 23], which are based on a geometric Brownian motion framework, the incorporation of a
bond trading strategy and of a mean reverting process for the short rate results in significantly
smaller and maybe more realistic default probabilities. Furthermore, in line with many other re-
sults presented in the literature, our results lead to the conclusion that static regulations, like the
prescription of the maximum portion of stocks or the minimal participation rates for policyhold-
ers, are insufficient to control the company’s default risk or to ensure an appropriate policyholder’s
participation. Instead, regulation as well as internal risk management guidelines should lay more
emphasis on prescribing stress tests and stochastic simulations as these methods are much better
suited to take into account the complex interaction of the assets and liabilities of a life insurance
company.
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Figure 4: Parameter pairs (γ, ω) for different initial solvency rates γ0 which lead to a default
probability of 5% in case of product p(1) (left) and for the products p(1)− p(4) in case of γ0 = 15%
(right).
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